xref: /freebsd/contrib/llvm-project/llvm/lib/Object/COFFObjectFile.cpp (revision 62cfcf62f627e5093fb37026a6d8c98e4d2ef04c)
1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the COFFObjectFile class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/BinaryFormat/COFF.h"
18 #include "llvm/Object/Binary.h"
19 #include "llvm/Object/COFF.h"
20 #include "llvm/Object/Error.h"
21 #include "llvm/Object/ObjectFile.h"
22 #include "llvm/Support/BinaryStreamReader.h"
23 #include "llvm/Support/Endian.h"
24 #include "llvm/Support/Error.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/MemoryBuffer.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <cstddef>
31 #include <cstdint>
32 #include <cstring>
33 #include <limits>
34 #include <memory>
35 #include <system_error>
36 
37 using namespace llvm;
38 using namespace object;
39 
40 using support::ulittle16_t;
41 using support::ulittle32_t;
42 using support::ulittle64_t;
43 using support::little16_t;
44 
45 // Returns false if size is greater than the buffer size. And sets ec.
46 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
47   if (M.getBufferSize() < Size) {
48     EC = object_error::unexpected_eof;
49     return false;
50   }
51   return true;
52 }
53 
54 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
55 // Returns unexpected_eof if error.
56 template <typename T>
57 static std::error_code getObject(const T *&Obj, MemoryBufferRef M,
58                                  const void *Ptr,
59                                  const uint64_t Size = sizeof(T)) {
60   uintptr_t Addr = uintptr_t(Ptr);
61   if (std::error_code EC = Binary::checkOffset(M, Addr, Size))
62     return EC;
63   Obj = reinterpret_cast<const T *>(Addr);
64   return std::error_code();
65 }
66 
67 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
68 // prefixed slashes.
69 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
70   assert(Str.size() <= 6 && "String too long, possible overflow.");
71   if (Str.size() > 6)
72     return true;
73 
74   uint64_t Value = 0;
75   while (!Str.empty()) {
76     unsigned CharVal;
77     if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
78       CharVal = Str[0] - 'A';
79     else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
80       CharVal = Str[0] - 'a' + 26;
81     else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
82       CharVal = Str[0] - '0' + 52;
83     else if (Str[0] == '+') // 62
84       CharVal = 62;
85     else if (Str[0] == '/') // 63
86       CharVal = 63;
87     else
88       return true;
89 
90     Value = (Value * 64) + CharVal;
91     Str = Str.substr(1);
92   }
93 
94   if (Value > std::numeric_limits<uint32_t>::max())
95     return true;
96 
97   Result = static_cast<uint32_t>(Value);
98   return false;
99 }
100 
101 template <typename coff_symbol_type>
102 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
103   const coff_symbol_type *Addr =
104       reinterpret_cast<const coff_symbol_type *>(Ref.p);
105 
106   assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr)));
107 #ifndef NDEBUG
108   // Verify that the symbol points to a valid entry in the symbol table.
109   uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base());
110 
111   assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
112          "Symbol did not point to the beginning of a symbol");
113 #endif
114 
115   return Addr;
116 }
117 
118 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
119   const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
120 
121 #ifndef NDEBUG
122   // Verify that the section points to a valid entry in the section table.
123   if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
124     report_fatal_error("Section was outside of section table.");
125 
126   uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable);
127   assert(Offset % sizeof(coff_section) == 0 &&
128          "Section did not point to the beginning of a section");
129 #endif
130 
131   return Addr;
132 }
133 
134 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
135   auto End = reinterpret_cast<uintptr_t>(StringTable);
136   if (SymbolTable16) {
137     const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
138     Symb += 1 + Symb->NumberOfAuxSymbols;
139     Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
140   } else if (SymbolTable32) {
141     const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
142     Symb += 1 + Symb->NumberOfAuxSymbols;
143     Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
144   } else {
145     llvm_unreachable("no symbol table pointer!");
146   }
147 }
148 
149 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
150   COFFSymbolRef Symb = getCOFFSymbol(Ref);
151   StringRef Result;
152   if (std::error_code EC = getSymbolName(Symb, Result))
153     return errorCodeToError(EC);
154   return Result;
155 }
156 
157 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
158   return getCOFFSymbol(Ref).getValue();
159 }
160 
161 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const {
162   // MSVC/link.exe seems to align symbols to the next-power-of-2
163   // up to 32 bytes.
164   COFFSymbolRef Symb = getCOFFSymbol(Ref);
165   return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue()));
166 }
167 
168 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
169   uint64_t Result = getSymbolValue(Ref);
170   COFFSymbolRef Symb = getCOFFSymbol(Ref);
171   int32_t SectionNumber = Symb.getSectionNumber();
172 
173   if (Symb.isAnyUndefined() || Symb.isCommon() ||
174       COFF::isReservedSectionNumber(SectionNumber))
175     return Result;
176 
177   const coff_section *Section = nullptr;
178   if (std::error_code EC = getSection(SectionNumber, Section))
179     return errorCodeToError(EC);
180   Result += Section->VirtualAddress;
181 
182   // The section VirtualAddress does not include ImageBase, and we want to
183   // return virtual addresses.
184   Result += getImageBase();
185 
186   return Result;
187 }
188 
189 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
190   COFFSymbolRef Symb = getCOFFSymbol(Ref);
191   int32_t SectionNumber = Symb.getSectionNumber();
192 
193   if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
194     return SymbolRef::ST_Function;
195   if (Symb.isAnyUndefined())
196     return SymbolRef::ST_Unknown;
197   if (Symb.isCommon())
198     return SymbolRef::ST_Data;
199   if (Symb.isFileRecord())
200     return SymbolRef::ST_File;
201 
202   // TODO: perhaps we need a new symbol type ST_Section.
203   if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
204     return SymbolRef::ST_Debug;
205 
206   if (!COFF::isReservedSectionNumber(SectionNumber))
207     return SymbolRef::ST_Data;
208 
209   return SymbolRef::ST_Other;
210 }
211 
212 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
213   COFFSymbolRef Symb = getCOFFSymbol(Ref);
214   uint32_t Result = SymbolRef::SF_None;
215 
216   if (Symb.isExternal() || Symb.isWeakExternal())
217     Result |= SymbolRef::SF_Global;
218 
219   if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) {
220     Result |= SymbolRef::SF_Weak;
221     if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS)
222       Result |= SymbolRef::SF_Undefined;
223   }
224 
225   if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
226     Result |= SymbolRef::SF_Absolute;
227 
228   if (Symb.isFileRecord())
229     Result |= SymbolRef::SF_FormatSpecific;
230 
231   if (Symb.isSectionDefinition())
232     Result |= SymbolRef::SF_FormatSpecific;
233 
234   if (Symb.isCommon())
235     Result |= SymbolRef::SF_Common;
236 
237   if (Symb.isUndefined())
238     Result |= SymbolRef::SF_Undefined;
239 
240   return Result;
241 }
242 
243 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
244   COFFSymbolRef Symb = getCOFFSymbol(Ref);
245   return Symb.getValue();
246 }
247 
248 Expected<section_iterator>
249 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
250   COFFSymbolRef Symb = getCOFFSymbol(Ref);
251   if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
252     return section_end();
253   const coff_section *Sec = nullptr;
254   if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec))
255     return errorCodeToError(EC);
256   DataRefImpl Ret;
257   Ret.p = reinterpret_cast<uintptr_t>(Sec);
258   return section_iterator(SectionRef(Ret, this));
259 }
260 
261 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
262   COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
263   return Symb.getSectionNumber();
264 }
265 
266 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
267   const coff_section *Sec = toSec(Ref);
268   Sec += 1;
269   Ref.p = reinterpret_cast<uintptr_t>(Sec);
270 }
271 
272 Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const {
273   const coff_section *Sec = toSec(Ref);
274   return getSectionName(Sec);
275 }
276 
277 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
278   const coff_section *Sec = toSec(Ref);
279   uint64_t Result = Sec->VirtualAddress;
280 
281   // The section VirtualAddress does not include ImageBase, and we want to
282   // return virtual addresses.
