xref: /freebsd/contrib/llvm-project/llvm/lib/Object/ELF.cpp (revision 43a5ec4eb41567cc92586503212743d89686d78f)
1 //===- ELF.cpp - ELF object file implementation ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Object/ELF.h"
10 #include "llvm/BinaryFormat/ELF.h"
11 #include "llvm/Support/DataExtractor.h"
12 
13 using namespace llvm;
14 using namespace object;
15 
16 #define STRINGIFY_ENUM_CASE(ns, name)                                          \
17   case ns::name:                                                               \
18     return #name;
19 
20 #define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name)
21 
22 StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine,
23                                                  uint32_t Type) {
24   switch (Machine) {
25   case ELF::EM_68K:
26     switch (Type) {
27 #include "llvm/BinaryFormat/ELFRelocs/M68k.def"
28     default:
29       break;
30     }
31     break;
32   case ELF::EM_X86_64:
33     switch (Type) {
34 #include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
35     default:
36       break;
37     }
38     break;
39   case ELF::EM_386:
40   case ELF::EM_IAMCU:
41     switch (Type) {
42 #include "llvm/BinaryFormat/ELFRelocs/i386.def"
43     default:
44       break;
45     }
46     break;
47   case ELF::EM_MIPS:
48     switch (Type) {
49 #include "llvm/BinaryFormat/ELFRelocs/Mips.def"
50     default:
51       break;
52     }
53     break;
54   case ELF::EM_AARCH64:
55     switch (Type) {
56 #include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
57     default:
58       break;
59     }
60     break;
61   case ELF::EM_ARM:
62     switch (Type) {
63 #include "llvm/BinaryFormat/ELFRelocs/ARM.def"
64     default:
65       break;
66     }
67     break;
68   case ELF::EM_ARC_COMPACT:
69   case ELF::EM_ARC_COMPACT2:
70     switch (Type) {
71 #include "llvm/BinaryFormat/ELFRelocs/ARC.def"
72     default:
73       break;
74     }
75     break;
76   case ELF::EM_AVR:
77     switch (Type) {
78 #include "llvm/BinaryFormat/ELFRelocs/AVR.def"
79     default:
80       break;
81     }
82     break;
83   case ELF::EM_HEXAGON:
84     switch (Type) {
85 #include "llvm/BinaryFormat/ELFRelocs/Hexagon.def"
86     default:
87       break;
88     }
89     break;
90   case ELF::EM_LANAI:
91     switch (Type) {
92 #include "llvm/BinaryFormat/ELFRelocs/Lanai.def"
93     default:
94       break;
95     }
96     break;
97   case ELF::EM_PPC:
98     switch (Type) {
99 #include "llvm/BinaryFormat/ELFRelocs/PowerPC.def"
100     default:
101       break;
102     }
103     break;
104   case ELF::EM_PPC64:
105     switch (Type) {
106 #include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def"
107     default:
108       break;
109     }
110     break;
111   case ELF::EM_RISCV:
112     switch (Type) {
113 #include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
114     default:
115       break;
116     }
117     break;
118   case ELF::EM_S390:
119     switch (Type) {
120 #include "llvm/BinaryFormat/ELFRelocs/SystemZ.def"
121     default:
122       break;
123     }
124     break;
125   case ELF::EM_SPARC:
126   case ELF::EM_SPARC32PLUS:
127   case ELF::EM_SPARCV9:
128     switch (Type) {
129 #include "llvm/BinaryFormat/ELFRelocs/Sparc.def"
130     default:
131       break;
132     }
133     break;
134   case ELF::EM_AMDGPU:
135     switch (Type) {
136 #include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def"
137     default:
138       break;
139     }
140     break;
141   case ELF::EM_BPF:
142     switch (Type) {
143 #include "llvm/BinaryFormat/ELFRelocs/BPF.def"
144     default:
145       break;
146     }
147     break;
148   case ELF::EM_MSP430:
149     switch (Type) {
150 #include "llvm/BinaryFormat/ELFRelocs/MSP430.def"
151     default:
152       break;
153     }
154     break;
155   case ELF::EM_VE:
156     switch (Type) {
157 #include "llvm/BinaryFormat/ELFRelocs/VE.def"
158     default:
159       break;
160     }
161     break;
162   case ELF::EM_CSKY:
163     switch (Type) {
164 #include "llvm/BinaryFormat/ELFRelocs/CSKY.def"
165     default:
166       break;
167     }
168     break;
169   default:
170     break;
171   }
172   return "Unknown";
173 }
174 
175 #undef ELF_RELOC
176 
177 uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) {
178   switch (Machine) {
179   case ELF::EM_X86_64:
180     return ELF::R_X86_64_RELATIVE;
181   case ELF::EM_386:
182   case ELF::EM_IAMCU:
183     return ELF::R_386_RELATIVE;
184   case ELF::EM_MIPS:
185     break;
186   case ELF::EM_AARCH64:
187     return ELF::R_AARCH64_RELATIVE;
