1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the COFFObjectFile class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/StringSwitch.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/BinaryFormat/COFF.h" 18 #include "llvm/Object/Binary.h" 19 #include "llvm/Object/COFF.h" 20 #include "llvm/Object/Error.h" 21 #include "llvm/Object/ObjectFile.h" 22 #include "llvm/Support/BinaryStreamReader.h" 23 #include "llvm/Support/Endian.h" 24 #include "llvm/Support/Error.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/MemoryBufferRef.h" 28 #include "llvm/TargetParser/Triple.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cinttypes> 32 #include <cstddef> 33 #include <cstring> 34 #include <limits> 35 #include <memory> 36 #include <system_error> 37 38 using namespace llvm; 39 using namespace object; 40 41 using support::ulittle16_t; 42 using support::ulittle32_t; 43 using support::ulittle64_t; 44 using support::little16_t; 45 46 // Returns false if size is greater than the buffer size. And sets ec. 47 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 48 if (M.getBufferSize() < Size) { 49 EC = object_error::unexpected_eof; 50 return false; 51 } 52 return true; 53 } 54 55 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 56 // Returns unexpected_eof if error. 57 template <typename T> 58 static Error getObject(const T *&Obj, MemoryBufferRef M, const void *Ptr, 59 const uint64_t Size = sizeof(T)) { 60 uintptr_t Addr = reinterpret_cast<uintptr_t>(Ptr); 61 if (Error E = Binary::checkOffset(M, Addr, Size)) 62 return E; 63 Obj = reinterpret_cast<const T *>(Addr); 64 return Error::success(); 65 } 66 67 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 68 // prefixed slashes. 69 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 70 assert(Str.size() <= 6 && "String too long, possible overflow."); 71 if (Str.size() > 6) 72 return true; 73 74 uint64_t Value = 0; 75 while (!Str.empty()) { 76 unsigned CharVal; 77 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 78 CharVal = Str[0] - 'A'; 79 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 80 CharVal = Str[0] - 'a' + 26; 81 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 82 CharVal = Str[0] - '0' + 52; 83 else if (Str[0] == '+') // 62 84 CharVal = 62; 85 else if (Str[0] == '/') // 63 86 CharVal = 63; 87 else 88 return true; 89 90 Value = (Value * 64) + CharVal; 91 Str = Str.substr(1); 92 } 93 94 if (Value > std::numeric_limits<uint32_t>::max()) 95 return true; 96 97 Result = static_cast<uint32_t>(Value); 98 return false; 99 } 100 101 template <typename coff_symbol_type> 102 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 103 const coff_symbol_type *Addr = 104 reinterpret_cast<const coff_symbol_type *>(Ref.p); 105 106 assert(!checkOffset(Data, reinterpret_cast<uintptr_t>(Addr), sizeof(*Addr))); 107 #ifndef NDEBUG 108 // Verify that the symbol points to a valid entry in the symbol table. 109 uintptr_t Offset = 110 reinterpret_cast<uintptr_t>(Addr) - reinterpret_cast<uintptr_t>(base()); 111 112 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 113 "Symbol did not point to the beginning of a symbol"); 114 #endif 115 116 return Addr; 117 } 118 119 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 120 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 121 122 #ifndef NDEBUG 123 // Verify that the section points to a valid entry in the section table. 124 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 125 report_fatal_error("Section was outside of section table."); 126 127 uintptr_t Offset = reinterpret_cast<uintptr_t>(Addr) - 128 reinterpret_cast<uintptr_t>(SectionTable); 129 assert(Offset % sizeof(coff_section) == 0 && 130 "Section did not point to the beginning of a section"); 131 #endif 132 133 return Addr; 134 } 135 136 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 137 auto End = reinterpret_cast<uintptr_t>(StringTable); 138 if (SymbolTable16) { 139 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 140 Symb += 1 + Symb->NumberOfAuxSymbols; 141 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 142 } else if (SymbolTable32) { 143 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 144 Symb += 1 + Symb->NumberOfAuxSymbols; 145 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 146 } else { 147 llvm_unreachable("no symbol table pointer!"); 148 } 149 } 150 151 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 152 return getSymbolName(getCOFFSymbol(Ref)); 153 } 154 155 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 156 return getCOFFSymbol(Ref).getValue(); 157 } 158 159 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const { 160 // MSVC/link.exe seems to align symbols to the next-power-of-2 161 // up to 32 bytes. 162 COFFSymbolRef Symb = getCOFFSymbol(Ref); 163 return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue())); 164 } 165 166 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 167 uint64_t Result = cantFail(getSymbolValue(Ref)); 168 COFFSymbolRef Symb = getCOFFSymbol(Ref); 169 int32_t SectionNumber = Symb.getSectionNumber(); 170 171 if (Symb.isAnyUndefined() || Symb.isCommon() || 172 COFF::isReservedSectionNumber(SectionNumber)) 173 return Result; 174 175 Expected<const coff_section *> Section = getSection(SectionNumber); 176 if (!Section) 177 return Section.takeError(); 178 Result += (*Section)->VirtualAddress; 179 180 // The section VirtualAddress does not include ImageBase, and we want to 181 // return virtual addresses. 182 Result += getImageBase(); 183 184 return Result; 185 } 186 187 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 188 COFFSymbolRef Symb = getCOFFSymbol(Ref); 189 int32_t SectionNumber = Symb.getSectionNumber(); 190 191 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 192 return SymbolRef::ST_Function; 193 if (Symb.isAnyUndefined()) 194 return SymbolRef::ST_Unknown; 195 if (Symb.isCommon()) 196 return SymbolRef::ST_Data; 197 if (Symb.isFileRecord()) 198 return SymbolRef::ST_File; 199 200 // TODO: perhaps we need a new symbol type ST_Section. 201 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 202 return SymbolRef::ST_Debug; 203 204 if (!COFF::isReservedSectionNumber(SectionNumber)) 205 return SymbolRef::ST_Data; 206 207 return SymbolRef::ST_Other; 208 } 209 210 Expected<uint32_t> COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 211 COFFSymbolRef Symb = getCOFFSymbol(Ref); 212 uint32_t Result = SymbolRef::SF_None; 213 214 if (Symb.isExternal() || Symb.isWeakExternal()) 215 Result |= SymbolRef::SF_Global; 216 217 if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) { 218 Result |= SymbolRef::SF_Weak; 219 if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS) 220 Result |= SymbolRef::SF_Undefined; 221 } 222 223 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 224 Result |= SymbolRef::SF_Absolute; 225 226 if (Symb.isFileRecord()) 227 Result |= SymbolRef::SF_FormatSpecific; 228 229 if (Symb.isSectionDefinition()) 230 Result |= SymbolRef::SF_FormatSpecific; 231 232 if (Symb.isCommon()) 233 Result |= SymbolRef::SF_Common; 234 235 if (Symb.isUndefined()) 236 Result |= SymbolRef::SF_Undefined; 237 238 return Result; 239 } 240 241 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 242 COFFSymbolRef Symb = getCOFFSymbol(Ref); 243 return Symb.getValue(); 244 } 245 246 Expected<section_iterator> 247 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 248 COFFSymbolRef Symb = getCOFFSymbol(Ref); 249 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 250 return section_end(); 251 Expected<const coff_section *> Sec = getSection(Symb.getSectionNumber()); 252 if (!Sec) 253 return Sec.takeError(); 254 DataRefImpl Ret; 255 Ret.p = reinterpret_cast<uintptr_t>(*Sec); 256 return section_iterator(SectionRef(Ret, this)); 257 } 258 259 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 260 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 261 return Symb.getSectionNumber(); 262 } 263 264 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 265 const coff_section *Sec = toSec(Ref); 266 Sec += 1; 267 Ref.p = reinterpret_cast<uintptr_t>(Sec); 268 } 269 270 Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const { 271 const coff_section *Sec = toSec(Ref); 272 return getSectionName(Sec); 273 } 274 275 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 276 const coff_section *Sec = toSec(Ref); 277 uint64_t Result = Sec->VirtualAddress; 278 279 // The section VirtualAddress does not include ImageBase, and we want to 280 // return virtual addresses. 