xref: /freebsd/contrib/llvm-project/llvm/lib/Object/COFFObjectFile.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the COFFObjectFile class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/StringSwitch.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Object/Binary.h"
18 #include "llvm/Object/COFF.h"
19 #include "llvm/Object/Error.h"
20 #include "llvm/Object/ObjectFile.h"
21 #include "llvm/Object/WindowsMachineFlag.h"
22 #include "llvm/Support/BinaryStreamReader.h"
23 #include "llvm/Support/Endian.h"
24 #include "llvm/Support/Error.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/MemoryBufferRef.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <cinttypes>
31 #include <cstddef>
32 #include <cstring>
33 #include <limits>
34 #include <memory>
35 #include <system_error>
36 
37 using namespace llvm;
38 using namespace object;
39 
40 using support::ulittle16_t;
41 using support::ulittle32_t;
42 using support::ulittle64_t;
43 using support::little16_t;
44 
45 // Returns false if size is greater than the buffer size. And sets ec.
46 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
47   if (M.getBufferSize() < Size) {
48     EC = object_error::unexpected_eof;
49     return false;
50   }
51   return true;
52 }
53 
54 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
55 // Returns unexpected_eof if error.
56 template <typename T>
57 static Error getObject(const T *&Obj, MemoryBufferRef M, const void *Ptr,
58                        const uint64_t Size = sizeof(T)) {
59   uintptr_t Addr = reinterpret_cast<uintptr_t>(Ptr);
60   if (Error E = Binary::checkOffset(M, Addr, Size))
61     return E;
62   Obj = reinterpret_cast<const T *>(Addr);
63   return Error::success();
64 }
65 
66 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
67 // prefixed slashes.
68 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
69   assert(Str.size() <= 6 && "String too long, possible overflow.");
70   if (Str.size() > 6)
71     return true;
72 
73   uint64_t Value = 0;
74   while (!Str.empty()) {
75     unsigned CharVal;
76     if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
77       CharVal = Str[0] - 'A';
78     else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
79       CharVal = Str[0] - 'a' + 26;
80     else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
81       CharVal = Str[0] - '0' + 52;
82     else if (Str[0] == '+') // 62
83       CharVal = 62;
84     else if (Str[0] == '/') // 63
85       CharVal = 63;
86     else
87       return true;
88 
89     Value = (Value * 64) + CharVal;
90     Str = Str.substr(1);
91   }
92 
93   if (Value > std::numeric_limits<uint32_t>::max())
94     return true;
95 
96   Result = static_cast<uint32_t>(Value);
97   return false;
98 }
99 
100 template <typename coff_symbol_type>
101 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
102   const coff_symbol_type *Addr =
103       reinterpret_cast<const coff_symbol_type *>(Ref.p);
104 
105   assert(!checkOffset(Data, reinterpret_cast<uintptr_t>(Addr), sizeof(*Addr)));
106 #ifndef NDEBUG
107   // Verify that the symbol points to a valid entry in the symbol table.
108   uintptr_t Offset =
109       reinterpret_cast<uintptr_t>(Addr) - reinterpret_cast<uintptr_t>(base());
110 
111   assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
112          "Symbol did not point to the beginning of a symbol");
113 #endif
114 
115   return Addr;
116 }
117 
118 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
119   const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
120 
121 #ifndef NDEBUG
122   // Verify that the section points to a valid entry in the section table.