188   case ELF::EM_ARM:
189     return ELF::R_ARM_RELATIVE;
190   case ELF::EM_ARC_COMPACT:
191   case ELF::EM_ARC_COMPACT2:
192     return ELF::R_ARC_RELATIVE;
193   case ELF::EM_AVR:
194     break;
195   case ELF::EM_HEXAGON:
196     return ELF::R_HEX_RELATIVE;
197   case ELF::EM_LANAI:
198     break;
199   case ELF::EM_PPC:
200     break;
201   case ELF::EM_PPC64:
202     return ELF::R_PPC64_RELATIVE;
203   case ELF::EM_RISCV:
204     return ELF::R_RISCV_RELATIVE;
205   case ELF::EM_S390:
206     return ELF::R_390_RELATIVE;
207   case ELF::EM_SPARC:
208   case ELF::EM_SPARC32PLUS:
209   case ELF::EM_SPARCV9:
210     return ELF::R_SPARC_RELATIVE;
211   case ELF::EM_CSKY:
212     return ELF::R_CKCORE_RELATIVE;
213   case ELF::EM_AMDGPU:
214     break;
215   case ELF::EM_BPF:
216     break;
217   default:
218     break;
219   }
220   return 0;
221 }
222 
223 StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) {
224   switch (Machine) {
225   case ELF::EM_ARM:
226     switch (Type) {
227       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX);
228       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
229       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
230       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
231       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
232     }
233     break;
234   case ELF::EM_HEXAGON:
235     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED); }
236     break;
237   case ELF::EM_X86_64:
238     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
239     break;
240   case ELF::EM_MIPS:
241   case ELF::EM_MIPS_RS3_LE:
242     switch (Type) {
243       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
244       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
245       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF);
246       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
247     }
248     break;
249   case ELF::EM_RISCV:
250     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_RISCV_ATTRIBUTES); }
251     break;
252   default:
253     break;
254   }
255 
256   switch (Type) {
257     STRINGIFY_ENUM_CASE(ELF, SHT_NULL);
258     STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS);
259     STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB);
260     STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB);
261     STRINGIFY_ENUM_CASE(ELF, SHT_RELA);
262     STRINGIFY_ENUM_CASE(ELF, SHT_HASH);
263     STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC);
264     STRINGIFY_ENUM_CASE(ELF, SHT_NOTE);
265     STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS);
266     STRINGIFY_ENUM_CASE(ELF, SHT_REL);
267     STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB);
268     STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM);
269     STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY);
270     STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY);
271     STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY);
272     STRINGIFY_ENUM_CASE(ELF, SHT_GROUP);
273     STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX);
274     STRINGIFY_ENUM_CASE(ELF, SHT_RELR);
275     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL);
276     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA);
277     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR);
278     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB);
279     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS);
280     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE);
281     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG);
282     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_DEPENDENT_LIBRARIES);
283     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_SYMPART);
284     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_EHDR);
285     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_PHDR);
286     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_BB_ADDR_MAP);
287     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES);
288     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH);
289     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef);
290     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed);
291     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym);
292   default:
293     return "Unknown";
294   }
295 }
296 
297 template <class ELFT>
298 std::vector<typename ELFT::Rel>
299 ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const {
300   // This function decodes the contents of an SHT_RELR packed relocation
301   // section.
