1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the COFFObjectFile class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/StringSwitch.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/Object/Binary.h" 18 #include "llvm/Object/COFF.h" 19 #include "llvm/Object/Error.h" 20 #include "llvm/Object/ObjectFile.h" 21 #include "llvm/Object/WindowsMachineFlag.h" 22 #include "llvm/Support/BinaryStreamReader.h" 23 #include "llvm/Support/Endian.h" 24 #include "llvm/Support/Error.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/MemoryBufferRef.h" 28 #include <algorithm> 29 #include <cassert> 30 #include <cinttypes> 31 #include <cstddef> 32 #include <cstring> 33 #include <limits> 34 #include <memory> 35 #include <system_error> 36 37 using namespace llvm; 38 using namespace object; 39 40 using support::ulittle16_t; 41 using support::ulittle32_t; 42 using support::ulittle64_t; 43 using support::little16_t; 44 45 // Returns false if size is greater than the buffer size. And sets ec. 46 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 47 if (M.getBufferSize() < Size) { 48 EC = object_error::unexpected_eof; 49 return false; 50 } 51 return true; 52 } 53 54 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 55 // Returns unexpected_eof if error. 56 template <typename T> 57 static Error getObject(const T *&Obj, MemoryBufferRef M, const void *Ptr, 58 const uint64_t Size = sizeof(T)) { 59 uintptr_t Addr = reinterpret_cast<uintptr_t>(Ptr); 60 if (Error E = Binary::checkOffset(M, Addr, Size)) 61 return E; 62 Obj = reinterpret_cast<const T *>(Addr); 63 return Error::success(); 64 } 65 66 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 67 // prefixed slashes. 68 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 69 assert(Str.size() <= 6 && "String too long, possible overflow."); 70 if (Str.size() > 6) 71 return true; 72 73 uint64_t Value = 0; 74 while (!Str.empty()) { 75 unsigned CharVal; 76 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 77 CharVal = Str[0] - 'A'; 78 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 79 CharVal = Str[0] - 'a' + 26; 80 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 81 CharVal = Str[0] - '0' + 52; 82 else if (Str[0] == '+') // 62 83 CharVal = 62; 84 else if (Str[0] == '/') // 63 85 CharVal = 63; 86 else 87 return true; 88 89 Value = (Value * 64) + CharVal; 90 Str = Str.substr(1); 91 } 92 93 if (Value > std::numeric_limits<uint32_t>::max()) 94 return true; 95 96 Result = static_cast<uint32_t>(Value); 97 return false; 98 } 99 100 template <typename coff_symbol_type> 101 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 102 const coff_symbol_type *Addr = 103 reinterpret_cast<const coff_symbol_type *>(Ref.p); 104 105 assert(!checkOffset(Data, reinterpret_cast<uintptr_t>(Addr), sizeof(*Addr))); 106 #ifndef NDEBUG 107 // Verify that the symbol points to a valid entry in the symbol table. 108 uintptr_t Offset = 109 reinterpret_cast<uintptr_t>(Addr) - reinterpret_cast<uintptr_t>(base()); 110 111 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 112 "Symbol did not point to the beginning of a symbol"); 113 #endif 114 115 return Addr; 116 } 117 118 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 119 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 120 121 #ifndef NDEBUG 122 // Verify that the section points to a valid entry in the section table. 123 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 124 report_fatal_error("Section was outside of section table."); 125 126 uintptr_t Offset = reinterpret_cast<uintptr_t>(Addr) - 127 reinterpret_cast<uintptr_t>(SectionTable); 128 assert(Offset % sizeof(coff_section) == 0 && 129 "Section did not point to the beginning of a section"); 130 #endif 131 132 return Addr; 133 } 134 135 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 136 auto End = reinterpret_cast<uintptr_t>(StringTable); 137 if (SymbolTable16) { 138 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 139 Symb += 1 + Symb->NumberOfAuxSymbols; 140 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 141 } else if (SymbolTable32) { 142 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 143 Symb += 1 + Symb->NumberOfAuxSymbols; 144 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 145 } else { 146 llvm_unreachable("no symbol table pointer!"); 147 } 148 } 149 150 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 151 return getSymbolName(getCOFFSymbol(Ref)); 152 } 153 154 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 155 return getCOFFSymbol(Ref).getValue(); 156 } 157 158 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const { 159 // MSVC/link.exe seems to align symbols to the next-power-of-2 160 // up to 32 bytes. 161 COFFSymbolRef Symb = getCOFFSymbol(Ref); 162 return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue())); 163 } 164 165 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 166 uint64_t Result = cantFail(getSymbolValue(Ref)); 167 COFFSymbolRef Symb = getCOFFSymbol(Ref); 168 int32_t SectionNumber = Symb.getSectionNumber(); 169 170 if (Symb.isAnyUndefined() || Symb.isCommon() || 171 COFF::isReservedSectionNumber(SectionNumber)) 172 return Result; 173 174 Expected<const coff_section *> Section = getSection(SectionNumber); 175 if (!Section) 176 return Section.takeError(); 177 Result += (*Section)->VirtualAddress; 178 179 // The section VirtualAddress does not include ImageBase, and we want to 180 // return virtual addresses. 181 Result += getImageBase(); 182 183 return Result; 184 } 185 186 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 187 COFFSymbolRef Symb = getCOFFSymbol(Ref); 188 int32_t SectionNumber = Symb.getSectionNumber(); 189 190 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 191 return SymbolRef::ST_Function; 192 if (Symb.isAnyUndefined()) 193 return SymbolRef::ST_Unknown; 194 if (Symb.isCommon()) 195 return SymbolRef::ST_Data; 196 if (Symb.isFileRecord()) 197 return SymbolRef::ST_File; 198 199 // TODO: perhaps we need a new symbol type ST_Section. 200 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 201 return SymbolRef::ST_Debug; 202 203 if (!COFF::isReservedSectionNumber(SectionNumber)) 204 return SymbolRef::ST_Data; 205 206 return SymbolRef::ST_Other; 207 } 208 209 Expected<uint32_t> COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 210 COFFSymbolRef Symb = getCOFFSymbol(Ref); 211 uint32_t Result = SymbolRef::SF_None; 212 213 if (Symb.isExternal() || Symb.isWeakExternal()) 214 Result |= SymbolRef::SF_Global; 215 216 if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) { 217 Result |= SymbolRef::SF_Weak; 218 if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS) 219 Result |= SymbolRef::SF_Undefined; 220 } 221 222 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 223 Result |= SymbolRef::SF_Absolute; 224 225 if (Symb.isFileRecord()) 226 Result |= SymbolRef::SF_FormatSpecific; 227 228 if (Symb.isSectionDefinition()) 229 Result |= SymbolRef::SF_FormatSpecific; 230 231 if (Symb.isCommon()) 232 Result |= SymbolRef::SF_Common; 233 234 if (Symb.isUndefined()) 235 Result |= SymbolRef::SF_Undefined; 236 237 return Result; 238 } 239 240 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 241 COFFSymbolRef Symb = getCOFFSymbol(Ref); 242 return Symb.getValue(); 243 } 244 245 Expected<section_iterator> 246 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 247 COFFSymbolRef Symb = getCOFFSymbol(Ref); 248 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 249 return section_end(); 250 Expected<const coff_section *> Sec = getSection(Symb.getSectionNumber()); 251 if (!Sec) 252 return Sec.takeError(); 253 DataRefImpl Ret; 254 Ret.p = reinterpret_cast<uintptr_t>(*Sec); 255 return section_iterator(SectionRef(Ret, this)); 256 } 257 258 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 259 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 260 return Symb.getSectionNumber(); 261 } 262 263 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 264 const coff_section *Sec = toSec(Ref); 265 Sec += 1; 266 Ref.p = reinterpret_cast<uintptr_t>(Sec); 267 } 268 269 Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const { 270 const coff_section *Sec = toSec(Ref); 271 return getSectionName(Sec); 272 } 273 274 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 275 const coff_section *Sec = toSec(Ref); 276 uint64_t Result = Sec->VirtualAddress; 277 278 // The section VirtualAddress does not include ImageBase, and we want to 279 // return virtual addresses. 