xref: /freebsd/contrib/llvm-project/llvm/lib/Object/ELF.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- ELF.cpp - ELF object file implementation ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Object/ELF.h"
10 #include "llvm/ADT/StringExtras.h"
11 #include "llvm/BinaryFormat/ELF.h"
12 #include "llvm/Support/DataExtractor.h"
13 
14 using namespace llvm;
15 using namespace object;
16 
17 #define STRINGIFY_ENUM_CASE(ns, name)                                          \
18   case ns::name:                                                               \
19     return #name;
20 
21 #define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name)
22 
23 StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine,
24                                                  uint32_t Type) {
25   switch (Machine) {
26   case ELF::EM_68K:
27     switch (Type) {
28 #include "llvm/BinaryFormat/ELFRelocs/M68k.def"
29     default:
30       break;
31     }
32     break;
33   case ELF::EM_X86_64:
34     switch (Type) {
35 #include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
36     default:
37       break;
38     }
39     break;
40   case ELF::EM_386:
41   case ELF::EM_IAMCU:
42     switch (Type) {
43 #include "llvm/BinaryFormat/ELFRelocs/i386.def"
44     default:
45       break;
46     }
47     break;
48   case ELF::EM_MIPS:
49     switch (Type) {
50 #include "llvm/BinaryFormat/ELFRelocs/Mips.def"
51     default:
52       break;
53     }
54     break;
55   case ELF::EM_AARCH64:
56     switch (Type) {
57 #include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
58     default:
59       break;
60     }
61     break;
62   case ELF::EM_ARM:
63     switch (Type) {
64 #include "llvm/BinaryFormat/ELFRelocs/ARM.def"
65     default:
66       break;
67     }
68     break;
69   case ELF::EM_ARC_COMPACT:
70   case ELF::EM_ARC_COMPACT2:
71     switch (Type) {
72 #include "llvm/BinaryFormat/ELFRelocs/ARC.def"
73     default:
74       break;
75     }
76     break;
77   case ELF::EM_AVR:
78     switch (Type) {
79 #include "llvm/BinaryFormat/ELFRelocs/AVR.def"
80     default:
81       break;
82     }
83     break;
84   case ELF::EM_HEXAGON:
85     switch (Type) {
86 #include "llvm/BinaryFormat/ELFRelocs/Hexagon.def"
87     default:
88       break;
89     }
90     break;
91   case ELF::EM_LANAI:
92     switch (Type) {
93 #include "llvm/BinaryFormat/ELFRelocs/Lanai.def"
94     default:
95       break;
96     }
97     break;
98   case ELF::EM_PPC:
99     switch (Type) {
100 #include "llvm/BinaryFormat/ELFRelocs/PowerPC.def"
101     default:
102       break;
103     }
104     break;
105   case ELF::EM_PPC64:
106     switch (Type) {
107 #include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def"
108     default:
109       break;
110     }
111     break;
112   case ELF::EM_RISCV:
113     switch (Type) {
114 #include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
115     default:
116       break;
117     }
118     break;
119   case ELF::EM_S390:
120     switch (Type) {
121 #include "llvm/BinaryFormat/ELFRelocs/SystemZ.def"
122     default:
123       break;
124     }
125     break;
126   case ELF::EM_SPARC:
127   case ELF::EM_SPARC32PLUS:
128   case ELF::EM_SPARCV9:
129     switch (Type) {
130 #include "llvm/BinaryFormat/ELFRelocs/Sparc.def"
131     default:
132       break;
133     }
134     break;
135   case ELF::EM_AMDGPU:
136     switch (Type) {
137 #include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def"
138     default:
139       break;
140     }
141     break;
142   case ELF::EM_BPF:
143     switch (Type) {
144 #include "llvm/BinaryFormat/ELFRelocs/BPF.def"
145     default:
146       break;
147     }
148     break;
149   case ELF::EM_MSP430:
150     switch (Type) {
151 #include "llvm/BinaryFormat/ELFRelocs/MSP430.def"
152     default:
153       break;
154     }
155     break;
156   case ELF::EM_VE:
157     switch (Type) {
158 #include "llvm/BinaryFormat/ELFRelocs/VE.def"
159     default:
160       break;
161     }
162     break;
163   case ELF::EM_CSKY:
164     switch (Type) {
165 #include "llvm/BinaryFormat/ELFRelocs/CSKY.def"
166     default:
167       break;
168     }
169     break;
170   case ELF::EM_LOONGARCH:
171     switch (Type) {
172 #include "llvm/BinaryFormat/ELFRelocs/LoongArch.def"
173     default:
174       break;
175     }
176     break;
177   case ELF::EM_XTENSA:
178     switch (Type) {
179 #include "llvm/BinaryFormat/ELFRelocs/Xtensa.def"
180     default:
181       break;
182     }
183     break;
184   default:
185     break;
186   }
187   return "Unknown";
188 }
189 
190 #undef ELF_RELOC
191 
192 uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) {
193   switch (Machine) {
194   case ELF::EM_X86_64:
195     return ELF::R_X86_64_RELATIVE;
196   case ELF::EM_386:
197   case ELF::EM_IAMCU:
198     return ELF::R_386_RELATIVE;
199   case ELF::EM_MIPS:
200     break;
201   case ELF::EM_AARCH64:
202     return ELF::R_AARCH64_RELATIVE;
203   case ELF::EM_ARM:
204     return ELF::R_ARM_RELATIVE;
205   case ELF::EM_ARC_COMPACT:
206   case ELF::EM_ARC_COMPACT2:
207     return ELF::R_ARC_RELATIVE;
208   case ELF::EM_AVR:
209     break;
210   case ELF::EM_HEXAGON:
211     return ELF::R_HEX_RELATIVE;