302   //
303   // Proposal for adding SHT_RELR sections to generic-abi is here:
304   //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
305   //
306   // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
307   // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
308   //
309   // i.e. start with an address, followed by any number of bitmaps. The address
310   // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
311   // relocations each, at subsequent offsets following the last address entry.
312   //
313   // The bitmap entries must have 1 in the least significant bit. The assumption
314   // here is that an address cannot have 1 in lsb. Odd addresses are not
315   // supported.
316   //
317   // Excluding the least significant bit in the bitmap, each non-zero bit in
318   // the bitmap represents a relocation to be applied to a corresponding machine
319   // word that follows the base address word. The second least significant bit
320   // represents the machine word immediately following the initial address, and
321   // each bit that follows represents the next word, in linear order. As such,
322   // a single bitmap can encode up to 31 relocations in a 32-bit object, and
323   // 63 relocations in a 64-bit object.
324   //
325   // This encoding has a couple of interesting properties:
326   // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
327   //    even means address, odd means bitmap.
328   // 2. Just a simple list of addresses is a valid encoding.
329 
330   Elf_Rel Rel;
331   Rel.r_info = 0;
332   Rel.setType(getRelativeRelocationType(), false);
333   std::vector<Elf_Rel> Relocs;
334 
335   // Word type: uint32_t for Elf32, and uint64_t for Elf64.
336   typedef typename ELFT::uint Word;
337 
338   // Word size in number of bytes.
339   const size_t WordSize = sizeof(Word);
340 
341   // Number of bits used for the relocation offsets bitmap.
342   // These many relative relocations can be encoded in a single entry.
343   const size_t NBits = 8*WordSize - 1;
344 
345   Word Base = 0;
346   for (const Elf_Relr &R : relrs) {
347     Word Entry = R;
348     if ((Entry&1) == 0) {
349       // Even entry: encodes the offset for next relocation.
350       Rel.r_offset = Entry;
351       Relocs.push_back(Rel);
352       // Set base offset for subsequent bitmap entries.
353       Base = Entry + WordSize;
354       continue;
355     }
356 
357     // Odd entry: encodes bitmap for relocations starting at base.
358     Word Offset = Base;
359     while (Entry != 0) {
360       Entry >>= 1;
361       if ((Entry&1) != 0) {
362         Rel.r_offset = Offset;
363         Relocs.push_back(Rel);
364       }
365       Offset += WordSize;
366     }
367 
368     // Advance base offset by NBits words.
369     Base += NBits * WordSize;
370   }
371 
372   return Relocs;
373 }
374 
375 template <class ELFT>
376 Expected<std::vector<typename ELFT::Rela>>
377 ELFFile<ELFT>::android_relas(const Elf_Shdr &Sec) const {
378   // This function reads relocations in Android's packed relocation format,
379   // which is based on SLEB128 and delta encoding.
