xref: /freebsd/contrib/llvm-project/llvm/lib/Object/ELF.cpp (revision c203bd70b5957f85616424b6fa374479372d06e3)
1 //===- ELF.cpp - ELF object file implementation ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Object/ELF.h"
10 #include "llvm/BinaryFormat/ELF.h"
11 #include "llvm/Support/LEB128.h"
12 
13 using namespace llvm;
14 using namespace object;
15 
16 #define STRINGIFY_ENUM_CASE(ns, name)                                          \
17   case ns::name:                                                               \
18     return #name;
19 
20 #define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name)
21 
22 StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine,
23                                                  uint32_t Type) {
24   switch (Machine) {
25   case ELF::EM_X86_64:
26     switch (Type) {
27 #include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
28     default:
29       break;
30     }
31     break;
32   case ELF::EM_386:
33   case ELF::EM_IAMCU:
34     switch (Type) {
35 #include "llvm/BinaryFormat/ELFRelocs/i386.def"
36     default:
37       break;
38     }
39     break;
40   case ELF::EM_MIPS:
41     switch (Type) {
42 #include "llvm/BinaryFormat/ELFRelocs/Mips.def"
43     default:
44       break;
45     }
46     break;
47   case ELF::EM_AARCH64:
48     switch (Type) {
49 #include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
50     default:
51       break;
52     }
53     break;
54   case ELF::EM_ARM:
55     switch (Type) {
56 #include "llvm/BinaryFormat/ELFRelocs/ARM.def"
57     default:
58       break;
59     }
60     break;
61   case ELF::EM_ARC_COMPACT:
62   case ELF::EM_ARC_COMPACT2:
63     switch (Type) {
64 #include "llvm/BinaryFormat/ELFRelocs/ARC.def"
65     default:
66       break;
67     }
68     break;
69   case ELF::EM_AVR:
70     switch (Type) {
71 #include "llvm/BinaryFormat/ELFRelocs/AVR.def"
72     default:
73       break;
74     }
75     break;
76   case ELF::EM_HEXAGON:
77     switch (Type) {
78 #include "llvm/BinaryFormat/ELFRelocs/Hexagon.def"
79     default:
80       break;
81     }
82     break;
83   case ELF::EM_LANAI:
84     switch (Type) {
85 #include "llvm/BinaryFormat/ELFRelocs/Lanai.def"
86     default:
87       break;
88     }
89     break;
90   case ELF::EM_PPC:
91     switch (Type) {
92 #include "llvm/BinaryFormat/ELFRelocs/PowerPC.def"
93     default:
94       break;
95     }
96     break;
97   case ELF::EM_PPC64:
98     switch (Type) {
99 #include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def"
100     default:
101       break;
102     }
103     break;
104   case ELF::EM_RISCV:
105     switch (Type) {
106 #include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
107     default:
108       break;
109     }
110     break;
111   case ELF::EM_S390:
112     switch (Type) {
113 #include "llvm/BinaryFormat/ELFRelocs/SystemZ.def"
114     default:
115       break;
116     }
117     break;
118   case ELF::EM_SPARC:
119   case ELF::EM_SPARC32PLUS:
120   case ELF::EM_SPARCV9:
121     switch (Type) {
122 #include "llvm/BinaryFormat/ELFRelocs/Sparc.def"
123     default:
124       break;
125     }
126     break;
127   case ELF::EM_AMDGPU:
128     switch (Type) {
129 #include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def"
130     default:
131       break;
132     }
133     break;
134   case ELF::EM_BPF:
135     switch (Type) {
136 #include "llvm/BinaryFormat/ELFRelocs/BPF.def"
137     default:
138       break;
139     }
140     break;
141   case ELF::EM_MSP430:
142     switch (Type) {
143 #include "llvm/BinaryFormat/ELFRelocs/MSP430.def"
144     default:
145       break;
146     }
147     break;
148   case ELF::EM_VE:
149     switch (Type) {
150 #include "llvm/BinaryFormat/ELFRelocs/VE.def"
151     default:
152       break;
153     }
154     break;
155   default:
156     break;
157   }
158   return "Unknown";
159 }
160 
161 #undef ELF_RELOC
162 
163 uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) {
164   switch (Machine) {
165   case ELF::EM_X86_64:
166     return ELF::R_X86_64_RELATIVE;
167   case ELF::EM_386:
168   case ELF::EM_IAMCU:
169     return ELF::R_386_RELATIVE;
170   case ELF::EM_MIPS:
171     break;
172   case ELF::EM_AARCH64:
173     return ELF::R_AARCH64_RELATIVE;
174   case ELF::EM_ARM:
175     return ELF::R_ARM_RELATIVE;
176   case ELF::EM_ARC_COMPACT:
