1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the COFFObjectFile class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/StringSwitch.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/ADT/iterator_range.h" 18 #include "llvm/BinaryFormat/COFF.h" 19 #include "llvm/Object/Binary.h" 20 #include "llvm/Object/COFF.h" 21 #include "llvm/Object/Error.h" 22 #include "llvm/Object/ObjectFile.h" 23 #include "llvm/Support/BinaryStreamReader.h" 24 #include "llvm/Support/Endian.h" 25 #include "llvm/Support/Error.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cinttypes> 32 #include <cstddef> 33 #include <cstring> 34 #include <limits> 35 #include <memory> 36 #include <system_error> 37 38 using namespace llvm; 39 using namespace object; 40 41 using support::ulittle16_t; 42 using support::ulittle32_t; 43 using support::ulittle64_t; 44 using support::little16_t; 45 46 // Returns false if size is greater than the buffer size. And sets ec. 47 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 48 if (M.getBufferSize() < Size) { 49 EC = object_error::unexpected_eof; 50 return false; 51 } 52 return true; 53 } 54 55 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 56 // Returns unexpected_eof if error. 57 template <typename T> 58 static Error getObject(const T *&Obj, MemoryBufferRef M, const void *Ptr, 59 const uint64_t Size = sizeof(T)) { 60 uintptr_t Addr = reinterpret_cast<uintptr_t>(Ptr); 61 if (Error E = Binary::checkOffset(M, Addr, Size)) 62 return E; 63 Obj = reinterpret_cast<const T *>(Addr); 64 return Error::success(); 65 } 66 67 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 68 // prefixed slashes. 69 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 70 assert(Str.size() <= 6 && "String too long, possible overflow."); 71 if (Str.size() > 6) 72 return true; 73 74 uint64_t Value = 0; 75 while (!Str.empty()) { 76 unsigned CharVal; 77 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 78 CharVal = Str[0] - 'A'; 79 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 80 CharVal = Str[0] - 'a' + 26; 81 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 82 CharVal = Str[0] - '0' + 52; 83 else if (Str[0] == '+') // 62 84 CharVal = 62; 85 else if (Str[0] == '/') // 63 86 CharVal = 63; 87 else 88 return true; 89 90 Value = (Value * 64) + CharVal; 91 Str = Str.substr(1); 92 } 93 94 if (Value > std::numeric_limits<uint32_t>::max()) 95 return true; 96 97 Result = static_cast<uint32_t>(Value); 98 return false; 99 } 100 101 template <typename coff_symbol_type> 102 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 103 const coff_symbol_type *Addr = 104 reinterpret_cast<const coff_symbol_type *>(Ref.p); 105 106 assert(!checkOffset(Data, reinterpret_cast<uintptr_t>(Addr), sizeof(*Addr))); 107 #ifndef NDEBUG 108 // Verify that the symbol points to a valid entry in the symbol table. 109 uintptr_t Offset = 110 reinterpret_cast<uintptr_t>(Addr) - reinterpret_cast<uintptr_t>(base()); 111 112 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 113 "Symbol did not point to the beginning of a symbol"); 114 #endif 115 116 return Addr; 117 } 118 119 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 120 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 121 122 #ifndef NDEBUG 123 // Verify that the section points to a valid entry in the section table. 124 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 125 report_fatal_error("Section was outside of section table."); 126 127 uintptr_t Offset = reinterpret_cast<uintptr_t>(Addr) - 128 reinterpret_cast<uintptr_t>(SectionTable); 129 assert(Offset % sizeof(coff_section) == 0 && 130 "Section did not point to the beginning of a section"); 131 #endif 132 133 return Addr; 134 } 135 136 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 137 auto End = reinterpret_cast<uintptr_t>(StringTable); 138 if (SymbolTable16) { 139 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 140 Symb += 1 + Symb->NumberOfAuxSymbols; 141 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 142 } else if (SymbolTable32) { 143 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 144 Symb += 1 + Symb->NumberOfAuxSymbols; 145 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 146 } else { 147 llvm_unreachable("no symbol table pointer!"); 148 } 149 } 150 151 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 152 return getSymbolName(getCOFFSymbol(Ref)); 153 } 154 155 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 156 return getCOFFSymbol(Ref).getValue(); 157 } 158 159 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const { 160 // MSVC/link.exe seems to align symbols to the next-power-of-2 161 // up to 32 bytes. 162 COFFSymbolRef Symb = getCOFFSymbol(Ref); 163 return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue())); 164 } 165 166 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 167 uint64_t Result = cantFail(getSymbolValue(Ref)); 168 COFFSymbolRef Symb = getCOFFSymbol(Ref); 169 int32_t SectionNumber = Symb.getSectionNumber(); 170 171 if (Symb.isAnyUndefined() || Symb.isCommon() || 172 COFF::isReservedSectionNumber(SectionNumber)) 173 return Result; 174 175 Expected<const coff_section *> Section = getSection(SectionNumber); 176 if (!Section) 177 return Section.takeError(); 178 Result += (*Section)->VirtualAddress; 179 180 // The section VirtualAddress does not include ImageBase, and we want to 181 // return virtual addresses. 182 Result += getImageBase(); 183 184 return Result; 185 } 186 187 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 188 COFFSymbolRef Symb = getCOFFSymbol(Ref); 189 int32_t SectionNumber = Symb.getSectionNumber(); 190 191 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 192 return SymbolRef::ST_Function; 193 if (Symb.isAnyUndefined()) 194 return SymbolRef::ST_Unknown; 195 if (Symb.isCommon()) 196 return SymbolRef::ST_Data; 197 if (Symb.isFileRecord()) 198 return SymbolRef::ST_File; 199 200 // TODO: perhaps we need a new symbol type ST_Section. 201 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 202 return SymbolRef::ST_Debug; 203 204 if (!COFF::isReservedSectionNumber(SectionNumber)) 205 return SymbolRef::ST_Data; 206 207 return SymbolRef::ST_Other; 208 } 209 210 Expected<uint32_t> COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 211 COFFSymbolRef Symb = getCOFFSymbol(Ref); 212 uint32_t Result = SymbolRef::SF_None; 213 214 if (Symb.isExternal() || Symb.isWeakExternal()) 215 Result |= SymbolRef::SF_Global; 216 217 if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) { 218 Result |= SymbolRef::SF_Weak; 219 if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS) 220 Result |= SymbolRef::SF_Undefined; 221 } 222 223 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 224 Result |= SymbolRef::SF_Absolute; 225 226 if (Symb.isFileRecord()) 227 Result |= SymbolRef::SF_FormatSpecific; 228 229 if (Symb.isSectionDefinition()) 230 Result |= SymbolRef::SF_FormatSpecific; 231 232 if (Symb.isCommon()) 233 Result |= SymbolRef::SF_Common; 234 235 if (Symb.isUndefined()) 236 Result |= SymbolRef::SF_Undefined; 237 238 return Result; 239 } 240 241 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 242 COFFSymbolRef Symb = getCOFFSymbol(Ref); 243 return Symb.getValue(); 244 } 245 246 Expected<section_iterator> 247 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 248 COFFSymbolRef Symb = getCOFFSymbol(Ref); 249 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 250 return section_end(); 251 Expected<const coff_section *> Sec = getSection(Symb.getSectionNumber()); 252 if (!Sec) 253 return Sec.takeError(); 254 DataRefImpl Ret; 255 Ret.p = reinterpret_cast<uintptr_t>(*Sec); 256 return section_iterator(SectionRef(Ret, this)); 257 } 258 259 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 260 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 261 return Symb.getSectionNumber(); 262 } 263 264 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 265 const coff_section *Sec = toSec(Ref); 266 Sec += 1; 267 Ref.p = reinterpret_cast<uintptr_t>(Sec); 268 } 269 270 Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const { 271 const coff_section *Sec = toSec(Ref); 272 return getSectionName(Sec); 273 } 274 275 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 276 const coff_section *Sec = toSec(Ref); 277 uint64_t Result = Sec->VirtualAddress; 278 279 // The section VirtualAddress does not include ImageBase, and we want to 280 // return virtual addresses. 