1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the COFFObjectFile class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/StringSwitch.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/ADT/iterator_range.h" 18 #include "llvm/BinaryFormat/COFF.h" 19 #include "llvm/Object/Binary.h" 20 #include "llvm/Object/COFF.h" 21 #include "llvm/Object/Error.h" 22 #include "llvm/Object/ObjectFile.h" 23 #include "llvm/Support/BinaryStreamReader.h" 24 #include "llvm/Support/Endian.h" 25 #include "llvm/Support/Error.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/MemoryBufferRef.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cinttypes> 32 #include <cstddef> 33 #include <cstring> 34 #include <limits> 35 #include <memory> 36 #include <system_error> 37 38 using namespace llvm; 39 using namespace object; 40 41 using support::ulittle16_t; 42 using support::ulittle32_t; 43 using support::ulittle64_t; 44 using support::little16_t; 45 46 // Returns false if size is greater than the buffer size. And sets ec. 47 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 48 if (M.getBufferSize() < Size) { 49 EC = object_error::unexpected_eof; 50 return false; 51 } 52 return true; 53 } 54 55 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 56 // Returns unexpected_eof if error. 57 template <typename T> 58 static Error getObject(const T *&Obj, MemoryBufferRef M, const void *Ptr, 59 const uint64_t Size = sizeof(T)) { 60 uintptr_t Addr = reinterpret_cast<uintptr_t>(Ptr); 61 if (Error E = Binary::checkOffset(M, Addr, Size)) 62 return E; 63 Obj = reinterpret_cast<const T *>(Addr); 64 return Error::success(); 65 } 66 67 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 68 // prefixed slashes. 69 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 70 assert(Str.size() <= 6 && "String too long, possible overflow."); 71 if (Str.size() > 6) 72 return true; 73 74 uint64_t Value = 0; 75 while (!Str.empty()) { 76 unsigned CharVal; 77 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 78 CharVal = Str[0] - 'A'; 79 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 80 CharVal = Str[0] - 'a' + 26; 81 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 82 CharVal = Str[0] - '0' + 52; 83 else if (Str[0] == '+') // 62 84 CharVal = 62; 85 else if (Str[0] == '/') // 63 86 CharVal = 63; 87 else 88 return true; 89 90 Value = (Value * 64) + CharVal; 91 Str = Str.substr(1); 92 } 93 94 if (Value > std::numeric_limits<uint32_t>::max()) 95 return true; 96 97 Result = static_cast<uint32_t>(Value); 98 return false; 99 } 100 101 template <typename coff_symbol_type> 102 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 103 const coff_symbol_type *Addr = 104 reinterpret_cast<const coff_symbol_type *>(Ref.p); 105 106 assert(!checkOffset(Data, reinterpret_cast<uintptr_t>(Addr), sizeof(*Addr))); 107 #ifndef NDEBUG 108 // Verify that the symbol points to a valid entry in the symbol table. 109 uintptr_t Offset = 110 reinterpret_cast<uintptr_t>(Addr) - reinterpret_cast<uintptr_t>(base()); 111 112 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 113 "Symbol did not point to the beginning of a symbol"); 114 #endif 115 116 return Addr; 117 } 118 119 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 120 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 121 122 #ifndef NDEBUG 123 // Verify that the section points to a valid entry in the section table. 124 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 125 report_fatal_error("Section was outside of section table."); 126 127 uintptr_t Offset = reinterpret_cast<uintptr_t>(Addr) - 128 reinterpret_cast<uintptr_t>(SectionTable); 129 assert(Offset % sizeof(coff_section) == 0 && 130 "Section did not point to the beginning of a section"); 131 #endif 132 133 return Addr; 134 } 135 136 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 137 auto End = reinterpret_cast<uintptr_t>(StringTable); 138 if (SymbolTable16) { 139 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 140 Symb += 1 + Symb->NumberOfAuxSymbols; 141 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 142 } else if (SymbolTable32) { 143 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 144 Symb += 1 + Symb->NumberOfAuxSymbols; 145 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 146 } else { 147 llvm_unreachable("no symbol table pointer!"); 148 } 149 } 150 151 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 152 return getSymbolName(getCOFFSymbol(Ref)); 153 } 154 155 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 156 return getCOFFSymbol(Ref).getValue(); 157 } 158 159 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const { 160 // MSVC/link.exe seems to align symbols to the next-power-of-2 161 // up to 32 bytes. 162 COFFSymbolRef Symb = getCOFFSymbol(Ref); 163 return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue())); 164 } 165 166 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 167 uint64_t Result = cantFail(getSymbolValue(Ref)); 168 COFFSymbolRef Symb = getCOFFSymbol(Ref); 169 int32_t SectionNumber = Symb.getSectionNumber(); 170 171 if (Symb.isAnyUndefined() || Symb.isCommon() || 172 COFF::isReservedSectionNumber(SectionNumber)) 173 return Result; 174 175 Expected<const coff_section *> Section = getSection(SectionNumber); 176 if (!Section) 177 return Section.takeError(); 178 Result += (*Section)->VirtualAddress; 179 180 // The section VirtualAddress does not include ImageBase, and we want to 181 // return virtual addresses. 182 Result += getImageBase(); 183 184 return Result; 185 } 186 187 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 188 COFFSymbolRef Symb = getCOFFSymbol(Ref); 189 int32_t SectionNumber = Symb.getSectionNumber(); 190 191 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 192 return SymbolRef::ST_Function; 193 if (Symb.isAnyUndefined()) 194 return SymbolRef::ST_Unknown; 195 if (Symb.isCommon()) 196 return SymbolRef::ST_Data; 197 if (Symb.isFileRecord()) 198 return SymbolRef::ST_File; 199 200 // TODO: perhaps we need a new symbol type ST_Section. 201 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 202 return SymbolRef::ST_Debug; 203 204 if (!COFF::isReservedSectionNumber(SectionNumber)) 205 return SymbolRef::ST_Data; 206 207 return SymbolRef::ST_Other; 208 } 209 210 Expected<uint32_t> COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 211 COFFSymbolRef Symb = getCOFFSymbol(Ref); 212 uint32_t Result = SymbolRef::SF_None; 213 214 if (Symb.isExternal() || Symb.isWeakExternal()) 215 Result |= SymbolRef::SF_Global; 216 217 if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) { 218 Result |= SymbolRef::SF_Weak; 219 if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS) 220 Result |= SymbolRef::SF_Undefined; 221 } 222 223 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 224 Result |= SymbolRef::SF_Absolute; 225 226 if (Symb.isFileRecord()) 227 Result |= SymbolRef::SF_FormatSpecific; 228 229 if (Symb.isSectionDefinition()) 230 Result |= SymbolRef::SF_FormatSpecific; 231 232 if (Symb.isCommon()) 233 Result |= SymbolRef::SF_Common; 234 235 if (Symb.isUndefined()) 236 Result |= SymbolRef::SF_Undefined; 237 238 return Result; 239 } 240 241 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 242 COFFSymbolRef Symb = getCOFFSymbol(Ref); 243 return Symb.getValue(); 244 } 245 246 Expected<section_iterator> 247 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 248 COFFSymbolRef Symb = getCOFFSymbol(Ref); 249 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 250 return section_end(); 251 Expected<const coff_section *> Sec = getSection(Symb.getSectionNumber()); 252 if (!Sec) 253 return Sec.takeError(); 254 DataRefImpl Ret; 255 Ret.p = reinterpret_cast<uintptr_t>(*Sec); 256 return section_iterator(SectionRef(Ret, this)); 257 } 258 259 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 260 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 261 return Symb.getSectionNumber(); 262 } 263 264 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 265 const coff_section *Sec = toSec(Ref); 266 Sec += 1; 267 Ref.p = reinterpret_cast<uintptr_t>(Sec); 268 } 269 270 Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const { 271 const coff_section *Sec = toSec(Ref); 272 return getSectionName(Sec); 273 } 274 275 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 276 const coff_section *Sec = toSec(Ref); 277 uint64_t Result = Sec->VirtualAddress; 278 279 // The section VirtualAddress does not include ImageBase, and we want to 280 // return virtual addresses. 