283   Result += getImageBase();
284   return Result;
285 }
286 
287 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const {
288   return toSec(Sec) - SectionTable;
289 }
290 
291 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
292   return getSectionSize(toSec(Ref));
293 }
294 
295 Expected<ArrayRef<uint8_t>>
296 COFFObjectFile::getSectionContents(DataRefImpl Ref) const {
297   const coff_section *Sec = toSec(Ref);
298   ArrayRef<uint8_t> Res;
299   if (Error E = getSectionContents(Sec, Res))
300     return std::move(E);
301   return Res;
302 }
303 
304 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
305   const coff_section *Sec = toSec(Ref);
306   return Sec->getAlignment();
307 }
308 
309 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const {
310   return false;
311 }
312 
313 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
314   const coff_section *Sec = toSec(Ref);
315   return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
316 }
317 
318 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
319   const coff_section *Sec = toSec(Ref);
320   return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
321 }
322 
323 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
324   const coff_section *Sec = toSec(Ref);
325   const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
326                             COFF::IMAGE_SCN_MEM_READ |
327                             COFF::IMAGE_SCN_MEM_WRITE;
328   return (Sec->Characteristics & BssFlags) == BssFlags;
329 }
330 
331 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
332   uintptr_t Offset =
333       uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable);
334   assert((Offset % sizeof(coff_section)) == 0);
335   return (Offset / sizeof(coff_section)) + 1;
336 }
337 
338 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
339   const coff_section *Sec = toSec(Ref);
340   // In COFF, a virtual section won't have any in-file
341   // content, so the file pointer to the content will be zero.
342   return Sec->PointerToRawData == 0;
343 }
344 
345 static uint32_t getNumberOfRelocations(const coff_section *Sec,
346                                        MemoryBufferRef M, const uint8_t *base) {
347   // The field for the number of relocations in COFF section table is only
348   // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
349   // NumberOfRelocations field, and the actual relocation count is stored in the
350   // VirtualAddress field in the first relocation entry.
351   if (Sec->hasExtendedRelocations()) {
352     const coff_relocation *FirstReloc;
353     if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>(
354         base + Sec->PointerToRelocations)))
355       return 0;
356     // -1 to exclude this first relocation entry.
357     return FirstReloc->VirtualAddress - 1;
358   }
359   return Sec->NumberOfRelocations;
360 }
361 
362 static const coff_relocation *
363 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
364   uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
365   if (!NumRelocs)
366     return nullptr;
367   auto begin = reinterpret_cast<const coff_relocation *>(
368       Base + Sec->PointerToRelocations);
369   if (Sec->hasExtendedRelocations()) {
370     // Skip the first relocation entry repurposed to store the number of
371     // relocations.
372     begin++;
373   }
374   if (Binary::checkOffset(M, uintptr_t(begin),
375                           sizeof(coff_relocation) * NumRelocs))
376     return nullptr;
377   return begin;
378 }
379 
380 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
381   const coff_section *Sec = toSec(Ref);
382   const coff_relocation *begin = getFirstReloc(Sec, Data, base());
383   if (begin && Sec->VirtualAddress != 0)
384     report_fatal_error("Sections with relocations should have an address of 0");
385   DataRefImpl Ret;
386   Ret.p = reinterpret_cast<uintptr_t>(begin);
387   return relocation_iterator(RelocationRef(Ret, this));
388 }
389 
390 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
391   const coff_section *Sec = toSec(Ref);
392   const coff_relocation *I = getFirstReloc(Sec, Data, base());
393   if (I)
394     I += getNumberOfRelocations(Sec, Data, base());
395   DataRefImpl Ret;
396   Ret.p = reinterpret_cast<uintptr_t>(I);
397   return relocation_iterator(RelocationRef(Ret, this));
398 }
399 
400 // Initialize the pointer to the symbol table.
401 std::error_code COFFObjectFile::initSymbolTablePtr() {
402   if (COFFHeader)
403     if (std::error_code EC = getObject(
404             SymbolTable16, Data, base() + getPointerToSymbolTable(),
405             (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
406       return EC;
407 
408   if (COFFBigObjHeader)
409     if (std::error_code EC = getObject(
410             SymbolTable32, Data, base() + getPointerToSymbolTable(),
411             (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
412       return EC;
413 
414   // Find string table. The first four byte of the string table contains the
415   // total size of the string table, including the size field itself. If the
416   // string table is empty, the value of the first four byte would be 4.
417   uint32_t StringTableOffset = getPointerToSymbolTable() +
418                                getNumberOfSymbols() * getSymbolTableEntrySize();
419   const uint8_t *StringTableAddr = base() + StringTableOffset;
420   const ulittle32_t *StringTableSizePtr;
421   if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr))
422     return EC;
423   StringTableSize = *StringTableSizePtr;
424   if (std::error_code EC =
425           getObject(StringTable, Data, StringTableAddr, StringTableSize))
426     return EC;
427 
428   // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
429   // tools like cvtres write a size of 0 for an empty table instead of 4.
430   if (StringTableSize < 4)
431       StringTableSize = 4;
432 
433   // Check that the string table is null terminated if has any in it.
434   if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
435     return  object_error::parse_failed;
436   return std::error_code();
437 }
438 
439 uint64_t COFFObjectFile::getImageBase() const {
440   if (PE32Header)
441     return PE32Header->ImageBase;
442   else if (PE32PlusHeader)
443     return PE32PlusHeader->ImageBase;
444   // This actually comes up in practice.
445   return 0;
446 }
447 
448 // Returns the file offset for the given VA.
449 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
450   uint64_t ImageBase = getImageBase();
451   uint64_t Rva = Addr - ImageBase;
452   assert(Rva <= UINT32_MAX);
453   return getRvaPtr((uint32_t)Rva, Res);
454 }
455 
456 // Returns the file offset for the given RVA.
457 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const {
458   for (const SectionRef &S : sections()) {
459     const coff_section *Section = getCOFFSection(S);
460     uint32_t SectionStart = Section->VirtualAddress;
461     uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
462     if (SectionStart <= Addr && Addr < SectionEnd) {
463       uint32_t Offset = Addr - SectionStart;
464       Res = uintptr_t(base()) + Section->PointerToRawData + Offset;
465       return std::error_code();
466     }
467   }
468   return object_error::parse_failed;
469 }
470 
471 std::error_code
472 COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size,
473                                      ArrayRef<uint8_t> &Contents) const {
474   for (const SectionRef &S : sections()) {
475     const coff_section *Section = getCOFFSection(S);
476     uint32_t SectionStart = Section->VirtualAddress;
477     // Check if this RVA is within the section bounds. Be careful about integer
478     // overflow.
479     uint32_t OffsetIntoSection = RVA - SectionStart;
480     if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize &&
481         Size <= Section->VirtualSize - OffsetIntoSection) {
482       uintptr_t Begin =
483           uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection;
484       Contents =
485           ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size);
486       return std::error_code();
487     }
488   }
489   return object_error::parse_failed;
490 }
491 
492 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
493 // table entry.