281 Result += getImageBase(); 282 return Result; 283 } 284 285 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const { 286 return toSec(Sec) - SectionTable; 287 } 288 289 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 290 return getSectionSize(toSec(Ref)); 291 } 292 293 Expected<ArrayRef<uint8_t>> 294 COFFObjectFile::getSectionContents(DataRefImpl Ref) const { 295 const coff_section *Sec = toSec(Ref); 296 ArrayRef<uint8_t> Res; 297 if (Error E = getSectionContents(Sec, Res)) 298 return std::move(E); 299 return Res; 300 } 301 302 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 303 const coff_section *Sec = toSec(Ref); 304 return Sec->getAlignment(); 305 } 306 307 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { 308 return false; 309 } 310 311 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 312 const coff_section *Sec = toSec(Ref); 313 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 314 } 315 316 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 317 const coff_section *Sec = toSec(Ref); 318 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 319 } 320 321 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 322 const coff_section *Sec = toSec(Ref); 323 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 324 COFF::IMAGE_SCN_MEM_READ | 325 COFF::IMAGE_SCN_MEM_WRITE; 326 return (Sec->Characteristics & BssFlags) == BssFlags; 327 } 328 329 // The .debug sections are the only debug sections for COFF 330 // (\see MCObjectFileInfo.cpp). 331 bool COFFObjectFile::isDebugSection(StringRef SectionName) const { 332 return SectionName.startswith(".debug"); 333 } 334 335 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 336 uintptr_t Offset = 337 Sec.getRawDataRefImpl().p - reinterpret_cast<uintptr_t>(SectionTable); 338 assert((Offset % sizeof(coff_section)) == 0); 339 return (Offset / sizeof(coff_section)) + 1; 340 } 341 342 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 343 const coff_section *Sec = toSec(Ref); 344 // In COFF, a virtual section won't have any in-file 345 // content, so the file pointer to the content will be zero. 346 return Sec->PointerToRawData == 0; 347 } 348 349 static uint32_t getNumberOfRelocations(const coff_section *Sec, 350 MemoryBufferRef M, const uint8_t *base) { 351 // The field for the number of relocations in COFF section table is only 352 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 353 // NumberOfRelocations field, and the actual relocation count is stored in the 354 // VirtualAddress field in the first relocation entry. 355 if (Sec->hasExtendedRelocations()) { 356 const coff_relocation *FirstReloc; 357 if (Error E = getObject(FirstReloc, M, 358 reinterpret_cast<const coff_relocation *>( 359 base + Sec->PointerToRelocations))) { 360 consumeError(std::move(E)); 361 return 0; 362 } 363 // -1 to exclude this first relocation entry. 364 return FirstReloc->VirtualAddress - 1; 365 } 366 return Sec->NumberOfRelocations; 367 } 368 369 static const coff_relocation * 370 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 371 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 372 if (!NumRelocs) 373 return nullptr; 374 auto begin = reinterpret_cast<const coff_relocation *>( 375 Base + Sec->PointerToRelocations); 376 if (Sec->hasExtendedRelocations()) { 377 // Skip the first relocation entry repurposed to store the number of 378 // relocations. 379 begin++; 380 } 381 if (auto E = Binary::checkOffset(M, reinterpret_cast<uintptr_t>(begin), 382 sizeof(coff_relocation) * NumRelocs)) { 383 consumeError(std::move(E)); 384 return nullptr; 385 } 386 return begin; 387 } 388 389 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 390 const coff_section *Sec = toSec(Ref); 391 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 392 if (begin && Sec->VirtualAddress != 0) 393 report_fatal_error("Sections with relocations should have an address of 0"); 394 DataRefImpl Ret; 395 Ret.p = reinterpret_cast<uintptr_t>(begin); 396 return relocation_iterator(RelocationRef(Ret, this)); 397 } 398 399 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 400 const coff_section *Sec = toSec(Ref); 401 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 402 if (I) 403 I += getNumberOfRelocations(Sec, Data, base()); 404 DataRefImpl Ret; 405 Ret.p = reinterpret_cast<uintptr_t>(I); 406 return relocation_iterator(RelocationRef(Ret, this)); 407 } 408 409 // Initialize the pointer to the symbol table. 410 Error COFFObjectFile::initSymbolTablePtr() { 411 if (COFFHeader) 412 if (Error E = getObject( 413 SymbolTable16, Data, base() + getPointerToSymbolTable(), 414 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 415 return E; 416 417 if (COFFBigObjHeader) 418 if (Error E = getObject( 419 SymbolTable32, Data, base() + getPointerToSymbolTable(), 420 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 421 return E; 422 423 // Find string table. The first four byte of the string table contains the 424 // total size of the string table, including the size field itself. If the 425 // string table is empty, the value of the first four byte would be 4. 426 uint32_t StringTableOffset = getPointerToSymbolTable() + 427 getNumberOfSymbols() * getSymbolTableEntrySize(); 428 const uint8_t *StringTableAddr = base() + StringTableOffset; 429 const ulittle32_t *StringTableSizePtr; 430 if (Error E = getObject(StringTableSizePtr, Data, StringTableAddr)) 431 return E; 432 StringTableSize = *StringTableSizePtr; 433 if (Error E = getObject(StringTable, Data, StringTableAddr, StringTableSize)) 434 return E; 435 436 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 437 // tools like cvtres write a size of 0 for an empty table instead of 4. 438 if (StringTableSize < 4) 439 StringTableSize = 4; 440 441 // Check that the string table is null terminated if has any in it. 442 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 443 return errorCodeToError(object_error::parse_failed); 444 return Error::success(); 445 } 446 447 uint64_t COFFObjectFile::getImageBase() const { 448 if (PE32Header) 449 return PE32Header->ImageBase; 450 else if (PE32PlusHeader) 451 return PE32PlusHeader->ImageBase; 452 // This actually comes up in practice. 453 return 0; 454 } 455 456 // Returns the file offset for the given VA. 457 Error COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 458 uint64_t ImageBase = getImageBase(); 459 uint64_t Rva = Addr - ImageBase; 460 assert(Rva <= UINT32_MAX); 461 return getRvaPtr((uint32_t)Rva, Res); 462 } 463 464 // Returns the file offset for the given RVA. 465 Error COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 466 for (const SectionRef &S : sections()) { 467 const coff_section *Section = getCOFFSection(S); 468 uint32_t SectionStart = Section->VirtualAddress; 469 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 470 if (SectionStart <= Addr && Addr < SectionEnd) { 471 uint32_t Offset = Addr - SectionStart; 472 Res = reinterpret_cast<uintptr_t>(base()) + Section->PointerToRawData + 473 Offset; 474 return Error::success(); 475 } 476 } 477 return errorCodeToError(object_error::parse_failed); 478 } 479 480 Error COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size, 481 ArrayRef<uint8_t> &Contents) const { 482 for (const SectionRef &S : sections()) { 483 const coff_section *Section = getCOFFSection(S); 484 uint32_t SectionStart = Section->VirtualAddress; 485 // Check if this RVA is within the section bounds. Be careful about integer 486 // overflow. 487 uint32_t OffsetIntoSection = RVA - SectionStart; 488 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize && 489 Size <= Section->VirtualSize - OffsetIntoSection) { 490 uintptr_t Begin = reinterpret_cast<uintptr_t>(base()) + 491 Section->PointerToRawData + OffsetIntoSection; 492 Contents = 493 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size); 494 return Error::success(); 495 } 496 } 497 return errorCodeToError(object_error::parse_failed); 498 } 499 500 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 501 // table entry. 