281 Result += getImageBase(); 282 return Result; 283 } 284 285 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const { 286 return toSec(Sec) - SectionTable; 287 } 288 289 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 290 return getSectionSize(toSec(Ref)); 291 } 292 293 Expected<ArrayRef<uint8_t>> 294 COFFObjectFile::getSectionContents(DataRefImpl Ref) const { 295 const coff_section *Sec = toSec(Ref); 296 ArrayRef<uint8_t> Res; 297 if (Error E = getSectionContents(Sec, Res)) 298 return std::move(E); 299 return Res; 300 } 301 302 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 303 const coff_section *Sec = toSec(Ref); 304 return Sec->getAlignment(); 305 } 306 307 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { 308 return false; 309 } 310 311 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 312 const coff_section *Sec = toSec(Ref); 313 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 314 } 315 316 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 317 const coff_section *Sec = toSec(Ref); 318 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 319 } 320 321 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 322 const coff_section *Sec = toSec(Ref); 323 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 324 COFF::IMAGE_SCN_MEM_READ | 325 COFF::IMAGE_SCN_MEM_WRITE; 326 return (Sec->Characteristics & BssFlags) == BssFlags; 327 } 328 329 // The .debug sections are the only debug sections for COFF 330 // (\see MCObjectFileInfo.cpp). 331 bool COFFObjectFile::isDebugSection(DataRefImpl Ref) const { 332 Expected<StringRef> SectionNameOrErr = getSectionName(Ref); 333 if (!SectionNameOrErr) { 334 // TODO: Report the error message properly. 335 consumeError(SectionNameOrErr.takeError()); 336 return false; 337 } 338 StringRef SectionName = SectionNameOrErr.get(); 339 return SectionName.startswith(".debug"); 340 } 341 342 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 343 uintptr_t Offset = 344 Sec.getRawDataRefImpl().p - reinterpret_cast<uintptr_t>(SectionTable); 345 assert((Offset % sizeof(coff_section)) == 0); 346 return (Offset / sizeof(coff_section)) + 1; 347 } 348 349 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 350 const coff_section *Sec = toSec(Ref); 351 // In COFF, a virtual section won't have any in-file 352 // content, so the file pointer to the content will be zero. 353 return Sec->PointerToRawData == 0; 354 } 355 356 static uint32_t getNumberOfRelocations(const coff_section *Sec, 357 MemoryBufferRef M, const uint8_t *base) { 358 // The field for the number of relocations in COFF section table is only 359 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 360 // NumberOfRelocations field, and the actual relocation count is stored in the 361 // VirtualAddress field in the first relocation entry. 362 if (Sec->hasExtendedRelocations()) { 363 const coff_relocation *FirstReloc; 364 if (Error E = getObject(FirstReloc, M, 365 reinterpret_cast<const coff_relocation *>( 366 base + Sec->PointerToRelocations))) { 367 consumeError(std::move(E)); 368 return 0; 369 } 370 // -1 to exclude this first relocation entry. 371 return FirstReloc->VirtualAddress - 1; 372 } 373 return Sec->NumberOfRelocations; 374 } 375 376 static const coff_relocation * 377 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 378 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 379 if (!NumRelocs) 380 return nullptr; 381 auto begin = reinterpret_cast<const coff_relocation *>( 382 Base + Sec->PointerToRelocations); 383 if (Sec->hasExtendedRelocations()) { 384 // Skip the first relocation entry repurposed to store the number of 385 // relocations. 386 begin++; 387 } 388 if (auto E = Binary::checkOffset(M, reinterpret_cast<uintptr_t>(begin), 389 sizeof(coff_relocation) * NumRelocs)) { 390 consumeError(std::move(E)); 391 return nullptr; 392 } 393 return begin; 394 } 395 396 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 397 const coff_section *Sec = toSec(Ref); 398 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 399 if (begin && Sec->VirtualAddress != 0) 400 report_fatal_error("Sections with relocations should have an address of 0"); 401 DataRefImpl Ret; 402 Ret.p = reinterpret_cast<uintptr_t>(begin); 403 return relocation_iterator(RelocationRef(Ret, this)); 404 } 405 406 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 407 const coff_section *Sec = toSec(Ref); 408 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 409 if (I) 410 I += getNumberOfRelocations(Sec, Data, base()); 411 DataRefImpl Ret; 412 Ret.p = reinterpret_cast<uintptr_t>(I); 413 return relocation_iterator(RelocationRef(Ret, this)); 414 } 415 416 // Initialize the pointer to the symbol table. 417 Error COFFObjectFile::initSymbolTablePtr() { 418 if (COFFHeader) 419 if (Error E = getObject( 420 SymbolTable16, Data, base() + getPointerToSymbolTable(), 421 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 422 return E; 423 424 if (COFFBigObjHeader) 425 if (Error E = getObject( 426 SymbolTable32, Data, base() + getPointerToSymbolTable(), 427 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 428 return E; 429 430 // Find string table. The first four byte of the string table contains the 431 // total size of the string table, including the size field itself. If the 432 // string table is empty, the value of the first four byte would be 4. 433 uint32_t StringTableOffset = getPointerToSymbolTable() + 434 getNumberOfSymbols() * getSymbolTableEntrySize(); 435 const uint8_t *StringTableAddr = base() + StringTableOffset; 436 const ulittle32_t *StringTableSizePtr; 437 if (Error E = getObject(StringTableSizePtr, Data, StringTableAddr)) 438 return E; 439 StringTableSize = *StringTableSizePtr; 440 if (Error E = getObject(StringTable, Data, StringTableAddr, StringTableSize)) 441 return E; 442 443 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 444 // tools like cvtres write a size of 0 for an empty table instead of 4. 445 if (StringTableSize < 4) 446 StringTableSize = 4; 447 448 // Check that the string table is null terminated if has any in it. 449 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 450 return createStringError(object_error::parse_failed, 451 "string table missing null terminator"); 452 return Error::success(); 453 } 454 455 uint64_t COFFObjectFile::getImageBase() const { 456 if (PE32Header) 457 return PE32Header->ImageBase; 458 else if (PE32PlusHeader) 459 return PE32PlusHeader->ImageBase; 460 // This actually comes up in practice. 461 return 0; 462 } 463 464 // Returns the file offset for the given VA. 465 Error COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 466 uint64_t ImageBase = getImageBase(); 467 uint64_t Rva = Addr - ImageBase; 468 assert(Rva <= UINT32_MAX); 469 return getRvaPtr((uint32_t)Rva, Res); 470 } 471 472 // Returns the file offset for the given RVA. 473 Error COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res, 474 const char *ErrorContext) const { 475 for (const SectionRef &S : sections()) { 476 const coff_section *Section = getCOFFSection(S); 477 uint32_t SectionStart = Section->VirtualAddress; 478 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 479 if (SectionStart <= Addr && Addr < SectionEnd) { 480 // A table/directory entry can be pointing to somewhere in a stripped 481 // section, in an object that went through `objcopy --only-keep-debug`. 482 // In this case we don't want to cause the parsing of the object file to 483 // fail, otherwise it will be impossible to use this object as debug info 484 // in LLDB. Return SectionStrippedError here so that 485 // COFFObjectFile::initialize can ignore the error. 486 // Somewhat common binaries may have RVAs pointing outside of the 487 // provided raw data. Instead of rejecting the binaries, just 488 // treat the section as stripped for these purposes. 489 if (Section->SizeOfRawData < Section->VirtualSize && 490 Addr >= SectionStart + Section->SizeOfRawData) { 491 return make_error<SectionStrippedError>(); 492 } 493 uint32_t Offset = Addr - SectionStart; 494 Res = reinterpret_cast<uintptr_t>(base()) + Section->PointerToRawData + 495 Offset; 496 return Error::success(); 497 } 498 } 499 if (ErrorContext) 500 return createStringError(object_error::parse_failed, 501 "RVA 0x%" PRIx32 " for %s not found", Addr, 502 ErrorContext); 503 return createStringError(object_error::parse_failed, 504 "RVA 0x%" PRIx32 " not found", Addr); 505 } 506 507 Error COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size, 508 ArrayRef<uint8_t> &Contents, 509 const char *ErrorContext) const { 510 for (const SectionRef &S : sections()) { 511 const coff_section *Section = getCOFFSection(S); 512 uint32_t SectionStart = Section->VirtualAddress; 513 // Check if this RVA is within the section bounds. Be careful about integer 514 // overflow. 