380   Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
381   if (!ContentsOrErr)
382     return ContentsOrErr.takeError();
383   ArrayRef<uint8_t> Content = *ContentsOrErr;
384   if (Content.size() < 4 || Content[0] != 'A' || Content[1] != 'P' ||
385       Content[2] != 'S' || Content[3] != '2')
386     return createError("invalid packed relocation header");
387   DataExtractor Data(Content, isLE(), ELFT::Is64Bits ? 8 : 4);
388   DataExtractor::Cursor Cur(/*Offset=*/4);
389 
390   uint64_t NumRelocs = Data.getSLEB128(Cur);
391   uint64_t Offset = Data.getSLEB128(Cur);
392   uint64_t Addend = 0;
393 
394   if (!Cur)
395     return std::move(Cur.takeError());
396 
397   std::vector<Elf_Rela> Relocs;
398   Relocs.reserve(NumRelocs);
399   while (NumRelocs) {
400     uint64_t NumRelocsInGroup = Data.getSLEB128(Cur);
401     if (!Cur)
402       return std::move(Cur.takeError());
403     if (NumRelocsInGroup > NumRelocs)
404       return createError("relocation group unexpectedly large");
405     NumRelocs -= NumRelocsInGroup;
406 
407     uint64_t GroupFlags = Data.getSLEB128(Cur);
408     bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG;
409     bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG;
410     bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG;
411     bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG;
412 
413     uint64_t GroupOffsetDelta;
414     if (GroupedByOffsetDelta)
415       GroupOffsetDelta = Data.getSLEB128(Cur);
416 
417     uint64_t GroupRInfo;
418     if (GroupedByInfo)
419       GroupRInfo = Data.getSLEB128(Cur);
420 
421     if (GroupedByAddend && GroupHasAddend)
422       Addend += Data.getSLEB128(Cur);
423 
424     if (!GroupHasAddend)
425       Addend = 0;
426 
427     for (uint64_t I = 0; Cur && I != NumRelocsInGroup; ++I) {
428       Elf_Rela R;
429       Offset += GroupedByOffsetDelta ? GroupOffsetDelta : Data.getSLEB128(Cur);
430       R.r_offset = Offset;
431       R.r_info = GroupedByInfo ? GroupRInfo : Data.getSLEB128(Cur);
432       if (GroupHasAddend && !GroupedByAddend)
433         Addend += Data.getSLEB128(Cur);
434       R.r_addend = Addend;
435       Relocs.push_back(R);
436     }
437     if (!Cur)
438       return std::move(Cur.takeError());
439   }
440 
441   return Relocs;
442 }
443 
444 template <class ELFT>
445 std::string ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch,
446                                                  uint64_t Type) const {
447 #define DYNAMIC_STRINGIFY_ENUM(tag, value)                                     \
448   case value:                                                                  \
449     return #tag;
450 
451 #define DYNAMIC_TAG(n, v)
452   switch (Arch) {
453   case ELF::EM_AARCH64:
454     switch (Type) {
455 #define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
456 #include "llvm/BinaryFormat/DynamicTags.def"
457 #undef AARCH64_DYNAMIC_TAG
458     }
459     break;
460 
461   case ELF::EM_HEXAGON:
462     switch (Type) {
463 #define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
464 #include "llvm/BinaryFormat/DynamicTags.def"
465 #undef HEXAGON_DYNAMIC_TAG
466     }
467     break;
468 
469   case ELF::EM_MIPS:
470     switch (Type) {
471 #define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
472 #include "llvm/BinaryFormat/DynamicTags.def"
473 #undef MIPS_DYNAMIC_TAG
474     }
475     break;
476 
477   case ELF::EM_PPC64:
478     switch (Type) {
479 #define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
480 #include "llvm/BinaryFormat/DynamicTags.def"
481 #undef PPC64_DYNAMIC_TAG
482     }
483     break;
484   }