123   if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
124     report_fatal_error("Section was outside of section table.");
125 
126   uintptr_t Offset = reinterpret_cast<uintptr_t>(Addr) -
127                      reinterpret_cast<uintptr_t>(SectionTable);
128   assert(Offset % sizeof(coff_section) == 0 &&
129          "Section did not point to the beginning of a section");
130 #endif
131 
132   return Addr;
133 }
134 
135 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
136   auto End = reinterpret_cast<uintptr_t>(StringTable);
137   if (SymbolTable16) {
138     const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
139     Symb += 1 + Symb->NumberOfAuxSymbols;
140     Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
141   } else if (SymbolTable32) {
142     const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
143     Symb += 1 + Symb->NumberOfAuxSymbols;
144     Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
145   } else {
146     llvm_unreachable("no symbol table pointer!");
147   }
148 }
149 
150 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
151   return getSymbolName(getCOFFSymbol(Ref));
152 }
153 
154 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
155   return getCOFFSymbol(Ref).getValue();
156 }
157 
158 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const {
159   // MSVC/link.exe seems to align symbols to the next-power-of-2
160   // up to 32 bytes.
161   COFFSymbolRef Symb = getCOFFSymbol(Ref);
162   return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue()));
163 }
164 
165 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
166   uint64_t Result = cantFail(getSymbolValue(Ref));
167   COFFSymbolRef Symb = getCOFFSymbol(Ref);
168   int32_t SectionNumber = Symb.getSectionNumber();
169 
170   if (Symb.isAnyUndefined() || Symb.isCommon() ||
171       COFF::isReservedSectionNumber(SectionNumber))
172     return Result;
173 
174   Expected<const coff_section *> Section = getSection(SectionNumber);
175   if (!Section)
176     return Section.takeError();
177   Result += (*Section)->VirtualAddress;
178 
179   // The section VirtualAddress does not include ImageBase, and we want to
180   // return virtual addresses.
181   Result += getImageBase();
182 
183   return Result;
184 }
185 
186 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
187   COFFSymbolRef Symb = getCOFFSymbol(Ref);
188   int32_t SectionNumber = Symb.getSectionNumber();
189 
190   if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
191     return SymbolRef::ST_Function;
192   if (Symb.isAnyUndefined())
193     return SymbolRef::ST_Unknown;
194   if (Symb.isCommon())
195     return SymbolRef::ST_Data;
196   if (Symb.isFileRecord())
197     return SymbolRef::ST_File;
198 
199   // TODO: perhaps we need a new symbol type ST_Section.
200   if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
201     return SymbolRef::ST_Debug;
202 
203   if (!COFF::isReservedSectionNumber(SectionNumber))
204     return SymbolRef::ST_Data;
205 
206   return SymbolRef::ST_Other;
207 }
208 
209 Expected<uint32_t> COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
210   COFFSymbolRef Symb = getCOFFSymbol(Ref);
211   uint32_t Result = SymbolRef::SF_None;
212 
213   if (Symb.isExternal() || Symb.isWeakExternal())
214     Result |= SymbolRef::SF_Global;
215 
216   if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) {
217     Result |= SymbolRef::SF_Weak;
218     if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS)
219       Result |= SymbolRef::SF_Undefined;
220   }
221 
222   if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
223     Result |= SymbolRef::SF_Absolute;
224 
225   if (Symb.isFileRecord())
226     Result |= SymbolRef::SF_FormatSpecific;
227 
228   if (Symb.isSectionDefinition())
229     Result |= SymbolRef::SF_FormatSpecific;
230 
231   if (Symb.isCommon())
232     Result |= SymbolRef::SF_Common;
233 
234   if (Symb.isUndefined())
235     Result |= SymbolRef::SF_Undefined;
236 
237   return Result;
238 }
239 
240 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
241   COFFSymbolRef Symb = getCOFFSymbol(Ref);
242   return Symb.getValue();
243 }
244 
245 Expected<section_iterator>
246 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
247   COFFSymbolRef Symb = getCOFFSymbol(Ref);
248   if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
249     return section_end();
250   Expected<const coff_section *> Sec = getSection(Symb.getSectionNumber());
251   if (!Sec)
252     return Sec.takeError();
253   DataRefImpl Ret;
254   Ret.p = reinterpret_cast<uintptr_t>(*Sec);
255   return section_iterator(SectionRef(Ret, this));
256 }
257 
258 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
259   COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
260   return Symb.getSectionNumber();
261 }
262 
263 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
264   const coff_section *Sec = toSec(Ref);
265   Sec += 1;
266   Ref.p = reinterpret_cast<uintptr_t>(Sec);
267 }
268 
269 Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const {
270   const coff_section *Sec = toSec(Ref);
271   return getSectionName(Sec);
272 }
273 
274 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
275   const coff_section *Sec = toSec(Ref);
276   uint64_t Result = Sec->VirtualAddress;
277 
278   // The section VirtualAddress does not include ImageBase, and we want to
279   // return virtual addresses.