515 uint32_t OffsetIntoSection = RVA - SectionStart; 516 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize && 517 Size <= Section->VirtualSize - OffsetIntoSection) { 518 uintptr_t Begin = reinterpret_cast<uintptr_t>(base()) + 519 Section->PointerToRawData + OffsetIntoSection; 520 Contents = 521 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size); 522 return Error::success(); 523 } 524 } 525 if (ErrorContext) 526 return createStringError(object_error::parse_failed, 527 "RVA 0x%" PRIx32 " for %s not found", RVA, 528 ErrorContext); 529 return createStringError(object_error::parse_failed, 530 "RVA 0x%" PRIx32 " not found", RVA); 531 } 532 533 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 534 // table entry. 535 Error COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 536 StringRef &Name) const { 537 uintptr_t IntPtr = 0; 538 if (Error E = getRvaPtr(Rva, IntPtr)) 539 return E; 540 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 541 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 542 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 543 return Error::success(); 544 } 545 546 Error COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir, 547 const codeview::DebugInfo *&PDBInfo, 548 StringRef &PDBFileName) const { 549 ArrayRef<uint8_t> InfoBytes; 550 if (Error E = 551 getRvaAndSizeAsBytes(DebugDir->AddressOfRawData, DebugDir->SizeOfData, 552 InfoBytes, "PDB info")) 553 return E; 554 if (InfoBytes.size() < sizeof(*PDBInfo) + 1) 555 return createStringError(object_error::parse_failed, "PDB info too small"); 556 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data()); 557 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo)); 558 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()), 559 InfoBytes.size()); 560 // Truncate the name at the first null byte. Ignore any padding. 561 PDBFileName = PDBFileName.split('\0').first; 562 return Error::success(); 563 } 564 565 Error COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo, 566 StringRef &PDBFileName) const { 567 for (const debug_directory &D : debug_directories()) 568 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW) 569 return getDebugPDBInfo(&D, PDBInfo, PDBFileName); 570 // If we get here, there is no PDB info to return. 571 PDBInfo = nullptr; 572 PDBFileName = StringRef(); 573 return Error::success(); 574 } 575 576 // Find the import table. 577 Error COFFObjectFile::initImportTablePtr() { 578 // First, we get the RVA of the import table. If the file lacks a pointer to 579 // the import table, do nothing. 580 const data_directory *DataEntry = getDataDirectory(COFF::IMPORT_TABLE); 581 if (!DataEntry) 582 return Error::success(); 583 584 // Do nothing if the pointer to import table is NULL. 585 if (DataEntry->RelativeVirtualAddress == 0) 586 return Error::success(); 587 588 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 589 590 // Find the section that contains the RVA. This is needed because the RVA is 591 // the import table's memory address which is different from its file offset. 592 uintptr_t IntPtr = 0; 593 if (Error E = getRvaPtr(ImportTableRva, IntPtr, "import table")) 594 return E; 595 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 596 return E; 597 ImportDirectory = reinterpret_cast< 598 const coff_import_directory_table_entry *>(IntPtr); 599 return Error::success(); 600 } 601 602 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 603 Error COFFObjectFile::initDelayImportTablePtr() { 604 const data_directory *DataEntry = 605 getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR); 606 if (!DataEntry) 607 return Error::success(); 608 if (DataEntry->RelativeVirtualAddress == 0) 609 return Error::success(); 610 611 uint32_t RVA = DataEntry->RelativeVirtualAddress; 612 NumberOfDelayImportDirectory = DataEntry->Size / 613 sizeof(delay_import_directory_table_entry) - 1; 614 615 uintptr_t IntPtr = 0; 616 if (Error E = getRvaPtr(RVA, IntPtr, "delay import table")) 617 return E; 618 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 619 return E; 620 621 DelayImportDirectory = reinterpret_cast< 622 const delay_import_directory_table_entry *>(IntPtr); 623 return Error::success(); 624 } 625 626 // Find the export table. 627 Error COFFObjectFile::initExportTablePtr() { 628 // First, we get the RVA of the export table. If the file lacks a pointer to 629 // the export table, do nothing. 630 const data_directory *DataEntry = getDataDirectory(COFF::EXPORT_TABLE); 631 if (!DataEntry) 632 return Error::success(); 633 634 // Do nothing if the pointer to export table is NULL. 635 if (DataEntry->RelativeVirtualAddress == 0) 636 return Error::success(); 637 638 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 639 uintptr_t IntPtr = 0; 640 if (Error E = getRvaPtr(ExportTableRva, IntPtr, "export table")) 641 return E; 642 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 643 return E; 644 645 ExportDirectory = 646 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 647 return Error::success(); 648 } 649 650 Error COFFObjectFile::initBaseRelocPtr() { 651 const data_directory *DataEntry = 652 getDataDirectory(COFF::BASE_RELOCATION_TABLE); 653 if (!DataEntry) 654 return Error::success(); 655 if (DataEntry->RelativeVirtualAddress == 0) 656 return Error::success(); 657 658 uintptr_t IntPtr = 0; 659 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, 660 "base reloc table")) 661 return E; 662 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 663 return E; 664 665 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 666 IntPtr); 667 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 668 IntPtr + DataEntry->Size); 669 // FIXME: Verify the section containing BaseRelocHeader has at least 670 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 671 return Error::success(); 672 } 673 674 Error COFFObjectFile::initDebugDirectoryPtr() { 675 // Get the RVA of the debug directory. Do nothing if it does not exist. 676 const data_directory *DataEntry = getDataDirectory(COFF::DEBUG_DIRECTORY); 677 if (!DataEntry) 678 return Error::success(); 679 680 // Do nothing if the RVA is NULL. 681 if (DataEntry->RelativeVirtualAddress == 0) 682 return Error::success(); 683 684 // Check that the size is a multiple of the entry size. 685 if (DataEntry->Size % sizeof(debug_directory) != 0) 686 return createStringError(object_error::parse_failed, 687 "debug directory has uneven size"); 688 689 uintptr_t IntPtr = 0; 690 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, 691 "debug directory")) 692 return E; 693 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 694 return E; 695 696 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr); 697 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>( 698 IntPtr + DataEntry->Size); 699 // FIXME: Verify the section containing DebugDirectoryBegin has at least 700 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 701 return Error::success(); 702 } 703 704 Error COFFObjectFile::initTLSDirectoryPtr() { 705 // Get the RVA of the TLS directory. Do nothing if it does not exist. 706 const data_directory *DataEntry = getDataDirectory(COFF::TLS_TABLE); 707 if (!DataEntry) 708 return Error::success(); 709 710 // Do nothing if the RVA is NULL. 711 if (DataEntry->RelativeVirtualAddress == 0) 712 return Error::success(); 713 714 uint64_t DirSize = 715 is64() ? sizeof(coff_tls_directory64) : sizeof(coff_tls_directory32); 716 717 // Check that the size is correct. 718 if (DataEntry->Size != DirSize) 719 return createStringError( 720 object_error::parse_failed, 721 "TLS Directory size (%u) is not the expected size (%" PRIu64 ").", 722 static_cast<uint32_t>(DataEntry->Size), DirSize); 723 724 uintptr_t IntPtr = 0; 725 if (Error E = 726 getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, "TLS directory")) 727 return E; 728 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 729 return E; 730 731 if (is64()) 732 TLSDirectory64 = reinterpret_cast<const coff_tls_directory64 *>(IntPtr); 733 else 734 TLSDirectory32 = reinterpret_cast<const coff_tls_directory32 *>(IntPtr); 735 736 return Error::success(); 737 } 738 739 Error COFFObjectFile::initLoadConfigPtr() { 740 // Get the RVA of the debug directory. Do nothing if it does not exist. 