280 Result += getImageBase(); 281 return Result; 282 } 283 284 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const { 285 return toSec(Sec) - SectionTable; 286 } 287 288 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 289 return getSectionSize(toSec(Ref)); 290 } 291 292 Expected<ArrayRef<uint8_t>> 293 COFFObjectFile::getSectionContents(DataRefImpl Ref) const { 294 const coff_section *Sec = toSec(Ref); 295 ArrayRef<uint8_t> Res; 296 if (Error E = getSectionContents(Sec, Res)) 297 return E; 298 return Res; 299 } 300 301 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 302 const coff_section *Sec = toSec(Ref); 303 return Sec->getAlignment(); 304 } 305 306 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { 307 return false; 308 } 309 310 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 311 const coff_section *Sec = toSec(Ref); 312 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 313 } 314 315 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 316 const coff_section *Sec = toSec(Ref); 317 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 318 } 319 320 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 321 const coff_section *Sec = toSec(Ref); 322 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 323 COFF::IMAGE_SCN_MEM_READ | 324 COFF::IMAGE_SCN_MEM_WRITE; 325 return (Sec->Characteristics & BssFlags) == BssFlags; 326 } 327 328 // The .debug sections are the only debug sections for COFF 329 // (\see MCObjectFileInfo.cpp). 330 bool COFFObjectFile::isDebugSection(DataRefImpl Ref) const { 331 Expected<StringRef> SectionNameOrErr = getSectionName(Ref); 332 if (!SectionNameOrErr) { 333 // TODO: Report the error message properly. 334 consumeError(SectionNameOrErr.takeError()); 335 return false; 336 } 337 StringRef SectionName = SectionNameOrErr.get(); 338 return SectionName.starts_with(".debug"); 339 } 340 341 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 342 uintptr_t Offset = 343 Sec.getRawDataRefImpl().p - reinterpret_cast<uintptr_t>(SectionTable); 344 assert((Offset % sizeof(coff_section)) == 0); 345 return (Offset / sizeof(coff_section)) + 1; 346 } 347 348 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 349 const coff_section *Sec = toSec(Ref); 350 // In COFF, a virtual section won't have any in-file 351 // content, so the file pointer to the content will be zero. 352 return Sec->PointerToRawData == 0; 353 } 354 355 static uint32_t getNumberOfRelocations(const coff_section *Sec, 356 MemoryBufferRef M, const uint8_t *base) { 357 // The field for the number of relocations in COFF section table is only 358 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 359 // NumberOfRelocations field, and the actual relocation count is stored in the 360 // VirtualAddress field in the first relocation entry. 361 if (Sec->hasExtendedRelocations()) { 362 const coff_relocation *FirstReloc; 363 if (Error E = getObject(FirstReloc, M, 364 reinterpret_cast<const coff_relocation *>( 365 base + Sec->PointerToRelocations))) { 366 consumeError(std::move(E)); 367 return 0; 368 } 369 // -1 to exclude this first relocation entry. 370 return FirstReloc->VirtualAddress - 1; 371 } 372 return Sec->NumberOfRelocations; 373 } 374 375 static const coff_relocation * 376 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 377 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 378 if (!NumRelocs) 379 return nullptr; 380 auto begin = reinterpret_cast<const coff_relocation *>( 381 Base + Sec->PointerToRelocations); 382 if (Sec->hasExtendedRelocations()) { 383 // Skip the first relocation entry repurposed to store the number of 384 // relocations. 385 begin++; 386 } 387 if (auto E = Binary::checkOffset(M, reinterpret_cast<uintptr_t>(begin), 388 sizeof(coff_relocation) * NumRelocs)) { 389 consumeError(std::move(E)); 390 return nullptr; 391 } 392 return begin; 393 } 394 395 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 396 const coff_section *Sec = toSec(Ref); 397 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 398 if (begin && Sec->VirtualAddress != 0) 399 report_fatal_error("Sections with relocations should have an address of 0"); 400 DataRefImpl Ret; 401 Ret.p = reinterpret_cast<uintptr_t>(begin); 402 return relocation_iterator(RelocationRef(Ret, this)); 403 } 404 405 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 406 const coff_section *Sec = toSec(Ref); 407 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 408 if (I) 409 I += getNumberOfRelocations(Sec, Data, base()); 410 DataRefImpl Ret; 411 Ret.p = reinterpret_cast<uintptr_t>(I); 412 return relocation_iterator(RelocationRef(Ret, this)); 413 } 414 415 // Initialize the pointer to the symbol table. 416 Error COFFObjectFile::initSymbolTablePtr() { 417 if (COFFHeader) 418 if (Error E = getObject( 419 SymbolTable16, Data, base() + getPointerToSymbolTable(), 420 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 421 return E; 422 423 if (COFFBigObjHeader) 424 if (Error E = getObject( 425 SymbolTable32, Data, base() + getPointerToSymbolTable(), 426 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 427 return E; 428 429 // Find string table. The first four byte of the string table contains the 430 // total size of the string table, including the size field itself. If the 431 // string table is empty, the value of the first four byte would be 4. 432 uint32_t StringTableOffset = getPointerToSymbolTable() + 433 getNumberOfSymbols() * getSymbolTableEntrySize(); 434 const uint8_t *StringTableAddr = base() + StringTableOffset; 435 const ulittle32_t *StringTableSizePtr; 436 if (Error E = getObject(StringTableSizePtr, Data, StringTableAddr)) 437 return E; 438 StringTableSize = *StringTableSizePtr; 439 if (Error E = getObject(StringTable, Data, StringTableAddr, StringTableSize)) 440 return E; 441 442 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 443 // tools like cvtres write a size of 0 for an empty table instead of 4. 444 if (StringTableSize < 4) 445 StringTableSize = 4; 446 447 // Check that the string table is null terminated if has any in it. 448 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 449 return createStringError(object_error::parse_failed, 450 "string table missing null terminator"); 451 return Error::success(); 452 } 453 454 uint64_t COFFObjectFile::getImageBase() const { 455 if (PE32Header) 456 return PE32Header->ImageBase; 457 else if (PE32PlusHeader) 458 return PE32PlusHeader->ImageBase; 459 // This actually comes up in practice. 460 return 0; 461 } 462 463 // Returns the file offset for the given VA. 464 Error COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 465 uint64_t ImageBase = getImageBase(); 466 uint64_t Rva = Addr - ImageBase; 467 assert(Rva <= UINT32_MAX); 468 return getRvaPtr((uint32_t)Rva, Res); 469 } 470 471 // Returns the file offset for the given RVA. 472 Error COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res, 473 const char *ErrorContext) const { 474 for (const SectionRef &S : sections()) { 475 const coff_section *Section = getCOFFSection(S); 476 uint32_t SectionStart = Section->VirtualAddress; 477 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 478 if (SectionStart <= Addr && Addr < SectionEnd) { 479 // A table/directory entry can be pointing to somewhere in a stripped 480 // section, in an object that went through `objcopy --only-keep-debug`. 481 // In this case we don't want to cause the parsing of the object file to 482 // fail, otherwise it will be impossible to use this object as debug info 483 // in LLDB. Return SectionStrippedError here so that 484 // COFFObjectFile::initialize can ignore the error. 485 // Somewhat common binaries may have RVAs pointing outside of the 486 // provided raw data. Instead of rejecting the binaries, just 487 // treat the section as stripped for these purposes. 488 if (Section->SizeOfRawData < Section->VirtualSize && 489 Addr >= SectionStart + Section->SizeOfRawData) { 490 return make_error<SectionStrippedError>(); 491 } 492 uint32_t Offset = Addr - SectionStart; 493 Res = reinterpret_cast<uintptr_t>(base()) + Section->PointerToRawData + 494 Offset; 495 return Error::success(); 496 } 497 } 498 if (ErrorContext) 499 return createStringError(object_error::parse_failed, 500 "RVA 0x%" PRIx32 " for %s not found", Addr, 501 ErrorContext); 502 return createStringError(object_error::parse_failed, 503 "RVA 0x%" PRIx32 " not found", Addr); 504 } 505 506 Error COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size, 507 ArrayRef<uint8_t> &Contents, 508 const char *ErrorContext) const { 509 for (const SectionRef &S : sections()) { 510 const coff_section *Section = getCOFFSection(S); 511 uint32_t SectionStart = Section->VirtualAddress; 512 // Check if this RVA is within the section bounds. Be careful about integer 513 // overflow. 