212   case ELF::EM_LANAI:
213     break;
214   case ELF::EM_PPC:
215     break;
216   case ELF::EM_PPC64:
217     return ELF::R_PPC64_RELATIVE;
218   case ELF::EM_RISCV:
219     return ELF::R_RISCV_RELATIVE;
220   case ELF::EM_S390:
221     return ELF::R_390_RELATIVE;
222   case ELF::EM_SPARC:
223   case ELF::EM_SPARC32PLUS:
224   case ELF::EM_SPARCV9:
225     return ELF::R_SPARC_RELATIVE;
226   case ELF::EM_CSKY:
227     return ELF::R_CKCORE_RELATIVE;
228   case ELF::EM_VE:
229     return ELF::R_VE_RELATIVE;
230   case ELF::EM_AMDGPU:
231     break;
232   case ELF::EM_BPF:
233     break;
234   case ELF::EM_LOONGARCH:
235     return ELF::R_LARCH_RELATIVE;
236   default:
237     break;
238   }
239   return 0;
240 }
241 
242 StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) {
243   switch (Machine) {
244   case ELF::EM_ARM:
245     switch (Type) {
246       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX);
247       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
248       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
249       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
250       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
251     }
252     break;
253   case ELF::EM_HEXAGON:
254     switch (Type) {
255       STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED);
256       STRINGIFY_ENUM_CASE(ELF, SHT_HEXAGON_ATTRIBUTES);
257     }
258     break;
259   case ELF::EM_X86_64:
260     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
261     break;
262   case ELF::EM_MIPS:
263   case ELF::EM_MIPS_RS3_LE:
264     switch (Type) {
265       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
266       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
267       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF);
268       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
269     }
270     break;
271   case ELF::EM_MSP430:
272     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_MSP430_ATTRIBUTES); }
273     break;
274   case ELF::EM_RISCV:
275     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_RISCV_ATTRIBUTES); }
276     break;
277   case ELF::EM_AARCH64:
278     switch (Type) {
279       STRINGIFY_ENUM_CASE(ELF, SHT_AARCH64_AUTH_RELR);
280       STRINGIFY_ENUM_CASE(ELF, SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC);
281       STRINGIFY_ENUM_CASE(ELF, SHT_AARCH64_MEMTAG_GLOBALS_STATIC);
282     }
283   default:
284     break;
285   }
286 
287   switch (Type) {
288     STRINGIFY_ENUM_CASE(ELF, SHT_NULL);
289     STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS);
290     STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB);
291     STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB);
292     STRINGIFY_ENUM_CASE(ELF, SHT_RELA);
293     STRINGIFY_ENUM_CASE(ELF, SHT_HASH);
294     STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC);
295     STRINGIFY_ENUM_CASE(ELF, SHT_NOTE);
296     STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS);
297     STRINGIFY_ENUM_CASE(ELF, SHT_REL);
298     STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB);
299     STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM);
300     STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY);
301     STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY);
302     STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY);
303     STRINGIFY_ENUM_CASE(ELF, SHT_GROUP);
304     STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX);
305     STRINGIFY_ENUM_CASE(ELF, SHT_RELR);
306     STRINGIFY_ENUM_CASE(ELF, SHT_CREL);
307     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL);
308     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA);
309     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR);
310     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB);
311     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS);
312     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE);
313     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG);
314     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_DEPENDENT_LIBRARIES);
315     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_SYMPART);
316     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_EHDR);
317     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_PHDR);
318     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_BB_ADDR_MAP_V0);
319     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_BB_ADDR_MAP);
320     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_OFFLOADING);
321     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LTO);
322     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES);
323     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH);
324     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef);
325     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed);
326     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym);
327   default:
328     return "Unknown";
329   }
330 }
331 
332 template <class ELFT>
333 std::vector<typename ELFT::Rel>
334 ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const {
335   // This function decodes the contents of an SHT_RELR packed relocation
336   // section.