280   Result += getImageBase();
281   return Result;
282 }
283 
284 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const {
285   return toSec(Sec) - SectionTable;
286 }
287 
288 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
289   return getSectionSize(toSec(Ref));
290 }
291 
292 Expected<ArrayRef<uint8_t>>
293 COFFObjectFile::getSectionContents(DataRefImpl Ref) const {
294   const coff_section *Sec = toSec(Ref);
295   ArrayRef<uint8_t> Res;
296   if (Error E = getSectionContents(Sec, Res))
297     return E;
298   return Res;
299 }
300 
301 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
302   const coff_section *Sec = toSec(Ref);
303   return Sec->getAlignment();
304 }
305 
306 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const {
307   return false;
308 }
309 
310 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
311   const coff_section *Sec = toSec(Ref);
312   return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
313 }
314 
315 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
316   const coff_section *Sec = toSec(Ref);
317   return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
318 }
319 
320 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
321   const coff_section *Sec = toSec(Ref);
322   const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
323                             COFF::IMAGE_SCN_MEM_READ |
324                             COFF::IMAGE_SCN_MEM_WRITE;
325   return (Sec->Characteristics & BssFlags) == BssFlags;
326 }
327 
328 // The .debug sections are the only debug sections for COFF
329 // (\see MCObjectFileInfo.cpp).
330 bool COFFObjectFile::isDebugSection(DataRefImpl Ref) const {
331   Expected<StringRef> SectionNameOrErr = getSectionName(Ref);
332   if (!SectionNameOrErr) {
333     // TODO: Report the error message properly.
334     consumeError(SectionNameOrErr.takeError());
335     return false;
336   }
337   StringRef SectionName = SectionNameOrErr.get();
338   return SectionName.starts_with(".debug");
339 }
340 
341 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
342   uintptr_t Offset =
343       Sec.getRawDataRefImpl().p - reinterpret_cast<uintptr_t>(SectionTable);
344   assert((Offset % sizeof(coff_section)) == 0);
345   return (Offset / sizeof(coff_section)) + 1;
346 }
347 
348 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
349   const coff_section *Sec = toSec(Ref);
350   // In COFF, a virtual section won't have any in-file
351   // content, so the file pointer to the content will be zero.
352   return Sec->PointerToRawData == 0;
353 }
354 
355 static uint32_t getNumberOfRelocations(const coff_section *Sec,
356                                        MemoryBufferRef M, const uint8_t *base) {
357   // The field for the number of relocations in COFF section table is only
358   // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
359   // NumberOfRelocations field, and the actual relocation count is stored in the
360   // VirtualAddress field in the first relocation entry.
361   if (Sec->hasExtendedRelocations()) {
362     const coff_relocation *FirstReloc;
363     if (Error E = getObject(FirstReloc, M,
364                             reinterpret_cast<const coff_relocation *>(
365                                 base + Sec->PointerToRelocations))) {
366       consumeError(std::move(E));
367       return 0;
368     }
369     // -1 to exclude this first relocation entry.
370     return FirstReloc->VirtualAddress - 1;
371   }
372   return Sec->NumberOfRelocations;
373 }
374 
375 static const coff_relocation *
376 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
377   uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
378   if (!NumRelocs)
379     return nullptr;
380   auto begin = reinterpret_cast<const coff_relocation *>(
381       Base + Sec->PointerToRelocations);
382   if (Sec->hasExtendedRelocations()) {
383     // Skip the first relocation entry repurposed to store the number of
384     // relocations.