177   case ELF::EM_ARC_COMPACT2:
178     return ELF::R_ARC_RELATIVE;
179   case ELF::EM_AVR:
180     break;
181   case ELF::EM_HEXAGON:
182     return ELF::R_HEX_RELATIVE;
183   case ELF::EM_LANAI:
184     break;
185   case ELF::EM_PPC:
186     break;
187   case ELF::EM_PPC64:
188     return ELF::R_PPC64_RELATIVE;
189   case ELF::EM_RISCV:
190     return ELF::R_RISCV_RELATIVE;
191   case ELF::EM_S390:
192     return ELF::R_390_RELATIVE;
193   case ELF::EM_SPARC:
194   case ELF::EM_SPARC32PLUS:
195   case ELF::EM_SPARCV9:
196     return ELF::R_SPARC_RELATIVE;
197   case ELF::EM_AMDGPU:
198     break;
199   case ELF::EM_BPF:
200     break;
201   default:
202     break;
203   }
204   return 0;
205 }
206 
207 StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) {
208   switch (Machine) {
209   case ELF::EM_ARM:
210     switch (Type) {
211       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX);
212       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
213       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
214       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
215       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
216     }
217     break;
218   case ELF::EM_HEXAGON:
219     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED); }
220     break;
221   case ELF::EM_X86_64:
222     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
223     break;
224   case ELF::EM_MIPS:
225   case ELF::EM_MIPS_RS3_LE:
226     switch (Type) {
227       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
228       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
229       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF);
230       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
231     }
232     break;
233   case ELF::EM_RISCV:
234     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_RISCV_ATTRIBUTES); }
235     break;
236   default:
237     break;
238   }
239 
240   switch (Type) {
241     STRINGIFY_ENUM_CASE(ELF, SHT_NULL);
242     STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS);
243     STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB);
244     STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB);
245     STRINGIFY_ENUM_CASE(ELF, SHT_RELA);
246     STRINGIFY_ENUM_CASE(ELF, SHT_HASH);
247     STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC);
248     STRINGIFY_ENUM_CASE(ELF, SHT_NOTE);
249     STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS);
250     STRINGIFY_ENUM_CASE(ELF, SHT_REL);
251     STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB);
252     STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM);
253     STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY);
254     STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY);
255     STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY);
256     STRINGIFY_ENUM_CASE(ELF, SHT_GROUP);
257     STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX);
258     STRINGIFY_ENUM_CASE(ELF, SHT_RELR);
259     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL);
260     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA);
261     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR);
262     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB);
263     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS);
264     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE);
265     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG);
266     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_DEPENDENT_LIBRARIES);
267     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_SYMPART);
268     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_EHDR);
269     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_PHDR);
270     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES);
271     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH);
272     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef);
273     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed);
274     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym);
275   default:
276     return "Unknown";
277   }
278 }
279 
280 template <class ELFT>
281 Expected<std::vector<typename ELFT::Rela>>
282 ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const {
283   // This function decodes the contents of an SHT_RELR packed relocation
284   // section.