281 Result += getImageBase(); 282 return Result; 283 } 284 285 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const { 286 return toSec(Sec) - SectionTable; 287 } 288 289 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 290 return getSectionSize(toSec(Ref)); 291 } 292 293 Expected<ArrayRef<uint8_t>> 294 COFFObjectFile::getSectionContents(DataRefImpl Ref) const { 295 const coff_section *Sec = toSec(Ref); 296 ArrayRef<uint8_t> Res; 297 if (Error E = getSectionContents(Sec, Res)) 298 return std::move(E); 299 return Res; 300 } 301 302 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 303 const coff_section *Sec = toSec(Ref); 304 return Sec->getAlignment(); 305 } 306 307 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { 308 return false; 309 } 310 311 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 312 const coff_section *Sec = toSec(Ref); 313 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 314 } 315 316 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 317 const coff_section *Sec = toSec(Ref); 318 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 319 } 320 321 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 322 const coff_section *Sec = toSec(Ref); 323 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 324 COFF::IMAGE_SCN_MEM_READ | 325 COFF::IMAGE_SCN_MEM_WRITE; 326 return (Sec->Characteristics & BssFlags) == BssFlags; 327 } 328 329 // The .debug sections are the only debug sections for COFF 330 // (\see MCObjectFileInfo.cpp). 331 bool COFFObjectFile::isDebugSection(DataRefImpl Ref) const { 332 Expected<StringRef> SectionNameOrErr = getSectionName(Ref); 333 if (!SectionNameOrErr) { 334 // TODO: Report the error message properly. 335 consumeError(SectionNameOrErr.takeError()); 336 return false; 337 } 338 StringRef SectionName = SectionNameOrErr.get(); 339 return SectionName.starts_with(".debug"); 340 } 341 342 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 343 uintptr_t Offset = 344 Sec.getRawDataRefImpl().p - reinterpret_cast<uintptr_t>(SectionTable); 345 assert((Offset % sizeof(coff_section)) == 0); 346 return (Offset / sizeof(coff_section)) + 1; 347 } 348 349 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 350 const coff_section *Sec = toSec(Ref); 351 // In COFF, a virtual section won't have any in-file 352 // content, so the file pointer to the content will be zero. 353 return Sec->PointerToRawData == 0; 354 } 355 356 static uint32_t getNumberOfRelocations(const coff_section *Sec, 357 MemoryBufferRef M, const uint8_t *base) { 358 // The field for the number of relocations in COFF section table is only 359 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 360 // NumberOfRelocations field, and the actual relocation count is stored in the 361 // VirtualAddress field in the first relocation entry. 362 if (Sec->hasExtendedRelocations()) { 363 const coff_relocation *FirstReloc; 364 if (Error E = getObject(FirstReloc, M, 365 reinterpret_cast<const coff_relocation *>( 366 base + Sec->PointerToRelocations))) { 367 consumeError(std::move(E)); 368 return 0; 369 } 370 // -1 to exclude this first relocation entry. 371 return FirstReloc->VirtualAddress - 1; 372 } 373 return Sec->NumberOfRelocations; 374 } 375 376 static const coff_relocation * 377 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 378 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 379 if (!NumRelocs) 380 return nullptr; 381 auto begin = reinterpret_cast<const coff_relocation *>( 382 Base + Sec->PointerToRelocations); 383 if (Sec->hasExtendedRelocations()) { 384 // Skip the first relocation entry repurposed to store the number of 385 // relocations. 386 begin++; 387 } 388 if (auto E = Binary::checkOffset(M, reinterpret_cast<uintptr_t>(begin), 389 sizeof(coff_relocation) * NumRelocs)) { 390 consumeError(std::move(E)); 391 return nullptr; 392 } 393 return begin; 394 } 395 396 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 397 const coff_section *Sec = toSec(Ref); 398 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 399 if (begin && Sec->VirtualAddress != 0) 400 report_fatal_error("Sections with relocations should have an address of 0"); 401 DataRefImpl Ret; 402 Ret.p = reinterpret_cast<uintptr_t>(begin); 403 return relocation_iterator(RelocationRef(Ret, this)); 404 } 405 406 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 407 const coff_section *Sec = toSec(Ref); 408 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 409 if (I) 410 I += getNumberOfRelocations(Sec, Data, base()); 411 DataRefImpl Ret; 412 Ret.p = reinterpret_cast<uintptr_t>(I); 413 return relocation_iterator(RelocationRef(Ret, this)); 414 } 415 416 // Initialize the pointer to the symbol table. 417 Error COFFObjectFile::initSymbolTablePtr() { 418 if (COFFHeader) 419 if (Error E = getObject( 420 SymbolTable16, Data, base() + getPointerToSymbolTable(), 421 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 422 return E; 423 424 if (COFFBigObjHeader) 425 if (Error E = getObject( 426 SymbolTable32, Data, base() + getPointerToSymbolTable(), 427 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 428 return E; 429 430 // Find string table. The first four byte of the string table contains the 431 // total size of the string table, including the size field itself. If the 432 // string table is empty, the value of the first four byte would be 4. 433 uint32_t StringTableOffset = getPointerToSymbolTable() + 434 getNumberOfSymbols() * getSymbolTableEntrySize(); 435 const uint8_t *StringTableAddr = base() + StringTableOffset; 436 const ulittle32_t *StringTableSizePtr; 437 if (Error E = getObject(StringTableSizePtr, Data, StringTableAddr)) 438 return E; 439 StringTableSize = *StringTableSizePtr; 440 if (Error E = getObject(StringTable, Data, StringTableAddr, StringTableSize)) 441 return E; 442 443 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 444 // tools like cvtres write a size of 0 for an empty table instead of 4. 445 if (StringTableSize < 4) 446 StringTableSize = 4; 447 448 // Check that the string table is null terminated if has any in it. 449 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 450 return createStringError(object_error::parse_failed, 451 "string table missing null terminator"); 452 return Error::success(); 453 } 454 455 uint64_t COFFObjectFile::getImageBase() const { 456 if (PE32Header) 457 return PE32Header->ImageBase; 458 else if (PE32PlusHeader) 459 return PE32PlusHeader->ImageBase; 460 // This actually comes up in practice. 461 return 0; 462 } 463 464 // Returns the file offset for the given VA. 465 Error COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 466 uint64_t ImageBase = getImageBase(); 467 uint64_t Rva = Addr - ImageBase; 468 assert(Rva <= UINT32_MAX); 469 return getRvaPtr((uint32_t)Rva, Res); 470 } 471 472 // Returns the file offset for the given RVA. 473 Error COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res, 474 const char *ErrorContext) const { 475 for (const SectionRef &S : sections()) { 476 const coff_section *Section = getCOFFSection(S); 477 uint32_t SectionStart = Section->VirtualAddress; 478 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 479 if (SectionStart <= Addr && Addr < SectionEnd) { 480 // A table/directory entry can be pointing to somewhere in a stripped 481 // section, in an object that went through `objcopy --only-keep-debug`. 482 // In this case we don't want to cause the parsing of the object file to 483 // fail, otherwise it will be impossible to use this object as debug info 484 // in LLDB. Return SectionStrippedError here so that 485 // COFFObjectFile::initialize can ignore the error. 486 // Somewhat common binaries may have RVAs pointing outside of the 487 // provided raw data. Instead of rejecting the binaries, just 488 // treat the section as stripped for these purposes. 489 if (Section->SizeOfRawData < Section->VirtualSize && 490 Addr >= SectionStart + Section->SizeOfRawData) { 491 return make_error<SectionStrippedError>(); 492 } 493 uint32_t Offset = Addr - SectionStart; 494 Res = reinterpret_cast<uintptr_t>(base()) + Section->PointerToRawData + 495 Offset; 496 return Error::success(); 497 } 498 } 499 if (ErrorContext) 500 return createStringError(object_error::parse_failed, 501 "RVA 0x%" PRIx32 " for %s not found", Addr, 502 ErrorContext); 503 return createStringError(object_error::parse_failed, 504 "RVA 0x%" PRIx32 " not found", Addr); 505 } 506 507 Error COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size, 508 ArrayRef<uint8_t> &Contents, 509 const char *ErrorContext) const { 510 for (const SectionRef &S : sections()) { 511 const coff_section *Section = getCOFFSection(S); 512 uint32_t SectionStart = Section->VirtualAddress; 513 // Check if this RVA is within the section bounds. Be careful about integer 514 // overflow. 515 uint32_t OffsetIntoSection = RVA - SectionStart; 516 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize && 517 Size <= Section->VirtualSize - OffsetIntoSection) { 518 uintptr_t Begin = reinterpret_cast<uintptr_t>(base()) + 519 Section->PointerToRawData + OffsetIntoSection; 520 Contents = 521 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size); 522 return Error::success(); 523 } 524 } 525 if (ErrorContext) 526 return createStringError(object_error::parse_failed, 527 "RVA 0x%" PRIx32 " for %s not found", RVA, 528 ErrorContext); 529 return createStringError(object_error::parse_failed, 530 "RVA 0x%" PRIx32 " not found", RVA); 531 } 532 533 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 534 // table entry. 