385     begin++;
386   }
387   if (auto E = Binary::checkOffset(M, reinterpret_cast<uintptr_t>(begin),
388                                    sizeof(coff_relocation) * NumRelocs)) {
389     consumeError(std::move(E));
390     return nullptr;
391   }
392   return begin;
393 }
394 
395 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
396   const coff_section *Sec = toSec(Ref);
397   const coff_relocation *begin = getFirstReloc(Sec, Data, base());
398   if (begin && Sec->VirtualAddress != 0)
399     report_fatal_error("Sections with relocations should have an address of 0");
400   DataRefImpl Ret;
401   Ret.p = reinterpret_cast<uintptr_t>(begin);
402   return relocation_iterator(RelocationRef(Ret, this));
403 }
404 
405 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
406   const coff_section *Sec = toSec(Ref);
407   const coff_relocation *I = getFirstReloc(Sec, Data, base());
408   if (I)
409     I += getNumberOfRelocations(Sec, Data, base());
410   DataRefImpl Ret;
411   Ret.p = reinterpret_cast<uintptr_t>(I);
412   return relocation_iterator(RelocationRef(Ret, this));
413 }
414 
415 // Initialize the pointer to the symbol table.
416 Error COFFObjectFile::initSymbolTablePtr() {
417   if (COFFHeader)
418     if (Error E = getObject(
419             SymbolTable16, Data, base() + getPointerToSymbolTable(),
420             (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
421       return E;
422 
423   if (COFFBigObjHeader)
424     if (Error E = getObject(
425             SymbolTable32, Data, base() + getPointerToSymbolTable(),
426             (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
427       return E;
428 
429   // Find string table. The first four byte of the string table contains the
430   // total size of the string table, including the size field itself. If the
431   // string table is empty, the value of the first four byte would be 4.
432   uint32_t StringTableOffset = getPointerToSymbolTable() +
433                                getNumberOfSymbols() * getSymbolTableEntrySize();
434   const uint8_t *StringTableAddr = base() + StringTableOffset;
435   const ulittle32_t *StringTableSizePtr;
436   if (Error E = getObject(StringTableSizePtr, Data, StringTableAddr))
437     return E;
438   StringTableSize = *StringTableSizePtr;
439   if (Error E = getObject(StringTable, Data, StringTableAddr, StringTableSize))
440     return E;
441 
442   // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
443   // tools like cvtres write a size of 0 for an empty table instead of 4.
444   if (StringTableSize < 4)
445     StringTableSize = 4;
446 
447   // Check that the string table is null terminated if has any in it.
448   if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
449     return createStringError(object_error::parse_failed,
450                              "string table missing null terminator");
451   return Error::success();
452 }
453 
454 uint64_t COFFObjectFile::getImageBase() const {
455   if (PE32Header)
456     return PE32Header->ImageBase;
457   else if (PE32PlusHeader)
458     return PE32PlusHeader->ImageBase;
459   // This actually comes up in practice.
460   return 0;
461 }
462 
463 // Returns the file offset for the given VA.
464 Error COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
465   uint64_t ImageBase = getImageBase();
466   uint64_t Rva = Addr - ImageBase;
467   assert(Rva <= UINT32_MAX);
468   return getRvaPtr((uint32_t)Rva, Res);
469 }
470 
471 // Returns the file offset for the given RVA.
472 Error COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res,
473                                 const char *ErrorContext) const {
474   for (const SectionRef &S : sections()) {
475     const coff_section *Section = getCOFFSection(S);
476     uint32_t SectionStart = Section->VirtualAddress;
477     uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
478     if (SectionStart <= Addr && Addr < SectionEnd) {
479       // A table/directory entry can be pointing to somewhere in a stripped
480       // section, in an object that went through `objcopy --only-keep-debug`.