514 uint32_t OffsetIntoSection = RVA - SectionStart; 515 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize && 516 Size <= Section->VirtualSize - OffsetIntoSection) { 517 uintptr_t Begin = reinterpret_cast<uintptr_t>(base()) + 518 Section->PointerToRawData + OffsetIntoSection; 519 Contents = 520 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size); 521 return Error::success(); 522 } 523 } 524 if (ErrorContext) 525 return createStringError(object_error::parse_failed, 526 "RVA 0x%" PRIx32 " for %s not found", RVA, 527 ErrorContext); 528 return createStringError(object_error::parse_failed, 529 "RVA 0x%" PRIx32 " not found", RVA); 530 } 531 532 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 533 // table entry. 534 Error COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 535 StringRef &Name) const { 536 uintptr_t IntPtr = 0; 537 if (Error E = getRvaPtr(Rva, IntPtr)) 538 return E; 539 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 540 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 541 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 542 return Error::success(); 543 } 544 545 Error COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir, 546 const codeview::DebugInfo *&PDBInfo, 547 StringRef &PDBFileName) const { 548 ArrayRef<uint8_t> InfoBytes; 549 if (Error E = 550 getRvaAndSizeAsBytes(DebugDir->AddressOfRawData, DebugDir->SizeOfData, 551 InfoBytes, "PDB info")) 552 return E; 553 if (InfoBytes.size() < sizeof(*PDBInfo) + 1) 554 return createStringError(object_error::parse_failed, "PDB info too small"); 555 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data()); 556 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo)); 557 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()), 558 InfoBytes.size()); 559 // Truncate the name at the first null byte. Ignore any padding. 560 PDBFileName = PDBFileName.split('\0').first; 561 return Error::success(); 562 } 563 564 Error COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo, 565 StringRef &PDBFileName) const { 566 for (const debug_directory &D : debug_directories()) 567 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW) 568 return getDebugPDBInfo(&D, PDBInfo, PDBFileName); 569 // If we get here, there is no PDB info to return. 570 PDBInfo = nullptr; 571 PDBFileName = StringRef(); 572 return Error::success(); 573 } 574 575 // Find the import table. 576 Error COFFObjectFile::initImportTablePtr() { 577 // First, we get the RVA of the import table. If the file lacks a pointer to 578 // the import table, do nothing. 579 const data_directory *DataEntry = getDataDirectory(COFF::IMPORT_TABLE); 580 if (!DataEntry) 581 return Error::success(); 582 583 // Do nothing if the pointer to import table is NULL. 584 if (DataEntry->RelativeVirtualAddress == 0) 585 return Error::success(); 586 587 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 588 589 // Find the section that contains the RVA. This is needed because the RVA is 590 // the import table's memory address which is different from its file offset. 591 uintptr_t IntPtr = 0; 592 if (Error E = getRvaPtr(ImportTableRva, IntPtr, "import table")) 593 return E; 594 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 595 return E; 596 ImportDirectory = reinterpret_cast< 597 const coff_import_directory_table_entry *>(IntPtr); 598 return Error::success(); 599 } 600 601 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 602 Error COFFObjectFile::initDelayImportTablePtr() { 603 const data_directory *DataEntry = 604 getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR); 605 if (!DataEntry) 606 return Error::success(); 607 if (DataEntry->RelativeVirtualAddress == 0) 608 return Error::success(); 609 610 uint32_t RVA = DataEntry->RelativeVirtualAddress; 611 NumberOfDelayImportDirectory = DataEntry->Size / 612 sizeof(delay_import_directory_table_entry) - 1; 613 614 uintptr_t IntPtr = 0; 615 if (Error E = getRvaPtr(RVA, IntPtr, "delay import table")) 616 return E; 617 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 618 return E; 619 620 DelayImportDirectory = reinterpret_cast< 621 const delay_import_directory_table_entry *>(IntPtr); 622 return Error::success(); 623 } 624 625 // Find the export table. 626 Error COFFObjectFile::initExportTablePtr() { 627 // First, we get the RVA of the export table. If the file lacks a pointer to 628 // the export table, do nothing. 629 const data_directory *DataEntry = getDataDirectory(COFF::EXPORT_TABLE); 630 if (!DataEntry) 631 return Error::success(); 632 633 // Do nothing if the pointer to export table is NULL. 634 if (DataEntry->RelativeVirtualAddress == 0) 635 return Error::success(); 636 637 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 638 uintptr_t IntPtr = 0; 639 if (Error E = getRvaPtr(ExportTableRva, IntPtr, "export table")) 640 return E; 641 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 642 return E; 643 644 ExportDirectory = 645 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 646 return Error::success(); 647 } 648 649 Error COFFObjectFile::initBaseRelocPtr() { 650 const data_directory *DataEntry = 651 getDataDirectory(COFF::BASE_RELOCATION_TABLE); 652 if (!DataEntry) 653 return Error::success(); 654 if (DataEntry->RelativeVirtualAddress == 0) 655 return Error::success(); 656 657 uintptr_t IntPtr = 0; 658 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, 659 "base reloc table")) 660 return E; 661 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 662 return E; 663 664 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 665 IntPtr); 666 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 667 IntPtr + DataEntry->Size); 668 // FIXME: Verify the section containing BaseRelocHeader has at least 669 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 670 return Error::success(); 671 } 672 673 Error COFFObjectFile::initDebugDirectoryPtr() { 674 // Get the RVA of the debug directory. Do nothing if it does not exist. 675 const data_directory *DataEntry = getDataDirectory(COFF::DEBUG_DIRECTORY); 676 if (!DataEntry) 677 return Error::success(); 678 679 // Do nothing if the RVA is NULL. 680 if (DataEntry->RelativeVirtualAddress == 0) 681 return Error::success(); 682 683 // Check that the size is a multiple of the entry size. 684 if (DataEntry->Size % sizeof(debug_directory) != 0) 685 return createStringError(object_error::parse_failed, 686 "debug directory has uneven size"); 687 688 uintptr_t IntPtr = 0; 689 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, 690 "debug directory")) 691 return E; 692 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 693 return E; 694 695 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr); 696 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>( 697 IntPtr + DataEntry->Size); 698 // FIXME: Verify the section containing DebugDirectoryBegin has at least 699 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 700 return Error::success(); 701 } 702 703 Error COFFObjectFile::initTLSDirectoryPtr() { 704 // Get the RVA of the TLS directory. Do nothing if it does not exist. 705 const data_directory *DataEntry = getDataDirectory(COFF::TLS_TABLE); 706 if (!DataEntry) 707 return Error::success(); 708 709 // Do nothing if the RVA is NULL. 710 if (DataEntry->RelativeVirtualAddress == 0) 711 return Error::success(); 712 713 uint64_t DirSize = 714 is64() ? sizeof(coff_tls_directory64) : sizeof(coff_tls_directory32); 715 716 // Check that the size is correct. 717 if (DataEntry->Size != DirSize) 718 return createStringError( 719 object_error::parse_failed, 720 "TLS Directory size (%u) is not the expected size (%" PRIu64 ").", 721 static_cast<uint32_t>(DataEntry->Size), DirSize); 722 723 uintptr_t IntPtr = 0; 724 if (Error E = 725 getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, "TLS directory")) 726 return E; 727 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 728 return E; 729 730 if (is64()) 731 TLSDirectory64 = reinterpret_cast<const coff_tls_directory64 *>(IntPtr); 732 else 733 TLSDirectory32 = reinterpret_cast<const coff_tls_directory32 *>(IntPtr); 734 735 return Error::success(); 736 } 737 738 Error COFFObjectFile::initLoadConfigPtr() { 739 // Get the RVA of the debug directory. Do nothing if it does not exist. 