494 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
495                                             StringRef &Name) const {
496   uintptr_t IntPtr = 0;
497   if (std::error_code EC = getRvaPtr(Rva, IntPtr))
498     return EC;
499   const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
500   Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
501   Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
502   return std::error_code();
503 }
504 
505 std::error_code
506 COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir,
507                                 const codeview::DebugInfo *&PDBInfo,
508                                 StringRef &PDBFileName) const {
509   ArrayRef<uint8_t> InfoBytes;
510   if (std::error_code EC = getRvaAndSizeAsBytes(
511           DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes))
512     return EC;
513   if (InfoBytes.size() < sizeof(*PDBInfo) + 1)
514     return object_error::parse_failed;
515   PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data());
516   InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo));
517   PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()),
518                           InfoBytes.size());
519   // Truncate the name at the first null byte. Ignore any padding.
520   PDBFileName = PDBFileName.split('\0').first;
521   return std::error_code();
522 }
523 
524 std::error_code
525 COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo,
526                                 StringRef &PDBFileName) const {
527   for (const debug_directory &D : debug_directories())
528     if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW)
529       return getDebugPDBInfo(&D, PDBInfo, PDBFileName);
530   // If we get here, there is no PDB info to return.
531   PDBInfo = nullptr;
532   PDBFileName = StringRef();
533   return std::error_code();
534 }
535 
536 // Find the import table.
537 std::error_code COFFObjectFile::initImportTablePtr() {
538   // First, we get the RVA of the import table. If the file lacks a pointer to
539   // the import table, do nothing.
540   const data_directory *DataEntry;
541   if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry))
542     return std::error_code();
543 
544   // Do nothing if the pointer to import table is NULL.
545   if (DataEntry->RelativeVirtualAddress == 0)
546     return std::error_code();
547 
548   uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
549 
550   // Find the section that contains the RVA. This is needed because the RVA is
551   // the import table's memory address which is different from its file offset.
552   uintptr_t IntPtr = 0;
553   if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr))
554     return EC;
555   if (std::error_code EC = checkOffset(Data, IntPtr, DataEntry->Size))
556     return EC;
557   ImportDirectory = reinterpret_cast<
558       const coff_import_directory_table_entry *>(IntPtr);
559   return std::error_code();
560 }
561 
562 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
563 std::error_code COFFObjectFile::initDelayImportTablePtr() {
564   const data_directory *DataEntry;
565   if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry))
566     return std::error_code();
567   if (DataEntry->RelativeVirtualAddress == 0)
568     return std::error_code();
569 
570   uint32_t RVA = DataEntry->RelativeVirtualAddress;
571   NumberOfDelayImportDirectory = DataEntry->Size /
572       sizeof(delay_import_directory_table_entry) - 1;
573 
574   uintptr_t IntPtr = 0;
575   if (std::error_code EC = getRvaPtr(RVA, IntPtr))
576     return EC;
577   DelayImportDirectory = reinterpret_cast<
578       const delay_import_directory_table_entry *>(IntPtr);
579   return std::error_code();
580 }
581 
582 // Find the export table.
583 std::error_code COFFObjectFile::initExportTablePtr() {
584   // First, we get the RVA of the export table. If the file lacks a pointer to
585   // the export table, do nothing.
586   const data_directory *DataEntry;
587   if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
588     return std::error_code();
589 
590   // Do nothing if the pointer to export table is NULL.
591   if (DataEntry->RelativeVirtualAddress == 0)
592     return std::error_code();
593 
594   uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
595   uintptr_t IntPtr = 0;
596   if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr))
597     return EC;
598   ExportDirectory =
599       reinterpret_cast<const export_directory_table_entry *>(IntPtr);
600   return std::error_code();
601 }
602 
603 std::error_code COFFObjectFile::initBaseRelocPtr() {
604   const data_directory *DataEntry;
605   if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry))
606     return std::error_code();
607   if (DataEntry->RelativeVirtualAddress == 0)
608     return std::error_code();
609 
610   uintptr_t IntPtr = 0;
611   if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
612     return EC;
613   BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
614       IntPtr);
615   BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
616       IntPtr + DataEntry->Size);
617   // FIXME: Verify the section containing BaseRelocHeader has at least
618   // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
619   return std::error_code();
620 }
621 
622 std::error_code COFFObjectFile::initDebugDirectoryPtr() {
623   // Get the RVA of the debug directory. Do nothing if it does not exist.
624   const data_directory *DataEntry;
625   if (getDataDirectory(COFF::DEBUG_DIRECTORY, DataEntry))
626     return std::error_code();
627 
628   // Do nothing if the RVA is NULL.
629   if (DataEntry->RelativeVirtualAddress == 0)
630     return std::error_code();
631 
632   // Check that the size is a multiple of the entry size.
633   if (DataEntry->Size % sizeof(debug_directory) != 0)
634     return object_error::parse_failed;
635 
636   uintptr_t IntPtr = 0;
637   if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
638     return EC;
639   DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr);
640   DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(
641       IntPtr + DataEntry->Size);
642   // FIXME: Verify the section containing DebugDirectoryBegin has at least
643   // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
644   return std::error_code();
645 }
646 
647 std::error_code COFFObjectFile::initLoadConfigPtr() {
648   // Get the RVA of the debug directory. Do nothing if it does not exist.
649   const data_directory *DataEntry;
650   if (getDataDirectory(COFF::LOAD_CONFIG_TABLE, DataEntry))
651     return std::error_code();
652 
653   // Do nothing if the RVA is NULL.
654   if (DataEntry->RelativeVirtualAddress == 0)
655     return std::error_code();
656   uintptr_t IntPtr = 0;
657   if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
658     return EC;
659 
660   LoadConfig = (const void *)IntPtr;
661   return std::error_code();
662 }
663 
664 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC)
665     : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
666       COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
667       DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
668       SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
669       ImportDirectory(nullptr),
670       DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0),
671       ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr),
672       DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) {
673   // Check that we at least have enough room for a header.
674   if (!checkSize(Data, EC, sizeof(coff_file_header)))
675     return;
676 
677   // The current location in the file where we are looking at.
678   uint64_t CurPtr = 0;
679 
680   // PE header is optional and is present only in executables. If it exists,
681   // it is placed right after COFF header.
682   bool HasPEHeader = false;
683 
684   // Check if this is a PE/COFF file.
685   if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
686     // PE/COFF, seek through MS-DOS compatibility stub and 4-byte
687     // PE signature to find 'normal' COFF header.
688     const auto *DH = reinterpret_cast<const dos_header *>(base());
689     if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
690       CurPtr = DH->AddressOfNewExeHeader;
691       // Check the PE magic bytes. ("PE\0\0")
692       if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
693         EC = object_error::parse_failed;
694         return;
695       }
696       CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
697       HasPEHeader = true;
698     }
699   }
700 
701   if ((EC = getObject(COFFHeader, Data, base() + CurPtr)))
702     return;
703 
704   // It might be a bigobj file, let's check.  Note that COFF bigobj and COFF
705   // import libraries share a common prefix but bigobj is more restrictive.
706   if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
707       COFFHeader->NumberOfSections == uint16_t(0xffff) &&
708       checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
709     if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr)))
710       return;
711 
712     // Verify that we are dealing with bigobj.
713     if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
714         std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
715                     sizeof(COFF::BigObjMagic)) == 0) {
716       COFFHeader = nullptr;
717       CurPtr += sizeof(coff_bigobj_file_header);
718     } else {
719       // It's not a bigobj.