337   //
338   // Proposal for adding SHT_RELR sections to generic-abi is here:
339   //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
340   //
341   // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
342   // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
343   //
344   // i.e. start with an address, followed by any number of bitmaps. The address
345   // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
346   // relocations each, at subsequent offsets following the last address entry.
347   //
348   // The bitmap entries must have 1 in the least significant bit. The assumption
349   // here is that an address cannot have 1 in lsb. Odd addresses are not
350   // supported.
351   //
352   // Excluding the least significant bit in the bitmap, each non-zero bit in
353   // the bitmap represents a relocation to be applied to a corresponding machine
354   // word that follows the base address word. The second least significant bit
355   // represents the machine word immediately following the initial address, and
356   // each bit that follows represents the next word, in linear order. As such,
357   // a single bitmap can encode up to 31 relocations in a 32-bit object, and
358   // 63 relocations in a 64-bit object.
359   //
360   // This encoding has a couple of interesting properties:
361   // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
362   //    even means address, odd means bitmap.
363   // 2. Just a simple list of addresses is a valid encoding.
364 
365   Elf_Rel Rel;
366   Rel.r_info = 0;
367   Rel.setType(getRelativeRelocationType(), false);
368   std::vector<Elf_Rel> Relocs;
369 
370   // Word type: uint32_t for Elf32, and uint64_t for Elf64.
371   using Addr = typename ELFT::uint;
372 
373   Addr Base = 0;
374   for (Elf_Relr R : relrs) {
375     typename ELFT::uint Entry = R;
376     if ((Entry & 1) == 0) {
377       // Even entry: encodes the offset for next relocation.
378       Rel.r_offset = Entry;
379       Relocs.push_back(Rel);
380       // Set base offset for subsequent bitmap entries.
381       Base = Entry + sizeof(Addr);
382     } else {
383       // Odd entry: encodes bitmap for relocations starting at base.
384       for (Addr Offset = Base; (Entry >>= 1) != 0; Offset += sizeof(Addr))
385         if ((Entry & 1) != 0) {
386           Rel.r_offset = Offset;
387           Relocs.push_back(Rel);
388         }
389       Base += (CHAR_BIT * sizeof(Entry) - 1) * sizeof(Addr);
390     }
391   }
392 
393   return Relocs;
394 }
395 
396 template <class ELFT>
397 Expected<uint64_t>
398 ELFFile<ELFT>::getCrelHeader(ArrayRef<uint8_t> Content) const {
399   DataExtractor Data(Content, isLE(), sizeof(typename ELFT::Addr));
400   Error Err = Error::success();
401   uint64_t Hdr = 0;
402   Hdr = Data.getULEB128(&Hdr, &Err);
403   if (Err)
404     return Err;
405   return Hdr;
406 }
407 
408 template <class ELFT>
409 Expected<typename ELFFile<ELFT>::RelsOrRelas>
410 ELFFile<ELFT>::decodeCrel(ArrayRef<uint8_t> Content) const {
411   std::vector<Elf_Rel> Rels;
412   std::vector<Elf_Rela> Relas;
413   size_t I = 0;
414   bool HasAddend;
415   Error Err = object::decodeCrel<ELFT::Is64Bits>(
416       Content,
417       [&](uint64_t Count, bool HasA) {
418         HasAddend = HasA;
419         if (HasAddend)
420           Relas.resize(Count);
421         else
422           Rels.resize(Count);
423       },
424       [&](Elf_Crel Crel) {
425         if (HasAddend) {
426           Relas[I].r_offset = Crel.r_offset;
427           Relas[I].setSymbolAndType(Crel.r_symidx, Crel.r_type, false);
428           Relas[I++].r_addend = Crel.r_addend;
429         } else {
430           Rels[I].r_offset = Crel.r_offset;
431           Rels[I++].setSymbolAndType(Crel.r_symidx, Crel.r_type, false);
432         }
433       });
434   if (Err)
435     return std::move(Err);
436   return std::make_pair(std::move(Rels), std::move(Relas));
437 }
438 
439 template <class ELFT>
440 Expected<typename ELFFile<ELFT>::RelsOrRelas>
441 ELFFile<ELFT>::crels(const Elf_Shdr &Sec) const {
442   Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
443   if (!ContentsOrErr)
444     return ContentsOrErr.takeError();
445   return decodeCrel(*ContentsOrErr);
446 }
447 
448 template <class ELFT>
449 Expected<std::vector<typename ELFT::Rela>>
450 ELFFile<ELFT>::android_relas(const Elf_Shdr &Sec) const {
451   // This function reads relocations in Android's packed relocation format,
452   // which is based on SLEB128 and delta encoding.
