xref: /freebsd/contrib/llvm-project/llvm/lib/Object/ELF.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===- ELF.cpp - ELF object file implementation ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Object/ELF.h"
10 #include "llvm/ADT/StringExtras.h"
11 #include "llvm/BinaryFormat/ELF.h"
12 #include "llvm/Support/DataExtractor.h"
13 
14 using namespace llvm;
15 using namespace object;
16 
17 #define STRINGIFY_ENUM_CASE(ns, name)                                          \
18   case ns::name:                                                               \
19     return #name;
20 
21 #define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name)
22 
23 StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine,
24                                                  uint32_t Type) {
25   switch (Machine) {
26   case ELF::EM_68K:
27     switch (Type) {
28 #include "llvm/BinaryFormat/ELFRelocs/M68k.def"
29     default:
30       break;
31     }
32     break;
33   case ELF::EM_X86_64:
34     switch (Type) {
35 #include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
36     default:
37       break;
38     }
39     break;
40   case ELF::EM_386:
41   case ELF::EM_IAMCU:
42     switch (Type) {
43 #include "llvm/BinaryFormat/ELFRelocs/i386.def"
44     default:
45       break;
46     }
47     break;
48   case ELF::EM_MIPS:
49     switch (Type) {
50 #include "llvm/BinaryFormat/ELFRelocs/Mips.def"
51     default:
52       break;
53     }
54     break;
55   case ELF::EM_AARCH64:
56     switch (Type) {
57 #include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
58     default:
59       break;
60     }
61     break;
62   case ELF::EM_ARM:
63     switch (Type) {
64 #include "llvm/BinaryFormat/ELFRelocs/ARM.def"
65     default:
66       break;
67     }
68     break;
69   case ELF::EM_ARC_COMPACT:
70   case ELF::EM_ARC_COMPACT2:
71     switch (Type) {
72 #include "llvm/BinaryFormat/ELFRelocs/ARC.def"
73     default:
74       break;
75     }
76     break;
77   case ELF::EM_AVR:
78     switch (Type) {
79 #include "llvm/BinaryFormat/ELFRelocs/AVR.def"
80     default:
81       break;
82     }
83     break;
84   case ELF::EM_HEXAGON:
85     switch (Type) {
86 #include "llvm/BinaryFormat/ELFRelocs/Hexagon.def"
87     default:
88       break;
89     }
90     break;
91   case ELF::EM_LANAI:
92     switch (Type) {
93 #include "llvm/BinaryFormat/ELFRelocs/Lanai.def"
94     default:
95       break;
96     }
97     break;
98   case ELF::EM_PPC:
99     switch (Type) {
100 #include "llvm/BinaryFormat/ELFRelocs/PowerPC.def"
101     default:
102       break;
103     }
104     break;
105   case ELF::EM_PPC64:
106     switch (Type) {
107 #include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def"
108     default:
109       break;
110     }
111     break;
112   case ELF::EM_RISCV:
113     switch (Type) {
114 #include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
115     default:
116       break;
117     }
118     break;
119   case ELF::EM_S390:
120     switch (Type) {
121 #include "llvm/BinaryFormat/ELFRelocs/SystemZ.def"
122     default:
123       break;
124     }
125     break;
126   case ELF::EM_SPARC:
127   case ELF::EM_SPARC32PLUS:
128   case ELF::EM_SPARCV9:
129     switch (Type) {
130 #include "llvm/BinaryFormat/ELFRelocs/Sparc.def"
131     default:
132       break;
133     }
134     break;
135   case ELF::EM_AMDGPU:
136     switch (Type) {
137 #include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def"
138     default:
139       break;
140     }
141     break;
142   case ELF::EM_BPF:
143     switch (Type) {
144 #include "llvm/BinaryFormat/ELFRelocs/BPF.def"
145     default:
146       break;
147     }
148     break;
149   case ELF::EM_MSP430:
150     switch (Type) {
151 #include "llvm/BinaryFormat/ELFRelocs/MSP430.def"
152     default:
153       break;
154     }
155     break;
156   case ELF::EM_VE:
157     switch (Type) {
158 #include "llvm/BinaryFormat/ELFRelocs/VE.def"
159     default:
160       break;
161     }
162     break;
163   case ELF::EM_CSKY:
164     switch (Type) {
165 #include "llvm/BinaryFormat/ELFRelocs/CSKY.def"
166     default:
167       break;
168     }
169     break;
170   case ELF::EM_LOONGARCH:
171     switch (Type) {
172 #include "llvm/BinaryFormat/ELFRelocs/LoongArch.def"
173     default:
174       break;
175     }
176     break;
177   case ELF::EM_XTENSA:
178     switch (Type) {
179 #include "llvm/BinaryFormat/ELFRelocs/Xtensa.def"
180     default:
181       break;
182     }
183     break;
184   default:
185     break;
186   }
187   return "Unknown";
188 }
189 
190 #undef ELF_RELOC
191 
192 uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) {
193   switch (Machine) {
194   case ELF::EM_X86_64:
195     return ELF::R_X86_64_RELATIVE;
196   case ELF::EM_386:
197   case ELF::EM_IAMCU:
198     return ELF::R_386_RELATIVE;
199   case ELF::EM_MIPS:
200     break;
201   case ELF::EM_AARCH64:
202     return ELF::R_AARCH64_RELATIVE;
203   case ELF::EM_ARM:
204     return ELF::R_ARM_RELATIVE;
205   case ELF::EM_ARC_COMPACT:
206   case ELF::EM_ARC_COMPACT2:
207     return ELF::R_ARC_RELATIVE;
208   case ELF::EM_AVR:
209     break;