720       COFFBigObjHeader = nullptr;
721     }
722   }
723   if (COFFHeader) {
724     // The prior checkSize call may have failed.  This isn't a hard error
725     // because we were just trying to sniff out bigobj.
726     EC = std::error_code();
727     CurPtr += sizeof(coff_file_header);
728 
729     if (COFFHeader->isImportLibrary())
730       return;
731   }
732 
733   if (HasPEHeader) {
734     const pe32_header *Header;
735     if ((EC = getObject(Header, Data, base() + CurPtr)))
736       return;
737 
738     const uint8_t *DataDirAddr;
739     uint64_t DataDirSize;
740     if (Header->Magic == COFF::PE32Header::PE32) {
741       PE32Header = Header;
742       DataDirAddr = base() + CurPtr + sizeof(pe32_header);
743       DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
744     } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
745       PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
746       DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
747       DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
748     } else {
749       // It's neither PE32 nor PE32+.
750       EC = object_error::parse_failed;
751       return;
752     }
753     if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)))
754       return;
755   }
756 
757   if (COFFHeader)
758     CurPtr += COFFHeader->SizeOfOptionalHeader;
759 
760   if ((EC = getObject(SectionTable, Data, base() + CurPtr,
761                       (uint64_t)getNumberOfSections() * sizeof(coff_section))))
762     return;
763 
764   // Initialize the pointer to the symbol table.
765   if (getPointerToSymbolTable() != 0) {
766     if ((EC = initSymbolTablePtr())) {
767       SymbolTable16 = nullptr;
768       SymbolTable32 = nullptr;
769       StringTable = nullptr;
770       StringTableSize = 0;
771     }
772   } else {
773     // We had better not have any symbols if we don't have a symbol table.
774     if (getNumberOfSymbols() != 0) {
775       EC = object_error::parse_failed;
776       return;
777     }
778   }
779 
780   // Initialize the pointer to the beginning of the import table.
781   if ((EC = initImportTablePtr()))
782     return;
783   if ((EC = initDelayImportTablePtr()))
784     return;
785 
786   // Initialize the pointer to the export table.
787   if ((EC = initExportTablePtr()))
788     return;
789 
790   // Initialize the pointer to the base relocation table.
791   if ((EC = initBaseRelocPtr()))
792     return;
793 
794   // Initialize the pointer to the export table.
795   if ((EC = initDebugDirectoryPtr()))
796     return;
797 
798   if ((EC = initLoadConfigPtr()))
799     return;
800 
801   EC = std::error_code();
802 }
803 
804 basic_symbol_iterator COFFObjectFile::symbol_begin() const {
805   DataRefImpl Ret;
806   Ret.p = getSymbolTable();
807   return basic_symbol_iterator(SymbolRef(Ret, this));
808 }
809 
810 basic_symbol_iterator COFFObjectFile::symbol_end() const {
811   // The symbol table ends where the string table begins.
812   DataRefImpl Ret;
813   Ret.p = reinterpret_cast<uintptr_t>(StringTable);
814   return basic_symbol_iterator(SymbolRef(Ret, this));
815 }
816 
817 import_directory_iterator COFFObjectFile::import_directory_begin() const {
818   if (!ImportDirectory)
819     return import_directory_end();
820   if (ImportDirectory->isNull())
821     return import_directory_end();
822   return import_directory_iterator(
823       ImportDirectoryEntryRef(ImportDirectory, 0, this));
824 }
825 
826 import_directory_iterator COFFObjectFile::import_directory_end() const {
827   return import_directory_iterator(
828       ImportDirectoryEntryRef(nullptr, -1, this));
829 }
830 
831 delay_import_directory_iterator
832 COFFObjectFile::delay_import_directory_begin() const {
833   return delay_import_directory_iterator(
834       DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
835 }
836 
837 delay_import_directory_iterator
838 COFFObjectFile::delay_import_directory_end() const {
839   return delay_import_directory_iterator(
840       DelayImportDirectoryEntryRef(
841           DelayImportDirectory, NumberOfDelayImportDirectory, this));
842 }
843 
844 export_directory_iterator COFFObjectFile::export_directory_begin() const {
845   return export_directory_iterator(
846       ExportDirectoryEntryRef(ExportDirectory, 0, this));
847 }
848 
849 export_directory_iterator COFFObjectFile::export_directory_end() const {
850   if (!ExportDirectory)
851     return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
852   ExportDirectoryEntryRef Ref(ExportDirectory,
853                               ExportDirectory->AddressTableEntries, this);
854   return export_directory_iterator(Ref);
855 }
856 
857 section_iterator COFFObjectFile::section_begin() const {
858   DataRefImpl Ret;
859   Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
860   return section_iterator(SectionRef(Ret, this));
861 }
862 
863 section_iterator COFFObjectFile::section_end() const {
864   DataRefImpl Ret;
865   int NumSections =
866       COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
867   Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
868   return section_iterator(SectionRef(Ret, this));
869 }
870 
871 base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
872   return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
873 }
874 
875 base_reloc_iterator COFFObjectFile::base_reloc_end() const {
876   return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
877 }
878 
879 uint8_t COFFObjectFile::getBytesInAddress() const {
880   return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4;
881 }
882 
883 StringRef COFFObjectFile::getFileFormatName() const {
884   switch(getMachine()) {
885   case COFF::IMAGE_FILE_MACHINE_I386:
886     return "COFF-i386";
887   case COFF::IMAGE_FILE_MACHINE_AMD64:
888     return "COFF-x86-64";
889   case COFF::IMAGE_FILE_MACHINE_ARMNT:
890     return "COFF-ARM";
891   case COFF::IMAGE_FILE_MACHINE_ARM64:
892     return "COFF-ARM64";
893   default:
894     return "COFF-<unknown arch>";
895   }
896 }
897 
898 Triple::ArchType COFFObjectFile::getArch() const {
899   switch (getMachine()) {
900   case COFF::IMAGE_FILE_MACHINE_I386:
901     return Triple::x86;
902   case COFF::IMAGE_FILE_MACHINE_AMD64:
903     return Triple::x86_64;
904   case COFF::IMAGE_FILE_MACHINE_ARMNT:
905     return Triple::thumb;
906   case COFF::IMAGE_FILE_MACHINE_ARM64:
907     return Triple::aarch64;
908   default:
909     return Triple::UnknownArch;
910   }
911 }
912 
913 Expected<uint64_t> COFFObjectFile::getStartAddress() const {
914   if (PE32Header)
915     return PE32Header->AddressOfEntryPoint;
916   return 0;
917 }
918 
919 iterator_range<import_directory_iterator>
920 COFFObjectFile::import_directories() const {
921   return make_range(import_directory_begin(), import_directory_end());
922 }
923 
924 iterator_range<delay_import_directory_iterator>
925 COFFObjectFile::delay_import_directories() const {
926   return make_range(delay_import_directory_begin(),
927                     delay_import_directory_end());
928 }
929 
930 iterator_range<export_directory_iterator>
931 COFFObjectFile::export_directories() const {
932   return make_range(export_directory_begin(), export_directory_end());
933 }
934 
935 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
936   return make_range(base_reloc_begin(), base_reloc_end());
937 }
938 
939 std::error_code
940 COFFObjectFile::getDataDirectory(uint32_t Index,
941                                  const data_directory *&Res) const {
942   // Error if there's no data directory or the index is out of range.
