xref: /freebsd/contrib/llvm-project/llvm/lib/Object/ELF.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- ELF.cpp - ELF object file implementation ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Object/ELF.h"
10 #include "llvm/BinaryFormat/ELF.h"
11 #include "llvm/Support/DataExtractor.h"
12 
13 using namespace llvm;
14 using namespace object;
15 
16 #define STRINGIFY_ENUM_CASE(ns, name)                                          \
17   case ns::name:                                                               \
18     return #name;
19 
20 #define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name)
21 
22 StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine,
23                                                  uint32_t Type) {
24   switch (Machine) {
25   case ELF::EM_68K:
26     switch (Type) {
27 #include "llvm/BinaryFormat/ELFRelocs/M68k.def"
28     default:
29       break;
30     }
31     break;
32   case ELF::EM_X86_64:
33     switch (Type) {
34 #include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
35     default:
36       break;
37     }
38     break;
39   case ELF::EM_386:
40   case ELF::EM_IAMCU:
41     switch (Type) {
42 #include "llvm/BinaryFormat/ELFRelocs/i386.def"
43     default:
44       break;
45     }
46     break;
47   case ELF::EM_MIPS:
48     switch (Type) {
49 #include "llvm/BinaryFormat/ELFRelocs/Mips.def"
50     default:
51       break;
52     }
53     break;
54   case ELF::EM_AARCH64:
55     switch (Type) {
56 #include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
57     default:
58       break;
59     }
60     break;
61   case ELF::EM_ARM:
62     switch (Type) {
63 #include "llvm/BinaryFormat/ELFRelocs/ARM.def"
64     default:
65       break;
66     }
67     break;
68   case ELF::EM_ARC_COMPACT:
69   case ELF::EM_ARC_COMPACT2:
70     switch (Type) {
71 #include "llvm/BinaryFormat/ELFRelocs/ARC.def"
72     default:
73       break;
74     }
75     break;
76   case ELF::EM_AVR:
77     switch (Type) {
78 #include "llvm/BinaryFormat/ELFRelocs/AVR.def"
79     default:
80       break;
81     }
82     break;
83   case ELF::EM_HEXAGON:
84     switch (Type) {
85 #include "llvm/BinaryFormat/ELFRelocs/Hexagon.def"
86     default:
87       break;
88     }
89     break;
90   case ELF::EM_LANAI:
91     switch (Type) {
92 #include "llvm/BinaryFormat/ELFRelocs/Lanai.def"
93     default:
94       break;
95     }
96     break;
97   case ELF::EM_PPC:
98     switch (Type) {
99 #include "llvm/BinaryFormat/ELFRelocs/PowerPC.def"
100     default:
101       break;
102     }
103     break;
104   case ELF::EM_PPC64:
105     switch (Type) {
106 #include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def"
107     default:
108       break;
109     }
110     break;
111   case ELF::EM_RISCV:
112     switch (Type) {
113 #include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
114     default:
115       break;
116     }
117     break;
118   case ELF::EM_S390:
119     switch (Type) {
120 #include "llvm/BinaryFormat/ELFRelocs/SystemZ.def"
121     default:
122       break;
123     }
124     break;
125   case ELF::EM_SPARC:
126   case ELF::EM_SPARC32PLUS:
127   case ELF::EM_SPARCV9:
128     switch (Type) {
129 #include "llvm/BinaryFormat/ELFRelocs/Sparc.def"
130     default:
131       break;
132     }
133     break;
134   case ELF::EM_AMDGPU:
135     switch (Type) {
136 #include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def"
137     default:
138       break;
139     }
140     break;
141   case ELF::EM_BPF:
142     switch (Type) {
143 #include "llvm/BinaryFormat/ELFRelocs/BPF.def"
144     default:
145       break;
146     }
147     break;
148   case ELF::EM_MSP430:
149     switch (Type) {
150 #include "llvm/BinaryFormat/ELFRelocs/MSP430.def"
151     default:
152       break;
153     }
154     break;
155   case ELF::EM_VE:
156     switch (Type) {
157 #include "llvm/BinaryFormat/ELFRelocs/VE.def"
158     default:
159       break;
160     }
161     break;
162   case ELF::EM_CSKY:
163     switch (Type) {
164 #include "llvm/BinaryFormat/ELFRelocs/CSKY.def"
165     default:
166       break;
167     }
168     break;
169   default:
170     break;
171   }
172   return "Unknown";
173 }
174 
175 #undef ELF_RELOC
176 
177 uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) {
178   switch (Machine) {
179   case ELF::EM_X86_64:
180     return ELF::R_X86_64_RELATIVE;
181   case ELF::EM_386:
182   case ELF::EM_IAMCU:
183     return ELF::R_386_RELATIVE;
184   case ELF::EM_MIPS:
185     break;
186   case ELF::EM_AARCH64:
187     return ELF::R_AARCH64_RELATIVE;
188   case ELF::EM_ARM:
189     return ELF::R_ARM_RELATIVE;
190   case ELF::EM_ARC_COMPACT:
191   case ELF::EM_ARC_COMPACT2:
192     return ELF::R_ARC_RELATIVE;
193   case ELF::EM_AVR:
194     break;
195   case ELF::EM_HEXAGON:
196     return ELF::R_HEX_RELATIVE;
197   case ELF::EM_LANAI:
198     break;
199   case ELF::EM_PPC:
200     break;
201   case ELF::EM_PPC64:
202     return ELF::R_PPC64_RELATIVE;
203   case ELF::EM_RISCV:
204     return ELF::R_RISCV_RELATIVE;
205   case ELF::EM_S390:
206     return ELF::R_390_RELATIVE;
207   case ELF::EM_SPARC:
208   case ELF::EM_SPARC32PLUS:
209   case ELF::EM_SPARCV9:
210     return ELF::R_SPARC_RELATIVE;
211   case ELF::EM_CSKY:
212     return ELF::R_CKCORE_RELATIVE;
213   case ELF::EM_AMDGPU:
214     break;
215   case ELF::EM_BPF:
216     break;
217   default:
218     break;
219   }
220   return 0;
221 }
222 
223 StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) {
224   switch (Machine) {
225   case ELF::EM_ARM:
226     switch (Type) {
227       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX);
228       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
229       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
230       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
231       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
232     }
233     break;
234   case ELF::EM_HEXAGON:
235     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED); }
236     break;
237   case ELF::EM_X86_64:
238     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
239     break;
240   case ELF::EM_MIPS:
241   case ELF::EM_MIPS_RS3_LE:
242     switch (Type) {
243       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
244       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
245       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF);
246       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
247     }
248     break;
249   case ELF::EM_MSP430:
250     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_MSP430_ATTRIBUTES); }
251     break;
252   case ELF::EM_RISCV:
253     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_RISCV_ATTRIBUTES); }
254     break;
255   default:
256     break;
257   }
258 
259   switch (Type) {
260     STRINGIFY_ENUM_CASE(ELF, SHT_NULL);
261     STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS);
262     STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB);
263     STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB);
264     STRINGIFY_ENUM_CASE(ELF, SHT_RELA);
265     STRINGIFY_ENUM_CASE(ELF, SHT_HASH);
266     STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC);
267     STRINGIFY_ENUM_CASE(ELF, SHT_NOTE);
268     STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS);
269     STRINGIFY_ENUM_CASE(ELF, SHT_REL);
270     STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB);
271     STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM);
272     STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY);
273     STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY);
274     STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY);
275     STRINGIFY_ENUM_CASE(ELF, SHT_GROUP);
276     STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX);
277     STRINGIFY_ENUM_CASE(ELF, SHT_RELR);
278     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL);
279     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA);
280     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR);
281     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB);
282     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS);
283     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE);
284     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG);
285     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_DEPENDENT_LIBRARIES);
286     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_SYMPART);
287     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_EHDR);
288     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_PHDR);
289     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_BB_ADDR_MAP);
290     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES);
291     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH);
292     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef);
293     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed);
294     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym);
295   default:
296     return "Unknown";
297   }
298 }
299 
300 template <class ELFT>
301 std::vector<typename ELFT::Rel>
302 ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const {
303   // This function decodes the contents of an SHT_RELR packed relocation
304   // section.