481       // In this case we don't want to cause the parsing of the object file to
482       // fail, otherwise it will be impossible to use this object as debug info
483       // in LLDB. Return SectionStrippedError here so that
484       // COFFObjectFile::initialize can ignore the error.
485       // Somewhat common binaries may have RVAs pointing outside of the
486       // provided raw data. Instead of rejecting the binaries, just
487       // treat the section as stripped for these purposes.
488       if (Section->SizeOfRawData < Section->VirtualSize &&
489           Addr >= SectionStart + Section->SizeOfRawData) {
490         return make_error<SectionStrippedError>();
491       }
492       uint32_t Offset = Addr - SectionStart;
493       Res = reinterpret_cast<uintptr_t>(base()) + Section->PointerToRawData +
494             Offset;
495       return Error::success();
496     }
497   }
498   if (ErrorContext)
499     return createStringError(object_error::parse_failed,
500                              "RVA 0x%" PRIx32 " for %s not found", Addr,
501                              ErrorContext);
502   return createStringError(object_error::parse_failed,
503                            "RVA 0x%" PRIx32 " not found", Addr);
504 }
505 
506 Error COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size,
507                                            ArrayRef<uint8_t> &Contents,
508                                            const char *ErrorContext) const {
509   for (const SectionRef &S : sections()) {
510     const coff_section *Section = getCOFFSection(S);
511     uint32_t SectionStart = Section->VirtualAddress;
512     // Check if this RVA is within the section bounds. Be careful about integer
513     // overflow.
514     uint32_t OffsetIntoSection = RVA - SectionStart;
515     if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize &&
516         Size <= Section->VirtualSize - OffsetIntoSection) {
517       uintptr_t Begin = reinterpret_cast<uintptr_t>(base()) +
518                         Section->PointerToRawData + OffsetIntoSection;
519       Contents =
520           ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size);
521       return Error::success();
522     }
523   }
524   if (ErrorContext)
525     return createStringError(object_error::parse_failed,
526                              "RVA 0x%" PRIx32 " for %s not found", RVA,
527                              ErrorContext);
528   return createStringError(object_error::parse_failed,
529                            "RVA 0x%" PRIx32 " not found", RVA);
530 }
531 
532 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
533 // table entry.
534 Error COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
535                                   StringRef &Name) const {
536   uintptr_t IntPtr = 0;
537   if (Error E = getRvaPtr(Rva, IntPtr))
538     return E;
539   const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
540   Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
541   Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
542   return Error::success();
543 }
544 
545 Error COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir,
546                                       const codeview::DebugInfo *&PDBInfo,
547                                       StringRef &PDBFileName) const {
548   ArrayRef<uint8_t> InfoBytes;
549   if (Error E =
550           getRvaAndSizeAsBytes(DebugDir->AddressOfRawData, DebugDir->SizeOfData,
551                                InfoBytes, "PDB info"))
552     return E;
553   if (InfoBytes.size() < sizeof(*PDBInfo) + 1)
554     return createStringError(object_error::parse_failed, "PDB info too small");
555   PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data());
556   InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo));
557   PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()),
558                           InfoBytes.size());
559   // Truncate the name at the first null byte. Ignore any padding.
560   PDBFileName = PDBFileName.split('\0').first;
561   return Error::success();
562 }
563 
564 Error COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo,
565                                       StringRef &PDBFileName) const {
566   for (const debug_directory &D : debug_directories())
567     if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW)
568       return getDebugPDBInfo(&D, PDBInfo, PDBFileName);
569   // If we get here, there is no PDB info to return.
570   PDBInfo = nullptr;
571   PDBFileName = StringRef();
572   return Error::success();
573 }
574 
575 // Find the import table.