485 #undef DYNAMIC_TAG
486   switch (Type) {
487 // Now handle all dynamic tags except the architecture specific ones
488 #define AARCH64_DYNAMIC_TAG(name, value)
489 #define MIPS_DYNAMIC_TAG(name, value)
490 #define HEXAGON_DYNAMIC_TAG(name, value)
491 #define PPC64_DYNAMIC_TAG(name, value)
492 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
493 #define DYNAMIC_TAG_MARKER(name, value)
494 #define DYNAMIC_TAG(name, value) case value: return #name;
495 #include "llvm/BinaryFormat/DynamicTags.def"
496 #undef DYNAMIC_TAG
497 #undef AARCH64_DYNAMIC_TAG
498 #undef MIPS_DYNAMIC_TAG
499 #undef HEXAGON_DYNAMIC_TAG
500 #undef PPC64_DYNAMIC_TAG
501 #undef DYNAMIC_TAG_MARKER
502 #undef DYNAMIC_STRINGIFY_ENUM
503   default:
504     return "<unknown:>0x" + utohexstr(Type, true);
505   }
506 }
507 
508 template <class ELFT>
509 std::string ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const {
510   return getDynamicTagAsString(getHeader().e_machine, Type);
511 }
512 
513 template <class ELFT>
514 Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const {
515   ArrayRef<Elf_Dyn> Dyn;
516 
517   auto ProgramHeadersOrError = program_headers();
518   if (!ProgramHeadersOrError)
519     return ProgramHeadersOrError.takeError();
520 
521   for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) {
522     if (Phdr.p_type == ELF::PT_DYNAMIC) {
523       Dyn = makeArrayRef(
524           reinterpret_cast<const Elf_Dyn *>(base() + Phdr.p_offset),
525           Phdr.p_filesz / sizeof(Elf_Dyn));
526       break;
527     }
528   }
529 
530   // If we can't find the dynamic section in the program headers, we just fall
531   // back on the sections.
532   if (Dyn.empty()) {
533     auto SectionsOrError = sections();
534     if (!SectionsOrError)
535       return SectionsOrError.takeError();
536 
537     for (const Elf_Shdr &Sec : *SectionsOrError) {
538       if (Sec.sh_type == ELF::SHT_DYNAMIC) {
539         Expected<ArrayRef<Elf_Dyn>> DynOrError =
540             getSectionContentsAsArray<Elf_Dyn>(Sec);
541         if (!DynOrError)
542           return DynOrError.takeError();
543         Dyn = *DynOrError;
544         break;
545       }
546     }
547 
548     if (!Dyn.data())
549       return ArrayRef<Elf_Dyn>();
550   }
551 
552   if (Dyn.empty())
553     // TODO: this error is untested.
554     return createError("invalid empty dynamic section");
555 
556   if (Dyn.back().d_tag != ELF::DT_NULL)
557     // TODO: this error is untested.
558     return createError("dynamic sections must be DT_NULL terminated");
559 
560   return Dyn;
561 }
562 
563 template <class ELFT>
564 Expected<const uint8_t *>
565 ELFFile<ELFT>::toMappedAddr(uint64_t VAddr, WarningHandler WarnHandler) const {
566   auto ProgramHeadersOrError = program_headers();
567   if (!ProgramHeadersOrError)
568     return ProgramHeadersOrError.takeError();
569 
570   llvm::SmallVector<Elf_Phdr *, 4> LoadSegments;
571 
572   for (const Elf_Phdr &Phdr : *ProgramHeadersOrError)
573     if (Phdr.p_type == ELF::PT_LOAD)
574       LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr));
575 
576   auto SortPred = [](const Elf_Phdr_Impl<ELFT> *A,
577                      const Elf_Phdr_Impl<ELFT> *B) {
578     return A->p_vaddr < B->p_vaddr;
579   };
580   if (!llvm::is_sorted(LoadSegments, SortPred)) {
581     if (Error E =
582             WarnHandler("loadable segments are unsorted by virtual address"))
583       return std::move(E);
584     llvm::stable_sort(LoadSegments, SortPred);
585   }
586 
587   const Elf_Phdr *const *I = llvm::upper_bound(
588       LoadSegments, VAddr, [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