305   //
306   // Proposal for adding SHT_RELR sections to generic-abi is here:
307   //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
308   //
309   // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
310   // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
311   //
312   // i.e. start with an address, followed by any number of bitmaps. The address
313   // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
314   // relocations each, at subsequent offsets following the last address entry.
315   //
316   // The bitmap entries must have 1 in the least significant bit. The assumption
317   // here is that an address cannot have 1 in lsb. Odd addresses are not
318   // supported.
319   //
320   // Excluding the least significant bit in the bitmap, each non-zero bit in
321   // the bitmap represents a relocation to be applied to a corresponding machine
322   // word that follows the base address word. The second least significant bit
323   // represents the machine word immediately following the initial address, and
324   // each bit that follows represents the next word, in linear order. As such,
325   // a single bitmap can encode up to 31 relocations in a 32-bit object, and
326   // 63 relocations in a 64-bit object.
327   //
328   // This encoding has a couple of interesting properties:
329   // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
330   //    even means address, odd means bitmap.
331   // 2. Just a simple list of addresses is a valid encoding.
332 
333   Elf_Rel Rel;
334   Rel.r_info = 0;
335   Rel.setType(getRelativeRelocationType(), false);
336   std::vector<Elf_Rel> Relocs;
337 
338   // Word type: uint32_t for Elf32, and uint64_t for Elf64.
339   using Addr = typename ELFT::uint;
340 
341   Addr Base = 0;
342   for (Elf_Relr R : relrs) {
343     typename ELFT::uint Entry = R;
344     if ((Entry & 1) == 0) {
345       // Even entry: encodes the offset for next relocation.
346       Rel.r_offset = Entry;
347       Relocs.push_back(Rel);
348       // Set base offset for subsequent bitmap entries.
349       Base = Entry + sizeof(Addr);
350     } else {
351       // Odd entry: encodes bitmap for relocations starting at base.
352       for (Addr Offset = Base; (Entry >>= 1) != 0; Offset += sizeof(Addr))
353         if ((Entry & 1) != 0) {
354           Rel.r_offset = Offset;
355           Relocs.push_back(Rel);
356         }
357       Base += (CHAR_BIT * sizeof(Entry) - 1) * sizeof(Addr);
358     }
359   }
360 
361   return Relocs;
362 }
363 
364 template <class ELFT>
365 Expected<std::vector<typename ELFT::Rela>>
366 ELFFile<ELFT>::android_relas(const Elf_Shdr &Sec) const {
367   // This function reads relocations in Android's packed relocation format,
368   // which is based on SLEB128 and delta encoding.