453   Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
454   if (!ContentsOrErr)
455     return ContentsOrErr.takeError();
456   ArrayRef<uint8_t> Content = *ContentsOrErr;
457   if (Content.size() < 4 || Content[0] != 'A' || Content[1] != 'P' ||
458       Content[2] != 'S' || Content[3] != '2')
459     return createError("invalid packed relocation header");
460   DataExtractor Data(Content, isLE(), ELFT::Is64Bits ? 8 : 4);
461   DataExtractor::Cursor Cur(/*Offset=*/4);
462 
463   uint64_t NumRelocs = Data.getSLEB128(Cur);
464   uint64_t Offset = Data.getSLEB128(Cur);
465   uint64_t Addend = 0;
466 
467   if (!Cur)
468     return std::move(Cur.takeError());
469 
470   std::vector<Elf_Rela> Relocs;
471   Relocs.reserve(NumRelocs);
472   while (NumRelocs) {
473     uint64_t NumRelocsInGroup = Data.getSLEB128(Cur);
474     if (!Cur)
475       return std::move(Cur.takeError());
476     if (NumRelocsInGroup > NumRelocs)
477       return createError("relocation group unexpectedly large");
478     NumRelocs -= NumRelocsInGroup;
479 
480     uint64_t GroupFlags = Data.getSLEB128(Cur);
481     bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG;
482     bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG;
483     bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG;
484     bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG;
485 
486     uint64_t GroupOffsetDelta;
487     if (GroupedByOffsetDelta)
488       GroupOffsetDelta = Data.getSLEB128(Cur);
489 
490     uint64_t GroupRInfo;
491     if (GroupedByInfo)
492       GroupRInfo = Data.getSLEB128(Cur);
493 
494     if (GroupedByAddend && GroupHasAddend)
495       Addend += Data.getSLEB128(Cur);
496 
497     if (!GroupHasAddend)
498       Addend = 0;
499 
500     for (uint64_t I = 0; Cur && I != NumRelocsInGroup; ++I) {
501       Elf_Rela R;
502       Offset += GroupedByOffsetDelta ? GroupOffsetDelta : Data.getSLEB128(Cur);
503       R.r_offset = Offset;
504       R.r_info = GroupedByInfo ? GroupRInfo : Data.getSLEB128(Cur);
505       if (GroupHasAddend && !GroupedByAddend)
506         Addend += Data.getSLEB128(Cur);
507       R.r_addend = Addend;
508       Relocs.push_back(R);
509     }
510     if (!Cur)
511       return std::move(Cur.takeError());
512   }
513 
514   return Relocs;
515 }
516 
517 template <class ELFT>
518 std::string ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch,
519                                                  uint64_t Type) const {
520 #define DYNAMIC_STRINGIFY_ENUM(tag, value)                                     \
521   case value:                                                                  \
522     return #tag;
523 
524 #define DYNAMIC_TAG(n, v)
525   switch (Arch) {
526   case ELF::EM_AARCH64:
527     switch (Type) {
528 #define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
529 #include "llvm/BinaryFormat/DynamicTags.def"
530 #undef AARCH64_DYNAMIC_TAG
531     }
532     break;
533 
534   case ELF::EM_HEXAGON:
535     switch (Type) {
536 #define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
537 #include "llvm/BinaryFormat/DynamicTags.def"
538 #undef HEXAGON_DYNAMIC_TAG
539     }
540     break;
541 
542   case ELF::EM_MIPS:
543     switch (Type) {
544 #define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
545 #include "llvm/BinaryFormat/DynamicTags.def"
546 #undef MIPS_DYNAMIC_TAG
547     }
548     break;
549 
550   case ELF::EM_PPC:
551     switch (Type) {
552 #define PPC_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
553 #include "llvm/BinaryFormat/DynamicTags.def"
554 #undef PPC_DYNAMIC_TAG
555     }
556     break;
557 
558   case ELF::EM_PPC64:
559     switch (Type) {
560 #define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
561 #include "llvm/BinaryFormat/DynamicTags.def"
562 #undef PPC64_DYNAMIC_TAG
563     }
564     break;
565 
566   case ELF::EM_RISCV:
567     switch (Type) {
568 #define RISCV_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
569 #include "llvm/BinaryFormat/DynamicTags.def"
570 #undef RISCV_DYNAMIC_TAG
571     }
572     break;
573   }
574 #undef DYNAMIC_TAG
575   switch (Type) {
576 // Now handle all dynamic tags except the architecture specific ones
577 #define AARCH64_DYNAMIC_TAG(name, value)
578 #define MIPS_DYNAMIC_TAG(name, value)
579 #define HEXAGON_DYNAMIC_TAG(name, value)
580 #define PPC_DYNAMIC_TAG(name, value)
581 #define PPC64_DYNAMIC_TAG(name, value)
582 #define RISCV_DYNAMIC_TAG(name, value)
583 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
584 #define DYNAMIC_TAG_MARKER(name, value)