741 const data_directory *DataEntry = getDataDirectory(COFF::LOAD_CONFIG_TABLE); 742 if (!DataEntry) 743 return Error::success(); 744 745 // Do nothing if the RVA is NULL. 746 if (DataEntry->RelativeVirtualAddress == 0) 747 return Error::success(); 748 uintptr_t IntPtr = 0; 749 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, 750 "load config table")) 751 return E; 752 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 753 return E; 754 755 LoadConfig = (const void *)IntPtr; 756 return Error::success(); 757 } 758 759 Expected<std::unique_ptr<COFFObjectFile>> 760 COFFObjectFile::create(MemoryBufferRef Object) { 761 std::unique_ptr<COFFObjectFile> Obj(new COFFObjectFile(std::move(Object))); 762 if (Error E = Obj->initialize()) 763 return std::move(E); 764 return std::move(Obj); 765 } 766 767 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object) 768 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 769 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 770 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 771 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 772 ImportDirectory(nullptr), DelayImportDirectory(nullptr), 773 NumberOfDelayImportDirectory(0), ExportDirectory(nullptr), 774 BaseRelocHeader(nullptr), BaseRelocEnd(nullptr), 775 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr), 776 TLSDirectory32(nullptr), TLSDirectory64(nullptr) {} 777 778 static Error ignoreStrippedErrors(Error E) { 779 if (E.isA<SectionStrippedError>()) { 780 consumeError(std::move(E)); 781 return Error::success(); 782 } 783 return E; 784 } 785 786 Error COFFObjectFile::initialize() { 787 // Check that we at least have enough room for a header. 788 std::error_code EC; 789 if (!checkSize(Data, EC, sizeof(coff_file_header))) 790 return errorCodeToError(EC); 791 792 // The current location in the file where we are looking at. 793 uint64_t CurPtr = 0; 794 795 // PE header is optional and is present only in executables. If it exists, 796 // it is placed right after COFF header. 797 bool HasPEHeader = false; 798 799 // Check if this is a PE/COFF file. 800 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 801 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 802 // PE signature to find 'normal' COFF header. 803 const auto *DH = reinterpret_cast<const dos_header *>(base()); 804 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 805 CurPtr = DH->AddressOfNewExeHeader; 806 // Check the PE magic bytes. ("PE\0\0") 807 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 808 return createStringError(object_error::parse_failed, 809 "incorrect PE magic"); 810 } 811 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 812 HasPEHeader = true; 813 } 814 } 815 816 if (Error E = getObject(COFFHeader, Data, base() + CurPtr)) 817 return E; 818 819 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 820 // import libraries share a common prefix but bigobj is more restrictive. 821 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 822 COFFHeader->NumberOfSections == uint16_t(0xffff) && 823 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 824 if (Error E = getObject(COFFBigObjHeader, Data, base() + CurPtr)) 825 return E; 826 827 // Verify that we are dealing with bigobj. 828 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 829 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 830 sizeof(COFF::BigObjMagic)) == 0) { 831 COFFHeader = nullptr; 832 CurPtr += sizeof(coff_bigobj_file_header); 833 } else { 834 // It's not a bigobj. 835 COFFBigObjHeader = nullptr; 836 } 837 } 838 if (COFFHeader) { 839 // The prior checkSize call may have failed. This isn't a hard error 840 // because we were just trying to sniff out bigobj. 841 EC = std::error_code(); 842 CurPtr += sizeof(coff_file_header); 843 844 if (COFFHeader->isImportLibrary()) 845 return errorCodeToError(EC); 846 } 847 848 if (HasPEHeader) { 849 const pe32_header *Header; 850 if (Error E = getObject(Header, Data, base() + CurPtr)) 851 return E; 852 853 const uint8_t *DataDirAddr; 854 uint64_t DataDirSize; 855 if (Header->Magic == COFF::PE32Header::PE32) { 856 PE32Header = Header; 857 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 858 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 859 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 860 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 861 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 862 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 863 } else { 864 // It's neither PE32 nor PE32+. 865 return createStringError(object_error::parse_failed, 866 "incorrect PE magic"); 867 } 868 if (Error E = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)) 869 return E; 870 } 871 872 if (COFFHeader) 873 CurPtr += COFFHeader->SizeOfOptionalHeader; 874 875 assert(COFFHeader || COFFBigObjHeader); 876 877 if (Error E = 878 getObject(SectionTable, Data, base() + CurPtr, 879 (uint64_t)getNumberOfSections() * sizeof(coff_section))) 880 return E; 881 882 // Initialize the pointer to the symbol table. 883 if (getPointerToSymbolTable() != 0) { 884 if (Error E = initSymbolTablePtr()) { 885 // Recover from errors reading the symbol table. 886 consumeError(std::move(E)); 887 SymbolTable16 = nullptr; 888 SymbolTable32 = nullptr; 889 StringTable = nullptr; 890 StringTableSize = 0; 891 } 892 } else { 893 // We had better not have any symbols if we don't have a symbol table. 894 if (getNumberOfSymbols() != 0) { 895 return createStringError(object_error::parse_failed, 896 "symbol table missing"); 897 } 898 } 899 900 // Initialize the pointer to the beginning of the import table. 901 if (Error E = ignoreStrippedErrors(initImportTablePtr())) 902 return E; 903 if (Error E = ignoreStrippedErrors(initDelayImportTablePtr())) 904 return E; 905 906 // Initialize the pointer to the export table. 907 if (Error E = ignoreStrippedErrors(initExportTablePtr())) 908 return E; 909 910 // Initialize the pointer to the base relocation table. 911 if (Error E = ignoreStrippedErrors(initBaseRelocPtr())) 912 return E; 913 914 // Initialize the pointer to the debug directory. 915 if (Error E = ignoreStrippedErrors(initDebugDirectoryPtr())) 916 return E; 917 918 // Initialize the pointer to the TLS directory. 919 if (Error E = ignoreStrippedErrors(initTLSDirectoryPtr())) 920 return E; 921 922 if (Error E = ignoreStrippedErrors(initLoadConfigPtr())) 923 return E; 924 925 return Error::success(); 926 } 927 928 basic_symbol_iterator COFFObjectFile::symbol_begin() const { 929 DataRefImpl Ret; 930 Ret.p = getSymbolTable(); 931 return basic_symbol_iterator(SymbolRef(Ret, this)); 932 } 933 934 basic_symbol_iterator COFFObjectFile::symbol_end() const { 935 // The symbol table ends where the string table begins. 936 DataRefImpl Ret; 937 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 938 return basic_symbol_iterator(SymbolRef(Ret, this)); 939 } 940 941 import_directory_iterator COFFObjectFile::import_directory_begin() const { 942 if (!ImportDirectory) 943 return import_directory_end(); 944 if (ImportDirectory->isNull()) 945 return import_directory_end(); 946 return import_directory_iterator( 947 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 948 } 949 950 import_directory_iterator COFFObjectFile::import_directory_end() const { 951 return import_directory_iterator( 952 ImportDirectoryEntryRef(nullptr, -1, this)); 953 } 954 955 delay_import_directory_iterator 956 COFFObjectFile::delay_import_directory_begin() const { 957 return delay_import_directory_iterator( 958 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 959 } 960 961 delay_import_directory_iterator 962 COFFObjectFile::delay_import_directory_end() const { 963 return delay_import_directory_iterator( 964 DelayImportDirectoryEntryRef( 965 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 966 } 967 968 export_directory_iterator COFFObjectFile::export_directory_begin() const { 969 return export_directory_iterator( 970 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 971 } 972 973 export_directory_iterator COFFObjectFile::export_directory_end() const { 974 if (!ExportDirectory) 975 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 976 ExportDirectoryEntryRef Ref(ExportDirectory, 977 ExportDirectory->AddressTableEntries, this); 978 return export_directory_iterator(Ref); 979 } 980 981 section_iterator COFFObjectFile::section_begin() const { 982 DataRefImpl Ret; 983 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 984 return section_iterator(SectionRef(Ret, this)); 985 } 986 987 section_iterator COFFObjectFile::section_end() const { 988 DataRefImpl Ret; 989 int NumSections = 990 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 991 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 992 return section_iterator(SectionRef(Ret, this)); 993 } 994 995 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 996 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 997 } 998 999 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 1000 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 1001 } 1002 1003 uint8_t COFFObjectFile::getBytesInAddress() const { 1004 return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4; 1005 } 1006 1007 StringRef COFFObjectFile::getFileFormatName() const { 1008 switch(getMachine()) { 1009 case COFF::IMAGE_FILE_MACHINE_I386: 1010 return "COFF-i386"; 1011 case COFF::IMAGE_FILE_MACHINE_AMD64: 1012 return "COFF-x86-64"; 1013 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1014 return "COFF-ARM"; 1015 case COFF::IMAGE_FILE_MACHINE_ARM64: 1016 return "COFF-ARM64"; 1017 case COFF::IMAGE_FILE_MACHINE_ARM64EC: 1018 return "COFF-ARM64EC"; 1019 default: 1020 return "COFF-<unknown arch>"; 1021 } 1022 } 1023 1024 Triple::ArchType COFFObjectFile::getArch() const { 1025 switch (getMachine()) { 1026 case COFF::IMAGE_FILE_MACHINE_I386: 1027 return Triple::x86; 1028 case COFF::IMAGE_FILE_MACHINE_AMD64: 1029 return Triple::x86_64; 1030 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1031 return Triple::thumb; 1032 case COFF::IMAGE_FILE_MACHINE_ARM64: 1033 case COFF::IMAGE_FILE_MACHINE_ARM64EC: 1034 return Triple::aarch64; 1035 default: 1036 return Triple::UnknownArch; 1037 } 1038 } 1039 1040 Expected<uint64_t> COFFObjectFile::getStartAddress() const { 1041 if (PE32Header) 1042 return PE32Header->AddressOfEntryPoint; 1043 return 0; 1044 } 1045 1046 iterator_range<import_directory_iterator> 1047 COFFObjectFile::import_directories() const { 1048 return make_range(import_directory_begin(), import_directory_end()); 1049 } 1050 1051 iterator_range<delay_import_directory_iterator> 1052 COFFObjectFile::delay_import_directories() const { 1053 return make_range(delay_import_directory_begin(), 1054 delay_import_directory_end()); 1055 } 1056 1057 iterator_range<export_directory_iterator> 1058 COFFObjectFile::export_directories() const { 1059 return make_range(export_directory_begin(), export_directory_end()); 1060 } 1061 1062 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 1063 return make_range(base_reloc_begin(), base_reloc_end()); 1064 } 1065 1066 const data_directory *COFFObjectFile::getDataDirectory(uint32_t Index) const { 1067 if (!DataDirectory) 1068 return nullptr; 1069 assert(PE32Header || PE32PlusHeader); 1070 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 1071 : PE32PlusHeader->NumberOfRvaAndSize; 1072 if (Index >= NumEnt) 1073 return nullptr; 1074 return &DataDirectory[Index]; 1075 } 1076 1077 Expected<const coff_section *> COFFObjectFile::getSection(int32_t Index) const { 1078 // Perhaps getting the section of a reserved section index should be an error, 1079 // but callers rely on this to return null. 1080 if (COFF::isReservedSectionNumber(Index)) 1081 return (const coff_section *)nullptr; 1082 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 1083 // We already verified the section table data, so no need to check again. 1084 return SectionTable + (Index - 1); 1085 } 1086 return createStringError(object_error::parse_failed, 1087 "section index out of bounds"); 1088 } 1089 1090 Expected<StringRef> COFFObjectFile::getString(uint32_t Offset) const { 1091 if (StringTableSize <= 4) 1092 // Tried to get a string from an empty string table. 1093 return createStringError(object_error::parse_failed, "string table empty"); 1094 if (Offset >= StringTableSize) 1095 return errorCodeToError(object_error::unexpected_eof); 1096 return StringRef(StringTable + Offset); 1097 } 1098 1099 Expected<StringRef> COFFObjectFile::getSymbolName(COFFSymbolRef Symbol) const { 1100 return getSymbolName(Symbol.getGeneric()); 1101 } 1102 1103 Expected<StringRef> 1104 COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol) const { 1105 // Check for string table entry. First 4 bytes are 0. 1106 if (Symbol->Name.Offset.Zeroes == 0) 1107 return getString(Symbol->Name.Offset.Offset); 1108 1109 // Null terminated, let ::strlen figure out the length. 1110 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 1111 return StringRef(Symbol->Name.ShortName); 1112 1113 // Not null terminated, use all 8 bytes. 1114 return StringRef(Symbol->Name.ShortName, COFF::NameSize); 1115 } 1116 1117 ArrayRef<uint8_t> 1118 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 1119 const uint8_t *Aux = nullptr; 1120 1121 size_t SymbolSize = getSymbolTableEntrySize(); 1122 if (Symbol.getNumberOfAuxSymbols() > 0) { 1123 // AUX data comes immediately after the symbol in COFF 1124 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 1125 #ifndef NDEBUG 1126 // Verify that the Aux symbol points to a valid entry in the symbol table. 1127 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 1128 if (Offset < getPointerToSymbolTable() || 1129 Offset >= 1130 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 1131 report_fatal_error("Aux Symbol data was outside of symbol table."); 1132 1133 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 1134 "Aux Symbol data did not point to the beginning of a symbol"); 1135 #endif 1136 } 1137 return ArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 1138 } 1139 1140 uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const { 1141 uintptr_t Offset = 1142 reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable(); 1143 assert(Offset % getSymbolTableEntrySize() == 0 && 1144 "Symbol did not point to the beginning of a symbol"); 1145 size_t Index = Offset / getSymbolTableEntrySize(); 1146 assert(Index < getNumberOfSymbols()); 1147 return Index; 1148 } 1149 1150 Expected<StringRef> 1151 COFFObjectFile::getSectionName(const coff_section *Sec) const { 1152 StringRef Name = StringRef(Sec->Name, COFF::NameSize).split('\0').first; 1153 1154 // Check for string table entry. First byte is '/'. 1155 if (Name.startswith("/")) { 1156 uint32_t Offset; 1157 if (Name.startswith("//")) { 1158 if (decodeBase64StringEntry(Name.substr(2), Offset)) 1159 return createStringError(object_error::parse_failed, 1160 "invalid section name"); 1161 } else { 1162 if (Name.substr(1).getAsInteger(10, Offset)) 1163 return createStringError(object_error::parse_failed, 1164 "invalid section name"); 1165 } 1166 return getString(Offset); 1167 } 1168 1169 return Name; 1170 } 1171 1172 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 1173 // SizeOfRawData and VirtualSize change what they represent depending on 1174 // whether or not we have an executable image. 1175 // 1176 // For object files, SizeOfRawData contains the size of section's data; 1177 // VirtualSize should be zero but isn't due to buggy COFF writers. 1178 // 1179 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 1180 // actual section size is in VirtualSize. It is possible for VirtualSize to 1181 // be greater than SizeOfRawData; the contents past that point should be 1182 // considered to be zero. 1183 if (getDOSHeader()) 1184 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 1185 return Sec->SizeOfRawData; 1186 } 1187 1188 Error COFFObjectFile::getSectionContents(const coff_section *Sec, 1189 ArrayRef<uint8_t> &Res) const { 1190 // In COFF, a virtual section won't have any in-file 1191 // content, so the file pointer to the content will be zero. 1192 if (Sec->PointerToRawData == 0) 1193 return Error::success(); 1194 // The only thing that we need to verify is that the contents is contained 1195 // within the file bounds. We don't need to make sure it doesn't cover other 1196 // data, as there's nothing that says that is not allowed. 1197 uintptr_t ConStart = 1198 reinterpret_cast<uintptr_t>(base()) + Sec->PointerToRawData; 1199 uint32_t SectionSize = getSectionSize(Sec); 1200 if (Error E = checkOffset(Data, ConStart, SectionSize)) 1201 return E; 1202 Res = ArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 1203 return Error::success(); 1204 } 1205 1206 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 1207 return reinterpret_cast<const coff_relocation*>(Rel.p); 1208 } 1209 1210 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 1211 Rel.p = reinterpret_cast<uintptr_t>( 1212 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 1213 } 1214 1215 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 1216 const coff_relocation *R = toRel(Rel); 1217 return R->VirtualAddress; 1218 } 1219 1220 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1221 const coff_relocation *R = toRel(Rel); 1222 DataRefImpl Ref; 1223 if (R->SymbolTableIndex >= getNumberOfSymbols()) 1224 return symbol_end(); 1225 if (SymbolTable16) 1226 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1227 else if (SymbolTable32) 1228 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1229 else 1230 llvm_unreachable("no symbol table pointer!"); 1231 return symbol_iterator(SymbolRef(Ref, this)); 1232 } 1233 1234 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 1235 const