369   Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
370   if (!ContentsOrErr)
371     return ContentsOrErr.takeError();
372   ArrayRef<uint8_t> Content = *ContentsOrErr;
373   if (Content.size() < 4 || Content[0] != 'A' || Content[1] != 'P' ||
374       Content[2] != 'S' || Content[3] != '2')
375     return createError("invalid packed relocation header");
376   DataExtractor Data(Content, isLE(), ELFT::Is64Bits ? 8 : 4);
377   DataExtractor::Cursor Cur(/*Offset=*/4);
378 
379   uint64_t NumRelocs = Data.getSLEB128(Cur);
380   uint64_t Offset = Data.getSLEB128(Cur);
381   uint64_t Addend = 0;
382 
383   if (!Cur)
384     return std::move(Cur.takeError());
385 
386   std::vector<Elf_Rela> Relocs;
387   Relocs.reserve(NumRelocs);
388   while (NumRelocs) {
389     uint64_t NumRelocsInGroup = Data.getSLEB128(Cur);
390     if (!Cur)
391       return std::move(Cur.takeError());
392     if (NumRelocsInGroup > NumRelocs)
393       return createError("relocation group unexpectedly large");
394     NumRelocs -= NumRelocsInGroup;
395 
396     uint64_t GroupFlags = Data.getSLEB128(Cur);
397     bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG;
398     bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG;
399     bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG;
400     bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG;
401 
402     uint64_t GroupOffsetDelta;
403     if (GroupedByOffsetDelta)
404       GroupOffsetDelta = Data.getSLEB128(Cur);
405 
406     uint64_t GroupRInfo;
407     if (GroupedByInfo)
408       GroupRInfo = Data.getSLEB128(Cur);
409 
410     if (GroupedByAddend && GroupHasAddend)
411       Addend += Data.getSLEB128(Cur);
412 
413     if (!GroupHasAddend)
414       Addend = 0;
415 
416     for (uint64_t I = 0; Cur && I != NumRelocsInGroup; ++I) {
417       Elf_Rela R;
418       Offset += GroupedByOffsetDelta ? GroupOffsetDelta : Data.getSLEB128(Cur);
419       R.r_offset = Offset;
420       R.r_info = GroupedByInfo ? GroupRInfo : Data.getSLEB128(Cur);
421       if (GroupHasAddend && !GroupedByAddend)
422         Addend += Data.getSLEB128(Cur);
423       R.r_addend = Addend;
424       Relocs.push_back(R);
425     }
426     if (!Cur)
427       return std::move(Cur.takeError());
428   }
429 
430   return Relocs;
431 }
432 
433 template <class ELFT>
434 std::string ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch,
435                                                  uint64_t Type) const {
436 #define DYNAMIC_STRINGIFY_ENUM(tag, value)                                     \
437   case value:                                                                  \
438     return #tag;
439 
440 #define DYNAMIC_TAG(n, v)
441   switch (Arch) {
442   case ELF::EM_AARCH64:
443     switch (Type) {
444 #define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
445 #include "llvm/BinaryFormat/DynamicTags.def"
446 #undef AARCH64_DYNAMIC_TAG
447     }
448     break;
449 
450   case ELF::EM_HEXAGON:
451     switch (Type) {
452 #define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
453 #include "llvm/BinaryFormat/DynamicTags.def"
454 #undef HEXAGON_DYNAMIC_TAG
455     }
456     break;
457 
458   case ELF::EM_MIPS:
459     switch (Type) {
460 #define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
461 #include "llvm/BinaryFormat/DynamicTags.def"
462 #undef MIPS_DYNAMIC_TAG
463     }
464     break;
465 
466   case ELF::EM_PPC:
467     switch (Type) {
468 #define PPC_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
469 #include "llvm/BinaryFormat/DynamicTags.def"
470 #undef PPC_DYNAMIC_TAG
471     }
472     break;
473 
474   case ELF::EM_PPC64:
475     switch (Type) {
476 #define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
477 #include "llvm/BinaryFormat/DynamicTags.def"
478 #undef PPC64_DYNAMIC_TAG