585 #define DYNAMIC_TAG(name, value) case value: return #name;
586 #include "llvm/BinaryFormat/DynamicTags.def"
587 #undef DYNAMIC_TAG
588 #undef AARCH64_DYNAMIC_TAG
589 #undef MIPS_DYNAMIC_TAG
590 #undef HEXAGON_DYNAMIC_TAG
591 #undef PPC_DYNAMIC_TAG
592 #undef PPC64_DYNAMIC_TAG
593 #undef RISCV_DYNAMIC_TAG
594 #undef DYNAMIC_TAG_MARKER
595 #undef DYNAMIC_STRINGIFY_ENUM
596   default:
597     return "<unknown:>0x" + utohexstr(Type, true);
598   }
599 }
600 
601 template <class ELFT>
602 std::string ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const {
603   return getDynamicTagAsString(getHeader().e_machine, Type);
604 }
605 
606 template <class ELFT>
607 Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const {
608   ArrayRef<Elf_Dyn> Dyn;
609 
610   auto ProgramHeadersOrError = program_headers();
611   if (!ProgramHeadersOrError)
612     return ProgramHeadersOrError.takeError();
613 
614   for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) {
615     if (Phdr.p_type == ELF::PT_DYNAMIC) {
616       const uint8_t *DynOffset = base() + Phdr.p_offset;
617       if (DynOffset > end())
618         return createError(
619             "dynamic section offset past file size: corrupted ELF");
620       Dyn = ArrayRef(reinterpret_cast<const Elf_Dyn *>(DynOffset),
621                      Phdr.p_filesz / sizeof(Elf_Dyn));
622       break;
623     }
624   }
625 
626   // If we can't find the dynamic section in the program headers, we just fall
627   // back on the sections.
628   if (Dyn.empty()) {
629     auto SectionsOrError = sections();
630     if (!SectionsOrError)
631       return SectionsOrError.takeError();
632 
633     for (const Elf_Shdr &Sec : *SectionsOrError) {
634       if (Sec.sh_type == ELF::SHT_DYNAMIC) {
635         Expected<ArrayRef<Elf_Dyn>> DynOrError =
636             getSectionContentsAsArray<Elf_Dyn>(Sec);
637         if (!DynOrError)
638           return DynOrError.takeError();
639         Dyn = *DynOrError;
640         break;
641       }
642     }
643 
644     if (!Dyn.data())
645       return ArrayRef<Elf_Dyn>();
646   }
647 
648   if (Dyn.empty())
649     return createError("invalid empty dynamic section");
650 
651   if (Dyn.back().d_tag != ELF::DT_NULL)
652     return createError("dynamic sections must be DT_NULL terminated");
653 
654   return Dyn;
655 }
656 
657 template <class ELFT>
658 Expected<const uint8_t *>
659 ELFFile<ELFT>::toMappedAddr(uint64_t VAddr, WarningHandler WarnHandler) const {
660   auto ProgramHeadersOrError = program_headers();
661   if (!ProgramHeadersOrError)
662     return ProgramHeadersOrError.takeError();
663 
664   llvm::SmallVector<Elf_Phdr *, 4> LoadSegments;
665 
666   for (const Elf_Phdr &Phdr : *ProgramHeadersOrError)
667     if (Phdr.p_type == ELF::PT_LOAD)
668       LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr));
669 
670   auto SortPred = [](const Elf_Phdr_Impl<ELFT> *A,
671                      const Elf_Phdr_Impl<ELFT> *B) {
672     return A->p_vaddr < B->p_vaddr;
673   };
674   if (!llvm::is_sorted(LoadSegments, SortPred)) {
675     if (Error E =
676             WarnHandler("loadable segments are unsorted by virtual address"))
677       return std::move(E);
678     llvm::stable_sort(LoadSegments, SortPred);
679   }
680 
681   const Elf_Phdr *const *I = llvm::upper_bound(
682       LoadSegments, VAddr, [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
683         return VAddr < Phdr->p_vaddr;
684       });
685 
686   if (I == LoadSegments.begin())
687     return createError("virtual address is not in any segment: 0x" +
688                        Twine::utohexstr(VAddr));
689   --I;
690   const Elf_Phdr &Phdr = **I;
691   uint64_t Delta = VAddr - Phdr.p_vaddr;
692   if (Delta >= Phdr.p_filesz)
693     return createError("virtual address is not in any segment: 0x" +
694                        Twine::utohexstr(VAddr));
695 
696   uint64_t Offset = Phdr.p_offset + Delta;
697   if (Offset >= getBufSize())
698     return createError("can't map virtual address 0x" +
699                        Twine::utohexstr(VAddr) + " to the segment with index " +
700                        Twine(&Phdr - (*ProgramHeadersOrError).data() + 1) +
701                        ": the segment ends at 0x" +
702                        Twine::utohexstr(Phdr.p_offset + Phdr.p_filesz) +
703                        ", which is greater than the file size (0x" +
704                        Twine::utohexstr(getBufSize()) + ")");
705 
706   return base() + Offset;
707 }
708 
709 // Helper to extract and decode the next ULEB128 value as unsigned int.
