1 //===- ELF.cpp - ELF object file implementation ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Object/ELF.h" 10 #include "llvm/BinaryFormat/ELF.h" 11 #include "llvm/Support/DataExtractor.h" 12 13 using namespace llvm; 14 using namespace object; 15 16 #define STRINGIFY_ENUM_CASE(ns, name) \ 17 case ns::name: \ 18 return #name; 19 20 #define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name) 21 22 StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine, 23 uint32_t Type) { 24 switch (Machine) { 25 case ELF::EM_68K: 26 switch (Type) { 27 #include "llvm/BinaryFormat/ELFRelocs/M68k.def" 28 default: 29 break; 30 } 31 break; 32 case ELF::EM_X86_64: 33 switch (Type) { 34 #include "llvm/BinaryFormat/ELFRelocs/x86_64.def" 35 default: 36 break; 37 } 38 break; 39 case ELF::EM_386: 40 case ELF::EM_IAMCU: 41 switch (Type) { 42 #include "llvm/BinaryFormat/ELFRelocs/i386.def" 43 default: 44 break; 45 } 46 break; 47 case ELF::EM_MIPS: 48 switch (Type) { 49 #include "llvm/BinaryFormat/ELFRelocs/Mips.def" 50 default: 51 break; 52 } 53 break; 54 case ELF::EM_AARCH64: 55 switch (Type) { 56 #include "llvm/BinaryFormat/ELFRelocs/AArch64.def" 57 default: 58 break; 59 } 60 break; 61 case ELF::EM_ARM: 62 switch (Type) { 63 #include "llvm/BinaryFormat/ELFRelocs/ARM.def" 64 default: 65 break; 66 } 67 break; 68 case ELF::EM_ARC_COMPACT: 69 case ELF::EM_ARC_COMPACT2: 70 switch (Type) { 71 #include "llvm/BinaryFormat/ELFRelocs/ARC.def" 72 default: 73 break; 74 } 75 break; 76 case ELF::EM_AVR: 77 switch (Type) { 78 #include "llvm/BinaryFormat/ELFRelocs/AVR.def" 79 default: 80 break; 81 } 82 break; 83 case ELF::EM_HEXAGON: 84 switch (Type) { 85 #include "llvm/BinaryFormat/ELFRelocs/Hexagon.def" 86 default: 87 break; 88 } 89 break; 90 case ELF::EM_LANAI: 91 switch (Type) { 92 #include "llvm/BinaryFormat/ELFRelocs/Lanai.def" 93 default: 94 break; 95 } 96 break; 97 case ELF::EM_PPC: 98 switch (Type) { 99 #include "llvm/BinaryFormat/ELFRelocs/PowerPC.def" 100 default: 101 break; 102 } 103 break; 104 case ELF::EM_PPC64: 105 switch (Type) { 106 #include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def" 107 default: 108 break; 109 } 110 break; 111 case ELF::EM_RISCV: 112 switch (Type) { 113 #include "llvm/BinaryFormat/ELFRelocs/RISCV.def" 114 default: 115 break; 116 } 117 break; 118 case ELF::EM_S390: 119 switch (Type) { 120 #include "llvm/BinaryFormat/ELFRelocs/SystemZ.def" 121 default: 122 break; 123 } 124 break; 125 case ELF::EM_SPARC: 126 case ELF::EM_SPARC32PLUS: 127 case ELF::EM_SPARCV9: 128 switch (Type) { 129 #include "llvm/BinaryFormat/ELFRelocs/Sparc.def" 130 default: 131 break; 132 } 133 break; 134 case ELF::EM_AMDGPU: 135 switch (Type) { 136 #include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def" 137 default: 138 break; 139 } 140 break; 141 case ELF::EM_BPF: 142 switch (Type) { 143 #include "llvm/BinaryFormat/ELFRelocs/BPF.def" 144 default: 145 break; 146 } 147 break; 148 case ELF::EM_MSP430: 149 switch (Type) { 150 #include "llvm/BinaryFormat/ELFRelocs/MSP430.def" 151 default: 152 break; 153 } 154 break; 155 case ELF::EM_VE: 156 switch (Type) { 157 #include "llvm/BinaryFormat/ELFRelocs/VE.def" 158 default: 159 break; 160 } 161 break; 162 case ELF::EM_CSKY: 163 switch (Type) { 164 #include "llvm/BinaryFormat/ELFRelocs/CSKY.def" 165 default: 166 break; 167 } 168 break; 169 default: 170 break; 171 } 172 return "Unknown"; 173 } 174 175 #undef ELF_RELOC 176 177 uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) { 178 switch (Machine) { 179 case ELF::EM_X86_64: 180 return ELF::R_X86_64_RELATIVE; 181 case ELF::EM_386: 182 case ELF::EM_IAMCU: 183 return ELF::R_386_RELATIVE; 184 case ELF::EM_MIPS: 185 break; 186 case ELF::EM_AARCH64: 187 return ELF::R_AARCH64_RELATIVE; 188 case ELF::EM_ARM: 189 return ELF::R_ARM_RELATIVE; 190 case ELF::EM_ARC_COMPACT: 191 case ELF::EM_ARC_COMPACT2: 192 return ELF::R_ARC_RELATIVE; 193 case ELF::EM_AVR: 194 break; 195 case ELF::EM_HEXAGON: 196 return ELF::R_HEX_RELATIVE; 197 case ELF::EM_LANAI: 198 break; 199 case ELF::EM_PPC: 200 break; 201 case ELF::EM_PPC64: 202 return ELF::R_PPC64_RELATIVE; 203 case ELF::EM_RISCV: 204 return ELF::R_RISCV_RELATIVE; 205 case ELF::EM_S390: 206 return ELF::R_390_RELATIVE; 207 case ELF::EM_SPARC: 208 case ELF::EM_SPARC32PLUS: 209 case ELF::EM_SPARCV9: 210 return ELF::R_SPARC_RELATIVE; 211 case ELF::EM_CSKY: 212 return ELF::R_CKCORE_RELATIVE; 213 case ELF::EM_VE: 214 return ELF::R_VE_RELATIVE; 215 case ELF::EM_AMDGPU: 216 break; 217 case ELF::EM_BPF: 218 break; 219 default: 220 break; 221 } 222 return 0; 223 } 224 225 StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) { 226 switch (Machine) { 227 case ELF::EM_ARM: 228 switch (Type) { 229 STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX); 230 STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP); 231 STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES); 232 STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY); 233 STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION); 234 } 235 break; 236 case ELF::EM_HEXAGON: 237 switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED); } 238 break; 239 case ELF::EM_X86_64: 240 switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); } 241 break; 242 case ELF::EM_MIPS: 243 case ELF::EM_MIPS_RS3_LE: 244 switch (Type) { 245 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO); 246 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS); 247 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF); 248 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS); 249 } 250 break; 251 case ELF::EM_MSP430: 252 switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_MSP430_ATTRIBUTES); } 253 break; 254 case ELF::EM_RISCV: 255 switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_RISCV_ATTRIBUTES); } 256 break; 257 default: 258 break; 259 } 260 261 switch (Type) { 262 STRINGIFY_ENUM_CASE(ELF, SHT_NULL); 263 STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS); 264 STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB); 265 STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB); 266 STRINGIFY_ENUM_CASE(ELF, SHT_RELA); 267 STRINGIFY_ENUM_CASE(ELF, SHT_HASH); 268 STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC); 269 STRINGIFY_ENUM_CASE(ELF, SHT_NOTE); 270 STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS); 271 STRINGIFY_ENUM_CASE(ELF, SHT_REL); 272 STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB); 273 STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM); 274 STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY); 275 STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY); 276 STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY); 277 STRINGIFY_ENUM_CASE(ELF, SHT_GROUP); 278 STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX); 279 STRINGIFY_ENUM_CASE(ELF, SHT_RELR); 280 STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL); 281 STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA); 282 STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR); 