943   if (!DataDirectory) {
944     Res = nullptr;
945     return object_error::parse_failed;
946   }
947   assert(PE32Header || PE32PlusHeader);
948   uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
949                                : PE32PlusHeader->NumberOfRvaAndSize;
950   if (Index >= NumEnt) {
951     Res = nullptr;
952     return object_error::parse_failed;
953   }
954   Res = &DataDirectory[Index];
955   return std::error_code();
956 }
957 
958 std::error_code COFFObjectFile::getSection(int32_t Index,
959                                            const coff_section *&Result) const {
960   Result = nullptr;
961   if (COFF::isReservedSectionNumber(Index))
962     return std::error_code();
963   if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
964     // We already verified the section table data, so no need to check again.
965     Result = SectionTable + (Index - 1);
966     return std::error_code();
967   }
968   return object_error::parse_failed;
969 }
970 
971 std::error_code COFFObjectFile::getSection(StringRef SectionName,
972                                            const coff_section *&Result) const {
973   Result = nullptr;
974   for (const SectionRef &Section : sections()) {
975     auto NameOrErr = Section.getName();
976     if (!NameOrErr)
977       return errorToErrorCode(NameOrErr.takeError());
978 
979     if (*NameOrErr == SectionName) {
980       Result = getCOFFSection(Section);
981       return std::error_code();
982     }
983   }
984   return object_error::parse_failed;
985 }
986 
987 std::error_code COFFObjectFile::getString(uint32_t Offset,
988                                           StringRef &Result) const {
989   if (StringTableSize <= 4)
990     // Tried to get a string from an empty string table.
991     return object_error::parse_failed;
992   if (Offset >= StringTableSize)
993     return object_error::unexpected_eof;
994   Result = StringRef(StringTable + Offset);
995   return std::error_code();
996 }
997 
998 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol,
999                                               StringRef &Res) const {
1000   return getSymbolName(Symbol.getGeneric(), Res);
1001 }
1002 
1003 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol,
1004                                               StringRef &Res) const {
1005   // Check for string table entry. First 4 bytes are 0.
1006   if (Symbol->Name.Offset.Zeroes == 0) {
1007     if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res))
1008       return EC;
1009     return std::error_code();
1010   }
1011 
1012   if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
1013     // Null terminated, let ::strlen figure out the length.
1014     Res = StringRef(Symbol->Name.ShortName);
1015   else
1016     // Not null terminated, use all 8 bytes.
1017     Res = StringRef(Symbol->Name.ShortName, COFF::NameSize);
1018   return std::error_code();
1019 }
1020 
1021 ArrayRef<uint8_t>
1022 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
1023   const uint8_t *Aux = nullptr;
1024 
1025   size_t SymbolSize = getSymbolTableEntrySize();
1026   if (Symbol.getNumberOfAuxSymbols() > 0) {
1027     // AUX data comes immediately after the symbol in COFF
1028     Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
1029 #ifndef NDEBUG
1030     // Verify that the Aux symbol points to a valid entry in the symbol table.
1031     uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
1032     if (Offset < getPointerToSymbolTable() ||
1033         Offset >=
1034             getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
1035       report_fatal_error("Aux Symbol data was outside of symbol table.");
1036 
1037     assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
1038            "Aux Symbol data did not point to the beginning of a symbol");
1039 #endif
1040   }
1041   return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
1042 }
1043 
1044 uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const {
1045   uintptr_t Offset =
1046       reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable();
1047   assert(Offset % getSymbolTableEntrySize() == 0 &&
1048          "Symbol did not point to the beginning of a symbol");
1049   size_t Index = Offset / getSymbolTableEntrySize();
1050   assert(Index < getNumberOfSymbols());
1051   return Index;
1052 }
1053 
1054 Expected<StringRef>
1055 COFFObjectFile::getSectionName(const coff_section *Sec) const {
1056   StringRef Name;
1057   if (Sec->Name[COFF::NameSize - 1] == 0)
1058     // Null terminated, let ::strlen figure out the length.
1059     Name = Sec->Name;
1060   else
1061     // Not null terminated, use all 8 bytes.
1062     Name = StringRef(Sec->Name, COFF::NameSize);
1063 
1064   // Check for string table entry. First byte is '/'.
1065   if (Name.startswith("/")) {
1066     uint32_t Offset;
1067     if (Name.startswith("//")) {
1068       if (decodeBase64StringEntry(Name.substr(2), Offset))
1069         return createStringError(object_error::parse_failed,
1070                                  "inalid section name");
1071     } else {
1072       if (Name.substr(1).getAsInteger(10, Offset))
1073         return createStringError(object_error::parse_failed,
1074                                  "invalid section name");
1075     }
1076     if (std::error_code EC = getString(Offset, Name))
1077       return errorCodeToError(EC);
1078   }
1079 
1080   return Name;
1081 }
1082 
1083 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
1084   // SizeOfRawData and VirtualSize change what they represent depending on
1085   // whether or not we have an executable image.
1086   //
1087   // For object files, SizeOfRawData contains the size of section's data;
1088   // VirtualSize should be zero but isn't due to buggy COFF writers.
1089   //
1090   // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
1091   // actual section size is in VirtualSize.  It is possible for VirtualSize to
1092   // be greater than SizeOfRawData; the contents past that point should be
1093   // considered to be zero.
1094   if (getDOSHeader())
1095     return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
1096   return Sec->SizeOfRawData;
1097 }
1098 
1099 Error COFFObjectFile::getSectionContents(const coff_section *Sec,
1100                                          ArrayRef<uint8_t> &Res) const {
1101   // In COFF, a virtual section won't have any in-file
1102   // content, so the file pointer to the content will be zero.
1103   if (Sec->PointerToRawData == 0)
1104     return Error::success();
1105   // The only thing that we need to verify is that the contents is contained
1106   // within the file bounds. We don't need to make sure it doesn't cover other
1107   // data, as there's nothing that says that is not allowed.