502 Error COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 503 StringRef &Name) const { 504 uintptr_t IntPtr = 0; 505 if (Error E = getRvaPtr(Rva, IntPtr)) 506 return E; 507 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 508 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 509 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 510 return Error::success(); 511 } 512 513 Error COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir, 514 const codeview::DebugInfo *&PDBInfo, 515 StringRef &PDBFileName) const { 516 ArrayRef<uint8_t> InfoBytes; 517 if (Error E = getRvaAndSizeAsBytes( 518 DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes)) 519 return E; 520 if (InfoBytes.size() < sizeof(*PDBInfo) + 1) 521 return errorCodeToError(object_error::parse_failed); 522 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data()); 523 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo)); 524 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()), 525 InfoBytes.size()); 526 // Truncate the name at the first null byte. Ignore any padding. 527 PDBFileName = PDBFileName.split('\0').first; 528 return Error::success(); 529 } 530 531 Error COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo, 532 StringRef &PDBFileName) const { 533 for (const debug_directory &D : debug_directories()) 534 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW) 535 return getDebugPDBInfo(&D, PDBInfo, PDBFileName); 536 // If we get here, there is no PDB info to return. 537 PDBInfo = nullptr; 538 PDBFileName = StringRef(); 539 return Error::success(); 540 } 541 542 // Find the import table. 543 Error COFFObjectFile::initImportTablePtr() { 544 // First, we get the RVA of the import table. If the file lacks a pointer to 545 // the import table, do nothing. 546 const data_directory *DataEntry = getDataDirectory(COFF::IMPORT_TABLE); 547 if (!DataEntry) 548 return Error::success(); 549 550 // Do nothing if the pointer to import table is NULL. 551 if (DataEntry->RelativeVirtualAddress == 0) 552 return Error::success(); 553 554 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 555 556 // Find the section that contains the RVA. This is needed because the RVA is 557 // the import table's memory address which is different from its file offset. 558 uintptr_t IntPtr = 0; 559 if (Error E = getRvaPtr(ImportTableRva, IntPtr)) 560 return E; 561 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 562 return E; 563 ImportDirectory = reinterpret_cast< 564 const coff_import_directory_table_entry *>(IntPtr); 565 return Error::success(); 566 } 567 568 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 569 Error COFFObjectFile::initDelayImportTablePtr() { 570 const data_directory *DataEntry = 571 getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR); 572 if (!DataEntry) 573 return Error::success(); 574 if (DataEntry->RelativeVirtualAddress == 0) 575 return Error::success(); 576 577 uint32_t RVA = DataEntry->RelativeVirtualAddress; 578 NumberOfDelayImportDirectory = DataEntry->Size / 579 sizeof(delay_import_directory_table_entry) - 1; 580 581 uintptr_t IntPtr = 0; 582 if (Error E = getRvaPtr(RVA, IntPtr)) 583 return E; 584 DelayImportDirectory = reinterpret_cast< 585 const delay_import_directory_table_entry *>(IntPtr); 586 return Error::success(); 587 } 588 589 // Find the export table. 590 Error COFFObjectFile::initExportTablePtr() { 591 // First, we get the RVA of the export table. If the file lacks a pointer to 592 // the export table, do nothing. 593 const data_directory *DataEntry = getDataDirectory(COFF::EXPORT_TABLE); 594 if (!DataEntry) 595 return Error::success(); 596 597 // Do nothing if the pointer to export table is NULL. 598 if (DataEntry->RelativeVirtualAddress == 0) 599 return Error::success(); 600 601 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 602 uintptr_t IntPtr = 0; 603 if (Error E = getRvaPtr(ExportTableRva, IntPtr)) 604 return E; 605 ExportDirectory = 606 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 607 return Error::success(); 608 } 609 610 Error COFFObjectFile::initBaseRelocPtr() { 611 const data_directory *DataEntry = 612 getDataDirectory(COFF::BASE_RELOCATION_TABLE); 613 if (!DataEntry) 614 return Error::success(); 615 if (DataEntry->RelativeVirtualAddress == 0) 616 return Error::success(); 617 618 uintptr_t IntPtr = 0; 619 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 620 return E; 621 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 622 IntPtr); 623 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 624 IntPtr + DataEntry->Size); 625 // FIXME: Verify the section containing BaseRelocHeader has at least 626 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 627 return Error::success(); 628 } 629 630 Error COFFObjectFile::initDebugDirectoryPtr() { 631 // Get the RVA of the debug directory. Do nothing if it does not exist. 632 const data_directory *DataEntry = getDataDirectory(COFF::DEBUG_DIRECTORY); 633 if (!DataEntry) 634 return Error::success(); 635 636 // Do nothing if the RVA is NULL. 637 if (DataEntry->RelativeVirtualAddress == 0) 638 return Error::success(); 639 640 // Check that the size is a multiple of the entry size. 641 if (DataEntry->Size % sizeof(debug_directory) != 0) 642 return errorCodeToError(object_error::parse_failed); 643 644 uintptr_t IntPtr = 0; 645 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 646 return E; 647 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr); 648 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>( 649 IntPtr + DataEntry->Size); 650 // FIXME: Verify the section containing DebugDirectoryBegin has at least 651 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 652 return Error::success(); 653 } 654 655 Error COFFObjectFile::initTLSDirectoryPtr() { 656 // Get the RVA of the TLS directory. Do nothing if it does not exist. 657 const data_directory *DataEntry = getDataDirectory(COFF::TLS_TABLE); 658 if (!DataEntry) 659 return Error::success(); 660 661 // Do nothing if the RVA is NULL. 662 if (DataEntry->RelativeVirtualAddress == 0) 663 return Error::success(); 664 665 uint64_t DirSize = 666 is64() ? sizeof(coff_tls_directory64) : sizeof(coff_tls_directory32); 667 668 // Check that the size is correct. 669 if (DataEntry->Size != DirSize) 670 return createStringError( 671 object_error::parse_failed, 672 "TLS Directory size (%u) is not the expected size (%" PRIu64 ").", 673 static_cast<uint32_t>(DataEntry->Size), DirSize); 674 675 uintptr_t IntPtr = 0; 676 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 677 return E; 678 679 if (is64()) 680 TLSDirectory64 = reinterpret_cast<const coff_tls_directory64 *>(IntPtr); 681 else 682 TLSDirectory32 = reinterpret_cast<const coff_tls_directory32 *>(IntPtr); 683 684 return Error::success(); 685 } 686 687 Error COFFObjectFile::initLoadConfigPtr() { 688 // Get the RVA of the debug directory. Do nothing if it does not exist. 689 const data_directory *DataEntry = getDataDirectory(COFF::LOAD_CONFIG_TABLE); 690 if (!DataEntry) 691 return Error::success(); 692 693 // Do nothing if the RVA is NULL. 694 if (DataEntry->RelativeVirtualAddress == 0) 695 return Error::success(); 696 uintptr_t IntPtr = 0; 697 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 698 return E; 699 700 LoadConfig = (const void *)IntPtr; 701 return Error::success(); 702 } 703 704 Expected<std::unique_ptr<COFFObjectFile>> 705 COFFObjectFile::create(MemoryBufferRef Object) { 706 std::unique_ptr<COFFObjectFile> Obj(new COFFObjectFile(std::move(Object))); 707 if (Error E = Obj->initialize()) 708 return std::move(E); 709 return std::move(Obj); 710 } 711 712 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object) 713 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 714 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 715 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 716 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 717 ImportDirectory(nullptr), DelayImportDirectory(nullptr), 718 NumberOfDelayImportDirectory(0), ExportDirectory(nullptr), 719 BaseRelocHeader(nullptr), BaseRelocEnd(nullptr), 720 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr), 721 TLSDirectory32(nullptr), TLSDirectory64(nullptr) {} 722 723 Error COFFObjectFile::initialize() { 724 // Check that we at least have enough room for a header. 