283 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB); 284 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS); 285 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE); 286 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG); 287 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_DEPENDENT_LIBRARIES); 288 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_SYMPART); 289 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_EHDR); 290 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_PHDR); 291 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_BB_ADDR_MAP); 292 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES); 293 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH); 294 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef); 295 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed); 296 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym); 297 default: 298 return "Unknown"; 299 } 300 } 301 302 template <class ELFT> 303 std::vector<typename ELFT::Rel> 304 ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const { 305 // This function decodes the contents of an SHT_RELR packed relocation 306 // section. 307 // 308 // Proposal for adding SHT_RELR sections to generic-abi is here: 309 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg 310 // 311 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks 312 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] 313 // 314 // i.e. start with an address, followed by any number of bitmaps. The address 315 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 316 // relocations each, at subsequent offsets following the last address entry. 317 // 318 // The bitmap entries must have 1 in the least significant bit. The assumption 319 // here is that an address cannot have 1 in lsb. Odd addresses are not 320 // supported. 321 // 322 // Excluding the least significant bit in the bitmap, each non-zero bit in 323 // the bitmap represents a relocation to be applied to a corresponding machine 324 // word that follows the base address word. The second least significant bit 325 // represents the machine word immediately following the initial address, and 326 // each bit that follows represents the next word, in linear order. As such, 327 // a single bitmap can encode up to 31 relocations in a 32-bit object, and 328 // 63 relocations in a 64-bit object. 329 // 330 // This encoding has a couple of interesting properties: 331 // 1. Looking at any entry, it is clear whether it's an address or a bitmap: 332 // even means address, odd means bitmap. 333 // 2. Just a simple list of addresses is a valid encoding. 334 335 Elf_Rel Rel; 336 Rel.r_info = 0; 337 Rel.setType(getRelativeRelocationType(), false); 338 std::vector<Elf_Rel> Relocs; 339 340 // Word type: uint32_t for Elf32, and uint64_t for Elf64. 341 using Addr = typename ELFT::uint; 342 343 Addr Base = 0; 344 for (Elf_Relr R : relrs) { 345 typename ELFT::uint Entry = R; 346 if ((Entry & 1) == 0) { 347 // Even entry: encodes the offset for next relocation. 348 Rel.r_offset = Entry; 349 Relocs.push_back(Rel); 350 // Set base offset for subsequent bitmap entries. 351 Base = Entry + sizeof(Addr); 352 } else { 353 // Odd entry: encodes bitmap for relocations starting at base. 354 for (Addr Offset = Base; (Entry >>= 1) != 0; Offset += sizeof(Addr)) 355 if ((Entry & 1) != 0) { 356 Rel.r_offset = Offset; 357 Relocs.push_back(Rel); 358 } 359 Base += (CHAR_BIT * sizeof(Entry) - 1) * sizeof(Addr); 360 } 361 } 362 363 return Relocs; 364 } 365 366 template <class ELFT> 367 Expected<std::vector<typename ELFT::Rela>> 368 ELFFile<ELFT>::android_relas(const Elf_Shdr &Sec) const { 369 // This function reads relocations in Android's packed relocation format, 370 // which is based on SLEB128 and delta encoding. 