285   //
286   // Proposal for adding SHT_RELR sections to generic-abi is here:
287   //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
288   //
289   // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
290   // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
291   //
292   // i.e. start with an address, followed by any number of bitmaps. The address
293   // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
294   // relocations each, at subsequent offsets following the last address entry.
295   //
296   // The bitmap entries must have 1 in the least significant bit. The assumption
297   // here is that an address cannot have 1 in lsb. Odd addresses are not
298   // supported.
299   //
300   // Excluding the least significant bit in the bitmap, each non-zero bit in
301   // the bitmap represents a relocation to be applied to a corresponding machine
302   // word that follows the base address word. The second least significant bit
303   // represents the machine word immediately following the initial address, and
304   // each bit that follows represents the next word, in linear order. As such,
305   // a single bitmap can encode up to 31 relocations in a 32-bit object, and
306   // 63 relocations in a 64-bit object.
307   //
308   // This encoding has a couple of interesting properties:
309   // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
310   //    even means address, odd means bitmap.
311   // 2. Just a simple list of addresses is a valid encoding.
312 
313   Elf_Rela Rela;
314   Rela.r_info = 0;
315   Rela.r_addend = 0;
316   Rela.setType(getRelativeRelocationType(), false);
317   std::vector<Elf_Rela> Relocs;
318 
319   // Word type: uint32_t for Elf32, and uint64_t for Elf64.
320   typedef typename ELFT::uint Word;
321 
322   // Word size in number of bytes.
323   const size_t WordSize = sizeof(Word);
324 
325   // Number of bits used for the relocation offsets bitmap.
326   // These many relative relocations can be encoded in a single entry.
327   const size_t NBits = 8*WordSize - 1;
328 
329   Word Base = 0;
330   for (const Elf_Relr &R : relrs) {
331     Word Entry = R;
332     if ((Entry&1) == 0) {
333       // Even entry: encodes the offset for next relocation.
334       Rela.r_offset = Entry;
335       Relocs.push_back(Rela);
336       // Set base offset for subsequent bitmap entries.
337       Base = Entry + WordSize;
338       continue;
339     }
340 
341     // Odd entry: encodes bitmap for relocations starting at base.
342     Word Offset = Base;
343     while (Entry != 0) {
344       Entry >>= 1;
345       if ((Entry&1) != 0) {
346         Rela.r_offset = Offset;
347         Relocs.push_back(Rela);
348       }
349       Offset += WordSize;
350     }
351 
352     // Advance base offset by NBits words.
353     Base += NBits * WordSize;
354   }
355 
356   return Relocs;
357 }
358 
359 template <class ELFT>
360 Expected<std::vector<typename ELFT::Rela>>
361 ELFFile<ELFT>::android_relas(const Elf_Shdr *Sec) const {
362   // This function reads relocations in Android's packed relocation format,
363   // which is based on SLEB128 and delta encoding.