535 Error COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 536 StringRef &Name) const { 537 uintptr_t IntPtr = 0; 538 if (Error E = getRvaPtr(Rva, IntPtr)) 539 return E; 540 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 541 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 542 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 543 return Error::success(); 544 } 545 546 Error COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir, 547 const codeview::DebugInfo *&PDBInfo, 548 StringRef &PDBFileName) const { 549 ArrayRef<uint8_t> InfoBytes; 550 if (Error E = 551 getRvaAndSizeAsBytes(DebugDir->AddressOfRawData, DebugDir->SizeOfData, 552 InfoBytes, "PDB info")) 553 return E; 554 if (InfoBytes.size() < sizeof(*PDBInfo) + 1) 555 return createStringError(object_error::parse_failed, "PDB info too small"); 556 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data()); 557 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo)); 558 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()), 559 InfoBytes.size()); 560 // Truncate the name at the first null byte. Ignore any padding. 561 PDBFileName = PDBFileName.split('\0').first; 562 return Error::success(); 563 } 564 565 Error COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo, 566 StringRef &PDBFileName) const { 567 for (const debug_directory &D : debug_directories()) 568 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW) 569 return getDebugPDBInfo(&D, PDBInfo, PDBFileName); 570 // If we get here, there is no PDB info to return. 571 PDBInfo = nullptr; 572 PDBFileName = StringRef(); 573 return Error::success(); 574 } 575 576 // Find the import table. 577 Error COFFObjectFile::initImportTablePtr() { 578 // First, we get the RVA of the import table. If the file lacks a pointer to 579 // the import table, do nothing. 580 const data_directory *DataEntry = getDataDirectory(COFF::IMPORT_TABLE); 581 if (!DataEntry) 582 return Error::success(); 583 584 // Do nothing if the pointer to import table is NULL. 585 if (DataEntry->RelativeVirtualAddress == 0) 586 return Error::success(); 587 588 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 589 590 // Find the section that contains the RVA. This is needed because the RVA is 591 // the import table's memory address which is different from its file offset. 592 uintptr_t IntPtr = 0; 593 if (Error E = getRvaPtr(ImportTableRva, IntPtr, "import table")) 594 return E; 595 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 596 return E; 597 ImportDirectory = reinterpret_cast< 598 const coff_import_directory_table_entry *>(IntPtr); 599 return Error::success(); 600 } 601 602 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 603 Error COFFObjectFile::initDelayImportTablePtr() { 604 const data_directory *DataEntry = 605 getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR); 606 if (!DataEntry) 607 return Error::success(); 608 if (DataEntry->RelativeVirtualAddress == 0) 609 return Error::success(); 610 611 uint32_t RVA = DataEntry->RelativeVirtualAddress; 612 NumberOfDelayImportDirectory = DataEntry->Size / 613 sizeof(delay_import_directory_table_entry) - 1; 614 615 uintptr_t IntPtr = 0; 616 if (Error E = getRvaPtr(RVA, IntPtr, "delay import table")) 617 return E; 618 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 619 return E; 620 621 DelayImportDirectory = reinterpret_cast< 622 const delay_import_directory_table_entry *>(IntPtr); 623 return Error::success(); 624 } 625 626 // Find the export table. 627 Error COFFObjectFile::initExportTablePtr() { 628 // First, we get the RVA of the export table. If the file lacks a pointer to 629 // the export table, do nothing. 630 const data_directory *DataEntry = getDataDirectory(COFF::EXPORT_TABLE); 631 if (!DataEntry) 632 return Error::success(); 633 634 // Do nothing if the pointer to export table is NULL. 635 if (DataEntry->RelativeVirtualAddress == 0) 636 return Error::success(); 637 638 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 639 uintptr_t IntPtr = 0; 640 if (Error E = getRvaPtr(ExportTableRva, IntPtr, "export table")) 641 return E; 642 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 643 return E; 644 645 ExportDirectory = 646 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 647 return Error::success(); 648 } 649 650 Error COFFObjectFile::initBaseRelocPtr() { 651 const data_directory *DataEntry = 652 getDataDirectory(COFF::BASE_RELOCATION_TABLE); 653 if (!DataEntry) 654 return Error::success(); 655 if (DataEntry->RelativeVirtualAddress == 0) 656 return Error::success(); 657 658 uintptr_t IntPtr = 0; 659 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, 660 "base reloc table")) 661 return E; 662 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 663 return E; 664 665 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 666 IntPtr); 667 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 668 IntPtr + DataEntry->Size); 669 // FIXME: Verify the section containing BaseRelocHeader has at least 670 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 671 return Error::success(); 672 } 673 674 Error COFFObjectFile::initDebugDirectoryPtr() { 675 // Get the RVA of the debug directory. Do nothing if it does not exist. 676 const data_directory *DataEntry = getDataDirectory(COFF::DEBUG_DIRECTORY); 677 if (!DataEntry) 678 return Error::success(); 679 680 // Do nothing if the RVA is NULL. 681 if (DataEntry->RelativeVirtualAddress == 0) 682 return Error::success(); 683 684 // Check that the size is a multiple of the entry size. 685 if (DataEntry->Size % sizeof(debug_directory) != 0) 686 return createStringError(object_error::parse_failed, 687 "debug directory has uneven size"); 688 689 uintptr_t IntPtr = 0; 690 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, 691 "debug directory")) 692 return E; 693 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 694 return E; 695 696 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr); 697 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>( 698 IntPtr + DataEntry->Size); 699 // FIXME: Verify the section containing DebugDirectoryBegin has at least 700 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 701 return Error::success(); 702 } 703 704 Error COFFObjectFile::initTLSDirectoryPtr() { 705 // Get the RVA of the TLS directory. Do nothing if it does not exist. 706 const data_directory *DataEntry = getDataDirectory(COFF::TLS_TABLE); 707 if (!DataEntry) 708 return Error::success(); 709 710 // Do nothing if the RVA is NULL. 711 if (DataEntry->RelativeVirtualAddress == 0) 712 return Error::success(); 713 714 uint64_t DirSize = 715 is64() ? sizeof(coff_tls_directory64) : sizeof(coff_tls_directory32); 716 717 // Check that the size is correct. 718 if (DataEntry->Size != DirSize) 719 return createStringError( 720 object_error::parse_failed, 721 "TLS Directory size (%u) is not the expected size (%" PRIu64 ").", 722 static_cast<uint32_t>(DataEntry->Size), DirSize); 723 724 uintptr_t IntPtr = 0; 725 if (Error E = 726 getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, "TLS directory")) 727 return E; 728 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 729 return E; 730 731 if (is64()) 732 TLSDirectory64 = reinterpret_cast<const coff_tls_directory64 *>(IntPtr); 733 else 734 TLSDirectory32 = reinterpret_cast<const coff_tls_directory32 *>(IntPtr); 735 736 return Error::success(); 737 } 738 739 Error COFFObjectFile::initLoadConfigPtr() { 740 // Get the RVA of the debug directory. Do nothing if it does not exist. 