725 std::error_code EC; 726 if (!checkSize(Data, EC, sizeof(coff_file_header))) 727 return errorCodeToError(EC); 728 729 // The current location in the file where we are looking at. 730 uint64_t CurPtr = 0; 731 732 // PE header is optional and is present only in executables. If it exists, 733 // it is placed right after COFF header. 734 bool HasPEHeader = false; 735 736 // Check if this is a PE/COFF file. 737 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 738 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 739 // PE signature to find 'normal' COFF header. 740 const auto *DH = reinterpret_cast<const dos_header *>(base()); 741 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 742 CurPtr = DH->AddressOfNewExeHeader; 743 // Check the PE magic bytes. ("PE\0\0") 744 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 745 return errorCodeToError(object_error::parse_failed); 746 } 747 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 748 HasPEHeader = true; 749 } 750 } 751 752 if (Error E = getObject(COFFHeader, Data, base() + CurPtr)) 753 return E; 754 755 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 756 // import libraries share a common prefix but bigobj is more restrictive. 757 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 758 COFFHeader->NumberOfSections == uint16_t(0xffff) && 759 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 760 if (Error E = getObject(COFFBigObjHeader, Data, base() + CurPtr)) 761 return E; 762 763 // Verify that we are dealing with bigobj. 764 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 765 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 766 sizeof(COFF::BigObjMagic)) == 0) { 767 COFFHeader = nullptr; 768 CurPtr += sizeof(coff_bigobj_file_header); 769 } else { 770 // It's not a bigobj. 771 COFFBigObjHeader = nullptr; 772 } 773 } 774 if (COFFHeader) { 775 // The prior checkSize call may have failed. This isn't a hard error 776 // because we were just trying to sniff out bigobj. 777 EC = std::error_code(); 778 CurPtr += sizeof(coff_file_header); 779 780 if (COFFHeader->isImportLibrary()) 781 return errorCodeToError(EC); 782 } 783 784 if (HasPEHeader) { 785 const pe32_header *Header; 786 if (Error E = getObject(Header, Data, base() + CurPtr)) 787 return E; 788 789 const uint8_t *DataDirAddr; 790 uint64_t DataDirSize; 791 if (Header->Magic == COFF::PE32Header::PE32) { 792 PE32Header = Header; 793 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 794 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 795 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 796 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 797 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 798 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 799 } else { 800 // It's neither PE32 nor PE32+. 801 return errorCodeToError(object_error::parse_failed); 802 } 803 if (Error E = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)) 804 return E; 805 } 806 807 if (COFFHeader) 808 CurPtr += COFFHeader->SizeOfOptionalHeader; 809 810 assert(COFFHeader || COFFBigObjHeader); 811 812 if (Error E = 813 getObject(SectionTable, Data, base() + CurPtr, 814 (uint64_t)getNumberOfSections() * sizeof(coff_section))) 815 return E; 816 817 // Initialize the pointer to the symbol table. 818 if (getPointerToSymbolTable() != 0) { 819 if (Error E = initSymbolTablePtr()) { 820 // Recover from errors reading the symbol table. 821 consumeError(std::move(E)); 822 SymbolTable16 = nullptr; 823 SymbolTable32 = nullptr; 824 StringTable = nullptr; 825 StringTableSize = 0; 826 } 827 } else { 828 // We had better not have any symbols if we don't have a symbol table. 829 if (getNumberOfSymbols() != 0) { 830 return errorCodeToError(object_error::parse_failed); 831 } 832 } 833 834 // Initialize the pointer to the beginning of the import table. 835 if (Error E = initImportTablePtr()) 836 return E; 837 if (Error E = initDelayImportTablePtr()) 838 return E; 839 840 // Initialize the pointer to the export table. 841 if (Error E = initExportTablePtr()) 842 return E; 843 844 // Initialize the pointer to the base relocation table. 845 if (Error E = initBaseRelocPtr()) 846 return E; 847 848 // Initialize the pointer to the debug directory. 849 if (Error E = initDebugDirectoryPtr()) 850 return E; 851 852 // Initialize the pointer to the TLS directory. 853 if (Error E = initTLSDirectoryPtr()) 854 return E; 855 856 if (Error E = initLoadConfigPtr()) 857 return E; 858 859 return Error::success(); 860 } 861 862 basic_symbol_iterator COFFObjectFile::symbol_begin() const { 863 DataRefImpl Ret; 864 Ret.p = getSymbolTable(); 865 return basic_symbol_iterator(SymbolRef(Ret, this)); 866 } 867 868 basic_symbol_iterator COFFObjectFile::symbol_end() const { 869 // The symbol table ends where the string table begins. 870 DataRefImpl Ret; 871 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 872 return basic_symbol_iterator(SymbolRef(Ret, this)); 873 } 874 875 import_directory_iterator COFFObjectFile::import_directory_begin() const { 876 if (!ImportDirectory) 877 return import_directory_end(); 878 if (ImportDirectory->isNull()) 879 return import_directory_end(); 880 return import_directory_iterator( 881 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 882 } 883 884 import_directory_iterator COFFObjectFile::import_directory_end() const { 885 return import_directory_iterator( 886 ImportDirectoryEntryRef(nullptr, -1, this)); 887 } 888 889 delay_import_directory_iterator 890 COFFObjectFile::delay_import_directory_begin() const { 891 return delay_import_directory_iterator( 892 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 893 } 894 895 delay_import_directory_iterator 896 COFFObjectFile::delay_import_directory_end() const { 897 return delay_import_directory_iterator( 898 DelayImportDirectoryEntryRef( 899 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 900 } 901 902 export_directory_iterator COFFObjectFile::export_directory_begin() const { 903 return export_directory_iterator( 904 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 905 } 906 907 export_directory_iterator COFFObjectFile::export_directory_end() const { 908 if (!ExportDirectory) 909 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 910 ExportDirectoryEntryRef Ref(ExportDirectory, 911 ExportDirectory->AddressTableEntries, this); 912 return export_directory_iterator(Ref); 913 } 914 915 section_iterator COFFObjectFile::section_begin() const { 916 DataRefImpl Ret; 917 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 918 return section_iterator(SectionRef(Ret, this)); 919 } 920 921 section_iterator COFFObjectFile::section_end() const { 922 DataRefImpl Ret; 923 int NumSections = 924 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 925 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 926 return section_iterator(SectionRef(Ret, this)); 927 } 928 929 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 930 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 931 } 932 933 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 934 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 935 } 936 937 uint8_t COFFObjectFile::getBytesInAddress() const { 938 return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4; 939 } 940 941 StringRef COFFObjectFile::getFileFormatName() const { 942 switch(getMachine()) { 943 case COFF::IMAGE_FILE_MACHINE_I386: 944 return "COFF-i386"; 945 case COFF::IMAGE_FILE_MACHINE_AMD64: 946 return "COFF-x86-64"; 947 case COFF::IMAGE_FILE_MACHINE_ARMNT: 948 return "COFF-ARM"; 949 case COFF::IMAGE_FILE_MACHINE_ARM64: 950 return "COFF-ARM64"; 951 default: 952 return "COFF-<unknown arch>"; 953 } 954 } 955 956 Triple::ArchType COFFObjectFile::getArch() const { 957 switch (getMachine()) { 958 case COFF::IMAGE_FILE_MACHINE_I386: 959 return Triple::x86; 960 case COFF::IMAGE_FILE_MACHINE_AMD64: 961 return Triple::x86_64; 962 case COFF::IMAGE_FILE_MACHINE_ARMNT: 963 return Triple::thumb; 964 case COFF::IMAGE_FILE_MACHINE_ARM64: 965 return Triple::aarch64; 966 default: 967 return Triple::UnknownArch; 968 } 969 } 970 971 Expected<uint64_t> COFFObjectFile::getStartAddress() const { 972 if (PE32Header) 973 return PE32Header->AddressOfEntryPoint; 974 return 0; 975 } 976 977 iterator_range<import_directory_iterator> 