210   case ELF::EM_HEXAGON:
211     return ELF::R_HEX_RELATIVE;
212   case ELF::EM_LANAI:
213     break;
214   case ELF::EM_PPC:
215     break;
216   case ELF::EM_PPC64:
217     return ELF::R_PPC64_RELATIVE;
218   case ELF::EM_RISCV:
219     return ELF::R_RISCV_RELATIVE;
220   case ELF::EM_S390:
221     return ELF::R_390_RELATIVE;
222   case ELF::EM_SPARC:
223   case ELF::EM_SPARC32PLUS:
224   case ELF::EM_SPARCV9:
225     return ELF::R_SPARC_RELATIVE;
226   case ELF::EM_CSKY:
227     return ELF::R_CKCORE_RELATIVE;
228   case ELF::EM_VE:
229     return ELF::R_VE_RELATIVE;
230   case ELF::EM_AMDGPU:
231     break;
232   case ELF::EM_BPF:
233     break;
234   case ELF::EM_LOONGARCH:
235     return ELF::R_LARCH_RELATIVE;
236   default:
237     break;
238   }
239   return 0;
240 }
241 
242 StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) {
243   switch (Machine) {
244   case ELF::EM_ARM:
245     switch (Type) {
246       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX);
247       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
248       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
249       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
250       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
251     }
252     break;
253   case ELF::EM_HEXAGON:
254     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED); }
255     break;
256   case ELF::EM_X86_64:
257     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
258     break;
259   case ELF::EM_MIPS:
260   case ELF::EM_MIPS_RS3_LE:
261     switch (Type) {
262       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
263       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
264       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF);
265       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
266     }
267     break;
268   case ELF::EM_MSP430:
269     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_MSP430_ATTRIBUTES); }
270     break;
271   case ELF::EM_RISCV:
272     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_RISCV_ATTRIBUTES); }
273     break;
274   case ELF::EM_AARCH64:
275     switch (Type) {
276       STRINGIFY_ENUM_CASE(ELF, SHT_AARCH64_AUTH_RELR);
277       STRINGIFY_ENUM_CASE(ELF, SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC);
278       STRINGIFY_ENUM_CASE(ELF, SHT_AARCH64_MEMTAG_GLOBALS_STATIC);
279     }
280   default:
281     break;
282   }
283 
284   switch (Type) {
285     STRINGIFY_ENUM_CASE(ELF, SHT_NULL);
286     STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS);
287     STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB);
288     STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB);
289     STRINGIFY_ENUM_CASE(ELF, SHT_RELA);
290     STRINGIFY_ENUM_CASE(ELF, SHT_HASH);
291     STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC);
292     STRINGIFY_ENUM_CASE(ELF, SHT_NOTE);
293     STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS);
294     STRINGIFY_ENUM_CASE(ELF, SHT_REL);
295     STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB);
296     STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM);
297     STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY);
298     STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY);
299     STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY);
300     STRINGIFY_ENUM_CASE(ELF, SHT_GROUP);
301     STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX);
302     STRINGIFY_ENUM_CASE(ELF, SHT_RELR);
303     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL);
304     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA);
305     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR);
306     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB);
307     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS);
308     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE);
309     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG);
310     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_DEPENDENT_LIBRARIES);
311     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_SYMPART);
312     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_EHDR);
313     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_PHDR);
314     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_BB_ADDR_MAP_V0);
315     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_BB_ADDR_MAP);
316     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_OFFLOADING);
317     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LTO);
318     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES);
319     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH);
320     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef);
321     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed);
322     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym);
323   default:
324     return "Unknown";
325   }
326 }
327 
328 template <class ELFT>
329 std::vector<typename ELFT::Rel>
330 ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const {
331   // This function decodes the contents of an SHT_RELR packed relocation
332   // section.