710 // Returns zero and sets ULEBSizeErr if the ULEB128 value exceeds the unsigned
711 // int limit.
712 // Also returns zero if ULEBSizeErr is already in an error state.
713 // ULEBSizeErr is an out variable if an error occurs.
714 template <typename IntTy, std::enable_if_t<std::is_unsigned_v<IntTy>, int> = 0>
715 static IntTy readULEB128As(DataExtractor &Data, DataExtractor::Cursor &Cur,
716                            Error &ULEBSizeErr) {
717   // Bail out and do not extract data if ULEBSizeErr is already set.
718   if (ULEBSizeErr)
719     return 0;
720   uint64_t Offset = Cur.tell();
721   uint64_t Value = Data.getULEB128(Cur);
722   if (Value > std::numeric_limits<IntTy>::max()) {
723     ULEBSizeErr = createError("ULEB128 value at offset 0x" +
724                               Twine::utohexstr(Offset) + " exceeds UINT" +
725                               Twine(std::numeric_limits<IntTy>::digits) +
726                               "_MAX (0x" + Twine::utohexstr(Value) + ")");
727     return 0;
728   }
729   return static_cast<IntTy>(Value);
730 }
731 
732 template <typename ELFT>
733 static Expected<std::vector<BBAddrMap>>
734 decodeBBAddrMapImpl(const ELFFile<ELFT> &EF,
735                     const typename ELFFile<ELFT>::Elf_Shdr &Sec,
736                     const typename ELFFile<ELFT>::Elf_Shdr *RelaSec,
737                     std::vector<PGOAnalysisMap> *PGOAnalyses) {
738   bool IsRelocatable = EF.getHeader().e_type == ELF::ET_REL;
739 
740   // This DenseMap maps the offset of each function (the location of the
741   // reference to the function in the SHT_LLVM_BB_ADDR_MAP section) to the
742   // addend (the location of the function in the text section).
743   llvm::DenseMap<uint64_t, uint64_t> FunctionOffsetTranslations;
744   if (IsRelocatable && RelaSec) {
745     assert(RelaSec &&
746            "Can't read a SHT_LLVM_BB_ADDR_MAP section in a relocatable "
747            "object file without providing a relocation section.");
748     Expected<typename ELFFile<ELFT>::Elf_Rela_Range> Relas = EF.relas(*RelaSec);
749     if (!Relas)
750       return createError("unable to read relocations for section " +
751                          describe(EF, Sec) + ": " +
752                          toString(Relas.takeError()));
753     for (typename ELFFile<ELFT>::Elf_Rela Rela : *Relas)
754       FunctionOffsetTranslations[Rela.r_offset] = Rela.r_addend;
755   }
756   auto GetAddressForRelocation =
757       [&](unsigned RelocationOffsetInSection) -> Expected<unsigned> {
758     auto FOTIterator =
759         FunctionOffsetTranslations.find(RelocationOffsetInSection);
760     if (FOTIterator == FunctionOffsetTranslations.end()) {
761       return createError("failed to get relocation data for offset: " +
762                          Twine::utohexstr(RelocationOffsetInSection) +
763                          " in section " + describe(EF, Sec));
764     }
765     return FOTIterator->second;
766   };
767   Expected<ArrayRef<uint8_t>> ContentsOrErr = EF.getSectionContents(Sec);
768   if (!ContentsOrErr)
769     return ContentsOrErr.takeError();
770   ArrayRef<uint8_t> Content = *ContentsOrErr;
771   DataExtractor Data(Content, EF.isLE(), ELFT::Is64Bits ? 8 : 4);
772   std::vector<BBAddrMap> FunctionEntries;
773 
774   DataExtractor::Cursor Cur(0);
775   Error ULEBSizeErr = Error::success();
776   Error MetadataDecodeErr = Error::success();
777 
778   // Helper lampda to extract the (possiblly relocatable) address stored at Cur.