978 COFFObjectFile::import_directories() const { 979 return make_range(import_directory_begin(), import_directory_end()); 980 } 981 982 iterator_range<delay_import_directory_iterator> 983 COFFObjectFile::delay_import_directories() const { 984 return make_range(delay_import_directory_begin(), 985 delay_import_directory_end()); 986 } 987 988 iterator_range<export_directory_iterator> 989 COFFObjectFile::export_directories() const { 990 return make_range(export_directory_begin(), export_directory_end()); 991 } 992 993 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 994 return make_range(base_reloc_begin(), base_reloc_end()); 995 } 996 997 const data_directory *COFFObjectFile::getDataDirectory(uint32_t Index) const { 998 if (!DataDirectory) 999 return nullptr; 1000 assert(PE32Header || PE32PlusHeader); 1001 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 1002 : PE32PlusHeader->NumberOfRvaAndSize; 1003 if (Index >= NumEnt) 1004 return nullptr; 1005 return &DataDirectory[Index]; 1006 } 1007 1008 Expected<const coff_section *> COFFObjectFile::getSection(int32_t Index) const { 1009 // Perhaps getting the section of a reserved section index should be an error, 1010 // but callers rely on this to return null. 1011 if (COFF::isReservedSectionNumber(Index)) 1012 return (const coff_section *)nullptr; 1013 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 1014 // We already verified the section table data, so no need to check again. 1015 return SectionTable + (Index - 1); 1016 } 1017 return errorCodeToError(object_error::parse_failed); 1018 } 1019 1020 Expected<StringRef> COFFObjectFile::getString(uint32_t Offset) const { 1021 if (StringTableSize <= 4) 1022 // Tried to get a string from an empty string table. 1023 return errorCodeToError(object_error::parse_failed); 1024 if (Offset >= StringTableSize) 1025 return errorCodeToError(object_error::unexpected_eof); 1026 return StringRef(StringTable + Offset); 1027 } 1028 1029 Expected<StringRef> COFFObjectFile::getSymbolName(COFFSymbolRef Symbol) const { 1030 return getSymbolName(Symbol.getGeneric()); 1031 } 1032 1033 Expected<StringRef> 1034 COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol) const { 1035 // Check for string table entry. First 4 bytes are 0. 1036 if (Symbol->Name.Offset.Zeroes == 0) 1037 return getString(Symbol->Name.Offset.Offset); 1038 1039 // Null terminated, let ::strlen figure out the length. 1040 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 1041 return StringRef(Symbol->Name.ShortName); 1042 1043 // Not null terminated, use all 8 bytes. 1044 return StringRef(Symbol->Name.ShortName, COFF::NameSize); 1045 } 1046 1047 ArrayRef<uint8_t> 1048 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 1049 const uint8_t *Aux = nullptr; 1050 1051 size_t SymbolSize = getSymbolTableEntrySize(); 1052 if (Symbol.getNumberOfAuxSymbols() > 0) { 1053 // AUX data comes immediately after the symbol in COFF 1054 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 1055 #ifndef NDEBUG 1056 // Verify that the Aux symbol points to a valid entry in the symbol table. 1057 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 1058 if (Offset < getPointerToSymbolTable() || 1059 Offset >= 1060 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 1061 report_fatal_error("Aux Symbol data was outside of symbol table."); 1062 1063 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 1064 "Aux Symbol data did not point to the beginning of a symbol"); 1065 #endif 1066 } 1067 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 1068 } 1069 1070 uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const { 1071 uintptr_t Offset = 1072 reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable(); 1073 assert(Offset % getSymbolTableEntrySize() == 0 && 1074 "Symbol did not point to the beginning of a symbol"); 1075 size_t Index = Offset / getSymbolTableEntrySize(); 1076 assert(Index < getNumberOfSymbols()); 1077 return Index; 1078 } 1079 1080 Expected<StringRef> 1081 COFFObjectFile::getSectionName(const coff_section *Sec) const { 1082 StringRef Name; 1083 if (Sec->Name[COFF::NameSize - 1] == 0) 1084 // Null terminated, let ::strlen figure out the length. 1085 Name = Sec->Name; 1086 else 1087 // Not null terminated, use all 8 bytes. 1088 Name = StringRef(Sec->Name, COFF::NameSize); 1089 1090 // Check for string table entry. First byte is '/'. 1091 if (Name.startswith("/")) { 1092 uint32_t Offset; 1093 if (Name.startswith("//")) { 1094 if (decodeBase64StringEntry(Name.substr(2), Offset)) 1095 return createStringError(object_error::parse_failed, 1096 "invalid section name"); 1097 } else { 1098 if (Name.substr(1).getAsInteger(10, Offset)) 1099 return createStringError(object_error::parse_failed, 1100 "invalid section name"); 1101 } 1102 return getString(Offset); 1103 } 1104 1105 return Name; 1106 } 1107 1108 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 1109 // SizeOfRawData and VirtualSize change what they represent depending on 1110 // whether or not we have an executable image. 1111 // 1112 // For object files, SizeOfRawData contains the size of section's data; 1113 // VirtualSize should be zero but isn't due to buggy COFF writers. 1114 // 1115 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 1116 // actual section size is in VirtualSize. It is possible for VirtualSize to 1117 // be greater than SizeOfRawData; the contents past that point should be 1118 // considered to be zero. 1119 if (getDOSHeader()) 1120 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 1121 return Sec->SizeOfRawData; 1122 } 1123 1124 Error COFFObjectFile::getSectionContents(const coff_section *Sec, 1125 ArrayRef<uint8_t> &Res) const { 1126 // In COFF, a virtual section won't have any in-file 1127 // content, so the file pointer to the content will be zero. 1128 if (Sec->PointerToRawData == 0) 1129 return Error::success(); 1130 // The only thing that we need to verify is that the contents is contained 1131 // within the file bounds. We don't need to make sure it doesn't cover other 1132 // data, as there's nothing that says that is not allowed. 1133 uintptr_t ConStart = 1134 reinterpret_cast<uintptr_t>(base()) + Sec->PointerToRawData; 1135 uint32_t SectionSize = getSectionSize(Sec); 1136 if (Error E = checkOffset(Data, ConStart, SectionSize)) 1137 return E; 1138 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 1139 return Error::success(); 1140 } 1141 1142 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 1143 return reinterpret_cast<const coff_relocation*>(Rel.p); 1144 } 1145 1146 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 1147 Rel.p = reinterpret_cast<uintptr_t>( 1148 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 1149 } 1150 1151 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 1152 const coff_relocation *R = toRel(Rel); 1153 return R->VirtualAddress; 1154 } 1155 1156 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1157 const coff_relocation *R = toRel(Rel); 1158 DataRefImpl Ref; 1159 if (R->SymbolTableIndex >= getNumberOfSymbols()) 1160 return symbol_end(); 1161 if (SymbolTable16) 1162 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1163 else if (SymbolTable32) 1164 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1165 else 1166 llvm_unreachable("no symbol table pointer!"); 1167 return symbol_iterator(SymbolRef(Ref, this)); 1168 } 1169 1170 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 1171 const coff_relocation* R = toRel(Rel); 1172 return R->Type; 1173 } 1174 1175 const coff_section * 1176 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1177 return toSec(Section.getRawDataRefImpl()); 1178 } 1179 1180 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1181 if (SymbolTable16) 1182 return toSymb<coff_symbol16>(Ref); 1183 if (SymbolTable32) 1184 return toSymb<coff_symbol32>(Ref); 1185 llvm_unreachable("no symbol table pointer!"); 1186 } 1187 1188 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1189 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1190 } 1191 1192 const coff_relocation * 1193 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1194 return toRel(Reloc.getRawDataRefImpl()); 1195 } 1196 1197 ArrayRef<coff_relocation> 1198 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1199 