333   //
334   // Proposal for adding SHT_RELR sections to generic-abi is here:
335   //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
336   //
337   // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
338   // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
339   //
340   // i.e. start with an address, followed by any number of bitmaps. The address
341   // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
342   // relocations each, at subsequent offsets following the last address entry.
343   //
344   // The bitmap entries must have 1 in the least significant bit. The assumption
345   // here is that an address cannot have 1 in lsb. Odd addresses are not
346   // supported.
347   //
348   // Excluding the least significant bit in the bitmap, each non-zero bit in
349   // the bitmap represents a relocation to be applied to a corresponding machine
350   // word that follows the base address word. The second least significant bit
351   // represents the machine word immediately following the initial address, and
352   // each bit that follows represents the next word, in linear order. As such,
353   // a single bitmap can encode up to 31 relocations in a 32-bit object, and
354   // 63 relocations in a 64-bit object.
355   //
356   // This encoding has a couple of interesting properties:
357   // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
358   //    even means address, odd means bitmap.
359   // 2. Just a simple list of addresses is a valid encoding.
360 
361   Elf_Rel Rel;
362   Rel.r_info = 0;
363   Rel.setType(getRelativeRelocationType(), false);
364   std::vector<Elf_Rel> Relocs;
365 
366   // Word type: uint32_t for Elf32, and uint64_t for Elf64.
367   using Addr = typename ELFT::uint;
368 
369   Addr Base = 0;
370   for (Elf_Relr R : relrs) {
371     typename ELFT::uint Entry = R;
372     if ((Entry & 1) == 0) {
373       // Even entry: encodes the offset for next relocation.
374       Rel.r_offset = Entry;
375       Relocs.push_back(Rel);
376       // Set base offset for subsequent bitmap entries.
377       Base = Entry + sizeof(Addr);
378     } else {
379       // Odd entry: encodes bitmap for relocations starting at base.
380       for (Addr Offset = Base; (Entry >>= 1) != 0; Offset += sizeof(Addr))
381         if ((Entry & 1) != 0) {
382           Rel.r_offset = Offset;
383           Relocs.push_back(Rel);
384         }
385       Base += (CHAR_BIT * sizeof(Entry) - 1) * sizeof(Addr);
386     }
387   }
388 
389   return Relocs;
390 }
391 
392 template <class ELFT>
393 Expected<std::vector<typename ELFT::Rela>>
394 ELFFile<ELFT>::android_relas(const Elf_Shdr &Sec) const {
395   // This function reads relocations in Android's packed relocation format,
396   // which is based on SLEB128 and delta encoding.