740 const data_directory *DataEntry = getDataDirectory(COFF::LOAD_CONFIG_TABLE); 741 if (!DataEntry) 742 return Error::success(); 743 744 // Do nothing if the RVA is NULL. 745 if (DataEntry->RelativeVirtualAddress == 0) 746 return Error::success(); 747 uintptr_t IntPtr = 0; 748 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, 749 "load config table")) 750 return E; 751 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 752 return E; 753 754 LoadConfig = (const void *)IntPtr; 755 756 if (is64()) { 757 auto Config = getLoadConfig64(); 758 if (Config->Size >= 759 offsetof(coff_load_configuration64, CHPEMetadataPointer) + 760 sizeof(Config->CHPEMetadataPointer) && 761 Config->CHPEMetadataPointer) { 762 uint64_t ChpeOff = Config->CHPEMetadataPointer; 763 if (Error E = 764 getRvaPtr(ChpeOff - getImageBase(), IntPtr, "CHPE metadata")) 765 return E; 766 if (Error E = checkOffset(Data, IntPtr, sizeof(CHPEMetadata))) 767 return E; 768 769 CHPEMetadata = reinterpret_cast<const chpe_metadata *>(IntPtr); 770 771 // Validate CHPE metadata 772 if (CHPEMetadata->CodeMapCount) { 773 if (Error E = getRvaPtr(CHPEMetadata->CodeMap, IntPtr, "CHPE code map")) 774 return E; 775 if (Error E = checkOffset(Data, IntPtr, 776 CHPEMetadata->CodeMapCount * 777 sizeof(chpe_range_entry))) 778 return E; 779 } 780 781 if (CHPEMetadata->CodeRangesToEntryPointsCount) { 782 if (Error E = getRvaPtr(CHPEMetadata->CodeRangesToEntryPoints, IntPtr, 783 "CHPE entry point ranges")) 784 return E; 785 if (Error E = checkOffset(Data, IntPtr, 786 CHPEMetadata->CodeRangesToEntryPointsCount * 787 sizeof(chpe_code_range_entry))) 788 return E; 789 } 790 791 if (CHPEMetadata->RedirectionMetadataCount) { 792 if (Error E = getRvaPtr(CHPEMetadata->RedirectionMetadata, IntPtr, 793 "CHPE redirection metadata")) 794 return E; 795 if (Error E = checkOffset(Data, IntPtr, 796 CHPEMetadata->RedirectionMetadataCount * 797 sizeof(chpe_redirection_entry))) 798 return E; 799 } 800 } 801 } 802 803 return Error::success(); 804 } 805 806 Expected<std::unique_ptr<COFFObjectFile>> 807 COFFObjectFile::create(MemoryBufferRef Object) { 808 std::unique_ptr<COFFObjectFile> Obj(new COFFObjectFile(std::move(Object))); 809 if (Error E = Obj->initialize()) 810 return E; 811 return std::move(Obj); 812 } 813 814 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object) 815 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 816 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 817 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 818 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 819 ImportDirectory(nullptr), DelayImportDirectory(nullptr), 820 NumberOfDelayImportDirectory(0), ExportDirectory(nullptr), 821 BaseRelocHeader(nullptr), BaseRelocEnd(nullptr), 822 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr), 823 TLSDirectory32(nullptr), TLSDirectory64(nullptr) {} 824 825 static Error ignoreStrippedErrors(Error E) { 826 if (E.isA<SectionStrippedError>()) { 827 consumeError(std::move(E)); 828 return Error::success(); 829 } 830 return E; 831 } 832 833 Error COFFObjectFile::initialize() { 834 // Check that we at least have enough room for a header. 835 std::error_code EC; 836 if (!checkSize(Data, EC, sizeof(coff_file_header))) 837 return errorCodeToError(EC); 838 839 // The current location in the file where we are looking at. 840 uint64_t CurPtr = 0; 841 842 // PE header is optional and is present only in executables. If it exists, 843 // it is placed right after COFF header. 844 bool HasPEHeader = false; 845 846 // Check if this is a PE/COFF file. 847 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 848 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 849 // PE signature to find 'normal' COFF header. 850 const auto *DH = reinterpret_cast<const dos_header *>(base()); 851 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 852 CurPtr = DH->AddressOfNewExeHeader; 853 // Check the PE magic bytes. ("PE\0\0") 854 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 855 return createStringError(object_error::parse_failed, 856 "incorrect PE magic"); 857 } 858 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 859 HasPEHeader = true; 860 } 861 } 862 863 if (Error E = getObject(COFFHeader, Data, base() + CurPtr)) 864 return E; 865 866 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 867 // import libraries share a common prefix but bigobj is more restrictive. 868 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 869 COFFHeader->NumberOfSections == uint16_t(0xffff) && 870 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 871 if (Error E = getObject(COFFBigObjHeader, Data, base() + CurPtr)) 872 return E; 873 874 // Verify that we are dealing with bigobj. 875 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 876 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 877 sizeof(COFF::BigObjMagic)) == 0) { 878 COFFHeader = nullptr; 879 CurPtr += sizeof(coff_bigobj_file_header); 880 } else { 881 // It's not a bigobj. 882 COFFBigObjHeader = nullptr; 883 } 884 } 885 if (COFFHeader) { 886 // The prior checkSize call may have failed. This isn't a hard error 887 // because we were just trying to sniff out bigobj. 888 EC = std::error_code(); 889 CurPtr += sizeof(coff_file_header); 890 891 if (COFFHeader->isImportLibrary()) 892 return errorCodeToError(EC); 893 } 894 895 if (HasPEHeader) { 896 const pe32_header *Header; 897 if (Error E = getObject(Header, Data, base() + CurPtr)) 898 return E; 899 900 const uint8_t *DataDirAddr; 901 uint64_t DataDirSize; 902 if (Header->Magic == COFF::PE32Header::PE32) { 903 PE32Header = Header; 904 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 905 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 906 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 907 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 908 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 909 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 910 } else { 911 // It's neither PE32 nor PE32+. 912 return createStringError(object_error::parse_failed, 913 "incorrect PE magic"); 914 } 915 if (Error E = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)) 916 return E; 917 } 918 919 if (COFFHeader) 920 CurPtr += COFFHeader->SizeOfOptionalHeader; 921 922 assert(COFFHeader || COFFBigObjHeader); 923 924 if (Error E = 925 getObject(SectionTable, Data, base() + CurPtr, 926 (uint64_t)getNumberOfSections() * sizeof(coff_section))) 927 return E; 928 929 // Initialize the pointer to the symbol table. 930 if (getPointerToSymbolTable() != 0) { 931 if (Error E = initSymbolTablePtr()) { 932 // Recover from errors reading the symbol table. 933 consumeError(std::move(E)); 934 SymbolTable16 = nullptr; 935 SymbolTable32 = nullptr; 936 StringTable = nullptr; 937 StringTableSize = 0; 938 } 939 } else { 940 // We had better not have any symbols if we don't have a symbol table. 941 if (getNumberOfSymbols() != 0) { 942 return createStringError(object_error::parse_failed, 943 "symbol table missing"); 944 } 945 } 946 947 // Initialize the pointer to the beginning of the import table. 948 if (Error E = ignoreStrippedErrors(initImportTablePtr())) 949 return E; 950 if (Error E = ignoreStrippedErrors(initDelayImportTablePtr())) 951 return E; 952 953 // Initialize the pointer to the export table. 954 if (Error E = ignoreStrippedErrors(initExportTablePtr())) 955 return E; 956 957 // Initialize the pointer to the base relocation table. 958 if (Error E = ignoreStrippedErrors(initBaseRelocPtr())) 959 return E; 960 961 // Initialize the pointer to the debug directory. 962 if (Error E = ignoreStrippedErrors(initDebugDirectoryPtr())) 963 return E; 964 965 // Initialize the pointer to the TLS directory. 966 if (Error E = ignoreStrippedErrors(initTLSDirectoryPtr())) 967 return E; 968 969 if (Error E = ignoreStrippedErrors(initLoadConfigPtr())) 970 return E; 971 972 return Error::success(); 973 } 974 975 basic_symbol_iterator COFFObjectFile::symbol_begin() const { 976 DataRefImpl Ret; 977 Ret.p = getSymbolTable(); 978 return basic_symbol_iterator(SymbolRef(Ret, this)); 979 } 980 981 basic_symbol_iterator COFFObjectFile::symbol_end() const { 982 // The symbol table ends where the string table begins. 983 DataRefImpl Ret; 984 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 985 return basic_symbol_iterator(SymbolRef(Ret, this)); 986 } 987 988 import_directory_iterator COFFObjectFile::import_directory_begin() const { 989 if (!ImportDirectory) 990 return import_directory_end(); 991 if (ImportDirectory->isNull()) 992 return import_directory_end(); 993 return import_directory_iterator( 994 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 995 } 996 997 import_directory_iterator COFFObjectFile::import_directory_end() const { 998 return import_directory_iterator( 999 ImportDirectoryEntryRef(nullptr, -1, this)); 1000 } 1001 1002 delay_import_directory_iterator 1003 COFFObjectFile::delay_import_directory_begin() const { 1004 return delay_import_directory_iterator( 1005 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 1006 } 1007 1008 delay_import_directory_iterator 1009 COFFObjectFile::delay_import_directory_end() const { 1010 return delay_import_directory_iterator( 1011 DelayImportDirectoryEntryRef( 1012 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 1013 } 1014 1015 export_directory_iterator COFFObjectFile::export_directory_begin() const { 1016 return export_directory_iterator( 1017 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 1018 } 1019 1020 export_directory_iterator COFFObjectFile::export_directory_end() const { 1021 if (!ExportDirectory) 