1108   uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData;
1109   uint32_t SectionSize = getSectionSize(Sec);
1110   if (checkOffset(Data, ConStart, SectionSize))
1111     return make_error<BinaryError>();
1112   Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
1113   return Error::success();
1114 }
1115 
1116 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
1117   return reinterpret_cast<const coff_relocation*>(Rel.p);
1118 }
1119 
1120 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
1121   Rel.p = reinterpret_cast<uintptr_t>(
1122             reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
1123 }
1124 
1125 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
1126   const coff_relocation *R = toRel(Rel);
1127   return R->VirtualAddress;
1128 }
1129 
1130 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
1131   const coff_relocation *R = toRel(Rel);
1132   DataRefImpl Ref;
1133   if (R->SymbolTableIndex >= getNumberOfSymbols())
1134     return symbol_end();
1135   if (SymbolTable16)
1136     Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
1137   else if (SymbolTable32)
1138     Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
1139   else
1140     llvm_unreachable("no symbol table pointer!");
1141   return symbol_iterator(SymbolRef(Ref, this));
1142 }
1143 
1144 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
1145   const coff_relocation* R = toRel(Rel);
1146   return R->Type;
1147 }
1148 
1149 const coff_section *
1150 COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
1151   return toSec(Section.getRawDataRefImpl());
1152 }
1153 
1154 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
1155   if (SymbolTable16)
1156     return toSymb<coff_symbol16>(Ref);
1157   if (SymbolTable32)
1158     return toSymb<coff_symbol32>(Ref);
1159   llvm_unreachable("no symbol table pointer!");
1160 }
1161 
1162 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
1163   return getCOFFSymbol(Symbol.getRawDataRefImpl());
1164 }
1165 
1166 const coff_relocation *
1167 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
1168   return toRel(Reloc.getRawDataRefImpl());
1169 }
1170 
1171 ArrayRef<coff_relocation>
1172 COFFObjectFile::getRelocations(const coff_section *Sec) const {
1173   return {getFirstReloc(Sec, Data, base()),
1174           getNumberOfRelocations(Sec, Data, base())};
1175 }
1176 
1177 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type)                           \
1178   case COFF::reloc_type:                                                       \
1179     return #reloc_type;
1180 
1181 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const {
1182   switch (getMachine()) {
1183   case COFF::IMAGE_FILE_MACHINE_AMD64:
1184     switch (Type) {
1185     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
1186     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
1187     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
1188     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
1189     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
1190     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
1191     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
1192     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
1193     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
1194     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
1195     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
1196     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
1197     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
1198     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
1199     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
1200     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
1201     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
1202     default:
1203       return "Unknown";
1204     }
1205     break;
1206   case COFF::IMAGE_FILE_MACHINE_ARMNT:
1207     switch (Type) {
1208     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
1209     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
1210     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
1211     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
1212     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
1213     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
1214     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
1215     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
1216     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32);
1217     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
1218     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
1219     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
1220     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
1221     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
1222     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
1223     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
1224     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR);
1225     default:
1226       return "Unknown";
1227     }
1228     break;
1229   case COFF::IMAGE_FILE_MACHINE_ARM64:
1230     switch (Type) {
1231     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE);
1232     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32);
1233     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB);
1234     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26);
1235     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21);
1236     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21);
1237     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A);
1238     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L);
1239     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL);
1240     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A);
1241     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A);
1242     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L);
1243     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN);
1244     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION);
1245     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64);
1246     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19);
1247     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14);
1248     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32);
1249     default:
1250       return "Unknown";
1251     }
1252     break;
1253   case COFF::IMAGE_FILE_MACHINE_I386:
1254     switch (Type) {
1255     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
1256     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
1257     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
1258     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
1259     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
1260     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
1261     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
1262     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
1263     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
1264     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
1265     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
1266     default:
1267       return "Unknown";
1268     }
1269     break;
1270   default:
1271     return "Unknown";
1272   }
1273 }
1274 
1275 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
1276 
1277 void COFFObjectFile::getRelocationTypeName(
1278     DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1279   const coff_relocation *Reloc = toRel(Rel);
1280   StringRef Res = getRelocationTypeName(Reloc->Type);
1281   Result.append(Res.begin(), Res.end());
1282 }
1283 
1284 bool COFFObjectFile::isRelocatableObject() const {
1285   return !DataDirectory;
1286 }
1287 
1288 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const {
1289   return StringSwitch<StringRef>(Name)
1290       .Case("eh_fram", "eh_frame")
1291       .Default(Name);
1292 }
1293 
1294 bool ImportDirectoryEntryRef::
1295 operator==(const ImportDirectoryEntryRef &Other) const {
1296   return ImportTable == Other.ImportTable && Index == Other.Index;
1297 }
1298 
1299 void ImportDirectoryEntryRef::moveNext() {
1300   ++Index;
1301   if (ImportTable[Index].isNull()) {
1302     Index = -1;
1303     ImportTable = nullptr;
1304   }
1305 }
1306 
1307 std::error_code ImportDirectoryEntryRef::getImportTableEntry(
1308     const coff_import_directory_table_entry *&Result) const {
1309   return getObject(Result, OwningObject->Data, ImportTable + Index);
1310 }
1311 
1312 static imported_symbol_iterator
1313 makeImportedSymbolIterator(const COFFObjectFile *Object,
1314                            uintptr_t Ptr, int Index) {
1315   if (Object->getBytesInAddress() == 4) {
1316     auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
1317     return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1318   }
1319   auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
1320   return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1321 }
1322 
1323 static imported_symbol_iterator
1324 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
1325   uintptr_t IntPtr = 0;
1326   Object->getRvaPtr(RVA, IntPtr);
1327   return makeImportedSymbolIterator(Object, IntPtr, 0);
1328 }
1329 
1330 static imported_symbol_iterator
1331 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
1332   uintptr_t IntPtr = 0;
1333   Object->getRvaPtr(RVA, IntPtr);
1334   // Forward the pointer to the last entry which is null.
1335   int Index = 0;
1336   if (Object->getBytesInAddress() == 4) {
1337     auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
1338     while (*Entry++)
1339       ++Index;
1340   } else {
1341     auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
1342     while (*Entry++)
1343       ++Index;
1344   }
1345   return makeImportedSymbolIterator(Object, IntPtr, Index);
1346 }
1347 
1348 imported_symbol_iterator
1349 ImportDirectoryEntryRef::imported_symbol_begin() const {
1350   return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA,
1351                              OwningObject);
1352 }
1353 
1354 imported_symbol_iterator
1355 ImportDirectoryEntryRef::imported_symbol_end() const {
1356   return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA,
1357                            OwningObject);
1358 }
1359 
1360 iterator_range<imported_symbol_iterator>
1361 ImportDirectoryEntryRef::imported_symbols() const {
1362   return make_range(imported_symbol_begin(), imported_symbol_end());
1363 }
1364 
1365 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const {
1366   return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
1367                              OwningObject);
1368 }
1369 
1370 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const {
1371   return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
1372                            OwningObject);
1373 }
1374 
1375 iterator_range<imported_symbol_iterator>
1376 ImportDirectoryEntryRef::lookup_table_symbols() const {
1377   return make_range(lookup_table_begin(), lookup_table_end());
1378 }
1379 
1380 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const {
1381   uintptr_t IntPtr = 0;
1382   if (std::error_code EC =
1383           OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr))
1384     return EC;
1385   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1386   return std::error_code();
1387 }
1388 
1389 std::error_code
1390 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t  &Result) const {
1391   Result = ImportTable[Index].ImportLookupTableRVA;
1392   return std::error_code();
1393 }
1394 
1395 std::error_code
1396 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const {
1397   Result = ImportTable[Index].ImportAddressTableRVA;
1398   return std::error_code();
1399 }
1400 
1401 bool DelayImportDirectoryEntryRef::
1402 operator==(const DelayImportDirectoryEntryRef &Other) const {
1403   return Table == Other.Table && Index == Other.Index;
1404 }
1405 
1406 void DelayImportDirectoryEntryRef::moveNext() {
1407   ++Index;
1408 }
1409 
1410 imported_symbol_iterator
1411 DelayImportDirectoryEntryRef::imported_symbol_begin() const {
1412   return importedSymbolBegin(Table[Index].DelayImportNameTable,
1413                              OwningObject);
1414 }
1415 
1416 imported_symbol_iterator
1417 DelayImportDirectoryEntryRef::imported_symbol_end() const {
1418   return importedSymbolEnd(Table[Index].DelayImportNameTable,
1419                            OwningObject);
1420 }
1421 
1422 iterator_range<imported_symbol_iterator>
1423 DelayImportDirectoryEntryRef::imported_symbols() const {
1424   return make_range(imported_symbol_begin(), imported_symbol_end());
1425 }
1426 
1427 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
1428   uintptr_t IntPtr = 0;
1429   if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr))
1430     return EC;
1431   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1432   return std::error_code();
1433 }
1434 
1435 std::error_code DelayImportDirectoryEntryRef::
1436 getDelayImportTable(const delay_import_directory_table_entry *&Result) const {
1437   Result = &Table[Index];
1438   return std::error_code();
1439 }
1440 
1441 std::error_code DelayImportDirectoryEntryRef::
1442 getImportAddress(int AddrIndex, uint64_t &Result) const {
1443   uint32_t RVA = Table[Index].DelayImportAddressTable +
1444       AddrIndex * (OwningObject->is64() ? 8 : 4);
1445   uintptr_t IntPtr = 0;
1446   if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1447     return EC;
1448   if (OwningObject->is64())
1449     Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
1450   else
1451     Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
1452   return std::error_code();
1453 }
1454 
1455 bool ExportDirectoryEntryRef::
1456 operator==(const ExportDirectoryEntryRef &Other) const {
1457   return ExportTable == Other.ExportTable && Index == Other.Index;
1458 }
1459 
1460 void ExportDirectoryEntryRef::moveNext() {
1461   ++Index;
1462 }
1463 
1464 // Returns the name of the current export symbol. If the symbol is exported only
1465 // by ordinal, the empty string is set as a result.