364   Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
365   if (!ContentsOrErr)
366     return ContentsOrErr.takeError();
367   const uint8_t *Cur = ContentsOrErr->begin();
368   const uint8_t *End = ContentsOrErr->end();
369   if (ContentsOrErr->size() < 4 || Cur[0] != 'A' || Cur[1] != 'P' ||
370       Cur[2] != 'S' || Cur[3] != '2')
371     return createError("invalid packed relocation header");
372   Cur += 4;
373 
374   const char *ErrStr = nullptr;
375   auto ReadSLEB = [&]() -> int64_t {
376     if (ErrStr)
377       return 0;
378     unsigned Len;
379     int64_t Result = decodeSLEB128(Cur, &Len, End, &ErrStr);
380     Cur += Len;
381     return Result;
382   };
383 
384   uint64_t NumRelocs = ReadSLEB();
385   uint64_t Offset = ReadSLEB();
386   uint64_t Addend = 0;
387 
388   if (ErrStr)
389     return createError(ErrStr);
390 
391   std::vector<Elf_Rela> Relocs;
392   Relocs.reserve(NumRelocs);
393   while (NumRelocs) {
394     uint64_t NumRelocsInGroup = ReadSLEB();
395     if (NumRelocsInGroup > NumRelocs)
396       return createError("relocation group unexpectedly large");
397     NumRelocs -= NumRelocsInGroup;
398 
399     uint64_t GroupFlags = ReadSLEB();
400     bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG;
401     bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG;
402     bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG;
403     bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG;
404 
405     uint64_t GroupOffsetDelta;
406     if (GroupedByOffsetDelta)
407       GroupOffsetDelta = ReadSLEB();
408 
409     uint64_t GroupRInfo;
410     if (GroupedByInfo)
411       GroupRInfo = ReadSLEB();
412 
413     if (GroupedByAddend && GroupHasAddend)
414       Addend += ReadSLEB();
415 
416     if (!GroupHasAddend)
417       Addend = 0;
418 
419     for (uint64_t I = 0; I != NumRelocsInGroup; ++I) {
420       Elf_Rela R;
421       Offset += GroupedByOffsetDelta ? GroupOffsetDelta : ReadSLEB();
422       R.r_offset = Offset;
423       R.r_info = GroupedByInfo ? GroupRInfo : ReadSLEB();
424       if (GroupHasAddend && !GroupedByAddend)
425         Addend += ReadSLEB();
426       R.r_addend = Addend;
427       Relocs.push_back(R);
428 
429       if (ErrStr)
430         return createError(ErrStr);
431     }
432 
433     if (ErrStr)
434       return createError(ErrStr);
435   }
436 
437   return Relocs;
438 }
439 
440 template <class ELFT>
441 std::string ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch,
442                                                  uint64_t Type) const {
443 #define DYNAMIC_STRINGIFY_ENUM(tag, value)                                     \
444   case value:                                                                  \
445     return #tag;
446 
447 #define DYNAMIC_TAG(n, v)
448   switch (Arch) {
449   case ELF::EM_AARCH64:
450     switch (Type) {
451 #define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
452 #include "llvm/BinaryFormat/DynamicTags.def"
453 #undef AARCH64_DYNAMIC_TAG
454     }
455     break;
456 
457   case ELF::EM_HEXAGON:
458     switch (Type) {
459 #define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
460 #include "llvm/BinaryFormat/DynamicTags.def"
461 #undef HEXAGON_DYNAMIC_TAG
462     }
463     break;
464 
465   case ELF::EM_MIPS:
466     switch (Type) {
467 #define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
468 #include "llvm/BinaryFormat/DynamicTags.def"
469 #undef MIPS_DYNAMIC_TAG
470     }
471     break;
472 
473   case ELF::EM_PPC64:
474     switch (Type) {
475 #define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
476 #include "llvm/BinaryFormat/DynamicTags.def"
477 #undef PPC64_DYNAMIC_TAG
478     }
479     break;
480   }
481 #undef DYNAMIC_TAG
482   switch (Type) {
483 // Now handle all dynamic tags except the architecture specific ones
484 #define AARCH64_DYNAMIC_TAG(name, value)
485 #define MIPS_DYNAMIC_TAG(name, value)
486 #define HEXAGON_DYNAMIC_TAG(name, value)
487 #define PPC64_DYNAMIC_TAG(name, value)
488 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
489 #define DYNAMIC_TAG_MARKER(name, value)
490 #define DYNAMIC_TAG(name, value) case value: return #name;
491 #include "llvm/BinaryFormat/DynamicTags.def"
492 #undef DYNAMIC_TAG
493 #undef AARCH64_DYNAMIC_TAG
494 #undef MIPS_DYNAMIC_TAG
495 #undef HEXAGON_DYNAMIC_TAG
496 #undef PPC64_DYNAMIC_TAG
497 #undef DYNAMIC_TAG_MARKER
498 #undef DYNAMIC_STRINGIFY_ENUM
499   default:
500     return "<unknown:>0x" + utohexstr(Type, true);
501   }
502 }
503 
504 template <class ELFT>
505 std::string ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const {
506   return getDynamicTagAsString(getHeader()->e_machine, Type);
507 }
508 
509 template <class ELFT>
510 Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const {
511   ArrayRef<Elf_Dyn> Dyn;
512 
513   auto ProgramHeadersOrError = program_headers();
514   if (!ProgramHeadersOrError)
515     return ProgramHeadersOrError.takeError();
516 
517   for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) {
518     if (Phdr.p_type == ELF::PT_DYNAMIC) {
519       Dyn = makeArrayRef(
520           reinterpret_cast<const Elf_Dyn *>(base() + Phdr.p_offset),
521           Phdr.p_filesz / sizeof(Elf_Dyn));
522       break;
523     }
524   }
525 
526   // If we can't find the dynamic section in the program headers, we just fall
527   // back on the sections.