1022 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 1023 ExportDirectoryEntryRef Ref(ExportDirectory, 1024 ExportDirectory->AddressTableEntries, this); 1025 return export_directory_iterator(Ref); 1026 } 1027 1028 section_iterator COFFObjectFile::section_begin() const { 1029 DataRefImpl Ret; 1030 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 1031 return section_iterator(SectionRef(Ret, this)); 1032 } 1033 1034 section_iterator COFFObjectFile::section_end() const { 1035 DataRefImpl Ret; 1036 int NumSections = 1037 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 1038 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 1039 return section_iterator(SectionRef(Ret, this)); 1040 } 1041 1042 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 1043 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 1044 } 1045 1046 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 1047 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 1048 } 1049 1050 uint8_t COFFObjectFile::getBytesInAddress() const { 1051 return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4; 1052 } 1053 1054 StringRef COFFObjectFile::getFileFormatName() const { 1055 switch(getMachine()) { 1056 case COFF::IMAGE_FILE_MACHINE_I386: 1057 return "COFF-i386"; 1058 case COFF::IMAGE_FILE_MACHINE_AMD64: 1059 return "COFF-x86-64"; 1060 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1061 return "COFF-ARM"; 1062 case COFF::IMAGE_FILE_MACHINE_ARM64: 1063 return "COFF-ARM64"; 1064 case COFF::IMAGE_FILE_MACHINE_ARM64EC: 1065 return "COFF-ARM64EC"; 1066 case COFF::IMAGE_FILE_MACHINE_ARM64X: 1067 return "COFF-ARM64X"; 1068 default: 1069 return "COFF-<unknown arch>"; 1070 } 1071 } 1072 1073 Triple::ArchType COFFObjectFile::getArch() const { 1074 return getMachineArchType(getMachine()); 1075 } 1076 1077 Expected<uint64_t> COFFObjectFile::getStartAddress() const { 1078 if (PE32Header) 1079 return PE32Header->AddressOfEntryPoint; 1080 return 0; 1081 } 1082 1083 iterator_range<import_directory_iterator> 1084 COFFObjectFile::import_directories() const { 1085 return make_range(import_directory_begin(), import_directory_end()); 1086 } 1087 1088 iterator_range<delay_import_directory_iterator> 1089 COFFObjectFile::delay_import_directories() const { 1090 return make_range(delay_import_directory_begin(), 1091 delay_import_directory_end()); 1092 } 1093 1094 iterator_range<export_directory_iterator> 1095 COFFObjectFile::export_directories() const { 1096 return make_range(export_directory_begin(), export_directory_end()); 1097 } 1098 1099 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 1100 return make_range(base_reloc_begin(), base_reloc_end()); 1101 } 1102 1103 const data_directory *COFFObjectFile::getDataDirectory(uint32_t Index) const { 1104 if (!DataDirectory) 1105 return nullptr; 1106 assert(PE32Header || PE32PlusHeader); 1107 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 1108 : PE32PlusHeader->NumberOfRvaAndSize; 1109 if (Index >= NumEnt) 1110 return nullptr; 1111 return &DataDirectory[Index]; 1112 } 1113 1114 Expected<const coff_section *> COFFObjectFile::getSection(int32_t Index) const { 1115 // Perhaps getting the section of a reserved section index should be an error, 1116 // but callers rely on this to return null. 1117 if (COFF::isReservedSectionNumber(Index)) 1118 return (const coff_section *)nullptr; 1119 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 1120 // We already verified the section table data, so no need to check again. 1121 return SectionTable + (Index - 1); 1122 } 1123 return createStringError(object_error::parse_failed, 1124 "section index out of bounds"); 1125 } 1126 1127 Expected<StringRef> COFFObjectFile::getString(uint32_t Offset) const { 1128 if (StringTableSize <= 4) 1129 // Tried to get a string from an empty string table. 1130 return createStringError(object_error::parse_failed, "string table empty"); 1131 if (Offset >= StringTableSize) 1132 return errorCodeToError(object_error::unexpected_eof); 1133 return StringRef(StringTable + Offset); 1134 } 1135 1136 Expected<StringRef> COFFObjectFile::getSymbolName(COFFSymbolRef Symbol) const { 1137 return getSymbolName(Symbol.getGeneric()); 1138 } 1139 1140 Expected<StringRef> 1141 COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol) const { 1142 // Check for string table entry. First 4 bytes are 0. 1143 if (Symbol->Name.Offset.Zeroes == 0) 1144 return getString(Symbol->Name.Offset.Offset); 1145 1146 // Null terminated, let ::strlen figure out the length. 1147 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 1148 return StringRef(Symbol->Name.ShortName); 1149 1150 // Not null terminated, use all 8 bytes. 1151 return StringRef(Symbol->Name.ShortName, COFF::NameSize); 1152 } 1153 1154 ArrayRef<uint8_t> 1155 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 1156 const uint8_t *Aux = nullptr; 1157 1158 size_t SymbolSize = getSymbolTableEntrySize(); 1159 if (Symbol.getNumberOfAuxSymbols() > 0) { 1160 // AUX data comes immediately after the symbol in COFF 1161 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 1162 #ifndef NDEBUG 1163 // Verify that the Aux symbol points to a valid entry in the symbol table. 1164 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 1165 if (Offset < getPointerToSymbolTable() || 1166 Offset >= 1167 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 1168 report_fatal_error("Aux Symbol data was outside of symbol table."); 1169 1170 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 1171 "Aux Symbol data did not point to the beginning of a symbol"); 1172 #endif 1173 } 1174 return ArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 1175 } 1176 1177 uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const { 1178 uintptr_t Offset = 1179 reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable(); 1180 assert(Offset % getSymbolTableEntrySize() == 0 && 1181 "Symbol did not point to the beginning of a symbol"); 1182 size_t Index = Offset / getSymbolTableEntrySize(); 1183 assert(Index < getNumberOfSymbols()); 1184 return Index; 1185 } 1186 1187 Expected<StringRef> 1188 COFFObjectFile::getSectionName(const coff_section *Sec) const { 1189 StringRef Name = StringRef(Sec->Name, COFF::NameSize).split('\0').first; 1190 1191 // Check for string table entry. First byte is '/'. 1192 if (Name.starts_with("/")) { 1193 uint32_t Offset; 1194 if (Name.starts_with("//")) { 1195 if (decodeBase64StringEntry(Name.substr(2), Offset)) 1196 return createStringError(object_error::parse_failed, 1197 "invalid section name"); 1198 } else { 1199 if (Name.substr(1).getAsInteger(10, Offset)) 1200 return createStringError(object_error::parse_failed, 1201 "invalid section name"); 1202 } 1203 return getString(Offset); 1204 } 1205 1206 return Name; 1207 } 1208 1209 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 1210 // SizeOfRawData and VirtualSize change what they represent depending on 1211 // whether or not we have an executable image. 1212 // 1213 // For object files, SizeOfRawData contains the size of section's data; 1214 // VirtualSize should be zero but isn't due to buggy COFF writers. 1215 // 1216 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 1217 // actual section size is in VirtualSize. It is possible for VirtualSize to 1218 // be greater than SizeOfRawData; the contents past that point should be 1219 // considered to be zero. 1220 if (getDOSHeader()) 1221 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 1222 return Sec->SizeOfRawData; 1223 } 1224 1225 Error COFFObjectFile::getSectionContents(const coff_section *Sec, 1226 ArrayRef<uint8_t> &Res) const { 1227 // In COFF, a virtual section won't have any in-file 1228 // content, so the file pointer to the content will be zero. 1229 if (Sec->PointerToRawData == 0) 1230 return Error::success(); 1231 // The only thing that we need to verify is that the contents is contained 1232 // within the file bounds. We don't need to make sure it doesn't cover other 1233 // data, as there's nothing that says that is not allowed. 