1466 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
1467   uintptr_t IntPtr = 0;
1468   if (std::error_code EC =
1469           OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr))
1470     return EC;
1471   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1472   return std::error_code();
1473 }
1474 
1475 // Returns the starting ordinal number.
1476 std::error_code
1477 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
1478   Result = ExportTable->OrdinalBase;
1479   return std::error_code();
1480 }
1481 
1482 // Returns the export ordinal of the current export symbol.
1483 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
1484   Result = ExportTable->OrdinalBase + Index;
1485   return std::error_code();
1486 }
1487 
1488 // Returns the address of the current export symbol.
1489 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
1490   uintptr_t IntPtr = 0;
1491   if (std::error_code EC =
1492           OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr))
1493     return EC;
1494   const export_address_table_entry *entry =
1495       reinterpret_cast<const export_address_table_entry *>(IntPtr);
1496   Result = entry[Index].ExportRVA;
1497   return std::error_code();
1498 }
1499 
1500 // Returns the name of the current export symbol. If the symbol is exported only
1501 // by ordinal, the empty string is set as a result.
1502 std::error_code
1503 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
1504   uintptr_t IntPtr = 0;
1505   if (std::error_code EC =
1506           OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr))
1507     return EC;
1508   const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
1509 
1510   uint32_t NumEntries = ExportTable->NumberOfNamePointers;
1511   int Offset = 0;
1512   for (const ulittle16_t *I = Start, *E = Start + NumEntries;
1513        I < E; ++I, ++Offset) {
1514     if (*I != Index)
1515       continue;
1516     if (std::error_code EC =
1517             OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr))
1518       return EC;
1519     const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
1520     if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr))
1521       return EC;
1522     Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1523     return std::error_code();
1524   }
1525   Result = "";
1526   return std::error_code();
1527 }
1528 
1529 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const {
1530   const data_directory *DataEntry;
1531   if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
1532     return EC;
1533   uint32_t RVA;
1534   if (auto EC = getExportRVA(RVA))
1535     return EC;
1536   uint32_t Begin = DataEntry->RelativeVirtualAddress;
1537   uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size;
1538   Result = (Begin <= RVA && RVA < End);
1539   return std::error_code();
1540 }
1541 
1542 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const {
1543   uint32_t RVA;
1544   if (auto EC = getExportRVA(RVA))
1545     return EC;
1546   uintptr_t IntPtr = 0;
1547   if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr))
1548     return EC;
1549   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1550   return std::error_code();
1551 }
1552 
1553 bool ImportedSymbolRef::
1554 operator==(const ImportedSymbolRef &Other) const {
1555   return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
1556       && Index == Other.Index;
1557 }
1558 
1559 void ImportedSymbolRef::moveNext() {
1560   ++Index;
1561 }
1562 
1563 std::error_code
1564 ImportedSymbolRef::getSymbolName(StringRef &Result) const {
1565   uint32_t RVA;
1566   if (Entry32) {
1567     // If a symbol is imported only by ordinal, it has no name.
1568     if (Entry32[Index].isOrdinal())
1569       return std::error_code();
1570     RVA = Entry32[Index].getHintNameRVA();
1571   } else {
1572     if (Entry64[Index].isOrdinal())
1573       return std::error_code();
1574     RVA = Entry64[Index].getHintNameRVA();
1575   }
1576   uintptr_t IntPtr = 0;
1577   if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1578     return EC;
1579   // +2 because the first two bytes is hint.
1580   Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
1581   return std::error_code();
1582 }
1583 
1584 std::error_code ImportedSymbolRef::isOrdinal(bool &Result) const {
1585   if (Entry32)
1586     Result = Entry32[Index].isOrdinal();
1587   else
1588     Result = Entry64[Index].isOrdinal();
1589   return std::error_code();
1590 }
1591 
1592 std::error_code ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const {
1593   if (Entry32)
1594     Result = Entry32[Index].getHintNameRVA();
1595   else
1596     Result = Entry64[Index].getHintNameRVA();
1597   return std::error_code();
1598 }
1599 
1600 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
1601   uint32_t RVA;
1602   if (Entry32) {
1603     if (Entry32[Index].isOrdinal()) {
1604       Result = Entry32[Index].getOrdinal();
1605       return std::error_code();
1606     }
1607     RVA = Entry32[Index].getHintNameRVA();
1608   } else {
1609     if (Entry64[Index].isOrdinal()) {
1610       Result = Entry64[Index].getOrdinal();
1611       return std::error_code();
1612     }
1613     RVA = Entry64[Index].getHintNameRVA();
1614   }
1615   uintptr_t IntPtr = 0;
1616   if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1617     return EC;
1618   Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
1619   return std::error_code();
1620 }
1621 
1622 Expected<std::unique_ptr<COFFObjectFile>>
1623 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
1624   std::error_code EC;
1625   std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC));
1626   if (EC)
1627     return errorCodeToError(EC);
1628   return std::move(Ret);
1629 }
1630 
1631 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
1632   return Header == Other.Header && Index == Other.Index;
1633 }
1634 
1635 void BaseRelocRef::moveNext() {
1636   // Header->BlockSize is the size of the current block, including the
1637   // size of the header itself.
1638   uint32_t Size = sizeof(*Header) +
1639       sizeof(coff_base_reloc_block_entry) * (Index + 1);
1640   if (Size == Header->BlockSize) {
1641     // .reloc contains a list of base relocation blocks. Each block
1642     // consists of the header followed by entries. The header contains
1643     // how many entories will follow. When we reach the end of the
1644     // current block, proceed to the next block.