741 const data_directory *DataEntry = getDataDirectory(COFF::LOAD_CONFIG_TABLE); 742 if (!DataEntry) 743 return Error::success(); 744 745 // Do nothing if the RVA is NULL. 746 if (DataEntry->RelativeVirtualAddress == 0) 747 return Error::success(); 748 uintptr_t IntPtr = 0; 749 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, 750 "load config table")) 751 return E; 752 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 753 return E; 754 755 LoadConfig = (const void *)IntPtr; 756 757 if (is64()) { 758 auto Config = getLoadConfig64(); 759 if (Config->Size >= 760 offsetof(coff_load_configuration64, CHPEMetadataPointer) + 761 sizeof(Config->CHPEMetadataPointer) && 762 Config->CHPEMetadataPointer) { 763 uint64_t ChpeOff = Config->CHPEMetadataPointer; 764 if (Error E = 765 getRvaPtr(ChpeOff - getImageBase(), IntPtr, "CHPE metadata")) 766 return E; 767 if (Error E = checkOffset(Data, IntPtr, sizeof(CHPEMetadata))) 768 return E; 769 770 CHPEMetadata = reinterpret_cast<const chpe_metadata *>(IntPtr); 771 772 // Validate CHPE metadata 773 if (CHPEMetadata->CodeMapCount) { 774 if (Error E = getRvaPtr(CHPEMetadata->CodeMap, IntPtr, "CHPE code map")) 775 return E; 776 if (Error E = checkOffset(Data, IntPtr, 777 CHPEMetadata->CodeMapCount * 778 sizeof(chpe_range_entry))) 779 return E; 780 } 781 782 if (CHPEMetadata->CodeRangesToEntryPointsCount) { 783 if (Error E = getRvaPtr(CHPEMetadata->CodeRangesToEntryPoints, IntPtr, 784 "CHPE entry point ranges")) 785 return E; 786 if (Error E = checkOffset(Data, IntPtr, 787 CHPEMetadata->CodeRangesToEntryPointsCount * 788 sizeof(chpe_code_range_entry))) 789 return E; 790 } 791 792 if (CHPEMetadata->RedirectionMetadataCount) { 793 if (Error E = getRvaPtr(CHPEMetadata->RedirectionMetadata, IntPtr, 794 "CHPE redirection metadata")) 795 return E; 796 if (Error E = checkOffset(Data, IntPtr, 797 CHPEMetadata->RedirectionMetadataCount * 798 sizeof(chpe_redirection_entry))) 799 return E; 800 } 801 } 802 } 803 804 return Error::success(); 805 } 806 807 Expected<std::unique_ptr<COFFObjectFile>> 808 COFFObjectFile::create(MemoryBufferRef Object) { 809 std::unique_ptr<COFFObjectFile> Obj(new COFFObjectFile(std::move(Object))); 810 if (Error E = Obj->initialize()) 811 return std::move(E); 812 return std::move(Obj); 813 } 814 815 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object) 816 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 817 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 818 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 819 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 820 ImportDirectory(nullptr), DelayImportDirectory(nullptr), 821 NumberOfDelayImportDirectory(0), ExportDirectory(nullptr), 822 BaseRelocHeader(nullptr), BaseRelocEnd(nullptr), 823 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr), 824 TLSDirectory32(nullptr), TLSDirectory64(nullptr) {} 825 826 static Error ignoreStrippedErrors(Error E) { 827 if (E.isA<SectionStrippedError>()) { 828 consumeError(std::move(E)); 829 return Error::success(); 830 } 831 return E; 832 } 833 834 Error COFFObjectFile::initialize() { 835 // Check that we at least have enough room for a header. 836 std::error_code EC; 837 if (!checkSize(Data, EC, sizeof(coff_file_header))) 838 return errorCodeToError(EC); 839 840 // The current location in the file where we are looking at. 841 uint64_t CurPtr = 0; 842 843 // PE header is optional and is present only in executables. If it exists, 844 // it is placed right after COFF header. 845 bool HasPEHeader = false; 846 847 // Check if this is a PE/COFF file. 848 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 849 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 850 // PE signature to find 'normal' COFF header. 851 const auto *DH = reinterpret_cast<const dos_header *>(base()); 852 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 853 CurPtr = DH->AddressOfNewExeHeader; 854 // Check the PE magic bytes. ("PE\0\0") 855 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 856 return createStringError(object_error::parse_failed, 857 "incorrect PE magic"); 858 } 859 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 860 HasPEHeader = true; 861 } 862 } 863 864 if (Error E = getObject(COFFHeader, Data, base() + CurPtr)) 865 return E; 866 867 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 868 // import libraries share a common prefix but bigobj is more restrictive. 869 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 870 COFFHeader->NumberOfSections == uint16_t(0xffff) && 871 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 872 if (Error E = getObject(COFFBigObjHeader, Data, base() + CurPtr)) 873 return E; 874 875 // Verify that we are dealing with bigobj. 876 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 877 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 878 sizeof(COFF::BigObjMagic)) == 0) { 879 COFFHeader = nullptr; 880 CurPtr += sizeof(coff_bigobj_file_header); 881 } else { 882 // It's not a bigobj. 883 COFFBigObjHeader = nullptr; 884 } 885 } 886 if (COFFHeader) { 887 // The prior checkSize call may have failed. This isn't a hard error 888 // because we were just trying to sniff out bigobj. 889 EC = std::error_code(); 890 CurPtr += sizeof(coff_file_header); 891 892 if (COFFHeader->isImportLibrary()) 893 return errorCodeToError(EC); 894 } 895 896 if (HasPEHeader) { 897 const pe32_header *Header; 898 if (Error E = getObject(Header, Data, base() + CurPtr)) 899 return E; 900 901 const uint8_t *DataDirAddr; 902 uint64_t DataDirSize; 903 if (Header->Magic == COFF::PE32Header::PE32) { 904 PE32Header = Header; 905 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 906 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 907 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 908 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 909 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 910 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 911 } else { 912 // It's neither PE32 nor PE32+. 913 return createStringError(object_error::parse_failed, 914 "incorrect PE magic"); 915 } 916 if (Error E = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)) 917 return E; 918 } 919 920 if (COFFHeader) 921 CurPtr += COFFHeader->SizeOfOptionalHeader; 922 923 assert(COFFHeader || COFFBigObjHeader); 924 925 if (Error E = 926 getObject(SectionTable, Data, base() + CurPtr, 927 (uint64_t)getNumberOfSections() * sizeof(coff_section))) 928 return E; 929 930 // Initialize the pointer to the symbol table. 931 if (getPointerToSymbolTable() != 0) { 932 if (Error E = initSymbolTablePtr()) { 933 // Recover from errors reading the symbol table. 934 consumeError(std::move(E)); 935 SymbolTable16 = nullptr; 936 SymbolTable32 = nullptr; 937 StringTable = nullptr; 938 StringTableSize = 0; 939 } 940 } else { 941 // We had better not have any symbols if we don't have a symbol table. 942 if (getNumberOfSymbols() != 0) { 943 return createStringError(object_error::parse_failed, 944 "symbol table missing"); 945 } 946 } 947 948 // Initialize the pointer to the beginning of the import table. 949 if (Error E = ignoreStrippedErrors(initImportTablePtr())) 950 return E; 951 if (Error E = ignoreStrippedErrors(initDelayImportTablePtr())) 952 return E; 953 954 // Initialize the pointer to the export table. 955 if (Error E = ignoreStrippedErrors(initExportTablePtr())) 956 return E; 957 958 // Initialize the pointer to the base relocation table. 959 if (Error E = ignoreStrippedErrors(initBaseRelocPtr())) 960 return E; 961 962 // Initialize the pointer to the debug directory. 963 if (Error E = ignoreStrippedErrors(initDebugDirectoryPtr())) 964 return E; 965 966 // Initialize the pointer to the TLS directory. 967 if (Error E = ignoreStrippedErrors(initTLSDirectoryPtr())) 968 return E; 969 970 if (Error E = ignoreStrippedErrors(initLoadConfigPtr())) 971 return E; 972 973 return Error::success(); 974 } 975 976 basic_symbol_iterator COFFObjectFile::symbol_begin() const { 977 DataRefImpl Ret; 978 Ret.p = getSymbolTable(); 979 return basic_symbol_iterator(SymbolRef(Ret, this)); 980 } 981 982 basic_symbol_iterator COFFObjectFile::symbol_end() const { 983 // The symbol table ends where the string table begins. 984 DataRefImpl Ret; 985 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 986 return basic_symbol_iterator(SymbolRef(Ret, this)); 987 } 988 989 import_directory_iterator COFFObjectFile::import_directory_begin() const { 990 if (!ImportDirectory) 991 return import_directory_end(); 992 if (ImportDirectory->isNull()) 993 return import_directory_end(); 994 return import_directory_iterator( 995 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 996 } 997 998 import_directory_iterator COFFObjectFile::import_directory_end() const { 999 return import_directory_iterator( 1000 ImportDirectoryEntryRef(nullptr, -1, this)); 1001 } 1002 1003 delay_import_directory_iterator 1004 COFFObjectFile::delay_import_directory_begin() const { 1005 return delay_import_directory_iterator( 1006 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 1007 } 1008 1009 delay_import_directory_iterator 1010 COFFObjectFile::delay_import_directory_end() const { 1011 return delay_import_directory_iterator( 1012 DelayImportDirectoryEntryRef( 1013 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 1014 } 1015 1016 export_directory_iterator COFFObjectFile::export_directory_begin() const { 1017 return export_directory_iterator( 1018 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 1019 } 1020 1021 export_directory_iterator COFFObjectFile::export_directory_end() const { 1022 if (!ExportDirectory) 1023 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 1024 ExportDirectoryEntryRef Ref(ExportDirectory, 1025 ExportDirectory->AddressTableEntries, this); 1026 return export_directory_iterator(Ref); 1027 } 1028 1029 section_iterator COFFObjectFile::section_begin() const { 1030 DataRefImpl Ret; 1031 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 