coff_relocation* R = toRel(Rel); 1236 return R->Type; 1237 } 1238 1239 const coff_section * 1240 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1241 return toSec(Section.getRawDataRefImpl()); 1242 } 1243 1244 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1245 if (SymbolTable16) 1246 return toSymb<coff_symbol16>(Ref); 1247 if (SymbolTable32) 1248 return toSymb<coff_symbol32>(Ref); 1249 llvm_unreachable("no symbol table pointer!"); 1250 } 1251 1252 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1253 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1254 } 1255 1256 const coff_relocation * 1257 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1258 return toRel(Reloc.getRawDataRefImpl()); 1259 } 1260 1261 ArrayRef<coff_relocation> 1262 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1263 return {getFirstReloc(Sec, Data, base()), 1264 getNumberOfRelocations(Sec, Data, base())}; 1265 } 1266 1267 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1268 case COFF::reloc_type: \ 1269 return #reloc_type; 1270 1271 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const { 1272 switch (getMachine()) { 1273 case COFF::IMAGE_FILE_MACHINE_AMD64: 1274 switch (Type) { 1275 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1276 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1277 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1278 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1279 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1280 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1281 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1282 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1283 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1284 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1285 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1286 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1287 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1288 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1289 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1290 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1291 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1292 default: 1293 return "Unknown"; 1294 } 1295 break; 1296 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1297 switch (Type) { 1298 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1299 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1300 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1301 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1302 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1303 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1304 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1305 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1306 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32); 1307 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1308 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1309 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1310 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1311 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1312 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1313 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1314 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR); 1315 default: 1316 return "Unknown"; 1317 } 1318 break; 1319 case COFF::IMAGE_FILE_MACHINE_ARM64: 1320 case COFF::IMAGE_FILE_MACHINE_ARM64EC: 1321 switch (Type) { 1322 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE); 1323 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32); 1324 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB); 1325 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26); 1326 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21); 1327 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21); 1328 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A); 1329 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L); 1330 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL); 1331 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A); 1332 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A); 1333 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L); 1334 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN); 1335 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION); 1336 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64); 1337 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19); 1338 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14); 1339 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32); 1340 default: 1341 return "Unknown"; 1342 } 1343 break; 1344 case COFF::IMAGE_FILE_MACHINE_I386: 1345 switch (Type) { 1346 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1347 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1348 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1349 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1350 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1351 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1352 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1353 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1354 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1355 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1356 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1357 default: 1358 return "Unknown"; 1359 } 1360 break; 1361 default: 1362 return "Unknown"; 1363 } 1364 } 1365 1366 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1367 1368 void COFFObjectFile::getRelocationTypeName( 1369 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1370 const coff_relocation *Reloc = toRel(Rel); 1371 StringRef Res = getRelocationTypeName(Reloc->Type); 1372 Result.append(Res.begin(), Res.end()); 1373 } 1374 1375 bool COFFObjectFile::isRelocatableObject() const { 1376 return !DataDirectory; 1377 } 1378 1379 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const { 1380 return StringSwitch<StringRef>(Name) 1381 .Case("eh_fram", "eh_frame") 1382 .Default(Name); 1383 } 1384 1385 bool ImportDirectoryEntryRef:: 1386 operator==(const ImportDirectoryEntryRef &Other) const { 1387 return ImportTable == Other.ImportTable && Index == Other.Index; 1388 } 1389 1390 void ImportDirectoryEntryRef::moveNext() { 1391 ++Index; 1392 if (ImportTable[Index].isNull()) { 1393 Index = -1; 1394 ImportTable = nullptr; 1395 } 1396 } 1397 1398 Error ImportDirectoryEntryRef::getImportTableEntry( 1399 const coff_import_directory_table_entry *&Result) const { 1400 return getObject(Result, OwningObject->Data, ImportTable + Index); 1401 } 1402 1403 static imported_symbol_iterator 1404 makeImportedSymbolIterator(const COFFObjectFile *Object, 1405 uintptr_t Ptr, int Index) { 1406 if (Object->getBytesInAddress() == 4) { 1407 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1408 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1409 } 1410 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1411 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1412 } 1413 1414 static imported_symbol_iterator 1415 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1416 uintptr_t IntPtr = 0; 1417 // FIXME: Handle errors. 1418 cantFail(Object->getRvaPtr(RVA, IntPtr)); 1419 return makeImportedSymbolIterator(Object, IntPtr, 0); 1420 } 1421 1422 static imported_symbol_iterator 1423 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1424 uintptr_t IntPtr = 0; 1425 // FIXME: Handle errors. 