1645     Header = reinterpret_cast<const coff_base_reloc_block_header *>(
1646         reinterpret_cast<const uint8_t *>(Header) + Size);
1647     Index = 0;
1648   } else {
1649     ++Index;
1650   }
1651 }
1652 
1653 std::error_code BaseRelocRef::getType(uint8_t &Type) const {
1654   auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1655   Type = Entry[Index].getType();
1656   return std::error_code();
1657 }
1658 
1659 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const {
1660   auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1661   Result = Header->PageRVA + Entry[Index].getOffset();
1662   return std::error_code();
1663 }
1664 
1665 #define RETURN_IF_ERROR(Expr)                                                  \
1666   do {                                                                         \
1667     Error E = (Expr);                                                          \
1668     if (E)                                                                     \
1669       return std::move(E);                                                     \
1670   } while (0)
1671 
1672 Expected<ArrayRef<UTF16>>
1673 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) {
1674   BinaryStreamReader Reader = BinaryStreamReader(BBS);
1675   Reader.setOffset(Offset);
1676   uint16_t Length;
1677   RETURN_IF_ERROR(Reader.readInteger(Length));
1678   ArrayRef<UTF16> RawDirString;
1679   RETURN_IF_ERROR(Reader.readArray(RawDirString, Length));
1680   return RawDirString;
1681 }
1682 
1683 Expected<ArrayRef<UTF16>>
1684 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) {
1685   return getDirStringAtOffset(Entry.Identifier.getNameOffset());
1686 }
1687 
1688 Expected<const coff_resource_dir_table &>
1689 ResourceSectionRef::getTableAtOffset(uint32_t Offset) {
1690   const coff_resource_dir_table *Table = nullptr;
1691 
1692   BinaryStreamReader Reader(BBS);
1693   Reader.setOffset(Offset);
1694   RETURN_IF_ERROR(Reader.readObject(Table));
1695   assert(Table != nullptr);
1696   return *Table;
1697 }
1698 
1699 Expected<const coff_resource_dir_entry &>
1700 ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) {
1701   const coff_resource_dir_entry *Entry = nullptr;
1702 
1703   BinaryStreamReader Reader(BBS);
1704   Reader.setOffset(Offset);
1705   RETURN_IF_ERROR(Reader.readObject(Entry));
1706   assert(Entry != nullptr);
1707   return *Entry;
1708 }
1709 
1710 Expected<const coff_resource_data_entry &>
1711 ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) {
1712   const coff_resource_data_entry *Entry = nullptr;
1713 
1714   BinaryStreamReader Reader(BBS);
1715   Reader.setOffset(Offset);
1716   RETURN_IF_ERROR(Reader.readObject(Entry));
1717   assert(Entry != nullptr);
1718   return *Entry;
1719 }
1720 
1721 Expected<const coff_resource_dir_table &>
1722 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) {
1723   assert(Entry.Offset.isSubDir());
1724   return getTableAtOffset(Entry.Offset.value());
1725 }
1726 
1727 Expected<const coff_resource_data_entry &>
1728 ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) {
1729   assert(!Entry.Offset.isSubDir());
1730   return getDataEntryAtOffset(Entry.Offset.value());
1731 }
1732 
1733 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() {
1734   return getTableAtOffset(0);
1735 }
1736 
1737 Expected<const coff_resource_dir_entry &>
1738 ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table,
1739                                   uint32_t Index) {
1740   if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries))
1741     return createStringError(object_error::parse_failed, "index out of range");
1742   const uint8_t *TablePtr = reinterpret_cast<const uint8_t *>(&Table);
1743   ptrdiff_t TableOffset = TablePtr - BBS.data().data();
1744   return getTableEntryAtOffset(TableOffset + sizeof(Table) +
1745                                Index * sizeof(coff_resource_dir_entry));
1746 }
1747 
1748 Error ResourceSectionRef::load(const COFFObjectFile *O) {
1749   for (const SectionRef &S : O->sections()) {
1750     Expected<StringRef> Name = S.getName();
1751     if (!Name)
1752       return Name.takeError();
1753 
1754     if (*Name == ".rsrc" || *Name == ".rsrc$01")
1755       return load(O, S);
1756   }
1757   return createStringError(object_error::parse_failed,
1758                            "no resource section found");
1759 }
1760 
1761 Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) {
1762   Obj = O;
1763   Section = S;
1764   Expected<StringRef> Contents = Section.getContents();
1765   if (!Contents)
1766     return Contents.takeError();
1767   BBS = BinaryByteStream(*Contents, support::little);
1768   const coff_section *COFFSect = Obj->getCOFFSection(Section);
1769   ArrayRef<coff_relocation> OrigRelocs = Obj->getRelocations(COFFSect);
1770   Relocs.reserve(OrigRelocs.size());
1771   for (const coff_relocation &R : OrigRelocs)
1772     Relocs.push_back(&R);
1773   std::sort(Relocs.begin(), Relocs.end(),
1774             [](const coff_relocation *A, const coff_relocation *B) {
1775               return A->VirtualAddress < B->VirtualAddress;
1776             });
1777   return Error::success();
1778 }
1779 
1780 Expected<StringRef>
1781 ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) {
1782   if (!Obj)
1783     return createStringError(object_error::parse_failed, "no object provided");
1784 
1785   // Find a potential relocation at the DataRVA field (first member of
1786   // the coff_resource_data_entry struct).
1787   const uint8_t *EntryPtr = reinterpret_cast<const uint8_t *>(&Entry);
1788   ptrdiff_t EntryOffset = EntryPtr - BBS.data().data();
1789   coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0),
1790                               ulittle16_t(0)};
1791   auto RelocsForOffset =
1792       std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget,
1793                        [](const coff_relocation *A, const coff_relocation *B) {
1794                          return A->VirtualAddress < B->VirtualAddress;
1795                        });
1796 
1797   if (RelocsForOffset.first != RelocsForOffset.second) {
1798     // We found a relocation with the right offset. Check that it does have
1799     // the expected type.
1800     const coff_relocation &R = **RelocsForOffset.first;
1801     uint16_t RVAReloc;
1802     switch (Obj->getMachine()) {
1803     case COFF::IMAGE_FILE_MACHINE_I386:
1804       RVAReloc = COFF::IMAGE_REL_I386_DIR32NB;
1805       break;
1806     case COFF::IMAGE_FILE_MACHINE_AMD64:
1807       RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB;
1808       break;
1809     case COFF::IMAGE_FILE_MACHINE_ARMNT:
1810       RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB;
1811       break;
1812     case COFF::IMAGE_FILE_MACHINE_ARM64:
1813       RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB;
1814       break;
1815     default:
1816       return createStringError(object_error::parse_failed,
1817                                "unsupported architecture");
1818     }
1819     if (R.Type != RVAReloc)
1820       return createStringError(object_error::parse_failed,
1821                                "unexpected relocation type");
1822     // Get the relocation's symbol
1823     Expected<COFFSymbolRef> Sym = Obj->getSymbol(R.SymbolTableIndex);
1824     if (!Sym)
1825       return Sym.takeError();
1826     const coff_section *Section = nullptr;
1827     // And the symbol's section
1828     if (std::error_code EC = Obj->getSection(Sym->getSectionNumber(), Section))
1829       return errorCodeToError(EC);
1830     // Add the initial value of DataRVA to the symbol's offset to find the
1831     // data it points at.
1832     uint64_t Offset = Entry.DataRVA + Sym->getValue();
1833     ArrayRef<uint8_t> Contents;
1834     if (Error E = Obj->getSectionContents(Section, Contents))
1835       return std::move(E);
1836     if (Offset + Entry.DataSize > Contents.size())
1837       return createStringError(object_error::parse_failed,
1838                                "data outside of section");
1839     // Return a reference to the data inside the section.
1840     return StringRef(reinterpret_cast<const char *>(Contents.data()) + Offset,
1841                      Entry.DataSize);
1842   } else {
1843     // Relocatable objects need a relocation for the DataRVA field.
1844     if (Obj->isRelocatableObject())
1845       return createStringError(object_error::parse_failed,
1846                                "no relocation found for DataRVA");
1847 
1848     // Locate the section that contains the address that DataRVA points at.
1849     uint64_t VA = Entry.DataRVA + Obj->getImageBase();
1850     for (const SectionRef &S : Obj->sections()) {
1851       if (VA >= S.getAddress() &&
1852           VA + Entry.DataSize <= S.getAddress() + S.getSize()) {
1853         uint64_t Offset = VA - S.getAddress();
1854         Expected<StringRef> Contents = S.getContents();
1855         if (!Contents)
1856           return Contents.takeError();
1857         return Contents->slice(Offset, Offset + Entry.DataSize);
1858       }
1859     }
1860     return createStringError(object_error::parse_failed,
1861                              "address not found in image");
1862   }
1863 }
1864