1234 uintptr_t ConStart = 1235 reinterpret_cast<uintptr_t>(base()) + Sec->PointerToRawData; 1236 uint32_t SectionSize = getSectionSize(Sec); 1237 if (Error E = checkOffset(Data, ConStart, SectionSize)) 1238 return E; 1239 Res = ArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 1240 return Error::success(); 1241 } 1242 1243 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 1244 return reinterpret_cast<const coff_relocation*>(Rel.p); 1245 } 1246 1247 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 1248 Rel.p = reinterpret_cast<uintptr_t>( 1249 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 1250 } 1251 1252 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 1253 const coff_relocation *R = toRel(Rel); 1254 return R->VirtualAddress; 1255 } 1256 1257 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1258 const coff_relocation *R = toRel(Rel); 1259 DataRefImpl Ref; 1260 if (R->SymbolTableIndex >= getNumberOfSymbols()) 1261 return symbol_end(); 1262 if (SymbolTable16) 1263 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1264 else if (SymbolTable32) 1265 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1266 else 1267 llvm_unreachable("no symbol table pointer!"); 1268 return symbol_iterator(SymbolRef(Ref, this)); 1269 } 1270 1271 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 1272 const coff_relocation* R = toRel(Rel); 1273 return R->Type; 1274 } 1275 1276 const coff_section * 1277 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1278 return toSec(Section.getRawDataRefImpl()); 1279 } 1280 1281 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1282 if (SymbolTable16) 1283 return toSymb<coff_symbol16>(Ref); 1284 if (SymbolTable32) 1285 return toSymb<coff_symbol32>(Ref); 1286 llvm_unreachable("no symbol table pointer!"); 1287 } 1288 1289 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1290 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1291 } 1292 1293 const coff_relocation * 1294 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1295 return toRel(Reloc.getRawDataRefImpl()); 1296 } 1297 1298 ArrayRef<coff_relocation> 1299 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1300 return {getFirstReloc(Sec, Data, base()), 1301 getNumberOfRelocations(Sec, Data, base())}; 1302 } 1303 1304 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1305 case COFF::reloc_type: \ 1306 return #reloc_type; 1307 1308 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const { 1309 switch (getArch()) { 1310 case Triple::x86_64: 1311 switch (Type) { 1312 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1313 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1314 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1315 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1316 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1317 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1318 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1319 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1320 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1321 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1322 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1323 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1324 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1325 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1326 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1327 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1328 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1329 default: 1330 return "Unknown"; 1331 } 1332 break; 1333 case Triple::thumb: 1334 switch (Type) { 1335 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1336 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1337 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1338 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1339 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1340 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1341 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1342 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1343 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32); 1344 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1345 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1346 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1347 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1348 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1349 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1350 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1351 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR); 1352 default: 1353 return "Unknown"; 1354 } 1355 break; 1356 case Triple::aarch64: 1357 switch (Type) { 1358 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE); 1359 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32); 1360 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB); 1361 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26); 1362 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21); 1363 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21); 1364 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A); 1365 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L); 1366 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL); 1367 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A); 1368 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A); 1369 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L); 1370 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN); 1371 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION); 1372 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64); 1373 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19); 1374 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14); 1375 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32); 1376 default: 1377 return "Unknown"; 1378 } 1379 break; 1380 case Triple::x86: 1381 switch (Type) { 1382 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1383 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1384 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1385 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1386 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1387 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1388 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1389 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1390 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1391 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1392 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1393 default: 1394 return "Unknown"; 1395 } 1396 break; 1397 default: 1398 return "Unknown"; 1399 } 1400 } 1401 1402 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1403 1404 void COFFObjectFile::getRelocationTypeName( 1405 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1406 const coff_relocation *Reloc = toRel(Rel); 1407 StringRef Res = getRelocationTypeName(Reloc->Type); 1408 Result.append(Res.begin(), Res.end()); 1409 } 1410 1411 bool COFFObjectFile::isRelocatableObject() const { 1412 return !DataDirectory; 1413 } 1414 1415 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const { 1416 return StringSwitch<StringRef>(Name) 1417 .Case("eh_fram", "eh_frame") 1418 .Default(Name); 1419 } 1420 1421 bool ImportDirectoryEntryRef:: 1422 operator==(const ImportDirectoryEntryRef &Other) const { 1423 return ImportTable == Other.ImportTable && Index == Other.Index; 1424 } 1425 1426 void ImportDirectoryEntryRef::moveNext() { 1427 ++Index; 1428 if (ImportTable[Index].isNull()) { 1429 Index = -1; 1430 ImportTable = nullptr; 1431 } 1432 } 1433 1434 Error ImportDirectoryEntryRef::getImportTableEntry( 1435 const coff_import_directory_table_entry *&Result) const { 1436 return getObject(Result, OwningObject->Data, ImportTable + Index); 1437 } 1438 1439 static imported_symbol_iterator 1440 makeImportedSymbolIterator(const COFFObjectFile *Object, 1441 uintptr_t Ptr, int Index) { 1442 if (Object->getBytesInAddress() == 4) { 1443 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1444 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1445 } 1446 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1447 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1448 } 1449 1450 static imported_symbol_iterator 1451 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1452 uintptr_t IntPtr = 0; 1453 // FIXME: Handle errors. 1454 cantFail(Object->getRvaPtr(RVA, IntPtr)); 1455 return makeImportedSymbolIterator(Object, IntPtr, 0); 1456 } 1457 1458 static imported_symbol_iterator 1459 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1460 uintptr_t IntPtr = 0; 1461 // FIXME: Handle errors. 