397   Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
398   if (!ContentsOrErr)
399     return ContentsOrErr.takeError();
400   ArrayRef<uint8_t> Content = *ContentsOrErr;
401   if (Content.size() < 4 || Content[0] != 'A' || Content[1] != 'P' ||
402       Content[2] != 'S' || Content[3] != '2')
403     return createError("invalid packed relocation header");
404   DataExtractor Data(Content, isLE(), ELFT::Is64Bits ? 8 : 4);
405   DataExtractor::Cursor Cur(/*Offset=*/4);
406 
407   uint64_t NumRelocs = Data.getSLEB128(Cur);
408   uint64_t Offset = Data.getSLEB128(Cur);
409   uint64_t Addend = 0;
410 
411   if (!Cur)
412     return std::move(Cur.takeError());
413 
414   std::vector<Elf_Rela> Relocs;
415   Relocs.reserve(NumRelocs);
416   while (NumRelocs) {
417     uint64_t NumRelocsInGroup = Data.getSLEB128(Cur);
418     if (!Cur)
419       return std::move(Cur.takeError());
420     if (NumRelocsInGroup > NumRelocs)
421       return createError("relocation group unexpectedly large");
422     NumRelocs -= NumRelocsInGroup;
423 
424     uint64_t GroupFlags = Data.getSLEB128(Cur);
425     bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG;
426     bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG;
427     bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG;
428     bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG;
429 
430     uint64_t GroupOffsetDelta;
431     if (GroupedByOffsetDelta)
432       GroupOffsetDelta = Data.getSLEB128(Cur);
433 
434     uint64_t GroupRInfo;
435     if (GroupedByInfo)
436       GroupRInfo = Data.getSLEB128(Cur);
437 
438     if (GroupedByAddend && GroupHasAddend)
439       Addend += Data.getSLEB128(Cur);
440 
441     if (!GroupHasAddend)
442       Addend = 0;
443 
444     for (uint64_t I = 0; Cur && I != NumRelocsInGroup; ++I) {
445       Elf_Rela R;
446       Offset += GroupedByOffsetDelta ? GroupOffsetDelta : Data.getSLEB128(Cur);
447       R.r_offset = Offset;
448       R.r_info = GroupedByInfo ? GroupRInfo : Data.getSLEB128(Cur);
449       if (GroupHasAddend && !GroupedByAddend)
450         Addend += Data.getSLEB128(Cur);
451       R.r_addend = Addend;
452       Relocs.push_back(R);
453     }
454     if (!Cur)
455       return std::move(Cur.takeError());
456   }
457 
458   return Relocs;
459 }
460 
461 template <class ELFT>
462 std::string ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch,
463                                                  uint64_t Type) const {
464 #define DYNAMIC_STRINGIFY_ENUM(tag, value)                                     \
465   case value:                                                                  \
466     return #tag;
467 
468 #define DYNAMIC_TAG(n, v)
469   switch (Arch) {
470   case ELF::EM_AARCH64:
471     switch (Type) {
472 #define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
473 #include "llvm/BinaryFormat/DynamicTags.def"
474 #undef AARCH64_DYNAMIC_TAG
475     }
476     break;
477 
478   case ELF::EM_HEXAGON:
479     switch (Type) {
480 #define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
481 #include "llvm/BinaryFormat/DynamicTags.def"
482 #undef HEXAGON_DYNAMIC_TAG
483     }
484     break;
485 
486   case ELF::EM_MIPS:
487     switch (Type) {
488 #define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
489 #include "llvm/BinaryFormat/DynamicTags.def"
490 #undef MIPS_DYNAMIC_TAG
491     }
492     break;
493 
494   case ELF::EM_PPC:
495     switch (Type) {
496 #define PPC_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
497 #include "llvm/BinaryFormat/DynamicTags.def"
498 #undef PPC_DYNAMIC_TAG
499     }
500     break;
501 
502   case ELF::EM_PPC64:
503     switch (Type) {
504 #define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
505 #include "llvm/BinaryFormat/DynamicTags.def"
506 #undef PPC64_DYNAMIC_TAG
507     }
508     break;
509 
510   case ELF::EM_RISCV:
511     switch (Type) {
512 #define RISCV_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
513 #include "llvm/BinaryFormat/DynamicTags.def"
514 #undef RISCV_DYNAMIC_TAG
515     }
516     break;
517   }
518 #undef DYNAMIC_TAG
519   switch (Type) {
520 // Now handle all dynamic tags except the architecture specific ones
521 #define AARCH64_DYNAMIC_TAG(name, value)
522 #define MIPS_DYNAMIC_TAG(name, value)
523 #define HEXAGON_DYNAMIC_TAG(name, value)
524 #define PPC_DYNAMIC_TAG(name, value)
525 #define PPC64_DYNAMIC_TAG(name, value)
526 #define RISCV_DYNAMIC_TAG(name, value)