1426 cantFail(Object->getRvaPtr(RVA, IntPtr)); 1427 // Forward the pointer to the last entry which is null. 1428 int Index = 0; 1429 if (Object->getBytesInAddress() == 4) { 1430 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1431 while (*Entry++) 1432 ++Index; 1433 } else { 1434 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1435 while (*Entry++) 1436 ++Index; 1437 } 1438 return makeImportedSymbolIterator(Object, IntPtr, Index); 1439 } 1440 1441 imported_symbol_iterator 1442 ImportDirectoryEntryRef::imported_symbol_begin() const { 1443 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA, 1444 OwningObject); 1445 } 1446 1447 imported_symbol_iterator 1448 ImportDirectoryEntryRef::imported_symbol_end() const { 1449 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA, 1450 OwningObject); 1451 } 1452 1453 iterator_range<imported_symbol_iterator> 1454 ImportDirectoryEntryRef::imported_symbols() const { 1455 return make_range(imported_symbol_begin(), imported_symbol_end()); 1456 } 1457 1458 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const { 1459 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1460 OwningObject); 1461 } 1462 1463 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const { 1464 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1465 OwningObject); 1466 } 1467 1468 iterator_range<imported_symbol_iterator> 1469 ImportDirectoryEntryRef::lookup_table_symbols() const { 1470 return make_range(lookup_table_begin(), lookup_table_end()); 1471 } 1472 1473 Error ImportDirectoryEntryRef::getName(StringRef &Result) const { 1474 uintptr_t IntPtr = 0; 1475 if (Error E = OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr, 1476 "import directory name")) 1477 return E; 1478 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1479 return Error::success(); 1480 } 1481 1482 Error 1483 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1484 Result = ImportTable[Index].ImportLookupTableRVA; 1485 return Error::success(); 1486 } 1487 1488 Error ImportDirectoryEntryRef::getImportAddressTableRVA( 1489 uint32_t &Result) const { 1490 Result = ImportTable[Index].ImportAddressTableRVA; 1491 return Error::success(); 1492 } 1493 1494 bool DelayImportDirectoryEntryRef:: 1495 operator==(const DelayImportDirectoryEntryRef &Other) const { 1496 return Table == Other.Table && Index == Other.Index; 1497 } 1498 1499 void DelayImportDirectoryEntryRef::moveNext() { 1500 ++Index; 1501 } 1502 1503 imported_symbol_iterator 1504 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1505 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1506 OwningObject); 1507 } 1508 1509 imported_symbol_iterator 1510 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1511 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1512 OwningObject); 1513 } 1514 1515 iterator_range<imported_symbol_iterator> 1516 DelayImportDirectoryEntryRef::imported_symbols() const { 1517 return make_range(imported_symbol_begin(), imported_symbol_end()); 1518 } 1519 1520 Error DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1521 uintptr_t IntPtr = 0; 1522 if (Error E = OwningObject->getRvaPtr(Table[Index].Name, IntPtr, 1523 "delay import directory name")) 1524 return E; 1525 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1526 return Error::success(); 1527 } 1528 1529 Error DelayImportDirectoryEntryRef::getDelayImportTable( 1530 const delay_import_directory_table_entry *&Result) const { 1531 Result = &Table[Index]; 1532 return Error::success(); 1533 } 1534 1535 Error DelayImportDirectoryEntryRef::getImportAddress(int AddrIndex, 1536 uint64_t &Result) const { 1537 uint32_t RVA = Table[Index].DelayImportAddressTable + 1538 AddrIndex * (OwningObject->is64() ? 8 : 4); 1539 uintptr_t IntPtr = 0; 1540 if (Error E = OwningObject->getRvaPtr(RVA, IntPtr, "import address")) 1541 return E; 1542 if (OwningObject->is64()) 1543 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1544 else 1545 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1546 return Error::success(); 1547 } 1548 1549 bool ExportDirectoryEntryRef:: 1550 operator==(const ExportDirectoryEntryRef &Other) const { 1551 return ExportTable == Other.ExportTable && Index == Other.Index; 1552 } 1553 1554 void ExportDirectoryEntryRef::moveNext() { 1555 ++Index; 1556 } 1557 1558 // Returns the name of the current export symbol. If the symbol is exported only 1559 // by ordinal, the empty string is set as a result. 1560 Error ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1561 uintptr_t IntPtr = 0; 1562 if (Error E = 1563 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr, "dll name")) 1564 return E; 1565 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1566 return Error::success(); 1567 } 1568 1569 // Returns the starting ordinal number. 1570 Error ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1571 Result = ExportTable->OrdinalBase; 1572 return Error::success(); 1573 } 1574 1575 // Returns the export ordinal of the current export symbol. 1576 Error ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1577 Result = ExportTable->OrdinalBase + Index; 1578 return Error::success(); 1579 } 1580 1581 // Returns the address of the current export symbol. 1582 Error ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1583 uintptr_t IntPtr = 0; 1584 if (Error EC = OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, 1585 IntPtr, "export address")) 1586 return EC; 1587 const export_address_table_entry *entry = 1588 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1589 Result = entry[Index].ExportRVA; 1590 return Error::success(); 1591 } 1592 1593 // Returns the name of the current export symbol. If the symbol is exported only 1594 // by ordinal, the empty string is set as a result. 1595 Error 1596 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1597 uintptr_t IntPtr = 0; 1598 if (Error EC = OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr, 1599 "export ordinal table")) 1600 return EC; 1601 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1602 1603 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1604 int Offset = 0; 1605 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1606 I < E; ++I, ++Offset) { 1607 if (*I != Index) 1608 continue; 1609 if (Error EC = OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr, 1610 "export table entry")) 1611 return EC; 1612 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1613 if (Error EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr, 1614 "export symbol name")) 1615 return EC; 1616 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1617 return Error::success(); 1618 } 1619 Result = ""; 1620 return Error::success(); 1621 } 1622 1623 Error ExportDirectoryEntryRef::isForwarder(bool &Result) const { 1624 const data_directory *DataEntry = 1625 OwningObject->getDataDirectory(COFF::EXPORT_TABLE); 1626 if (!DataEntry) 1627 return createStringError(object_error::parse_failed, 1628 "export table missing"); 1629 uint32_t RVA; 1630 if (auto EC = getExportRVA(RVA)) 1631 return EC; 1632 uint32_t Begin = DataEntry->RelativeVirtualAddress; 1633 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; 1634 Result = (Begin <= RVA && RVA < End); 1635 return Error::success(); 1636 } 1637 1638 Error ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { 1639 uint32_t RVA; 1640 if (auto EC = getExportRVA(RVA)) 1641 return EC; 1642 uintptr_t IntPtr = 0; 1643 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr, "export forward target")) 1644 return EC; 1645 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1646 return Error::success(); 1647 } 1648 1649 bool ImportedSymbolRef:: 1650 operator==(const ImportedSymbolRef &Other) const { 1651 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1652 && Index == Other.Index; 1653 } 1654 1655 void ImportedSymbolRef::moveNext() { 1656 ++Index; 1657 } 1658 1659 Error ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1660 uint32_t RVA; 1661 if (Entry32) { 1662 // If a symbol is imported only by ordinal, it has no name. 1663 if (Entry32[Index].isOrdinal()) 1664 return Error::success(); 1665 RVA = Entry32[Index].getHintNameRVA(); 1666 } else { 1667 if (Entry64[Index].isOrdinal()) 1668 return Error::success(); 1669 RVA = Entry64[Index].getHintNameRVA(); 1670 } 1671 uintptr_t IntPtr = 0; 1672 if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol name")) 1673 return EC; 1674 // +2 because the first two bytes is hint. 1675 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1676 return Error::success(); 1677 } 1678 1679 Error ImportedSymbolRef::isOrdinal(bool &Result) const { 1680 if (Entry32) 1681 Result = Entry32[Index].isOrdinal(); 1682 else 1683 Result = Entry64[Index].isOrdinal(); 1684 return Error::success(); 1685 } 1686 1687 Error ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const { 1688 if (Entry32) 1689 Result = Entry32[Index].getHintNameRVA(); 1690 else 1691 Result = Entry64[Index].getHintNameRVA(); 1692 return Error::success(); 1693 } 1694 1695 Error ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1696 uint32_t RVA; 1697 if (Entry32) { 1698 if (Entry32[Index].isOrdinal()) { 1699 Result = Entry32[Index].getOrdinal(); 1700 return Error::success(); 1701 } 1702 RVA = Entry32[Index].getHintNameRVA(); 1703 } else { 1704 if (Entry64[Index].isOrdinal()) { 1705 Result = Entry64[Index].getOrdinal(); 1706 return Error::success(); 1707 } 1708 RVA = Entry64[Index].getHintNameRVA(); 1709 } 1710 uintptr_t IntPtr = 0; 1711 if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol ordinal")) 1712 return EC; 1713 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1714 return Error::success(); 1715 } 1716 1717 Expected<std::unique_ptr<COFFObjectFile>> 1718 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1719 return COFFObjectFile::create(Object); 1720 } 1721 1722 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1723 return Header == Other.Header && Index == Other.Index; 1724 } 1725 1726 void BaseRelocRef::moveNext() { 1727 // Header->BlockSize is the size of the current block, including the 1728 // size of the header itself. 