371 Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec); 372 if (!ContentsOrErr) 373 return ContentsOrErr.takeError(); 374 ArrayRef<uint8_t> Content = *ContentsOrErr; 375 if (Content.size() < 4 || Content[0] != 'A' || Content[1] != 'P' || 376 Content[2] != 'S' || Content[3] != '2') 377 return createError("invalid packed relocation header"); 378 DataExtractor Data(Content, isLE(), ELFT::Is64Bits ? 8 : 4); 379 DataExtractor::Cursor Cur(/*Offset=*/4); 380 381 uint64_t NumRelocs = Data.getSLEB128(Cur); 382 uint64_t Offset = Data.getSLEB128(Cur); 383 uint64_t Addend = 0; 384 385 if (!Cur) 386 return std::move(Cur.takeError()); 387 388 std::vector<Elf_Rela> Relocs; 389 Relocs.reserve(NumRelocs); 390 while (NumRelocs) { 391 uint64_t NumRelocsInGroup = Data.getSLEB128(Cur); 392 if (!Cur) 393 return std::move(Cur.takeError()); 394 if (NumRelocsInGroup > NumRelocs) 395 return createError("relocation group unexpectedly large"); 396 NumRelocs -= NumRelocsInGroup; 397 398 uint64_t GroupFlags = Data.getSLEB128(Cur); 399 bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG; 400 bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG; 401 bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG; 402 bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG; 403 404 uint64_t GroupOffsetDelta; 405 if (GroupedByOffsetDelta) 406 GroupOffsetDelta = Data.getSLEB128(Cur); 407 408 uint64_t GroupRInfo; 409 if (GroupedByInfo) 410 GroupRInfo = Data.getSLEB128(Cur); 411 412 if (GroupedByAddend && GroupHasAddend) 413 Addend += Data.getSLEB128(Cur); 414 415 if (!GroupHasAddend) 416 Addend = 0; 417 418 for (uint64_t I = 0; Cur && I != NumRelocsInGroup; ++I) { 419 Elf_Rela R; 420 Offset += GroupedByOffsetDelta ? GroupOffsetDelta : Data.getSLEB128(Cur); 421 R.r_offset = Offset; 422 R.r_info = GroupedByInfo ? GroupRInfo : Data.getSLEB128(Cur); 423 if (GroupHasAddend && !GroupedByAddend) 424 Addend += Data.getSLEB128(Cur); 425 R.r_addend = Addend; 426 Relocs.push_back(R); 427 } 428 if (!Cur) 429 return std::move(Cur.takeError()); 430 } 431 432 return Relocs; 433 } 434 435 template <class ELFT> 436 std::string ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch, 437 uint64_t Type) const { 438 #define DYNAMIC_STRINGIFY_ENUM(tag, value) \ 439 case value: \ 440 return #tag; 441 442 #define DYNAMIC_TAG(n, v) 443 switch (Arch) { 444 case ELF::EM_AARCH64: 445 switch (Type) { 446 #define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) 447 #include "llvm/BinaryFormat/DynamicTags.def" 448 #undef AARCH64_DYNAMIC_TAG 449 } 450 break; 451 452 case ELF::EM_HEXAGON: 453 switch (Type) { 454 #define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) 455 #include "llvm/BinaryFormat/DynamicTags.def" 456 #undef HEXAGON_DYNAMIC_TAG 457 } 458 break; 459 460 case ELF::EM_MIPS: 461 switch (Type) { 462 #define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) 463 #include "llvm/BinaryFormat/DynamicTags.def" 464 #undef MIPS_DYNAMIC_TAG 465 } 466 break; 467 468 case ELF::EM_PPC: 469 switch (Type) { 470 #define PPC_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) 471 #include "llvm/BinaryFormat/DynamicTags.def" 472 #undef PPC_DYNAMIC_TAG 473 } 474 break; 475 476 case