589         return VAddr < Phdr->p_vaddr;
590       });
591 
592   if (I == LoadSegments.begin())
593     return createError("virtual address is not in any segment: 0x" +
594                        Twine::utohexstr(VAddr));
595   --I;
596   const Elf_Phdr &Phdr = **I;
597   uint64_t Delta = VAddr - Phdr.p_vaddr;
598   if (Delta >= Phdr.p_filesz)
599     return createError("virtual address is not in any segment: 0x" +
600                        Twine::utohexstr(VAddr));
601 
602   uint64_t Offset = Phdr.p_offset + Delta;
603   if (Offset >= getBufSize())
604     return createError("can't map virtual address 0x" +
605                        Twine::utohexstr(VAddr) + " to the segment with index " +
606                        Twine(&Phdr - (*ProgramHeadersOrError).data() + 1) +
607                        ": the segment ends at 0x" +
608                        Twine::utohexstr(Phdr.p_offset + Phdr.p_filesz) +
609                        ", which is greater than the file size (0x" +
610                        Twine::utohexstr(getBufSize()) + ")");
611 
612   return base() + Offset;
613 }
614 
615 template <class ELFT>
616 Expected<std::vector<typename ELFT::BBAddrMap>>
617 ELFFile<ELFT>::decodeBBAddrMap(const Elf_Shdr &Sec) const {
618   Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
619   if (!ContentsOrErr)
620     return ContentsOrErr.takeError();
621   ArrayRef<uint8_t> Content = *ContentsOrErr;
622   DataExtractor Data(Content, isLE(), ELFT::Is64Bits ? 8 : 4);
623   std::vector<Elf_BBAddrMap> FunctionEntries;
624 
625   DataExtractor::Cursor Cur(0);
626   Error ULEBSizeErr = Error::success();
627 
628   // Helper to extract and decode the next ULEB128 value as uint32_t.
629   // Returns zero and sets ULEBSizeErr if the ULEB128 value exceeds the uint32_t
630   // limit.
631   // Also returns zero if ULEBSizeErr is already in an error state.
632   auto ReadULEB128AsUInt32 = [&Data, &Cur, &ULEBSizeErr]() -> uint32_t {
633     // Bail out and do not extract data if ULEBSizeErr is already set.
634     if (ULEBSizeErr)
635       return 0;
636     uint64_t Offset = Cur.tell();
637     uint64_t Value = Data.getULEB128(Cur);
638     if (Value > UINT32_MAX) {
639       ULEBSizeErr = createError(
640           "ULEB128 value at offset 0x" + Twine::utohexstr(Offset) +
641           " exceeds UINT32_MAX (0x" + Twine::utohexstr(Value) + ")");
642       return 0;
643     }
644     return static_cast<uint32_t>(Value);
645   };
646 
647   while (!ULEBSizeErr && Cur && Cur.tell() < Content.size()) {
648     uintX_t Address = static_cast<uintX_t>(Data.getAddress(Cur));
649     uint32_t NumBlocks = ReadULEB128AsUInt32();
650     std::vector<typename Elf_BBAddrMap::BBEntry> BBEntries;
651     for (uint32_t BlockID = 0; !ULEBSizeErr && Cur && (BlockID < NumBlocks);
652          ++BlockID) {
653       uint32_t Offset = ReadULEB128AsUInt32();
654       uint32_t Size = ReadULEB128AsUInt32();
655       uint32_t Metadata = ReadULEB128AsUInt32();
656       BBEntries.push_back({Offset, Size, Metadata});
657     }
658     FunctionEntries.push_back({Address, BBEntries});
659   }
660   // Either Cur is in the error state, or ULEBSizeError is set (not both), but
661   // we join the two errors here to be safe.
662   if (!Cur || ULEBSizeErr)
663     return joinErrors(Cur.takeError(), std::move(ULEBSizeErr));
664   return FunctionEntries;
665 }
666 
667 template class llvm::object::ELFFile<ELF32LE>;
668 template class llvm::object::ELFFile<ELF32BE>;
669 template class llvm::object::ELFFile<ELF64LE>;
670 template class llvm::object::ELFFile<ELF64BE>;
671