1032 return section_iterator(SectionRef(Ret, this)); 1033 } 1034 1035 section_iterator COFFObjectFile::section_end() const { 1036 DataRefImpl Ret; 1037 int NumSections = 1038 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 1039 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 1040 return section_iterator(SectionRef(Ret, this)); 1041 } 1042 1043 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 1044 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 1045 } 1046 1047 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 1048 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 1049 } 1050 1051 uint8_t COFFObjectFile::getBytesInAddress() const { 1052 return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4; 1053 } 1054 1055 StringRef COFFObjectFile::getFileFormatName() const { 1056 switch(getMachine()) { 1057 case COFF::IMAGE_FILE_MACHINE_I386: 1058 return "COFF-i386"; 1059 case COFF::IMAGE_FILE_MACHINE_AMD64: 1060 return "COFF-x86-64"; 1061 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1062 return "COFF-ARM"; 1063 case COFF::IMAGE_FILE_MACHINE_ARM64: 1064 return "COFF-ARM64"; 1065 case COFF::IMAGE_FILE_MACHINE_ARM64EC: 1066 return "COFF-ARM64EC"; 1067 case COFF::IMAGE_FILE_MACHINE_ARM64X: 1068 return "COFF-ARM64X"; 1069 default: 1070 return "COFF-<unknown arch>"; 1071 } 1072 } 1073 1074 Triple::ArchType COFFObjectFile::getArch() const { 1075 switch (getMachine()) { 1076 case COFF::IMAGE_FILE_MACHINE_I386: 1077 return Triple::x86; 1078 case COFF::IMAGE_FILE_MACHINE_AMD64: 1079 return Triple::x86_64; 1080 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1081 return Triple::thumb; 1082 case COFF::IMAGE_FILE_MACHINE_ARM64: 1083 case COFF::IMAGE_FILE_MACHINE_ARM64EC: 1084 case COFF::IMAGE_FILE_MACHINE_ARM64X: 1085 return Triple::aarch64; 1086 default: 1087 return Triple::UnknownArch; 1088 } 1089 } 1090 1091 Expected<uint64_t> COFFObjectFile::getStartAddress() const { 1092 if (PE32Header) 1093 return PE32Header->AddressOfEntryPoint; 1094 return 0; 1095 } 1096 1097 iterator_range<import_directory_iterator> 1098 COFFObjectFile::import_directories() const { 1099 return make_range(import_directory_begin(), import_directory_end()); 1100 } 1101 1102 iterator_range<delay_import_directory_iterator> 1103 COFFObjectFile::delay_import_directories() const { 1104 return make_range(delay_import_directory_begin(), 1105 delay_import_directory_end()); 1106 } 1107 1108 iterator_range<export_directory_iterator> 1109 COFFObjectFile::export_directories() const { 1110 return make_range(export_directory_begin(), export_directory_end()); 1111 } 1112 1113 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 1114 return make_range(base_reloc_begin(), base_reloc_end()); 1115 } 1116 1117 const data_directory *COFFObjectFile::getDataDirectory(uint32_t Index) const { 1118 if (!DataDirectory) 1119 return nullptr; 1120 assert(PE32Header || PE32PlusHeader); 1121 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 1122 : PE32PlusHeader->NumberOfRvaAndSize; 1123 if (Index >= NumEnt) 1124 return nullptr; 1125 return &DataDirectory[Index]; 1126 } 1127 1128 Expected<const coff_section *> COFFObjectFile::getSection(int32_t Index) const { 1129 // Perhaps getting the section of a reserved section index should be an error, 1130 // but callers rely on this to return null. 1131 if (COFF::isReservedSectionNumber(Index)) 1132 return (const coff_section *)nullptr; 1133 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 1134 // We already verified the section table data, so no need to check again. 1135 return SectionTable + (Index - 1); 1136 } 1137 return createStringError(object_error::parse_failed, 1138 "section index out of bounds"); 1139 } 1140 1141 Expected<StringRef> COFFObjectFile::getString(uint32_t Offset) const { 1142 if (StringTableSize <= 4) 1143 // Tried to get a string from an empty string table. 1144 return createStringError(object_error::parse_failed, "string table empty"); 1145 if (Offset >= StringTableSize) 1146 return errorCodeToError(object_error::unexpected_eof); 1147 return StringRef(StringTable + Offset); 1148 } 1149 1150 Expected<StringRef> COFFObjectFile::getSymbolName(COFFSymbolRef Symbol) const { 1151 return getSymbolName(Symbol.getGeneric()); 1152 } 1153 1154 Expected<StringRef> 1155 COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol) const { 1156 // Check for string table entry. First 4 bytes are 0. 1157 if (Symbol->Name.Offset.Zeroes == 0) 1158 return getString(Symbol->Name.Offset.Offset); 1159 1160 // Null terminated, let ::strlen figure out the length. 1161 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 1162 return StringRef(Symbol->Name.ShortName); 1163 1164 // Not null terminated, use all 8 bytes. 1165 return StringRef(Symbol->Name.ShortName, COFF::NameSize); 1166 } 1167 1168 ArrayRef<uint8_t> 1169 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 1170 const uint8_t *Aux = nullptr; 1171 1172 size_t SymbolSize = getSymbolTableEntrySize(); 1173 if (Symbol.getNumberOfAuxSymbols() > 0) { 1174 // AUX data comes immediately after the symbol in COFF 1175 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 1176 #ifndef NDEBUG 1177 // Verify that the Aux symbol points to a valid entry in the symbol table. 1178 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 1179 if (Offset < getPointerToSymbolTable() || 1180 Offset >= 1181 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 1182 report_fatal_error("Aux Symbol data was outside of symbol table."); 1183 1184 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 1185 "Aux Symbol data did not point to the beginning of a symbol"); 1186 #endif 1187 } 1188 return ArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 1189 } 1190 1191 uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const { 1192 uintptr_t Offset = 1193 reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable(); 1194 assert(Offset % getSymbolTableEntrySize() == 0 && 1195 "Symbol did not point to the beginning of a symbol"); 1196 size_t Index = Offset / getSymbolTableEntrySize(); 1197 assert(Index < getNumberOfSymbols()); 1198 return Index; 1199 } 1200 1201 Expected<StringRef> 1202 COFFObjectFile::getSectionName(const coff_section *Sec) const { 1203 StringRef Name = StringRef(Sec->Name, COFF::NameSize).split('\0').first; 1204 1205 // Check for string table entry. First byte is '/'. 1206 if (Name.starts_with("/")) { 1207 uint32_t Offset; 1208 if (Name.starts_with("//")) { 1209 if (decodeBase64StringEntry(Name.substr(2), Offset)) 1210 return createStringError(object_error::parse_failed, 1211 "invalid section name"); 1212 } else { 1213 if (Name.substr(1).getAsInteger(10, Offset)) 1214 return createStringError(object_error::parse_failed, 1215 "invalid section name"); 1216 } 1217 return getString(Offset); 1218 } 1219 1220 return Name; 1221 } 1222 1223 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 1224 // SizeOfRawData and VirtualSize change what they represent depending on 1225 // whether or not we have an executable image. 1226 // 1227 // For object files, SizeOfRawData contains the size of section's data; 1228 // VirtualSize should be zero but isn't due to buggy COFF writers. 1229 // 1230 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 1231 // actual section size is in VirtualSize. It is possible for VirtualSize to 1232 // be greater than SizeOfRawData; the contents past that point should be 1233 // considered to be zero. 1234 if (getDOSHeader()) 1235 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 1236 return Sec->SizeOfRawData; 1237 } 1238 1239 Error COFFObjectFile::getSectionContents(const coff_section *Sec, 1240 ArrayRef<uint8_t> &Res) const { 1241 // In COFF, a virtual section won't have any in-file 1242 // content, so the file pointer to the content will be zero. 1243 if (Sec->PointerToRawData == 0) 1244 return Error::success(); 1245 // The only thing that we need to verify is that the contents is contained 1246 // within the file bounds. We don't need to make sure it doesn't cover other 1247 // data, as there's nothing that says that is not allowed. 