return {getFirstReloc(Sec, Data, base()), 1200 getNumberOfRelocations(Sec, Data, base())}; 1201 } 1202 1203 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1204 case COFF::reloc_type: \ 1205 return #reloc_type; 1206 1207 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const { 1208 switch (getMachine()) { 1209 case COFF::IMAGE_FILE_MACHINE_AMD64: 1210 switch (Type) { 1211 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1212 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1213 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1214 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1215 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1216 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1217 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1218 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1219 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1220 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1221 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1222 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1223 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1224 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1225 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1226 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1227 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1228 default: 1229 return "Unknown"; 1230 } 1231 break; 1232 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1233 switch (Type) { 1234 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1235 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1236 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1237 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1238 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1239 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1240 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1241 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1242 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32); 1243 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1244 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1245 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1246 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1247 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1248 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1249 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1250 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR); 1251 default: 1252 return "Unknown"; 1253 } 1254 break; 1255 case COFF::IMAGE_FILE_MACHINE_ARM64: 1256 switch (Type) { 1257 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE); 1258 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32); 1259 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB); 1260 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26); 1261 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21); 1262 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21); 1263 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A); 1264 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L); 1265 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL); 1266 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A); 1267 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A); 1268 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L); 1269 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN); 1270 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION); 1271 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64); 1272 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19); 1273 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14); 1274 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32); 1275 default: 1276 return "Unknown"; 1277 } 1278 break; 1279 case COFF::IMAGE_FILE_MACHINE_I386: 1280 switch (Type) { 1281 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1282 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1283 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1284 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1285 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1286 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1287 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1288 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1289 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1290 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1291 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1292 default: 1293 return "Unknown"; 1294 } 1295 break; 1296 default: 1297 return "Unknown"; 1298 } 1299 } 1300 1301 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1302 1303 void COFFObjectFile::getRelocationTypeName( 1304 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1305 const coff_relocation *Reloc = toRel(Rel); 1306 StringRef Res = getRelocationTypeName(Reloc->Type); 1307 Result.append(Res.begin(), Res.end()); 1308 } 1309 1310 bool COFFObjectFile::isRelocatableObject() const { 1311 return !DataDirectory; 1312 } 1313 1314 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const { 1315 return StringSwitch<StringRef>(Name) 1316 .Case("eh_fram", "eh_frame") 1317 .Default(Name); 1318 } 1319 1320 bool ImportDirectoryEntryRef:: 1321 operator==(const ImportDirectoryEntryRef &Other) const { 1322 return ImportTable == Other.ImportTable && Index == Other.Index; 1323 } 1324 1325 void ImportDirectoryEntryRef::moveNext() { 1326 ++Index; 1327 if (ImportTable[Index].isNull()) { 1328 Index = -1; 1329 ImportTable = nullptr; 1330 } 1331 } 1332 1333 Error ImportDirectoryEntryRef::getImportTableEntry( 1334 const coff_import_directory_table_entry *&Result) const { 1335 return getObject(Result, OwningObject->Data, ImportTable + Index); 1336 } 1337 1338 static imported_symbol_iterator 1339 makeImportedSymbolIterator(const COFFObjectFile *Object, 1340 uintptr_t Ptr, int Index) { 1341 if (Object->getBytesInAddress() == 4) { 1342 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1343 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1344 } 1345 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1346 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1347 } 1348 1349 static imported_symbol_iterator 1350 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1351 uintptr_t IntPtr = 0; 1352 // FIXME: Handle errors. 1353 cantFail(Object->getRvaPtr(RVA, IntPtr)); 1354 return makeImportedSymbolIterator(Object, IntPtr, 0); 1355 } 1356 1357 static imported_symbol_iterator 1358 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1359 uintptr_t IntPtr = 0; 1360 // FIXME: Handle errors. 1361 cantFail(Object->getRvaPtr(RVA, IntPtr)); 1362 // Forward the pointer to the last entry which is null. 1363 int Index = 0; 1364 if (Object->getBytesInAddress() == 4) { 1365 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1366 while (*Entry++) 1367 ++Index; 1368 } else { 1369 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1370 while (*Entry++) 1371 ++Index; 1372 } 1373 return makeImportedSymbolIterator(Object, IntPtr, Index); 1374 } 1375 1376 imported_symbol_iterator 1377 ImportDirectoryEntryRef::imported_symbol_begin() const { 1378 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA, 1379 OwningObject); 1380 } 1381 1382 imported_symbol_iterator 1383 ImportDirectoryEntryRef::imported_symbol_end() const { 1384 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA, 1385 OwningObject); 1386 } 1387 1388 iterator_range<imported_symbol_iterator> 1389 ImportDirectoryEntryRef::imported_symbols() const { 1390 return make_range(imported_symbol_begin(), imported_symbol_end()); 1391 } 1392 1393 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const { 1394 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1395 OwningObject); 1396 } 1397 1398 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const { 1399 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1400 OwningObject); 1401 } 1402 1403 iterator_range<imported_symbol_iterator> 1404 ImportDirectoryEntryRef::lookup_table_symbols() const { 1405 return make_range(lookup_table_begin(), lookup_table_end()); 1406 } 1407 1408 Error ImportDirectoryEntryRef::getName(StringRef &Result) const { 1409 uintptr_t IntPtr = 0; 1410 if (Error E = OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1411 return E; 1412 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1413 return Error::success(); 1414 } 1415 1416 Error 1417 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1418 Result = ImportTable[Index].ImportLookupTableRVA; 1419 return Error::success(); 1420 } 1421 1422 Error ImportDirectoryEntryRef::getImportAddressTableRVA( 1423 uint32_t &Result) const { 1424 Result = ImportTable[Index].ImportAddressTableRVA; 1425 return Error::success(); 1426 } 1427 1428 bool DelayImportDirectoryEntryRef:: 1429 operator==(const DelayImportDirectoryEntryRef &Other) const { 1430 return Table == Other.Table && Index == Other.Index; 1431 } 1432 1433 void DelayImportDirectoryEntryRef::moveNext() { 1434 ++Index; 1435 } 1436 1437 imported_symbol_iterator 1438 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1439 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1440 OwningObject); 1441 } 1442 1443 imported_symbol_iterator 1444 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1445 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1446 OwningObject); 1447 } 1448 1449 iterator_range<imported_symbol_iterator> 1450 DelayImportDirectoryEntryRef::imported_symbols() const { 1451 return make_range(imported_symbol_begin(), imported_symbol_end()); 1452 } 1453 1454 Error DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1455 uintptr_t IntPtr = 0; 1456 if (Error E = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1457 return E; 1458 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1459 return Error::success(); 1460 } 1461 1462 Error DelayImportDirectoryEntryRef::getDelayImportTable( 1463 const delay_import_directory_table_entry *&Result) const { 1464 Result = &Table[Index]; 1465 return Error::success(); 1466 } 1467 1468 Error DelayImportDirectoryEntryRef::getImportAddress(int AddrIndex, 1469 uint64_t &Result) const { 1470 uint32_t RVA = Table[Index].DelayImportAddressTable + 1471 AddrIndex * (OwningObject->is64() ? 8 : 4); 1472 uintptr_t IntPtr = 0; 1473 if (Error E = OwningObject->getRvaPtr(RVA, IntPtr)) 1474 return E; 1475 if (OwningObject->is64()) 1476 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1477 else 1478 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1479 return Error::success(); 1480 } 1481 1482 bool ExportDirectoryEntryRef:: 1483 operator==(const ExportDirectoryEntryRef &Other) const { 1484 return ExportTable == Other.ExportTable && Index == Other.Index; 1485 } 1486 1487 void ExportDirectoryEntryRef::moveNext() { 1488 ++Index; 1489 } 1490 1491 // Returns the name of the current export symbol. If the symbol is exported only 1492 // by ordinal, the empty string is set as a result. 1493 Error ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1494 uintptr_t IntPtr = 0; 1495 if (Error E = OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1496 return E; 1497 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1498 return Error::success(); 1499 } 1500 1501 // Returns the starting ordinal number. 1502 Error ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1503 Result = ExportTable->OrdinalBase; 1504 return Error::success(); 1505 } 1506 1507 // Returns the export ordinal of the current export symbol. 1508 Error ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1509 Result = ExportTable->OrdinalBase + Index; 1510 return Error::success(); 1511 } 1512 1513 // Returns the address of the current export symbol. 1514 Error ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1515 uintptr_t IntPtr = 0; 1516 if (Error EC = 1517 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1518 return EC; 1519 const export_address_table_entry *entry = 1520 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1521 Result = entry[Index].ExportRVA; 1522 return Error::success(); 1523 } 1524 1525 // Returns the name of the current export symbol. If the symbol is exported only 1526 // by ordinal, the empty string is set as a result. 1527 Error 1528 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1529 uintptr_t IntPtr = 0; 1530 if (Error EC = 1531 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1532 return EC; 1533 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1534 1535 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1536 int Offset = 0; 1537 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1538 I < E; ++I, ++Offset) { 1539 if (*I != Index) 1540 continue; 1541 if (Error EC = 1542 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1543 return EC; 1544 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1545 if (Error EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1546 return EC; 1547 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1548 return Error::success(); 1549 } 1550 Result = ""; 1551 return Error::success(); 1552 } 1553 1554 Error ExportDirectoryEntryRef::isForwarder(bool &Result) const { 1555 const data_directory *DataEntry = 1556 OwningObject->getDataDirectory(COFF::EXPORT_TABLE); 1557 if (!DataEntry) 1558 return errorCodeToError(object_error::parse_failed); 1559 uint32_t RVA; 1560 if (auto EC = getExportRVA(RVA)) 1561 return EC; 1562 uint32_t Begin = DataEntry->RelativeVirtualAddress; 1563 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; 1564 Result = (Begin <= RVA && RVA < End); 1565 return Error::success(); 1566 } 1567 1568 Error ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { 1569 uint32_t RVA; 1570 if (auto EC = getExportRVA(RVA)) 1571 return EC; 1572 uintptr_t IntPtr = 0; 1573 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1574 return EC; 1575 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1576 return Error::success(); 1577 } 1578 1579 bool ImportedSymbolRef:: 1580 operator==(const ImportedSymbolRef &Other) const { 1581 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1582 && Index == Other.Index; 1583 } 1584 1585 void ImportedSymbolRef::moveNext() { 1586 ++Index; 1587 } 1588 1589 Error ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1590 uint32_t RVA; 1591 if (Entry32) { 1592 // If a symbol is imported only by ordinal, it has no name. 1593 if (Entry32[Index].isOrdinal()) 1594 return Error::success(); 1595 RVA = Entry32[Index].getHintNameRVA(); 1596 } else { 1597 if (Entry64[Index].isOrdinal()) 1598 return Error::success(); 1599 RVA = Entry64[Index].getHintNameRVA(); 1600 } 1601 uintptr_t IntPtr = 0; 1602 if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1603 return EC; 1604 // +2 because the first two bytes is hint. 1605 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1606 return Error::success(); 1607 } 1608 1609 Error ImportedSymbolRef::isOrdinal(bool &Result) const { 1610 if (Entry32) 1611 Result = Entry32[Index].isOrdinal(); 1612 else 1613 Result = Entry64[Index].isOrdinal(); 1614 return Error::success(); 1615 } 1616 1617 Error ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const { 1618 if (Entry32) 1619 Result = Entry32[Index].getHintNameRVA(); 1620 else 1621 Result = Entry64[Index].getHintNameRVA(); 1622 return Error::success(); 1623 } 1624 1625 Error ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1626 uint32_t RVA; 1627 if (Entry32) { 1628 if (Entry32[Index].isOrdinal()) { 1629 Result = Entry32[Index].getOrdinal(); 1630 return Error::success(); 1631 } 1632 RVA = Entry32[Index].getHintNameRVA(); 1633 } else { 1634 if (Entry64[Index].isOrdinal()) { 1635 Result = Entry64[Index].getOrdinal(); 1636 return Error::success(); 1637 } 1638 RVA = Entry64[Index].getHintNameRVA(); 1639 } 1640 uintptr_t IntPtr = 0; 1641 if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1642 return EC; 1643 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1644 return Error::success(); 1645 } 1646 1647 Expected<std::unique_ptr<COFFObjectFile>> 1648 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1649 return COFFObjectFile::create(Object); 1650 } 1651 1652 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1653 return Header == Other.Header && Index == Other.Index; 1654 } 1655 1656 void BaseRelocRef::moveNext() { 1657 // Header->BlockSize is the size of the current block, including the 1658 // size of the header itself. 