528   if (Dyn.empty()) {
529     auto SectionsOrError = sections();
530     if (!SectionsOrError)
531       return SectionsOrError.takeError();
532 
533     for (const Elf_Shdr &Sec : *SectionsOrError) {
534       if (Sec.sh_type == ELF::SHT_DYNAMIC) {
535         Expected<ArrayRef<Elf_Dyn>> DynOrError =
536             getSectionContentsAsArray<Elf_Dyn>(&Sec);
537         if (!DynOrError)
538           return DynOrError.takeError();
539         Dyn = *DynOrError;
540         break;
541       }
542     }
543 
544     if (!Dyn.data())
545       return ArrayRef<Elf_Dyn>();
546   }
547 
548   if (Dyn.empty())
549     // TODO: this error is untested.
550     return createError("invalid empty dynamic section");
551 
552   if (Dyn.back().d_tag != ELF::DT_NULL)
553     // TODO: this error is untested.
554     return createError("dynamic sections must be DT_NULL terminated");
555 
556   return Dyn;
557 }
558 
559 template <class ELFT>
560 Expected<const uint8_t *> ELFFile<ELFT>::toMappedAddr(uint64_t VAddr) const {
561   auto ProgramHeadersOrError = program_headers();
562   if (!ProgramHeadersOrError)
563     return ProgramHeadersOrError.takeError();
564 
565   llvm::SmallVector<Elf_Phdr *, 4> LoadSegments;
566 
567   for (const Elf_Phdr &Phdr : *ProgramHeadersOrError)
568     if (Phdr.p_type == ELF::PT_LOAD)
569       LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr));
570 
571   const Elf_Phdr *const *I =
572       std::upper_bound(LoadSegments.begin(), LoadSegments.end(), VAddr,
573                        [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
574                          return VAddr < Phdr->p_vaddr;
575                        });
576 
577   if (I == LoadSegments.begin())
578     return createError("virtual address is not in any segment: 0x" +
579                        Twine::utohexstr(VAddr));
580   --I;
581   const Elf_Phdr &Phdr = **I;
582   uint64_t Delta = VAddr - Phdr.p_vaddr;
583   if (Delta >= Phdr.p_filesz)
584     return createError("virtual address is not in any segment: 0x" +
585                        Twine::utohexstr(VAddr));
586 
587   uint64_t Offset = Phdr.p_offset + Delta;
588   if (Offset >= getBufSize())
589     return createError("can't map virtual address 0x" +
590                        Twine::utohexstr(VAddr) + " to the segment with index " +
591                        Twine(&Phdr - (*ProgramHeadersOrError).data() + 1) +
592                        ": the segment ends at 0x" +
593                        Twine::utohexstr(Phdr.p_offset + Phdr.p_filesz) +
594                        ", which is greater than the file size (0x" +
595                        Twine::utohexstr(getBufSize()) + ")");
596 
597   return base() + Offset;
598 }
599 
600 template class llvm::object::ELFFile<ELF32LE>;
601 template class llvm::object::ELFFile<ELF32BE>;
602 template class llvm::object::ELFFile<ELF64LE>;
603 template class llvm::object::ELFFile<ELF64BE>;
604