1248 uintptr_t ConStart = 1249 reinterpret_cast<uintptr_t>(base()) + Sec->PointerToRawData; 1250 uint32_t SectionSize = getSectionSize(Sec); 1251 if (Error E = checkOffset(Data, ConStart, SectionSize)) 1252 return E; 1253 Res = ArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 1254 return Error::success(); 1255 } 1256 1257 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 1258 return reinterpret_cast<const coff_relocation*>(Rel.p); 1259 } 1260 1261 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 1262 Rel.p = reinterpret_cast<uintptr_t>( 1263 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 1264 } 1265 1266 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 1267 const coff_relocation *R = toRel(Rel); 1268 return R->VirtualAddress; 1269 } 1270 1271 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1272 const coff_relocation *R = toRel(Rel); 1273 DataRefImpl Ref; 1274 if (R->SymbolTableIndex >= getNumberOfSymbols()) 1275 return symbol_end(); 1276 if (SymbolTable16) 1277 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1278 else if (SymbolTable32) 1279 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1280 else 1281 llvm_unreachable("no symbol table pointer!"); 1282 return symbol_iterator(SymbolRef(Ref, this)); 1283 } 1284 1285 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 1286 const coff_relocation* R = toRel(Rel); 1287 return R->Type; 1288 } 1289 1290 const coff_section * 1291 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1292 return toSec(Section.getRawDataRefImpl()); 1293 } 1294 1295 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1296 if (SymbolTable16) 1297 return toSymb<coff_symbol16>(Ref); 1298 if (SymbolTable32) 1299 return toSymb<coff_symbol32>(Ref); 1300 llvm_unreachable("no symbol table pointer!"); 1301 } 1302 1303 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1304 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1305 } 1306 1307 const coff_relocation * 1308 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1309 return toRel(Reloc.getRawDataRefImpl()); 1310 } 1311 1312 ArrayRef<coff_relocation> 1313 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1314 return {getFirstReloc(Sec, Data, base()), 1315 getNumberOfRelocations(Sec, Data, base())}; 1316 } 1317 1318 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1319 case COFF::reloc_type: \ 1320 return #reloc_type; 1321 1322 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const { 1323 switch (getMachine()) { 1324 case COFF::IMAGE_FILE_MACHINE_AMD64: 1325 switch (Type) { 1326 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1327 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1328 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1329 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1330 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1331 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1332 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1333 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1334 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1335 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1336 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1337 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1338 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1339 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1340 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1341 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1342 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1343 default: 1344 return "Unknown"; 1345 } 1346 break; 1347 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1348 switch (Type) { 1349 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1350 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1351 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1352 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1353 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1354 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1355 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1356 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1357 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32); 1358 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1359 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1360 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1361 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1362 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1363 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1364 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1365 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR); 1366 default: 1367 return "Unknown"; 1368 } 1369 break; 1370 case COFF::IMAGE_FILE_MACHINE_ARM64: 1371 case COFF::IMAGE_FILE_MACHINE_ARM64EC: 1372 case COFF::IMAGE_FILE_MACHINE_ARM64X: 1373 switch (Type) { 1374 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE); 1375 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32); 1376 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB); 1377 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26); 1378 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21); 1379 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21); 1380 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A); 1381 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L); 1382 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL); 1383 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A); 1384 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A); 1385 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L); 1386 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN); 1387 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION); 1388 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64); 1389 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19); 1390 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14); 1391 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32); 1392 default: 1393 return "Unknown"; 1394 } 1395 break; 1396 case COFF::IMAGE_FILE_MACHINE_I386: 1397 switch (Type) { 1398 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1399 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1400 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1401 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1402 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1403 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1404 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1405 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1406 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1407 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1408 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1409 default: 1410 return "Unknown"; 1411 } 1412 break; 1413 default: 1414 return "Unknown"; 1415 } 1416 } 1417 1418 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1419 1420 void COFFObjectFile::getRelocationTypeName( 1421 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1422 const coff_relocation *Reloc = toRel(Rel); 1423 StringRef Res = getRelocationTypeName(Reloc->Type); 1424 Result.append(Res.begin(), Res.end()); 1425 } 1426 1427 bool COFFObjectFile::isRelocatableObject() const { 1428 return !DataDirectory; 1429 } 1430 1431 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const { 1432 return StringSwitch<StringRef>(Name) 1433 .Case("eh_fram", "eh_frame") 1434 .Default(Name); 1435 } 1436 1437 bool ImportDirectoryEntryRef:: 1438 operator==(const ImportDirectoryEntryRef &Other) const { 1439 return ImportTable == Other.ImportTable && Index == Other.Index; 1440 } 1441 1442 void ImportDirectoryEntryRef::moveNext() { 1443 ++Index; 1444 if (ImportTable[Index].isNull()) { 1445 Index = -1; 1446 ImportTable = nullptr; 1447 } 1448 } 1449 1450 Error ImportDirectoryEntryRef::getImportTableEntry( 1451 const coff_import_directory_table_entry *&Result) const { 1452 return getObject(Result, OwningObject->Data, ImportTable + Index); 1453 } 1454 1455 static imported_symbol_iterator 1456 makeImportedSymbolIterator(const COFFObjectFile *Object, 1457 uintptr_t Ptr, int Index) { 1458 if (Object->getBytesInAddress() == 4) { 1459 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1460 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1461 } 1462 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1463 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1464 } 1465 1466 static imported_symbol_iterator 1467 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1468 uintptr_t IntPtr = 0; 1469 // FIXME: Handle errors. 1470 cantFail(Object->getRvaPtr(RVA, IntPtr)); 1471 return makeImportedSymbolIterator(Object, IntPtr, 0); 1472 } 1473 1474 static imported_symbol_iterator 1475 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1476 uintptr_t IntPtr = 0; 1477 // FIXME: Handle errors. 