1659 uint32_t Size = sizeof(*Header) + 1660 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1661 if (Size == Header->BlockSize) { 1662 // .reloc contains a list of base relocation blocks. Each block 1663 // consists of the header followed by entries. The header contains 1664 // how many entories will follow. When we reach the end of the 1665 // current block, proceed to the next block. 1666 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1667 reinterpret_cast<const uint8_t *>(Header) + Size); 1668 Index = 0; 1669 } else { 1670 ++Index; 1671 } 1672 } 1673 1674 Error BaseRelocRef::getType(uint8_t &Type) const { 1675 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1676 Type = Entry[Index].getType(); 1677 return Error::success(); 1678 } 1679 1680 Error BaseRelocRef::getRVA(uint32_t &Result) const { 1681 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1682 Result = Header->PageRVA + Entry[Index].getOffset(); 1683 return Error::success(); 1684 } 1685 1686 #define RETURN_IF_ERROR(Expr) \ 1687 do { \ 1688 Error E = (Expr); \ 1689 if (E) \ 1690 return std::move(E); \ 1691 } while (0) 1692 1693 Expected<ArrayRef<UTF16>> 1694 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) { 1695 BinaryStreamReader Reader = BinaryStreamReader(BBS); 1696 Reader.setOffset(Offset); 1697 uint16_t Length; 1698 RETURN_IF_ERROR(Reader.readInteger(Length)); 1699 ArrayRef<UTF16> RawDirString; 1700 RETURN_IF_ERROR(Reader.readArray(RawDirString, Length)); 1701 return RawDirString; 1702 } 1703 1704 Expected<ArrayRef<UTF16>> 1705 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) { 1706 return getDirStringAtOffset(Entry.Identifier.getNameOffset()); 1707 } 1708 1709 Expected<const coff_resource_dir_table &> 1710 ResourceSectionRef::getTableAtOffset(uint32_t Offset) { 1711 const coff_resource_dir_table *Table = nullptr; 1712 1713 BinaryStreamReader Reader(BBS); 1714 Reader.setOffset(Offset); 1715 RETURN_IF_ERROR(Reader.readObject(Table)); 1716 assert(Table != nullptr); 1717 return *Table; 1718 } 1719 1720 Expected<const coff_resource_dir_entry &> 1721 ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) { 1722 const coff_resource_dir_entry *Entry = nullptr; 1723 1724 BinaryStreamReader Reader(BBS); 1725 Reader.setOffset(Offset); 1726 RETURN_IF_ERROR(Reader.readObject(Entry)); 1727 assert(Entry != nullptr); 1728 return *Entry; 1729 } 1730 1731 Expected<const coff_resource_data_entry &> 1732 ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) { 1733 const coff_resource_data_entry *Entry = nullptr; 1734 1735 BinaryStreamReader Reader(BBS); 1736 Reader.setOffset(Offset); 1737 RETURN_IF_ERROR(Reader.readObject(Entry)); 1738 assert(Entry != nullptr); 1739 return *Entry; 1740 } 1741 1742 Expected<const coff_resource_dir_table &> 1743 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) { 1744 assert(Entry.Offset.isSubDir()); 1745 return getTableAtOffset(Entry.Offset.value()); 1746 } 1747 1748 Expected<const coff_resource_data_entry &> 1749 ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) { 1750 assert(!Entry.Offset.isSubDir()); 1751 return getDataEntryAtOffset(Entry.Offset.value()); 1752 } 1753 1754 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() { 1755 return getTableAtOffset(0); 1756 } 1757 1758 Expected<const coff_resource_dir_entry &> 1759 ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table, 1760 uint32_t Index) { 1761 if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries)) 1762 return createStringError(object_error::parse_failed, "index out of range"); 1763 const uint8_t *TablePtr = reinterpret_cast<const uint8_t *>(&Table); 1764 ptrdiff_t TableOffset = TablePtr - BBS.data().data(); 1765 return getTableEntryAtOffset(TableOffset + sizeof(Table) + 1766 Index * sizeof(coff_resource_dir_entry)); 1767 } 1768 1769 Error ResourceSectionRef::load(const COFFObjectFile *O) { 1770 for (const SectionRef &S : O->sections()) { 1771 Expected<StringRef> Name = S.getName(); 1772 if (!Name) 1773 return Name.takeError(); 1774 1775 if (*Name == ".rsrc" || *Name == ".rsrc$01") 1776 return load(O, S); 1777 } 1778 return createStringError(object_error::parse_failed, 1779 "no resource section found"); 1780 } 1781 1782 Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) { 1783 Obj = O; 1784 Section = S; 1785 Expected<StringRef> Contents = Section.getContents(); 1786 if (!Contents) 1787 return Contents.takeError(); 1788 BBS = BinaryByteStream(*Contents, support::little); 1789 const coff_section *COFFSect = Obj->getCOFFSection(Section); 1790 ArrayRef<coff_relocation> OrigRelocs = Obj->getRelocations(COFFSect); 1791 Relocs.reserve(OrigRelocs.size()); 1792 for (const coff_relocation &R : OrigRelocs) 1793 Relocs.push_back(&R); 1794 llvm::sort(Relocs, [](const coff_relocation *A, const coff_relocation *B) { 1795 return A->VirtualAddress < B->VirtualAddress; 1796 }); 1797 return Error::success(); 1798 } 1799 1800 Expected<StringRef> 1801 ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) { 1802 if (!Obj) 1803 return createStringError(object_error::parse_failed, "no object provided"); 1804 1805 // Find a potential relocation at the DataRVA field (first member of 1806 // the coff_resource_data_entry struct). 1807 const uint8_t *EntryPtr = reinterpret_cast<const uint8_t *>(&Entry); 1808 ptrdiff_t EntryOffset = EntryPtr - BBS.data().data(); 1809 coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0), 1810 ulittle16_t(0)}; 1811 auto RelocsForOffset = 1812 std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget, 1813 [](const coff_relocation *A, const coff_relocation *B) { 1814 return A->VirtualAddress < B->VirtualAddress; 1815 }); 1816 1817 if (RelocsForOffset.first != RelocsForOffset.second) { 1818 // We found a relocation with the right offset. Check that it does have 1819 // the expected type. 1820 const coff_relocation &R = **RelocsForOffset.first; 1821 uint16_t RVAReloc; 1822 switch (Obj->getMachine()) { 1823 case COFF::IMAGE_FILE_MACHINE_I386: 1824 RVAReloc = COFF::IMAGE_REL_I386_DIR32NB; 1825 break; 1826 case COFF::IMAGE_FILE_MACHINE_AMD64: 1827 RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB; 1828 break; 1829 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1830 RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB; 1831 break; 1832 case COFF::IMAGE_FILE_MACHINE_ARM64: 1833 RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB; 1834 break; 1835 default: 1836 return createStringError(object_error::parse_failed, 1837 "unsupported architecture"); 1838 } 1839 if (R.Type != RVAReloc) 1840 return createStringError(object_error::parse_failed, 1841 "unexpected relocation type"); 1842 // Get the relocation's symbol 1843 Expected<COFFSymbolRef> Sym = Obj->getSymbol(R.SymbolTableIndex); 1844 if (!Sym) 1845 return Sym.takeError(); 1846 // And the symbol's section 1847 Expected<const coff_section *> Section = 1848 Obj->getSection(Sym->getSectionNumber()); 1849 if (!Section) 1850 return Section.takeError(); 1851 // Add the initial value of DataRVA to the symbol's offset to find the 1852 // data it points at. 1853 uint64_t Offset = Entry.DataRVA + Sym->getValue(); 1854 ArrayRef<uint8_t> Contents; 1855 if (Error E = Obj->getSectionContents(*Section, Contents)) 1856 return std::move(E); 1857 if (Offset + Entry.DataSize > Contents.size()) 1858 return createStringError(object_error::parse_failed, 1859 "data outside of section"); 1860 // Return a reference to the data inside the section. 1861 return StringRef(reinterpret_cast<const char *>(Contents.data()) + Offset, 1862 Entry.DataSize); 1863 } else { 1864 // Relocatable objects need a relocation for the DataRVA field. 1865 if (Obj->isRelocatableObject()) 1866 return createStringError(object_error::parse_failed, 1867 "no relocation found for DataRVA"); 1868 1869 // Locate the section that contains the address that DataRVA points at. 1870 uint64_t VA = Entry.DataRVA + Obj->getImageBase(); 1871 for (const SectionRef &S : Obj->sections()) { 1872 if (VA >= S.getAddress() && 1873 VA + Entry.DataSize <= S.getAddress() + S.getSize()) { 1874 uint64_t Offset = VA - S.getAddress(); 1875 Expected<StringRef> Contents = S.getContents(); 1876 if (!Contents) 1877 return Contents.takeError(); 1878 return Contents->slice(Offset, Offset + Entry.DataSize); 1879 } 1880 } 1881 return createStringError(object_error::parse_failed, 1882 "address not found in image"); 1883 } 1884 } 1885