479     }
480     break;
481 
482   case ELF::EM_RISCV:
483     switch (Type) {
484 #define RISCV_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
485 #include "llvm/BinaryFormat/DynamicTags.def"
486 #undef RISCV_DYNAMIC_TAG
487     }
488     break;
489   }
490 #undef DYNAMIC_TAG
491   switch (Type) {
492 // Now handle all dynamic tags except the architecture specific ones
493 #define AARCH64_DYNAMIC_TAG(name, value)
494 #define MIPS_DYNAMIC_TAG(name, value)
495 #define HEXAGON_DYNAMIC_TAG(name, value)
496 #define PPC_DYNAMIC_TAG(name, value)
497 #define PPC64_DYNAMIC_TAG(name, value)
498 #define RISCV_DYNAMIC_TAG(name, value)
499 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
500 #define DYNAMIC_TAG_MARKER(name, value)
501 #define DYNAMIC_TAG(name, value) case value: return #name;
502 #include "llvm/BinaryFormat/DynamicTags.def"
503 #undef DYNAMIC_TAG
504 #undef AARCH64_DYNAMIC_TAG
505 #undef MIPS_DYNAMIC_TAG
506 #undef HEXAGON_DYNAMIC_TAG
507 #undef PPC_DYNAMIC_TAG
508 #undef PPC64_DYNAMIC_TAG
509 #undef RISCV_DYNAMIC_TAG
510 #undef DYNAMIC_TAG_MARKER
511 #undef DYNAMIC_STRINGIFY_ENUM
512   default:
513     return "<unknown:>0x" + utohexstr(Type, true);
514   }
515 }
516 
517 template <class ELFT>
518 std::string ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const {
519   return getDynamicTagAsString(getHeader().e_machine, Type);
520 }
521 
522 template <class ELFT>
523 Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const {
524   ArrayRef<Elf_Dyn> Dyn;
525 
526   auto ProgramHeadersOrError = program_headers();
527   if (!ProgramHeadersOrError)
528     return ProgramHeadersOrError.takeError();
529 
530   for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) {
531     if (Phdr.p_type == ELF::PT_DYNAMIC) {
532       Dyn = makeArrayRef(
533           reinterpret_cast<const Elf_Dyn *>(base() + Phdr.p_offset),
534           Phdr.p_filesz / sizeof(Elf_Dyn));
535       break;
536     }
537   }
538 
539   // If we can't find the dynamic section in the program headers, we just fall
540   // back on the sections.
541   if (Dyn.empty()) {
542     auto SectionsOrError = sections();
543     if (!SectionsOrError)
544       return SectionsOrError.takeError();
545 
546     for (const Elf_Shdr &Sec : *SectionsOrError) {
547       if (Sec.sh_type == ELF::SHT_DYNAMIC) {
548         Expected<ArrayRef<Elf_Dyn>> DynOrError =
549             getSectionContentsAsArray<Elf_Dyn>(Sec);
550         if (!DynOrError)
551           return DynOrError.takeError();
552         Dyn = *DynOrError;
553         break;
554       }
555     }
556 
557     if (!Dyn.data())
558       return ArrayRef<Elf_Dyn>();
559   }
560 
561   if (Dyn.empty())
562     // TODO: this error is untested.
563     return createError("invalid empty dynamic section");
564 
565   if (Dyn.back().d_tag != ELF::DT_NULL)
566     // TODO: this error is untested.
567     return createError("dynamic sections must be DT_NULL terminated");
568 
569   return Dyn;
570 }
571 
572 template <class ELFT>
573 Expected<const uint8_t *>
574 ELFFile<ELFT>::toMappedAddr(uint64_t VAddr, WarningHandler WarnHandler) const {
575   auto ProgramHeadersOrError = program_headers();
576   if (!ProgramHeadersOrError)
577     return ProgramHeadersOrError.takeError();
578 
579   llvm::SmallVector<Elf_Phdr *, 4> LoadSegments;
580 
581   for (const Elf_Phdr &Phdr : *ProgramHeadersOrError)
582     if (Phdr.p_type == ELF::PT_LOAD)
583       LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr));
584 
585   auto SortPred = [](const Elf_Phdr_Impl<ELFT> *A,
586                      const Elf_Phdr_Impl<ELFT> *B) {
587     return A->p_vaddr < B->p_vaddr;
588   };
589   if (!llvm::is_sorted(LoadSegments, SortPred)) {
590     if (Error E =
591             WarnHandler("loadable segments are unsorted by virtual address"))