527 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
528 #define DYNAMIC_TAG_MARKER(name, value)
529 #define DYNAMIC_TAG(name, value) case value: return #name;
530 #include "llvm/BinaryFormat/DynamicTags.def"
531 #undef DYNAMIC_TAG
532 #undef AARCH64_DYNAMIC_TAG
533 #undef MIPS_DYNAMIC_TAG
534 #undef HEXAGON_DYNAMIC_TAG
535 #undef PPC_DYNAMIC_TAG
536 #undef PPC64_DYNAMIC_TAG
537 #undef RISCV_DYNAMIC_TAG
538 #undef DYNAMIC_TAG_MARKER
539 #undef DYNAMIC_STRINGIFY_ENUM
540   default:
541     return "<unknown:>0x" + utohexstr(Type, true);
542   }
543 }
544 
545 template <class ELFT>
546 std::string ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const {
547   return getDynamicTagAsString(getHeader().e_machine, Type);
548 }
549 
550 template <class ELFT>
551 Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const {
552   ArrayRef<Elf_Dyn> Dyn;
553 
554   auto ProgramHeadersOrError = program_headers();
555   if (!ProgramHeadersOrError)
556     return ProgramHeadersOrError.takeError();
557 
558   for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) {
559     if (Phdr.p_type == ELF::PT_DYNAMIC) {
560       Dyn = ArrayRef(reinterpret_cast<const Elf_Dyn *>(base() + Phdr.p_offset),
561                      Phdr.p_filesz / sizeof(Elf_Dyn));
562       break;
563     }
564   }
565 
566   // If we can't find the dynamic section in the program headers, we just fall
567   // back on the sections.
568   if (Dyn.empty()) {
569     auto SectionsOrError = sections();
570     if (!SectionsOrError)
571       return SectionsOrError.takeError();
572 
573     for (const Elf_Shdr &Sec : *SectionsOrError) {
574       if (Sec.sh_type == ELF::SHT_DYNAMIC) {
575         Expected<ArrayRef<Elf_Dyn>> DynOrError =
576             getSectionContentsAsArray<Elf_Dyn>(Sec);
577         if (!DynOrError)
578           return DynOrError.takeError();
579         Dyn = *DynOrError;
580         break;
581       }
582     }
583 
584     if (!Dyn.data())
585       return ArrayRef<Elf_Dyn>();
586   }
587 
588   if (Dyn.empty())
589     return createError("invalid empty dynamic section");
590 
591   if (Dyn.back().d_tag != ELF::DT_NULL)
592     return createError("dynamic sections must be DT_NULL terminated");
593 
594   return Dyn;
595 }
596 
597 template <class ELFT>
598 Expected<const uint8_t *>
599 ELFFile<ELFT>::toMappedAddr(uint64_t VAddr, WarningHandler WarnHandler) const {
600   auto ProgramHeadersOrError = program_headers();
601   if (!ProgramHeadersOrError)
602     return ProgramHeadersOrError.takeError();
603 
604   llvm::SmallVector<Elf_Phdr *, 4> LoadSegments;
605 
606   for (const Elf_Phdr &Phdr : *ProgramHeadersOrError)
607     if (Phdr.p_type == ELF::PT_LOAD)
608       LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr));
609 
610   auto SortPred = [](const Elf_Phdr_Impl<ELFT> *A,
611                      const Elf_Phdr_Impl<ELFT> *B) {
612     return A->p_vaddr < B->p_vaddr;
613   };
614   if (!llvm::is_sorted(LoadSegments, SortPred)) {
615     if (Error E =
616             WarnHandler("loadable segments are unsorted by virtual address"))
617       return std::move(E);
618     llvm::stable_sort(LoadSegments, SortPred);
619   }
620 
621   const Elf_Phdr *const *I = llvm::upper_bound(
622       LoadSegments, VAddr, [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
623         return VAddr < Phdr->p_vaddr;
624       });
625 
626   if (I == LoadSegments.begin())
627     return createError("virtual address is not in any segment: 0x" +
628                        Twine::utohexstr(VAddr));
629   --I;
630   const Elf_Phdr &Phdr = **I;
631   uint64_t Delta = VAddr - Phdr.p_vaddr;
632   if (Delta >= Phdr.p_filesz)
633     return createError("virtual address is not in any segment: 0x" +
634                        Twine::utohexstr(VAddr));
635 
636   uint64_t Offset = Phdr.p_offset + Delta;
637   if (Offset >= getBufSize())
638     return createError("can't map virtual address 0x" +
639                        Twine::utohexstr(VAddr) + " to the segment with index " +
640                        Twine(&Phdr - (*ProgramHeadersOrError).data() + 1) +
641                        ": the segment ends at 0x" +
642                        Twine::utohexstr(Phdr.p_offset + Phdr.p_filesz) +
643                        ", which is greater than the file size (0x" +
644                        Twine::utohexstr(getBufSize()) + ")");
645 
646   return base() + Offset;
647 }
648 
649 // Helper to extract and decode the next ULEB128 value as unsigned int.