1478 cantFail(Object->getRvaPtr(RVA, IntPtr)); 1479 // Forward the pointer to the last entry which is null. 1480 int Index = 0; 1481 if (Object->getBytesInAddress() == 4) { 1482 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1483 while (*Entry++) 1484 ++Index; 1485 } else { 1486 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1487 while (*Entry++) 1488 ++Index; 1489 } 1490 return makeImportedSymbolIterator(Object, IntPtr, Index); 1491 } 1492 1493 imported_symbol_iterator 1494 ImportDirectoryEntryRef::imported_symbol_begin() const { 1495 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA, 1496 OwningObject); 1497 } 1498 1499 imported_symbol_iterator 1500 ImportDirectoryEntryRef::imported_symbol_end() const { 1501 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA, 1502 OwningObject); 1503 } 1504 1505 iterator_range<imported_symbol_iterator> 1506 ImportDirectoryEntryRef::imported_symbols() const { 1507 return make_range(imported_symbol_begin(), imported_symbol_end()); 1508 } 1509 1510 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const { 1511 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1512 OwningObject); 1513 } 1514 1515 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const { 1516 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1517 OwningObject); 1518 } 1519 1520 iterator_range<imported_symbol_iterator> 1521 ImportDirectoryEntryRef::lookup_table_symbols() const { 1522 return make_range(lookup_table_begin(), lookup_table_end()); 1523 } 1524 1525 Error ImportDirectoryEntryRef::getName(StringRef &Result) const { 1526 uintptr_t IntPtr = 0; 1527 if (Error E = OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr, 1528 "import directory name")) 1529 return E; 1530 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1531 return Error::success(); 1532 } 1533 1534 Error 1535 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1536 Result = ImportTable[Index].ImportLookupTableRVA; 1537 return Error::success(); 1538 } 1539 1540 Error ImportDirectoryEntryRef::getImportAddressTableRVA( 1541 uint32_t &Result) const { 1542 Result = ImportTable[Index].ImportAddressTableRVA; 1543 return Error::success(); 1544 } 1545 1546 bool DelayImportDirectoryEntryRef:: 1547 operator==(const DelayImportDirectoryEntryRef &Other) const { 1548 return Table == Other.Table && Index == Other.Index; 1549 } 1550 1551 void DelayImportDirectoryEntryRef::moveNext() { 1552 ++Index; 1553 } 1554 1555 imported_symbol_iterator 1556 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1557 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1558 OwningObject); 1559 } 1560 1561 imported_symbol_iterator 1562 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1563 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1564 OwningObject); 1565 } 1566 1567 iterator_range<imported_symbol_iterator> 1568 DelayImportDirectoryEntryRef::imported_symbols() const { 1569 return make_range(imported_symbol_begin(), imported_symbol_end()); 1570 } 1571 1572 Error DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1573 uintptr_t IntPtr = 0; 1574 if (Error E = OwningObject->getRvaPtr(Table[Index].Name, IntPtr, 1575 "delay import directory name")) 1576 return E; 1577 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1578 return Error::success(); 1579 } 1580 1581 Error DelayImportDirectoryEntryRef::getDelayImportTable( 1582 const delay_import_directory_table_entry *&Result) const { 1583 Result = &Table[Index]; 1584 return Error::success(); 1585 } 1586 1587 Error DelayImportDirectoryEntryRef::getImportAddress(int AddrIndex, 1588 uint64_t &Result) const { 1589 uint32_t RVA = Table[Index].DelayImportAddressTable + 1590 AddrIndex * (OwningObject->is64() ? 8 : 4); 1591 uintptr_t IntPtr = 0; 1592 if (Error E = OwningObject->getRvaPtr(RVA, IntPtr, "import address")) 1593 return E; 1594 if (OwningObject->is64()) 1595 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1596 else 1597 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1598 return Error::success(); 1599 } 1600 1601 bool ExportDirectoryEntryRef:: 1602 operator==(const ExportDirectoryEntryRef &Other) const { 1603 return ExportTable == Other.ExportTable && Index == Other.Index; 1604 } 1605 1606 void ExportDirectoryEntryRef::moveNext() { 1607 ++Index; 1608 } 1609 1610 // Returns the name of the current export symbol. If the symbol is exported only 1611 // by ordinal, the empty string is set as a result. 1612 Error ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1613 uintptr_t IntPtr = 0; 1614 if (Error E = 1615 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr, "dll name")) 1616 return E; 1617 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1618 return Error::success(); 1619 } 1620 1621 // Returns the starting ordinal number. 1622 Error ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1623 Result = ExportTable->OrdinalBase; 1624 return Error::success(); 1625 } 1626 1627 // Returns the export ordinal of the current export symbol. 1628 Error ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1629 Result = ExportTable->OrdinalBase + Index; 1630 return Error::success(); 1631 } 1632 1633 // Returns the address of the current export symbol. 1634 Error ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1635 uintptr_t IntPtr = 0; 1636 if (Error EC = OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, 1637 IntPtr, "export address")) 1638 return EC; 1639 const export_address_table_entry *entry = 1640 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1641 Result = entry[Index].ExportRVA; 1642 return Error::success(); 1643 } 1644 1645 // Returns the name of the current export symbol. If the symbol is exported only 1646 // by ordinal, the empty string is set as a result. 1647 Error 1648 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1649 uintptr_t IntPtr = 0; 1650 if (Error EC = OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr, 1651 "export ordinal table")) 1652 return EC; 1653 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1654 1655 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1656 int Offset = 0; 1657 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1658 I < E; ++I, ++Offset) { 1659 if (*I != Index) 1660 continue; 1661 if (Error EC = OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr, 1662 "export table entry")) 1663 return EC; 1664 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1665 if (Error EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr, 1666 "export symbol name")) 1667 return EC; 1668 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1669 return Error::success(); 1670 } 1671 Result = ""; 1672 return Error::success(); 1673 } 1674 1675 Error ExportDirectoryEntryRef::isForwarder(bool &Result) const { 1676 const data_directory *DataEntry = 1677 OwningObject->getDataDirectory(COFF::EXPORT_TABLE); 1678 if (!DataEntry) 1679 return createStringError(object_error::parse_failed, 1680 "export table missing"); 1681 uint32_t RVA; 1682 if (auto EC = getExportRVA(RVA)) 1683 return EC; 1684 uint32_t Begin = DataEntry->RelativeVirtualAddress; 1685 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; 1686 Result = (Begin <= RVA && RVA < End); 1687 return Error::success(); 1688 } 1689 1690 Error ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { 1691 uint32_t RVA; 1692 if (auto EC = getExportRVA(RVA)) 1693 return EC; 1694 uintptr_t IntPtr = 0; 1695 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr, "export forward target")) 1696 return EC; 1697 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1698 return Error::success(); 1699 } 1700 1701 bool ImportedSymbolRef:: 1702 operator==(const ImportedSymbolRef &Other) const { 1703 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1704 && Index == Other.Index; 1705 } 1706 1707 void ImportedSymbolRef::moveNext() { 1708 ++Index; 1709 } 1710 1711 Error ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1712 uint32_t RVA; 1713 if (Entry32) { 1714 // If a symbol is imported only by ordinal, it has no name. 1715 if (Entry32[Index].isOrdinal()) 1716 return Error::success(); 1717 RVA = Entry32[Index].getHintNameRVA(); 1718 } else { 1719 if (Entry64[Index].isOrdinal()) 1720 return Error::success(); 1721 RVA = Entry64[Index].getHintNameRVA(); 1722 } 1723 uintptr_t IntPtr = 0; 1724 if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol name")) 1725 return EC; 1726 // +2 because the first two bytes is hint. 1727 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1728 return Error::success(); 1729 } 1730 1731 Error ImportedSymbolRef::isOrdinal(bool &Result) const { 1732 if (Entry32) 1733 Result = Entry32[Index].isOrdinal(); 1734 else 1735 Result = Entry64[Index].isOrdinal(); 1736 return Error::success(); 1737 } 1738 1739 Error ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const { 1740 if (Entry32) 1741 Result = Entry32[Index].getHintNameRVA(); 1742 else 1743 Result = Entry64[Index].getHintNameRVA(); 1744 return Error::success(); 1745 } 1746 1747 Error ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1748 uint32_t RVA; 1749 if (Entry32) { 1750 if (Entry32[Index].isOrdinal()) { 1751 Result = Entry32[Index].getOrdinal(); 1752 return Error::success(); 1753 } 1754 RVA = Entry32[Index].getHintNameRVA(); 1755 } else { 1756 if (Entry64[Index].isOrdinal()) { 1757 Result = Entry64[Index].getOrdinal(); 1758 return Error::success(); 1759 } 1760 RVA = Entry64[Index].getHintNameRVA(); 1761 } 1762 uintptr_t IntPtr = 0; 1763 if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol ordinal")) 1764 return EC; 1765 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1766 return Error::success(); 1767 } 1768 1769 Expected<std::unique_ptr<COFFObjectFile>> 1770 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1771 return COFFObjectFile::create(Object); 1772 } 1773 1774 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1775 return Header == Other.Header && Index == Other.Index; 1776 } 1777 1778 void BaseRelocRef::moveNext() { 1779 // Header->BlockSize is the size of the current block, including the 1780 // size of the header itself. 