576 Error COFFObjectFile::initImportTablePtr() {
577   // First, we get the RVA of the import table. If the file lacks a pointer to
578   // the import table, do nothing.
579   const data_directory *DataEntry = getDataDirectory(COFF::IMPORT_TABLE);
580   if (!DataEntry)
581     return Error::success();
582 
583   // Do nothing if the pointer to import table is NULL.
584   if (DataEntry->RelativeVirtualAddress == 0)
585     return Error::success();
586 
587   uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
588 
589   // Find the section that contains the RVA. This is needed because the RVA is
590   // the import table's memory address which is different from its file offset.
591   uintptr_t IntPtr = 0;
592   if (Error E = getRvaPtr(ImportTableRva, IntPtr, "import table"))
593     return E;
594   if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
595     return E;
596   ImportDirectory = reinterpret_cast<
597       const coff_import_directory_table_entry *>(IntPtr);
598   return Error::success();
599 }
600 
601 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
602 Error COFFObjectFile::initDelayImportTablePtr() {
603   const data_directory *DataEntry =
604       getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR);
605   if (!DataEntry)
606     return Error::success();
607   if (DataEntry->RelativeVirtualAddress == 0)
608     return Error::success();
609 
610   uint32_t RVA = DataEntry->RelativeVirtualAddress;
611   NumberOfDelayImportDirectory = DataEntry->Size /
612       sizeof(delay_import_directory_table_entry) - 1;
613 
614   uintptr_t IntPtr = 0;
615   if (Error E = getRvaPtr(RVA, IntPtr, "delay import table"))
616     return E;
617   if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
618     return E;
619 
620   DelayImportDirectory = reinterpret_cast<
621       const delay_import_directory_table_entry *>(IntPtr);
622   return Error::success();
623 }
624 
625 // Find the export table.
626 Error COFFObjectFile::initExportTablePtr() {
627   // First, we get the RVA of the export table. If the file lacks a pointer to
628   // the export table, do nothing.
629   const data_directory *DataEntry = getDataDirectory(COFF::EXPORT_TABLE);
630   if (!DataEntry)
631     return Error::success();
632 
633   // Do nothing if the pointer to export table is NULL.
634   if (DataEntry->RelativeVirtualAddress == 0)
635     return Error::success();
636 
637   uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
638   uintptr_t IntPtr = 0;
639   if (Error E = getRvaPtr(ExportTableRva, IntPtr, "export table"))
640     return E;
641   if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
642     return E;
643 
644   ExportDirectory =
645       reinterpret_cast<const export_directory_table_entry *>(IntPtr);
646   return Error::success();
647 }
648 
649 Error COFFObjectFile::initBaseRelocPtr() {
650   const data_directory *DataEntry =
651       getDataDirectory(COFF::BASE_RELOCATION_TABLE);
652   if (!DataEntry)
653     return Error::success();
654   if (DataEntry->RelativeVirtualAddress == 0)
655     return Error::success();
656 
657   uintptr_t IntPtr = 0;
658   if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr,
659                           "base reloc table"))
660     return E;
661   if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
662     return E;
663 
664   BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
665       IntPtr);
666   BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
667       IntPtr + DataEntry->Size);
668   // FIXME: Verify the section containing BaseRelocHeader has at least
669   // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
670   return Error::success();
671 }
672 
673 Error COFFObjectFile::initDebugDirectoryPtr() {
674   // Get the RVA of the debug directory. Do nothing if it does not exist.
675   const data_directory *DataEntry = getDataDirectory(COFF::DEBUG_DIRECTORY);
676   if (!DataEntry)
677     return Error::success();
678 
679   // Do nothing if the RVA is NULL.
680   if (DataEntry->RelativeVirtualAddress == 0)
681     return Error::success();
682 
683   // Check that the size is a multiple of the entry size.