650 // Returns zero and sets ULEBSizeErr if the ULEB128 value exceeds the unsigned
651 // int limit.
652 // Also returns zero if ULEBSizeErr is already in an error state.
653 // ULEBSizeErr is an out variable if an error occurs.
654 template <typename IntTy, std::enable_if_t<std::is_unsigned_v<IntTy>, int> = 0>
655 static IntTy readULEB128As(DataExtractor &Data, DataExtractor::Cursor &Cur,
656                            Error &ULEBSizeErr) {
657   // Bail out and do not extract data if ULEBSizeErr is already set.
658   if (ULEBSizeErr)
659     return 0;
660   uint64_t Offset = Cur.tell();
661   uint64_t Value = Data.getULEB128(Cur);
662   if (Value > std::numeric_limits<IntTy>::max()) {
663     ULEBSizeErr = createError("ULEB128 value at offset 0x" +
664                               Twine::utohexstr(Offset) + " exceeds UINT" +
665                               Twine(std::numeric_limits<IntTy>::digits) +
666                               "_MAX (0x" + Twine::utohexstr(Value) + ")");
667     return 0;
668   }
669   return static_cast<IntTy>(Value);
670 }
671 
672 template <typename ELFT>
673 static Expected<std::vector<BBAddrMap>>
674 decodeBBAddrMapImpl(const ELFFile<ELFT> &EF,
675                     const typename ELFFile<ELFT>::Elf_Shdr &Sec,
676                     const typename ELFFile<ELFT>::Elf_Shdr *RelaSec,
677                     std::vector<PGOAnalysisMap> *PGOAnalyses) {
678   bool IsRelocatable = EF.getHeader().e_type == ELF::ET_REL;
679 
680   // This DenseMap maps the offset of each function (the location of the
681   // reference to the function in the SHT_LLVM_BB_ADDR_MAP section) to the
682   // addend (the location of the function in the text section).