ELF::EM_PPC64: 477 switch (Type) { 478 #define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) 479 #include "llvm/BinaryFormat/DynamicTags.def" 480 #undef PPC64_DYNAMIC_TAG 481 } 482 break; 483 484 case ELF::EM_RISCV: 485 switch (Type) { 486 #define RISCV_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) 487 #include "llvm/BinaryFormat/DynamicTags.def" 488 #undef RISCV_DYNAMIC_TAG 489 } 490 break; 491 } 492 #undef DYNAMIC_TAG 493 switch (Type) { 494 // Now handle all dynamic tags except the architecture specific ones 495 #define AARCH64_DYNAMIC_TAG(name, value) 496 #define MIPS_DYNAMIC_TAG(name, value) 497 #define HEXAGON_DYNAMIC_TAG(name, value) 498 #define PPC_DYNAMIC_TAG(name, value) 499 #define PPC64_DYNAMIC_TAG(name, value) 500 #define RISCV_DYNAMIC_TAG(name, value) 501 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc. 502 #define DYNAMIC_TAG_MARKER(name, value) 503 #define DYNAMIC_TAG(name, value) case value: return #name; 504 #include "llvm/BinaryFormat/DynamicTags.def" 505 #undef DYNAMIC_TAG 506 #undef AARCH64_DYNAMIC_TAG 507 #undef MIPS_DYNAMIC_TAG 508 #undef HEXAGON_DYNAMIC_TAG 509 #undef PPC_DYNAMIC_TAG 510 #undef PPC64_DYNAMIC_TAG 511 #undef RISCV_DYNAMIC_TAG 512 #undef DYNAMIC_TAG_MARKER 513 #undef DYNAMIC_STRINGIFY_ENUM 514 default: 515 return "<unknown:>0x" + utohexstr(Type, true); 516 } 517 } 518 519 template <class ELFT> 520 std::string ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const { 521 return getDynamicTagAsString(getHeader().e_machine, Type); 522 } 523 524 template <class ELFT> 525 Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const { 526 ArrayRef<Elf_Dyn> Dyn; 527 528 auto ProgramHeadersOrError = program_headers(); 529 if (!ProgramHeadersOrError) 530 return ProgramHeadersOrError.takeError(); 531 532 for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) { 533 if (Phdr.p_type == ELF::PT_DYNAMIC) { 534 Dyn = makeArrayRef( 535 reinterpret_cast<const Elf_Dyn *>(base() + Phdr.p_offset), 536 Phdr.p_filesz / sizeof(Elf_Dyn)); 537 break; 538 } 539 } 540 541 // If we can't find the dynamic section in the program headers, we just fall 542 // back on the sections. 543 if (Dyn.empty()) { 544 auto SectionsOrError = sections(); 545 if (!SectionsOrError) 546 return SectionsOrError.takeError(); 547 548 for (const Elf_Shdr &Sec : *SectionsOrError) { 549 if (Sec.sh_type == ELF::SHT_DYNAMIC) { 550 Expected<ArrayRef<Elf_Dyn>> DynOrError = 551 getSectionContentsAsArray<Elf_Dyn>(Sec); 552 if (!DynOrError) 553 return DynOrError.takeError(); 554 Dyn = *DynOrError; 555 break; 556 } 557 } 558 559 if (!Dyn.data()) 560 return ArrayRef<Elf_Dyn>(); 561 } 562 563 if (Dyn.empty()) 564 return createError("invalid empty dynamic section"); 565 566 if (Dyn.back().d_tag != ELF::DT_NULL) 567 return createError("dynamic sections must be DT_NULL terminated"); 568 569 return Dyn; 570 } 571 572 template <class ELFT> 573 Expected<const uint8_t *> 574 ELFFile<ELFT>::toMappedAddr(uint64_t VAddr, WarningHandler WarnHandler) const { 575 auto ProgramHeadersOrError = program_headers(); 576 if (!ProgramHeadersOrError) 577 return ProgramHeadersOrError.takeError(); 578 579 llvm::SmallVector<Elf_Phdr *, 4> LoadSegments; 580 581 for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) 582 if (Phdr.p_type == ELF::PT_LOAD) 583 LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr)); 584 585 auto SortPred = [](const Elf_Phdr_Impl<ELFT> *A, 586 const Elf_Phdr_Impl<ELFT> *B) { 587 return A->p_vaddr < B->p_vaddr; 588 }; 589 if (!llvm::is_sorted(LoadSegments, SortPred)) { 590 if (Error E = 591 WarnHandler("loadable segments are unsorted by virtual address")) 592 return std::move(E); 593 llvm::stable_sort(LoadSegments, SortPred); 594 } 595 596 const Elf_Phdr *const *I = llvm::upper_bound( 597 LoadSegments, VAddr, [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) { 598 return VAddr < Phdr->p_vaddr; 599 }); 600 601 if (I == LoadSegments.begin()) 602 return createError("virtual address is not in any segment: 0x" + 603 Twine::utohexstr(VAddr)); 604 --I; 605 const Elf_Phdr &Phdr = **I; 606 uint64_t Delta = VAddr - Phdr.p_vaddr; 607 if (Delta >= Phdr.p_filesz) 608 return createError("virtual address is not in any segment: 0x" + 609 Twine::utohexstr(VAddr)); 610 611 uint64_t Offset = Phdr.p_offset + Delta; 612 if (Offset >= getBufSize()) 613 return createError("can't map virtual address 0x" + 614 Twine::utohexstr(VAddr) + " to the segment with index " + 615 Twine(&Phdr - (*ProgramHeadersOrError).data() + 1) + 616 ": the segment ends at 0x" + 617 Twine::utohexstr(Phdr.p_offset + Phdr.p_filesz) + 618 ", which is greater than the file size (0x" + 619 Twine::utohexstr(getBufSize()) + ")"); 620 621 return base() + Offset; 622 } 623 624 template <class ELFT> 625 Expected<std::vector<BBAddrMap>> 626 ELFFile<ELFT>::decodeBBAddrMap(const Elf_Shdr &Sec) const { 627 Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec); 628 if (!ContentsOrErr) 629 return ContentsOrErr.takeError(); 630 ArrayRef<uint8_t> Content = *ContentsOrErr; 631 DataExtractor Data(Content, isLE(), ELFT::Is64Bits ? 8 : 4); 632 std::vector<BBAddrMap> FunctionEntries; 633 634 DataExtractor::Cursor Cur(0); 635 Error ULEBSizeErr = Error::success(); 636 637 // Helper to extract and decode the next ULEB128 value as uint32_t. 638 // Returns zero and sets ULEBSizeErr if the ULEB128 value exceeds the uint32_t 639 // limit. 640 // Also returns zero if ULEBSizeErr is already in an error state. 641 auto ReadULEB128AsUInt32 = [&Data, &Cur, &ULEBSizeErr]() -> uint32_t { 642 // Bail out and do not extract data if ULEBSizeErr is already set. 643 if (ULEBSizeErr) 644 return 0; 645 uint64_t Offset = Cur.tell(); 646 uint64_t Value = Data.getULEB128(Cur); 647 if (Value > UINT32_MAX) { 648 ULEBSizeErr = createError( 649 "ULEB128 value at offset 0x" + Twine::utohexstr(Offset) + 650 " exceeds UINT32_MAX (0x" + Twine::utohexstr(Value) + ")"); 651 return 0; 652 } 653 return static_cast<uint32_t>(Value); 654 }; 655 656 while (!ULEBSizeErr && Cur && Cur.tell() < Content.size()) { 657 uintX_t Address = static_cast<uintX_t>(Data.getAddress(Cur)); 658 uint32_t NumBlocks = ReadULEB128AsUInt32(); 659 std::vector<BBAddrMap::BBEntry> BBEntries; 660 for (uint32_t BlockID = 0; !ULEBSizeErr && Cur && (BlockID < NumBlocks); 661 ++BlockID) { 662 uint32_t Offset = ReadULEB128AsUInt32(); 663 uint32_t Size = ReadULEB128AsUInt32(); 664 uint32_t Metadata = ReadULEB128AsUInt32(); 665 BBEntries.push_back({Offset, Size, Metadata}); 666 } 667 FunctionEntries.push_back({Address, BBEntries}); 668 } 669 // Either Cur is in the error state, or ULEBSizeError is set (not both), but 670 // we join the two errors here to be safe. 671 if (!Cur || ULEBSizeErr) 672 return joinErrors(Cur.takeError(), std::move(ULEBSizeErr)); 673 return FunctionEntries; 674 } 675 676 template class llvm::object::ELFFile<ELF32LE>; 677 template class llvm::object::ELFFile<ELF32BE>; 678 template class llvm::object::ELFFile<ELF64LE>; 679 template class llvm::object::ELFFile<ELF64BE>; 680