1729 uint32_t Size = sizeof(*Header) + 1730 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1731 if (Size == Header->BlockSize) { 1732 // .reloc contains a list of base relocation blocks. Each block 1733 // consists of the header followed by entries. The header contains 1734 // how many entories will follow. When we reach the end of the 1735 // current block, proceed to the next block. 1736 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1737 reinterpret_cast<const uint8_t *>(Header) + Size); 1738 Index = 0; 1739 } else { 1740 ++Index; 1741 } 1742 } 1743 1744 Error BaseRelocRef::getType(uint8_t &Type) const { 1745 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1746 Type = Entry[Index].getType(); 1747 return Error::success(); 1748 } 1749 1750 Error BaseRelocRef::getRVA(uint32_t &Result) const { 1751 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1752 Result = Header->PageRVA + Entry[Index].getOffset(); 1753 return Error::success(); 1754 } 1755 1756 #define RETURN_IF_ERROR(Expr) \ 1757 do { \ 1758 Error E = (Expr); \ 1759 if (E) \ 1760 return std::move(E); \ 1761 } while (0) 1762 1763 Expected<ArrayRef<UTF16>> 1764 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) { 1765 BinaryStreamReader Reader = BinaryStreamReader(BBS); 1766 Reader.setOffset(Offset); 1767 uint16_t Length; 1768 RETURN_IF_ERROR(Reader.readInteger(Length)); 1769 ArrayRef<UTF16> RawDirString; 1770 RETURN_IF_ERROR(Reader.readArray(RawDirString, Length)); 1771 return RawDirString; 1772 } 1773 1774 Expected<ArrayRef<UTF16>> 1775 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) { 1776 return getDirStringAtOffset(Entry.Identifier.getNameOffset()); 1777 } 1778 1779 Expected<const coff_resource_dir_table &> 1780 ResourceSectionRef::getTableAtOffset(uint32_t Offset) { 1781 const coff_resource_dir_table *Table = nullptr; 1782 1783 BinaryStreamReader Reader(BBS); 1784 Reader.setOffset(Offset); 1785 RETURN_IF_ERROR(Reader.readObject(Table)); 1786 assert(Table != nullptr); 1787 return *Table; 1788 } 1789 1790 Expected<const coff_resource_dir_entry &> 1791 ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) { 1792 const coff_resource_dir_entry *Entry = nullptr; 1793 1794 BinaryStreamReader Reader(BBS); 1795 Reader.setOffset(Offset); 1796 RETURN_IF_ERROR(Reader.readObject(Entry)); 1797 assert(Entry != nullptr); 1798 return *Entry; 1799 } 1800 1801 Expected<const coff_resource_data_entry &> 1802 ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) { 1803 const coff_resource_data_entry *Entry = nullptr; 1804 1805 BinaryStreamReader Reader(BBS); 1806 Reader.setOffset(Offset); 1807 RETURN_IF_ERROR(Reader.readObject(Entry)); 1808 assert(Entry != nullptr); 1809 return *Entry; 1810 } 1811 1812 Expected<const coff_resource_dir_table &> 1813 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) { 1814 assert(Entry.Offset.isSubDir()); 1815 return getTableAtOffset(Entry.Offset.value()); 1816 } 1817 1818 Expected<const coff_resource_data_entry &> 1819 ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) { 1820 assert(!Entry.Offset.isSubDir()); 1821 return getDataEntryAtOffset(Entry.Offset.value()); 1822 } 1823 1824 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() { 1825 return getTableAtOffset(0); 1826 } 1827 1828 Expected<const coff_resource_dir_entry &> 1829 ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table, 1830 uint32_t Index) { 1831 if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries)) 1832 return createStringError(object_error::parse_failed, "index out of range"); 1833 const uint8_t *TablePtr = reinterpret_cast<const uint8_t *>(&Table); 1834 ptrdiff_t TableOffset = TablePtr - BBS.data().data(); 1835 return getTableEntryAtOffset(TableOffset + sizeof(Table) + 1836 Index * sizeof(coff_resource_dir_entry)); 1837 } 1838 1839 Error ResourceSectionRef::load(const COFFObjectFile *O) { 1840 for (const SectionRef &S : O->sections()) { 1841 Expected<StringRef> Name = S.getName(); 1842 if (!Name) 1843 return Name.takeError(); 1844 1845 if (*Name == ".rsrc" || *Name == ".rsrc$01") 1846 return load(O, S); 1847 } 1848 return createStringError(object_error::parse_failed, 1849 "no resource section found"); 1850 } 1851 1852 Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) { 1853 Obj = O; 1854 Section = S; 1855 Expected<StringRef> Contents = Section.getContents(); 1856 if (!Contents) 1857 return Contents.takeError(); 1858 BBS = BinaryByteStream(*Contents, support::little); 1859 const coff_section *COFFSect = Obj->getCOFFSection(Section); 1860 ArrayRef<coff_relocation> OrigRelocs = Obj->getRelocations(COFFSect); 1861 Relocs.reserve(OrigRelocs.size()); 1862 for (const coff_relocation &R : OrigRelocs) 1863 Relocs.push_back(&R); 1864 llvm::sort(Relocs, [](const coff_relocation *A, const coff_relocation *B) { 1865 return A->VirtualAddress < B->VirtualAddress; 1866 }); 1867 return Error::success(); 1868 } 1869 1870 Expected<StringRef> 1871 ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) { 1872 if (!Obj) 1873 return createStringError(object_error::parse_failed, "no object provided"); 1874 1875 // Find a potential relocation at the DataRVA field (first member of 1876 // the coff_resource_data_entry struct). 1877 const uint8_t *EntryPtr = reinterpret_cast<const uint8_t *>(&Entry); 1878 ptrdiff_t EntryOffset = EntryPtr - BBS.data().data(); 1879 coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0), 1880 ulittle16_t(0)}; 1881 auto RelocsForOffset = 1882 std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget, 1883 [](const coff_relocation *A, const coff_relocation *B) { 1884 return A->VirtualAddress < B->VirtualAddress; 1885 }); 1886 1887 if (RelocsForOffset.first != RelocsForOffset.second) { 1888 // We found a relocation with the right offset. Check that it does have 1889 // the expected type. 1890 const coff_relocation &R = **RelocsForOffset.first; 1891 uint16_t RVAReloc; 1892 switch (Obj->getMachine()) { 1893 case COFF::IMAGE_FILE_MACHINE_I386: 1894 RVAReloc = COFF::IMAGE_REL_I386_DIR32NB; 1895 break; 1896 case COFF::IMAGE_FILE_MACHINE_AMD64: 1897 RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB; 1898 break; 1899 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1900 RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB; 1901 break; 1902 case COFF::IMAGE_FILE_MACHINE_ARM64: 1903 case COFF::IMAGE_FILE_MACHINE_ARM64EC: 1904 RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB; 1905 break; 1906 default: 1907 return createStringError(object_error::parse_failed, 1908 "unsupported architecture"); 1909 } 1910 if (R.Type != RVAReloc) 1911 return createStringError(object_error::parse_failed, 1912 "unexpected relocation type"); 1913 // Get the relocation's symbol 1914 Expected<COFFSymbolRef> Sym = Obj->getSymbol(R.SymbolTableIndex); 1915 if (!Sym) 1916 return Sym.takeError(); 1917 // And the symbol's section 1918 Expected<const coff_section *> Section = 1919 Obj->getSection(Sym->getSectionNumber()); 1920 if (!Section) 1921 return Section.takeError(); 1922 // Add the initial value of DataRVA to the symbol's offset to find the 1923 // data it points at. 1924 uint64_t Offset = Entry.DataRVA + Sym->getValue(); 1925 ArrayRef<uint8_t> Contents; 1926 if (Error E = Obj->getSectionContents(*Section, Contents)) 1927 return std::move(E); 1928 if (Offset + Entry.DataSize > Contents.size()) 1929 return createStringError(object_error::parse_failed, 1930 "data outside of section"); 1931 // Return a reference to the data inside the section. 1932 return StringRef(reinterpret_cast<const char *>(Contents.data()) + Offset, 1933 Entry.DataSize); 1934 } else { 1935 // Relocatable objects need a relocation for the DataRVA field. 1936 if (Obj->isRelocatableObject()) 1937 return createStringError(object_error::parse_failed, 1938 "no relocation found for DataRVA"); 1939 1940 // Locate the section that contains the address that DataRVA points at. 1941 uint64_t VA = Entry.DataRVA + Obj->getImageBase(); 1942 for (const SectionRef &S : Obj->sections()) { 1943 if (VA >= S.getAddress() && 1944 VA + Entry.DataSize <= S.getAddress() + S.getSize()) { 1945 uint64_t Offset = VA - S.getAddress(); 1946 Expected<StringRef> Contents = S.getContents(); 1947 if (!Contents) 1948 return Contents.takeError(); 1949 return Contents->slice(Offset, Offset + Entry.DataSize); 1950 } 1951 } 1952 return createStringError(object_error::parse_failed, 1953 "address not found in image"); 1954 } 1955 } 1956