1781 uint32_t Size = sizeof(*Header) + 1782 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1783 if (Size == Header->BlockSize) { 1784 // .reloc contains a list of base relocation blocks. Each block 1785 // consists of the header followed by entries. The header contains 1786 // how many entories will follow. When we reach the end of the 1787 // current block, proceed to the next block. 1788 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1789 reinterpret_cast<const uint8_t *>(Header) + Size); 1790 Index = 0; 1791 } else { 1792 ++Index; 1793 } 1794 } 1795 1796 Error BaseRelocRef::getType(uint8_t &Type) const { 1797 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1798 Type = Entry[Index].getType(); 1799 return Error::success(); 1800 } 1801 1802 Error BaseRelocRef::getRVA(uint32_t &Result) const { 1803 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1804 Result = Header->PageRVA + Entry[Index].getOffset(); 1805 return Error::success(); 1806 } 1807 1808 #define RETURN_IF_ERROR(Expr) \ 1809 do { \ 1810 Error E = (Expr); \ 1811 if (E) \ 1812 return std::move(E); \ 1813 } while (0) 1814 1815 Expected<ArrayRef<UTF16>> 1816 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) { 1817 BinaryStreamReader Reader = BinaryStreamReader(BBS); 1818 Reader.setOffset(Offset); 1819 uint16_t Length; 1820 RETURN_IF_ERROR(Reader.readInteger(Length)); 1821 ArrayRef<UTF16> RawDirString; 1822 RETURN_IF_ERROR(Reader.readArray(RawDirString, Length)); 1823 return RawDirString; 1824 } 1825 1826 Expected<ArrayRef<UTF16>> 1827 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) { 1828 return getDirStringAtOffset(Entry.Identifier.getNameOffset()); 1829 } 1830 1831 Expected<const coff_resource_dir_table &> 1832 ResourceSectionRef::getTableAtOffset(uint32_t Offset) { 1833 const coff_resource_dir_table *Table = nullptr; 1834 1835 BinaryStreamReader Reader(BBS); 1836 Reader.setOffset(Offset); 1837 RETURN_IF_ERROR(Reader.readObject(Table)); 1838 assert(Table != nullptr); 1839 return *Table; 1840 } 1841 1842 Expected<const coff_resource_dir_entry &> 1843 ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) { 1844 const coff_resource_dir_entry *Entry = nullptr; 1845 1846 BinaryStreamReader Reader(BBS); 1847 Reader.setOffset(Offset); 1848 RETURN_IF_ERROR(Reader.readObject(Entry)); 1849 assert(Entry != nullptr); 1850 return *Entry; 1851 } 1852 1853 Expected<const coff_resource_data_entry &> 1854 ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) { 1855 const coff_resource_data_entry *Entry = nullptr; 1856 1857 BinaryStreamReader Reader(BBS); 1858 Reader.setOffset(Offset); 1859 RETURN_IF_ERROR(Reader.readObject(Entry)); 1860 assert(Entry != nullptr); 1861 return *Entry; 1862 } 1863 1864 Expected<const coff_resource_dir_table &> 1865 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) { 1866 assert(Entry.Offset.isSubDir()); 1867 return getTableAtOffset(Entry.Offset.value()); 1868 } 1869 1870 Expected<const coff_resource_data_entry &> 1871 ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) { 1872 assert(!Entry.Offset.isSubDir()); 1873 return getDataEntryAtOffset(Entry.Offset.value()); 1874 } 1875 1876 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() { 1877 return getTableAtOffset(0); 1878 } 1879 1880 Expected<const coff_resource_dir_entry &> 1881 ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table, 1882 uint32_t Index) { 1883 if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries)) 1884 return createStringError(object_error::parse_failed, "index out of range"); 1885 const uint8_t *TablePtr = reinterpret_cast<const uint8_t *>(&Table); 1886 ptrdiff_t TableOffset = TablePtr - BBS.data().data(); 1887 return getTableEntryAtOffset(TableOffset + sizeof(Table) + 1888 Index * sizeof(coff_resource_dir_entry)); 1889 } 1890 1891 Error ResourceSectionRef::load(const COFFObjectFile *O) { 1892 for (const SectionRef &S : O->sections()) { 1893 Expected<StringRef> Name = S.getName(); 1894 if (!Name) 1895 return Name.takeError(); 1896 1897 if (*Name == ".rsrc" || *Name == ".rsrc$01") 1898 return load(O, S); 1899 } 1900 return createStringError(object_error::parse_failed, 1901 "no resource section found"); 1902 } 1903 1904 Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) { 1905 Obj = O; 1906 Section = S; 1907 Expected<StringRef> Contents = Section.getContents(); 1908 if (!Contents) 1909 return Contents.takeError(); 1910 BBS = BinaryByteStream(*Contents, llvm::endianness::little); 1911 const coff_section *COFFSect = Obj->getCOFFSection(Section); 1912 ArrayRef<coff_relocation> OrigRelocs = Obj->getRelocations(COFFSect); 1913 Relocs.reserve(OrigRelocs.size()); 1914 for (const coff_relocation &R : OrigRelocs) 1915 Relocs.push_back(&R); 1916 llvm::sort(Relocs, [](const coff_relocation *A, const coff_relocation *B) { 1917 return A->VirtualAddress < B->VirtualAddress; 1918 }); 1919 return Error::success(); 1920 } 1921 1922 Expected<StringRef> 1923 ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) { 1924 if (!Obj) 1925 return createStringError(object_error::parse_failed, "no object provided"); 1926 1927 // Find a potential relocation at the DataRVA field (first member of 1928 // the coff_resource_data_entry struct). 1929 const uint8_t *EntryPtr = reinterpret_cast<const uint8_t *>(&Entry); 1930 ptrdiff_t EntryOffset = EntryPtr - BBS.data().data(); 1931 coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0), 1932 ulittle16_t(0)}; 1933 auto RelocsForOffset = 1934 std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget, 1935 [](const coff_relocation *A, const coff_relocation *B) { 1936 return A->VirtualAddress < B->VirtualAddress; 1937 }); 1938 1939 if (RelocsForOffset.first != RelocsForOffset.second) { 1940 // We found a relocation with the right offset. Check that it does have 1941 // the expected type. 1942 const coff_relocation &R = **RelocsForOffset.first; 1943 uint16_t RVAReloc; 1944 switch (Obj->getMachine()) { 1945 case COFF::IMAGE_FILE_MACHINE_I386: 1946 RVAReloc = COFF::IMAGE_REL_I386_DIR32NB; 1947 break; 1948 case COFF::IMAGE_FILE_MACHINE_AMD64: 1949 RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB; 1950 break; 1951 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1952 RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB; 1953 break; 1954 case COFF::IMAGE_FILE_MACHINE_ARM64: 1955 case COFF::IMAGE_FILE_MACHINE_ARM64EC: 1956 case COFF::IMAGE_FILE_MACHINE_ARM64X: 1957 RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB; 1958 break; 1959 default: 1960 return createStringError(object_error::parse_failed, 1961 "unsupported architecture"); 1962 } 1963 if (R.Type != RVAReloc) 1964 return createStringError(object_error::parse_failed, 1965 "unexpected relocation type"); 1966 // Get the relocation's symbol 1967 Expected<COFFSymbolRef> Sym = Obj->getSymbol(R.SymbolTableIndex); 1968 if (!Sym) 1969 return Sym.takeError(); 1970 // And the symbol's section 1971 Expected<const coff_section *> Section = 1972 Obj->getSection(Sym->getSectionNumber()); 1973 if (!Section) 1974 return Section.takeError(); 1975 // Add the initial value of DataRVA to the symbol's offset to find the 1976 // data it points at. 1977 uint64_t Offset = Entry.DataRVA + Sym->getValue(); 1978 ArrayRef<uint8_t> Contents; 1979 if (Error E = Obj->getSectionContents(*Section, Contents)) 1980 return std::move(E); 1981 if (Offset + Entry.DataSize > Contents.size()) 1982 return createStringError(object_error::parse_failed, 1983 "data outside of section"); 1984 // Return a reference to the data inside the section. 1985 return StringRef(reinterpret_cast<const char *>(Contents.data()) + Offset, 1986 Entry.DataSize); 1987 } else { 1988 // Relocatable objects need a relocation for the DataRVA field. 1989 if (Obj->isRelocatableObject()) 1990 return createStringError(object_error::parse_failed, 1991 "no relocation found for DataRVA"); 1992 1993 // Locate the section that contains the address that DataRVA points at. 1994 uint64_t VA = Entry.DataRVA + Obj->getImageBase(); 1995 for (const SectionRef &S : Obj->sections()) { 1996 if (VA >= S.getAddress() && 1997 VA + Entry.DataSize <= S.getAddress() + S.getSize()) { 1998 uint64_t Offset = VA - S.getAddress(); 1999 Expected<StringRef> Contents = S.getContents(); 2000 if (!Contents) 2001 return Contents.takeError(); 2002 return Contents->slice(Offset, Offset + Entry.DataSize); 2003 } 2004 } 2005 return createStringError(object_error::parse_failed, 2006 "address not found in image"); 2007 } 2008 } 2009