779   auto ExtractAddress = [&]() -> Expected<typename ELFFile<ELFT>::uintX_t> {
780     uint64_t RelocationOffsetInSection = Cur.tell();
781     auto Address =
782         static_cast<typename ELFFile<ELFT>::uintX_t>(Data.getAddress(Cur));
783     if (!Cur)
784       return Cur.takeError();
785     if (!IsRelocatable)
786       return Address;
787     assert(Address == 0);
788     Expected<unsigned> AddressOrErr =
789         GetAddressForRelocation(RelocationOffsetInSection);
790     if (!AddressOrErr)
791       return AddressOrErr.takeError();
792     return *AddressOrErr;
793   };
794 
795   uint8_t Version = 0;
796   uint8_t Feature = 0;
797   BBAddrMap::Features FeatEnable{};
798   while (!ULEBSizeErr && !MetadataDecodeErr && Cur &&
799          Cur.tell() < Content.size()) {
800     if (Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP) {
801       Version = Data.getU8(Cur);
802       if (!Cur)
803         break;
804       if (Version > 2)
805         return createError("unsupported SHT_LLVM_BB_ADDR_MAP version: " +
806                            Twine(static_cast<int>(Version)));
807       Feature = Data.getU8(Cur); // Feature byte
808       if (!Cur)
809         break;
810       auto FeatEnableOrErr = BBAddrMap::Features::decode(Feature);
811       if (!FeatEnableOrErr)
812         return FeatEnableOrErr.takeError();
813       FeatEnable = *FeatEnableOrErr;
814       if (Feature != 0 && Version < 2 && Cur)
815         return createError(
816             "version should be >= 2 for SHT_LLVM_BB_ADDR_MAP when "
817             "PGO features are enabled: version = " +
818             Twine(static_cast<int>(Version)) +
819             " feature = " + Twine(static_cast<int>(Feature)));
820     }
821     uint32_t NumBlocksInBBRange = 0;
822     uint32_t NumBBRanges = 1;
823     typename ELFFile<ELFT>::uintX_t RangeBaseAddress = 0;
824     std::vector<BBAddrMap::BBEntry> BBEntries;
825     if (FeatEnable.MultiBBRange) {
826       NumBBRanges = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
827       if (!Cur || ULEBSizeErr)
828         break;
829       if (!NumBBRanges)
830         return createError("invalid zero number of BB ranges at offset " +
831                            Twine::utohexstr(Cur.tell()) + " in " +
832                            describe(EF, Sec));
833     } else {
834       auto AddressOrErr = ExtractAddress();
835       if (!AddressOrErr)
836         return AddressOrErr.takeError();
837       RangeBaseAddress = *AddressOrErr;
838       NumBlocksInBBRange = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
839     }
840     std::vector<BBAddrMap::BBRangeEntry> BBRangeEntries;
841     uint32_t TotalNumBlocks = 0;
842     for (uint32_t BBRangeIndex = 0; BBRangeIndex < NumBBRanges;
843          ++BBRangeIndex) {
844       uint32_t PrevBBEndOffset = 0;
845       if (FeatEnable.MultiBBRange) {
846         auto AddressOrErr = ExtractAddress();
847         if (!AddressOrErr)
848           return AddressOrErr.takeError();
849         RangeBaseAddress = *AddressOrErr;
850         NumBlocksInBBRange = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
851       }
852       for (uint32_t BlockIndex = 0; !MetadataDecodeErr && !ULEBSizeErr && Cur &&
853                                     (BlockIndex < NumBlocksInBBRange);
854            ++BlockIndex) {
855         uint32_t ID = Version >= 2
856                           ? readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr)
857                           : BlockIndex;
858         uint32_t Offset = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
859         uint32_t Size = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
860         uint32_t MD = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
861         if (Version >= 1) {
862           // Offset is calculated relative to the end of the previous BB.