1462 cantFail(Object->getRvaPtr(RVA, IntPtr)); 1463 // Forward the pointer to the last entry which is null. 1464 int Index = 0; 1465 if (Object->getBytesInAddress() == 4) { 1466 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1467 while (*Entry++) 1468 ++Index; 1469 } else { 1470 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1471 while (*Entry++) 1472 ++Index; 1473 } 1474 return makeImportedSymbolIterator(Object, IntPtr, Index); 1475 } 1476 1477 imported_symbol_iterator 1478 ImportDirectoryEntryRef::imported_symbol_begin() const { 1479 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA, 1480 OwningObject); 1481 } 1482 1483 imported_symbol_iterator 1484 ImportDirectoryEntryRef::imported_symbol_end() const { 1485 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA, 1486 OwningObject); 1487 } 1488 1489 iterator_range<imported_symbol_iterator> 1490 ImportDirectoryEntryRef::imported_symbols() const { 1491 return make_range(imported_symbol_begin(), imported_symbol_end()); 1492 } 1493 1494 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const { 1495 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1496 OwningObject); 1497 } 1498 1499 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const { 1500 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1501 OwningObject); 1502 } 1503 1504 iterator_range<imported_symbol_iterator> 1505 ImportDirectoryEntryRef::lookup_table_symbols() const { 1506 return make_range(lookup_table_begin(), lookup_table_end()); 1507 } 1508 1509 Error ImportDirectoryEntryRef::getName(StringRef &Result) const { 1510 uintptr_t IntPtr = 0; 1511 if (Error E = OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr, 1512 "import directory name")) 1513 return E; 1514 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1515 return Error::success(); 1516 } 1517 1518 Error 1519 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1520 Result = ImportTable[Index].ImportLookupTableRVA; 1521 return Error::success(); 1522 } 1523 1524 Error ImportDirectoryEntryRef::getImportAddressTableRVA( 1525 uint32_t &Result) const { 1526 Result = ImportTable[Index].ImportAddressTableRVA; 1527 return Error::success(); 1528 } 1529 1530 bool DelayImportDirectoryEntryRef:: 1531 operator==(const DelayImportDirectoryEntryRef &Other) const { 1532 return Table == Other.Table && Index == Other.Index; 1533 } 1534 1535 void DelayImportDirectoryEntryRef::moveNext() { 1536 ++Index; 1537 } 1538 1539 imported_symbol_iterator 1540 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1541 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1542 OwningObject); 1543 } 1544 1545 imported_symbol_iterator 1546 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1547 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1548 OwningObject); 1549 } 1550 1551 iterator_range<imported_symbol_iterator> 1552 DelayImportDirectoryEntryRef::imported_symbols() const { 1553 return make_range(imported_symbol_begin(), imported_symbol_end()); 1554 } 1555 1556 Error DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1557 uintptr_t IntPtr = 0; 1558 if (Error E = OwningObject->getRvaPtr(Table[Index].Name, IntPtr, 1559 "delay import directory name")) 1560 return E; 1561 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1562 return Error::success(); 1563 } 1564 1565 Error DelayImportDirectoryEntryRef::getDelayImportTable( 1566 const delay_import_directory_table_entry *&Result) const { 1567 Result = &Table[Index]; 1568 return Error::success(); 1569 } 1570 1571 Error DelayImportDirectoryEntryRef::getImportAddress(int AddrIndex, 1572 uint64_t &Result) const { 1573 uint32_t RVA = Table[Index].DelayImportAddressTable + 1574 AddrIndex * (OwningObject->is64() ? 8 : 4); 1575 uintptr_t IntPtr = 0; 1576 if (Error E = OwningObject->getRvaPtr(RVA, IntPtr, "import address")) 1577 return E; 1578 if (OwningObject->is64()) 1579 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1580 else 1581 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1582 return Error::success(); 1583 } 1584 1585 bool ExportDirectoryEntryRef:: 1586 operator==(const ExportDirectoryEntryRef &Other) const { 1587 return ExportTable == Other.ExportTable && Index == Other.Index; 1588 } 1589 1590 void ExportDirectoryEntryRef::moveNext() { 1591 ++Index; 1592 } 1593 1594 // Returns the name of the current export symbol. If the symbol is exported only 1595 // by ordinal, the empty string is set as a result. 1596 Error ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1597 uintptr_t IntPtr = 0; 1598 if (Error E = 1599 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr, "dll name")) 1600 return E; 1601 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1602 return Error::success(); 1603 } 1604 1605 // Returns the starting ordinal number. 1606 Error ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1607 Result = ExportTable->OrdinalBase; 1608 return Error::success(); 1609 } 1610 1611 // Returns the export ordinal of the current export symbol. 1612 Error ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1613 Result = ExportTable->OrdinalBase + Index; 1614 return Error::success(); 1615 } 1616 1617 // Returns the address of the current export symbol. 1618 Error ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1619 uintptr_t IntPtr = 0; 1620 if (Error EC = OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, 1621 IntPtr, "export address")) 1622 return EC; 1623 const export_address_table_entry *entry = 1624 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1625 Result = entry[Index].ExportRVA; 1626 return Error::success(); 1627 } 1628 1629 // Returns the name of the current export symbol. If the symbol is exported only 1630 // by ordinal, the empty string is set as a result. 1631 Error 1632 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1633 uintptr_t IntPtr = 0; 1634 if (Error EC = OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr, 1635 "export ordinal table")) 1636 return EC; 1637 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1638 1639 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1640 int Offset = 0; 1641 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1642 I < E; ++I, ++Offset) { 1643 if (*I != Index) 1644 continue; 1645 if (Error EC = OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr, 1646 "export table entry")) 1647 return EC; 1648 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1649 if (Error EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr, 1650 "export symbol name")) 1651 return EC; 1652 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1653 return Error::success(); 1654 } 1655 Result = ""; 1656 return Error::success(); 1657 } 1658 1659 Error ExportDirectoryEntryRef::isForwarder(bool &Result) const { 1660 const data_directory *DataEntry = 1661 OwningObject->getDataDirectory(COFF::EXPORT_TABLE); 1662 if (!DataEntry) 1663 return createStringError(object_error::parse_failed, 1664 "export table missing"); 1665 uint32_t RVA; 1666 if (auto EC = getExportRVA(RVA)) 1667 return EC; 1668 uint32_t Begin = DataEntry->RelativeVirtualAddress; 1669 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; 1670 Result = (Begin <= RVA && RVA < End); 1671 return Error::success(); 1672 } 1673 1674 Error ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { 1675 uint32_t RVA; 1676 if (auto EC = getExportRVA(RVA)) 1677 return EC; 1678 uintptr_t IntPtr = 0; 1679 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr, "export forward target")) 1680 return EC; 1681 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1682 return Error::success(); 1683 } 1684 1685 bool ImportedSymbolRef:: 1686 operator==(const ImportedSymbolRef &Other) const { 1687 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1688 && Index == Other.Index; 1689 } 1690 1691 void ImportedSymbolRef::moveNext() { 1692 ++Index; 1693 } 1694 1695 Error ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1696 uint32_t RVA; 1697 if (Entry32) { 1698 // If a symbol is imported only by ordinal, it has no name. 1699 if (Entry32[Index].isOrdinal()) 1700 return Error::success(); 1701 RVA = Entry32[Index].getHintNameRVA(); 1702 } else { 1703 if (Entry64[Index].isOrdinal()) 1704 return Error::success(); 1705 RVA = Entry64[Index].getHintNameRVA(); 1706 } 1707 uintptr_t IntPtr = 0; 1708 if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol name")) 1709 return EC; 1710 // +2 because the first two bytes is hint. 1711 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1712 return Error::success(); 1713 } 1714 1715 Error ImportedSymbolRef::isOrdinal(bool &Result) const { 1716 if (Entry32) 1717 Result = Entry32[Index].isOrdinal(); 1718 else 1719 Result = Entry64[Index].isOrdinal(); 1720 return Error::success(); 1721 } 1722 1723 Error ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const { 1724 if (Entry32) 1725 Result = Entry32[Index].getHintNameRVA(); 1726 else 1727 Result = Entry64[Index].getHintNameRVA(); 1728 return Error::success(); 1729 } 1730 1731 Error ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1732 uint32_t RVA; 1733 if (Entry32) { 1734 if (Entry32[Index].isOrdinal()) { 1735 Result = Entry32[Index].getOrdinal(); 1736 return Error::success(); 1737 } 1738 RVA = Entry32[Index].getHintNameRVA(); 1739 } else { 1740 if (Entry64[Index].isOrdinal()) { 1741 Result = Entry64[Index].getOrdinal(); 1742 return Error::success(); 1743 } 1744 RVA = Entry64[Index].getHintNameRVA(); 1745 } 1746 uintptr_t IntPtr = 0; 1747 if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol ordinal")) 1748 return EC; 1749 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1750 return Error::success(); 1751 } 1752 1753 Expected<std::unique_ptr<COFFObjectFile>> 1754 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1755 return COFFObjectFile::create(Object); 1756 } 1757 1758 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1759 return Header == Other.Header && Index == Other.Index; 1760 } 1761 1762 void BaseRelocRef::moveNext() { 1763 // Header->BlockSize is the size of the current block, including the 1764 // size of the header itself. 