683   llvm::DenseMap<uint64_t, uint64_t> FunctionOffsetTranslations;
684   if (IsRelocatable && RelaSec) {
685     assert(RelaSec &&
686            "Can't read a SHT_LLVM_BB_ADDR_MAP section in a relocatable "
687            "object file without providing a relocation section.");
688     Expected<typename ELFFile<ELFT>::Elf_Rela_Range> Relas = EF.relas(*RelaSec);
689     if (!Relas)
690       return createError("unable to read relocations for section " +
691                          describe(EF, Sec) + ": " +
692                          toString(Relas.takeError()));
693     for (typename ELFFile<ELFT>::Elf_Rela Rela : *Relas)
694       FunctionOffsetTranslations[Rela.r_offset] = Rela.r_addend;
695   }
696   Expected<ArrayRef<uint8_t>> ContentsOrErr = EF.getSectionContents(Sec);
697   if (!ContentsOrErr)
698     return ContentsOrErr.takeError();
699   ArrayRef<uint8_t> Content = *ContentsOrErr;
700   DataExtractor Data(Content, EF.isLE(), ELFT::Is64Bits ? 8 : 4);
701   std::vector<BBAddrMap> FunctionEntries;
702 
703   DataExtractor::Cursor Cur(0);
704   Error ULEBSizeErr = Error::success();
705   Error MetadataDecodeErr = Error::success();
706 
707   uint8_t Version = 0;
708   uint8_t Feature = 0;
709   PGOAnalysisMap::Features FeatEnable{};
710   while (!ULEBSizeErr && !MetadataDecodeErr && Cur &&
711          Cur.tell() < Content.size()) {
712     if (Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP) {
713       Version = Data.getU8(Cur);
714       if (!Cur)
715         break;
716       if (Version > 2)
717         return createError("unsupported SHT_LLVM_BB_ADDR_MAP version: " +
718                            Twine(static_cast<int>(Version)));
719       Feature = Data.getU8(Cur); // Feature byte
720       if (!Cur)
721         break;
722       auto FeatEnableOrErr = PGOAnalysisMap::Features::decode(Feature);
723       if (!FeatEnableOrErr)
724         return FeatEnableOrErr.takeError();
725       FeatEnable =
726           FeatEnableOrErr ? *FeatEnableOrErr : PGOAnalysisMap::Features{};
727       if (Feature != 0 && Version < 2 && Cur)
728         return createError(
729             "version should be >= 2 for SHT_LLVM_BB_ADDR_MAP when "
730             "PGO features are enabled: version = " +
731             Twine(static_cast<int>(Version)) +
732             " feature = " + Twine(static_cast<int>(Feature)));
733     }
734     uint64_t SectionOffset = Cur.tell();
735     auto Address =
736         static_cast<typename ELFFile<ELFT>::uintX_t>(Data.getAddress(Cur));
737     if (!Cur)
738       return Cur.takeError();
739     if (IsRelocatable) {
740       assert(Address == 0);
741       auto FOTIterator = FunctionOffsetTranslations.find(SectionOffset);
742       if (FOTIterator == FunctionOffsetTranslations.end()) {
743         return createError("failed to get relocation data for offset: " +
744                            Twine::utohexstr(SectionOffset) + " in section " +
745                            describe(EF, Sec));
746       }
747       Address = FOTIterator->second;
748     }
749     uint32_t NumBlocks = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
750 
751     std::vector<BBAddrMap::BBEntry> BBEntries;
752     uint32_t PrevBBEndOffset = 0;
753     for (uint32_t BlockIndex = 0;
754          !MetadataDecodeErr && !ULEBSizeErr && Cur && (BlockIndex < NumBlocks);
755          ++BlockIndex) {
756       uint32_t ID = Version >= 2
757                         ? readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr)
758                         : BlockIndex;
759       uint32_t Offset = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
760       uint32_t Size = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
761       uint32_t MD = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
762       if (Version >= 1) {
763         // Offset is calculated relative to the end of the previous BB.
764         Offset += PrevBBEndOffset;
765         PrevBBEndOffset = Offset + Size;
766       }
767       Expected<BBAddrMap::BBEntry::Metadata> MetadataOrErr =
768           BBAddrMap::BBEntry::Metadata::decode(MD);
769       if (!MetadataOrErr) {
770         MetadataDecodeErr = MetadataOrErr.takeError();
771         break;
772       }
773       BBEntries.push_back({ID, Offset, Size, *MetadataOrErr});
774     }
775     FunctionEntries.emplace_back(Address, std::move(BBEntries));
776 
777     if (PGOAnalyses || FeatEnable.anyEnabled()) {
778       // Function entry count
779       uint64_t FuncEntryCount =
780           FeatEnable.FuncEntryCount
781               ? readULEB128As<uint64_t>(Data, Cur, ULEBSizeErr)
782               : 0;
783 
784       std::vector<PGOAnalysisMap::PGOBBEntry> PGOBBEntries;
785       for (uint32_t BlockIndex = 0;
786            (FeatEnable.BBFreq || FeatEnable.BrProb) && !MetadataDecodeErr &&
787            !ULEBSizeErr && Cur && (BlockIndex < NumBlocks);
788            ++BlockIndex) {
789         // Block frequency
790         uint64_t BBF = FeatEnable.BBFreq
791                            ? readULEB128As<uint64_t>(Data, Cur, ULEBSizeErr)
792                            : 0;
793 
794         // Branch probability
795         llvm::SmallVector<PGOAnalysisMap::PGOBBEntry::SuccessorEntry, 2>
796             Successors;
797         if (FeatEnable.BrProb) {
798           auto SuccCount = readULEB128As<uint64_t>(Data, Cur, ULEBSizeErr);
799           for (uint64_t I = 0; I < SuccCount; ++I) {
800             uint32_t BBID = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
801             uint32_t BrProb = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
802             if (PGOAnalyses)
803               Successors.push_back({BBID, BranchProbability::getRaw(BrProb)});
804           }
805         }
806 
807         if (PGOAnalyses)
808           PGOBBEntries.push_back({BlockFrequency(BBF), std::move(Successors)});
809       }
810 
811       if (PGOAnalyses)
812         PGOAnalyses->push_back(
813             {FuncEntryCount, std::move(PGOBBEntries), FeatEnable});
814     }
815   }
816   // Either Cur is in the error state, or we have an error in ULEBSizeErr or
817   // MetadataDecodeErr (but not both), but we join all errors here to be safe.