863           Offset += PrevBBEndOffset;
864           PrevBBEndOffset = Offset + Size;
865         }
866         Expected<BBAddrMap::BBEntry::Metadata> MetadataOrErr =
867             BBAddrMap::BBEntry::Metadata::decode(MD);
868         if (!MetadataOrErr) {
869           MetadataDecodeErr = MetadataOrErr.takeError();
870           break;
871         }
872         BBEntries.push_back({ID, Offset, Size, *MetadataOrErr});
873       }
874       TotalNumBlocks += BBEntries.size();
875       BBRangeEntries.push_back({RangeBaseAddress, std::move(BBEntries)});
876     }
877     FunctionEntries.push_back({std::move(BBRangeEntries)});
878 
879     if (PGOAnalyses || FeatEnable.hasPGOAnalysis()) {
880       // Function entry count
881       uint64_t FuncEntryCount =
882           FeatEnable.FuncEntryCount
883               ? readULEB128As<uint64_t>(Data, Cur, ULEBSizeErr)
884               : 0;
885 
886       std::vector<PGOAnalysisMap::PGOBBEntry> PGOBBEntries;
887       for (uint32_t BlockIndex = 0;
888            FeatEnable.hasPGOAnalysisBBData() && !MetadataDecodeErr &&
889            !ULEBSizeErr && Cur && (BlockIndex < TotalNumBlocks);
890            ++BlockIndex) {
891         // Block frequency
892         uint64_t BBF = FeatEnable.BBFreq
893                            ? readULEB128As<uint64_t>(Data, Cur, ULEBSizeErr)
894                            : 0;
895 
896         // Branch probability
897         llvm::SmallVector<PGOAnalysisMap::PGOBBEntry::SuccessorEntry, 2>
898             Successors;
899         if (FeatEnable.BrProb) {
900           auto SuccCount = readULEB128As<uint64_t>(Data, Cur, ULEBSizeErr);
901           for (uint64_t I = 0; I < SuccCount; ++I) {
902             uint32_t BBID = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
903             uint32_t BrProb = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
904             if (PGOAnalyses)
905               Successors.push_back({BBID, BranchProbability::getRaw(BrProb)});
906           }
907         }
908 
909         if (PGOAnalyses)
910           PGOBBEntries.push_back({BlockFrequency(BBF), std::move(Successors)});
911       }
912 
913       if (PGOAnalyses)
914         PGOAnalyses->push_back(
915             {FuncEntryCount, std::move(PGOBBEntries), FeatEnable});
916     }
917   }
918   // Either Cur is in the error state, or we have an error in ULEBSizeErr or
919   // MetadataDecodeErr (but not both), but we join all errors here to be safe.
920   if (!Cur || ULEBSizeErr || MetadataDecodeErr)
921     return joinErrors(joinErrors(Cur.takeError(), std::move(ULEBSizeErr)),
922                       std::move(MetadataDecodeErr));
923   return FunctionEntries;
924 }
925 
926 template <class ELFT>
927 Expected<std::vector<BBAddrMap>>
928 ELFFile<ELFT>::decodeBBAddrMap(const Elf_Shdr &Sec, const Elf_Shdr *RelaSec,
929                                std::vector<PGOAnalysisMap> *PGOAnalyses) const {
930   size_t OriginalPGOSize = PGOAnalyses ? PGOAnalyses->size() : 0;
931   auto AddrMapsOrErr = decodeBBAddrMapImpl(*this, Sec, RelaSec, PGOAnalyses);
932   // remove new analyses when an error occurs
933   if (!AddrMapsOrErr && PGOAnalyses)
934     PGOAnalyses->resize(OriginalPGOSize);
935   return std::move(AddrMapsOrErr);
936 }
937 
938 template <class ELFT>
939 Expected<
940     MapVector<const typename ELFT::Shdr *, const typename ELFT::Shdr *>>
941 ELFFile<ELFT>::getSectionAndRelocations(
942     std::function<Expected<bool>(const Elf_Shdr &)> IsMatch) const {
943   MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap;
944   Error Errors = Error::success();
945   for (const Elf_Shdr &Sec : cantFail(this->sections())) {
946     Expected<bool> DoesSectionMatch = IsMatch(Sec);
947     if (!DoesSectionMatch) {
948       Errors = joinErrors(std::move(Errors), DoesSectionMatch.takeError());
949       continue;
950     }
951     if (*DoesSectionMatch) {
952       if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
953               .second)
954         continue;
955     }
956 
957     if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
958       continue;
959 
960     Expected<const Elf_Shdr *> RelSecOrErr = this->getSection(Sec.sh_info);
961     if (!RelSecOrErr) {
962       Errors = joinErrors(std::move(Errors),
963                           createError(describe(*this, Sec) +
964                                       ": failed to get a relocated section: " +
965                                       toString(RelSecOrErr.takeError())));
966       continue;
967     }
968     const Elf_Shdr *ContentsSec = *RelSecOrErr;
969     Expected<bool> DoesRelTargetMatch = IsMatch(*ContentsSec);
970     if (!DoesRelTargetMatch) {
971       Errors = joinErrors(std::move(Errors), DoesRelTargetMatch.takeError());
972       continue;
973     }
974     if (*DoesRelTargetMatch)
975       SecToRelocMap[ContentsSec] = &Sec;
976   }
977   if(Errors)
978     return std::move(Errors);
979   return SecToRelocMap;
980 }
981 
982 template class llvm::object::ELFFile<ELF32LE>;
983 template class llvm::object::ELFFile<ELF32BE>;
984 template class llvm::object::ELFFile<ELF64LE>;
985 template class llvm::object::ELFFile<ELF64BE>;
986