592       return std::move(E);
593     llvm::stable_sort(LoadSegments, SortPred);
594   }
595 
596   const Elf_Phdr *const *I = llvm::upper_bound(
597       LoadSegments, VAddr, [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
598         return VAddr < Phdr->p_vaddr;
599       });
600 
601   if (I == LoadSegments.begin())
602     return createError("virtual address is not in any segment: 0x" +
603                        Twine::utohexstr(VAddr));
604   --I;
605   const Elf_Phdr &Phdr = **I;
606   uint64_t Delta = VAddr - Phdr.p_vaddr;
607   if (Delta >= Phdr.p_filesz)
608     return createError("virtual address is not in any segment: 0x" +
609                        Twine::utohexstr(VAddr));
610 
611   uint64_t Offset = Phdr.p_offset + Delta;
612   if (Offset >= getBufSize())
613     return createError("can't map virtual address 0x" +
614                        Twine::utohexstr(VAddr) + " to the segment with index " +
615                        Twine(&Phdr - (*ProgramHeadersOrError).data() + 1) +
616                        ": the segment ends at 0x" +
617                        Twine::utohexstr(Phdr.p_offset + Phdr.p_filesz) +
618                        ", which is greater than the file size (0x" +
619                        Twine::utohexstr(getBufSize()) + ")");
620 
621   return base() + Offset;
622 }
623 
624 template <class ELFT>
625 Expected<std::vector<BBAddrMap>>
626 ELFFile<ELFT>::decodeBBAddrMap(const Elf_Shdr &Sec) const {
627   Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
628   if (!ContentsOrErr)
629     return ContentsOrErr.takeError();
630   ArrayRef<uint8_t> Content = *ContentsOrErr;
631   DataExtractor Data(Content, isLE(), ELFT::Is64Bits ? 8 : 4);
632   std::vector<BBAddrMap> FunctionEntries;
633 
634   DataExtractor::Cursor Cur(0);
635   Error ULEBSizeErr = Error::success();
636 
637   // Helper to extract and decode the next ULEB128 value as uint32_t.
638   // Returns zero and sets ULEBSizeErr if the ULEB128 value exceeds the uint32_t
639   // limit.
640   // Also returns zero if ULEBSizeErr is already in an error state.
641   auto ReadULEB128AsUInt32 = [&Data, &Cur, &ULEBSizeErr]() -> uint32_t {
642     // Bail out and do not extract data if ULEBSizeErr is already set.
643     if (ULEBSizeErr)
644       return 0;
645     uint64_t Offset = Cur.tell();
646     uint64_t Value = Data.getULEB128(Cur);
647     if (Value > UINT32_MAX) {
648       ULEBSizeErr = createError(
649           "ULEB128 value at offset 0x" + Twine::utohexstr(Offset) +
650           " exceeds UINT32_MAX (0x" + Twine::utohexstr(Value) + ")");
651       return 0;
652     }
653     return static_cast<uint32_t>(Value);
654   };
655 
656   while (!ULEBSizeErr && Cur && Cur.tell() < Content.size()) {
657     uintX_t Address = static_cast<uintX_t>(Data.getAddress(Cur));
658     uint32_t NumBlocks = ReadULEB128AsUInt32();
659     std::vector<BBAddrMap::BBEntry> BBEntries;
660     for (uint32_t BlockID = 0; !ULEBSizeErr && Cur && (BlockID < NumBlocks);
661          ++BlockID) {
662       uint32_t Offset = ReadULEB128AsUInt32();
663       uint32_t Size = ReadULEB128AsUInt32();
664       uint32_t Metadata = ReadULEB128AsUInt32();
665       BBEntries.push_back({Offset, Size, Metadata});
666     }
667     FunctionEntries.push_back({Address, BBEntries});
668   }
669   // Either Cur is in the error state, or ULEBSizeError is set (not both), but
670   // we join the two errors here to be safe.
671   if (!Cur || ULEBSizeErr)
672     return joinErrors(Cur.takeError(), std::move(ULEBSizeErr));
673   return FunctionEntries;
674 }
675 
676 template class llvm::object::ELFFile<ELF32LE>;
677 template class llvm::object::ELFFile<ELF32BE>;
678 template class llvm::object::ELFFile<ELF64LE>;
679 template class llvm::object::ELFFile<ELF64BE>;
680