818   if (!Cur || ULEBSizeErr || MetadataDecodeErr)
819     return joinErrors(joinErrors(Cur.takeError(), std::move(ULEBSizeErr)),
820                       std::move(MetadataDecodeErr));
821   return FunctionEntries;
822 }
823 
824 template <class ELFT>
825 Expected<std::vector<BBAddrMap>>
826 ELFFile<ELFT>::decodeBBAddrMap(const Elf_Shdr &Sec, const Elf_Shdr *RelaSec,
827                                std::vector<PGOAnalysisMap> *PGOAnalyses) const {
828   size_t OriginalPGOSize = PGOAnalyses ? PGOAnalyses->size() : 0;
829   auto AddrMapsOrErr = decodeBBAddrMapImpl(*this, Sec, RelaSec, PGOAnalyses);
830   // remove new analyses when an error occurs
831   if (!AddrMapsOrErr && PGOAnalyses)
832     PGOAnalyses->resize(OriginalPGOSize);
833   return std::move(AddrMapsOrErr);
834 }
835 
836 template <class ELFT>
837 Expected<
838     MapVector<const typename ELFT::Shdr *, const typename ELFT::Shdr *>>
839 ELFFile<ELFT>::getSectionAndRelocations(
840     std::function<Expected<bool>(const Elf_Shdr &)> IsMatch) const {
841   MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap;
842   Error Errors = Error::success();
843   for (const Elf_Shdr &Sec : cantFail(this->sections())) {
844     Expected<bool> DoesSectionMatch = IsMatch(Sec);
845     if (!DoesSectionMatch) {
846       Errors = joinErrors(std::move(Errors), DoesSectionMatch.takeError());
847       continue;
848     }
849     if (*DoesSectionMatch) {
850       if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
851               .second)
852         continue;
853     }
854 
855     if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
856       continue;
857 
858     Expected<const Elf_Shdr *> RelSecOrErr = this->getSection(Sec.sh_info);
859     if (!RelSecOrErr) {
860       Errors = joinErrors(std::move(Errors),
861                           createError(describe(*this, Sec) +
862                                       ": failed to get a relocated section: " +
863                                       toString(RelSecOrErr.takeError())));
864       continue;
865     }
866     const Elf_Shdr *ContentsSec = *RelSecOrErr;
867     Expected<bool> DoesRelTargetMatch = IsMatch(*ContentsSec);
868     if (!DoesRelTargetMatch) {
869       Errors = joinErrors(std::move(Errors), DoesRelTargetMatch.takeError());
870       continue;
871     }
872     if (*DoesRelTargetMatch)
873       SecToRelocMap[ContentsSec] = &Sec;
874   }
875   if(Errors)
876     return std::move(Errors);
877   return SecToRelocMap;
878 }
879 
880 template class llvm::object::ELFFile<ELF32LE>;
881 template class llvm::object::ELFFile<ELF32BE>;
882 template class llvm::object::ELFFile<ELF64LE>;
883 template class llvm::object::ELFFile<ELF64BE>;
884