1765 uint32_t Size = sizeof(*Header) + 1766 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1767 if (Size == Header->BlockSize) { 1768 // .reloc contains a list of base relocation blocks. Each block 1769 // consists of the header followed by entries. The header contains 1770 // how many entories will follow. When we reach the end of the 1771 // current block, proceed to the next block. 1772 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1773 reinterpret_cast<const uint8_t *>(Header) + Size); 1774 Index = 0; 1775 } else { 1776 ++Index; 1777 } 1778 } 1779 1780 Error BaseRelocRef::getType(uint8_t &Type) const { 1781 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1782 Type = Entry[Index].getType(); 1783 return Error::success(); 1784 } 1785 1786 Error BaseRelocRef::getRVA(uint32_t &Result) const { 1787 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1788 Result = Header->PageRVA + Entry[Index].getOffset(); 1789 return Error::success(); 1790 } 1791 1792 #define RETURN_IF_ERROR(Expr) \ 1793 do { \ 1794 Error E = (Expr); \ 1795 if (E) \ 1796 return std::move(E); \ 1797 } while (0) 1798 1799 Expected<ArrayRef<UTF16>> 1800 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) { 1801 BinaryStreamReader Reader = BinaryStreamReader(BBS); 1802 Reader.setOffset(Offset); 1803 uint16_t Length; 1804 RETURN_IF_ERROR(Reader.readInteger(Length)); 1805 ArrayRef<UTF16> RawDirString; 1806 RETURN_IF_ERROR(Reader.readArray(RawDirString, Length)); 1807 return RawDirString; 1808 } 1809 1810 Expected<ArrayRef<UTF16>> 1811 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) { 1812 return getDirStringAtOffset(Entry.Identifier.getNameOffset()); 1813 } 1814 1815 Expected<const coff_resource_dir_table &> 1816 ResourceSectionRef::getTableAtOffset(uint32_t Offset) { 1817 const coff_resource_dir_table *Table = nullptr; 1818 1819 BinaryStreamReader Reader(BBS); 1820 Reader.setOffset(Offset); 1821 RETURN_IF_ERROR(Reader.readObject(Table)); 1822 assert(Table != nullptr); 1823 return *Table; 1824 } 1825 1826 Expected<const coff_resource_dir_entry &> 1827 ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) { 1828 const coff_resource_dir_entry *Entry = nullptr; 1829 1830 BinaryStreamReader Reader(BBS); 1831 Reader.setOffset(Offset); 1832 RETURN_IF_ERROR(Reader.readObject(Entry)); 1833 assert(Entry != nullptr); 1834 return *Entry; 1835 } 1836 1837 Expected<const coff_resource_data_entry &> 1838 ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) { 1839 const coff_resource_data_entry *Entry = nullptr; 1840 1841 BinaryStreamReader Reader(BBS); 1842 Reader.setOffset(Offset); 1843 RETURN_IF_ERROR(Reader.readObject(Entry)); 1844 assert(Entry != nullptr); 1845 return *Entry; 1846 } 1847 1848 Expected<const coff_resource_dir_table &> 1849 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) { 1850 assert(Entry.Offset.isSubDir()); 1851 return getTableAtOffset(Entry.Offset.value()); 1852 } 1853 1854 Expected<const coff_resource_data_entry &> 1855 ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) { 1856 assert(!Entry.Offset.isSubDir()); 1857 return getDataEntryAtOffset(Entry.Offset.value()); 1858 } 1859 1860 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() { 1861 return getTableAtOffset(0); 1862 } 1863 1864 Expected<const coff_resource_dir_entry &> 1865 ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table, 1866 uint32_t Index) { 1867 if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries)) 1868 return createStringError(object_error::parse_failed, "index out of range"); 1869 const uint8_t *TablePtr = reinterpret_cast<const uint8_t *>(&Table); 1870 ptrdiff_t TableOffset = TablePtr - BBS.data().data(); 1871 return getTableEntryAtOffset(TableOffset + sizeof(Table) + 1872 Index * sizeof(coff_resource_dir_entry)); 1873 } 1874 1875 Error ResourceSectionRef::load(const COFFObjectFile *O) { 1876 for (const SectionRef &S : O->sections()) { 1877 Expected<StringRef> Name = S.getName(); 1878 if (!Name) 1879 return Name.takeError(); 1880 1881 if (*Name == ".rsrc" || *Name == ".rsrc$01") 1882 return load(O, S); 1883 } 1884 return createStringError(object_error::parse_failed, 1885 "no resource section found"); 1886 } 1887 1888 Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) { 1889 Obj = O; 1890 Section = S; 1891 Expected<StringRef> Contents = Section.getContents(); 1892 if (!Contents) 1893 return Contents.takeError(); 1894 BBS = BinaryByteStream(*Contents, llvm::endianness::little); 1895 const coff_section *COFFSect = Obj->getCOFFSection(Section); 1896 ArrayRef<coff_relocation> OrigRelocs = Obj->getRelocations(COFFSect); 1897 Relocs.reserve(OrigRelocs.size()); 1898 for (const coff_relocation &R : OrigRelocs) 1899 Relocs.push_back(&R); 1900 llvm::sort(Relocs, [](const coff_relocation *A, const coff_relocation *B) { 1901 return A->VirtualAddress < B->VirtualAddress; 1902 }); 1903 return Error::success(); 1904 } 1905 1906 Expected<StringRef> 1907 ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) { 1908 if (!Obj) 1909 return createStringError(object_error::parse_failed, "no object provided"); 1910 1911 // Find a potential relocation at the DataRVA field (first member of 1912 // the coff_resource_data_entry struct). 1913 const uint8_t *EntryPtr = reinterpret_cast<const uint8_t *>(&Entry); 1914 ptrdiff_t EntryOffset = EntryPtr - BBS.data().data(); 1915 coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0), 1916 ulittle16_t(0)}; 1917 auto RelocsForOffset = 1918 std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget, 1919 [](const coff_relocation *A, const coff_relocation *B) { 1920 return A->VirtualAddress < B->VirtualAddress; 1921 }); 1922 1923 if (RelocsForOffset.first != RelocsForOffset.second) { 1924 // We found a relocation with the right offset. Check that it does have 1925 // the expected type. 1926 const coff_relocation &R = **RelocsForOffset.first; 1927 uint16_t RVAReloc; 1928 switch (Obj->getArch()) { 1929 case Triple::x86: 1930 RVAReloc = COFF::IMAGE_REL_I386_DIR32NB; 1931 break; 1932 case Triple::x86_64: 1933 RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB; 1934 break; 1935 case Triple::thumb: 1936 RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB; 1937 break; 1938 case Triple::aarch64: 1939 RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB; 1940 break; 1941 default: 1942 return createStringError(object_error::parse_failed, 1943 "unsupported architecture"); 1944 } 1945 if (R.Type != RVAReloc) 1946 return createStringError(object_error::parse_failed, 1947 "unexpected relocation type"); 1948 // Get the relocation's symbol 1949 Expected<COFFSymbolRef> Sym = Obj->getSymbol(R.SymbolTableIndex); 1950 if (!Sym) 1951 return Sym.takeError(); 1952 // And the symbol's section 1953 Expected<const coff_section *> Section = 1954 Obj->getSection(Sym->getSectionNumber()); 1955 if (!Section) 1956 return Section.takeError(); 1957 // Add the initial value of DataRVA to the symbol's offset to find the 1958 // data it points at. 1959 uint64_t Offset = Entry.DataRVA + Sym->getValue(); 1960 ArrayRef<uint8_t> Contents; 1961 if (Error E = Obj->getSectionContents(*Section, Contents)) 1962 return E; 1963 if (Offset + Entry.DataSize > Contents.size()) 1964 return createStringError(object_error::parse_failed, 1965 "data outside of section"); 1966 // Return a reference to the data inside the section. 1967 return StringRef(reinterpret_cast<const char *>(Contents.data()) + Offset, 1968 Entry.DataSize); 1969 } else { 1970 // Relocatable objects need a relocation for the DataRVA field. 1971 if (Obj->isRelocatableObject()) 1972 return createStringError(object_error::parse_failed, 1973 "no relocation found for DataRVA"); 1974 1975 // Locate the section that contains the address that DataRVA points at. 1976 uint64_t VA = Entry.DataRVA + Obj->getImageBase(); 1977 for (const SectionRef &S : Obj->sections()) { 1978 if (VA >= S.getAddress() && 1979 VA + Entry.DataSize <= S.getAddress() + S.getSize()) { 1980 uint64_t Offset = VA - S.getAddress(); 1981 Expected<StringRef> Contents = S.getContents(); 1982 if (!Contents) 1983 return Contents.takeError(); 1984 return Contents->slice(Offset, Offset + Entry.DataSize); 1985 } 1986 } 1987 return createStringError(object_error::parse_failed, 1988 "address not found in image"); 1989 } 1990 } 1991