684   if (DataEntry->Size % sizeof(debug_directory) != 0)
685     return createStringError(object_error::parse_failed,
686                              "debug directory has uneven size");
687 
688   uintptr_t IntPtr = 0;
689   if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr,
690                           "debug directory"))
691     return E;
692   if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
693     return E;
694 
695   DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr);
696   DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(
697       IntPtr + DataEntry->Size);
698   // FIXME: Verify the section containing DebugDirectoryBegin has at least
699   // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
700   return Error::success();
701 }
702 
703 Error COFFObjectFile::initTLSDirectoryPtr() {
704   // Get the RVA of the TLS directory. Do nothing if it does not exist.
705   const data_directory *DataEntry = getDataDirectory(COFF::TLS_TABLE);
706   if (!DataEntry)
707     return Error::success();
708 
709   // Do nothing if the RVA is NULL.
710   if (DataEntry->RelativeVirtualAddress == 0)
711     return Error::success();
712 
713   uint64_t DirSize =
714       is64() ? sizeof(coff_tls_directory64) : sizeof(coff_tls_directory32);
715 
716   // Check that the size is correct.
717   if (DataEntry->Size != DirSize)
718     return createStringError(
719         object_error::parse_failed,
720         "TLS Directory size (%u) is not the expected size (%" PRIu64 ").",
721         static_cast<uint32_t>(DataEntry->Size), DirSize);
722 
723   uintptr_t IntPtr = 0;
724   if (Error E =
725           getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, "TLS directory"))
726     return E;
727   if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
728     return E;
729 
730   if (is64())
731     TLSDirectory64 = reinterpret_cast<const coff_tls_directory64 *>(IntPtr);
732   else
733     TLSDirectory32 = reinterpret_cast<const coff_tls_directory32 *>(IntPtr);
734 
735   return Error::success();
736 }
737 
738 Error COFFObjectFile::initLoadConfigPtr() {
739   // Get the RVA of the debug directory. Do nothing if it does not exist.
740   const data_directory *DataEntry = getDataDirectory(COFF::LOAD_CONFIG_TABLE);
741   if (!DataEntry)
742     return Error::success();
743 
744   // Do nothing if the RVA is NULL.
745   if (DataEntry->RelativeVirtualAddress == 0)
746     return Error::success();
747   uintptr_t IntPtr = 0;
748   if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr,
749                           "load config table"))
750     return E;
751   if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
752     return E;
753 
754   LoadConfig = (const void *)IntPtr;
755 
756   if (is64()) {
757     auto Config = getLoadConfig64();
758     if (Config->Size >=
759             offsetof(coff_load_configuration64, CHPEMetadataPointer) +
760                 sizeof(Config->CHPEMetadataPointer) &&
761         Config->CHPEMetadataPointer) {
762       uint64_t ChpeOff = Config->CHPEMetadataPointer;
763       if (Error E =
764               getRvaPtr(ChpeOff - getImageBase(), IntPtr, "CHPE metadata"))
765         return E;
766       if (Error E = checkOffset(Data, IntPtr, sizeof(CHPEMetadata)))
767         return E;
768 
769       CHPEMetadata = reinterpret_cast<const chpe_metadata *>(IntPtr);
770 
771       // Validate CHPE metadata
772       if (CHPEMetadata->CodeMapCount) {
773         if (Error E = getRvaPtr(CHPEMetadata->CodeMap, IntPtr, "CHPE code map"))
774           return E;
775         if (Error E = checkOffset(Data, IntPtr,
776                                   CHPEMetadata->CodeMapCount *
777                                       sizeof(chpe_range_entry)))
778           return E;
779       }
780 
781       if (CHPEMetadata->CodeRangesToEntryPointsCount) {
782         if (Error E = getRvaPtr(CHPEMetadata->CodeRangesToEntryPoints, IntPtr,
783                                 "CHPE entry point ranges"))
784           return E;
785         if (Error E = checkOffset(Data, IntPtr,
786                                   CHPEMetadata->CodeRangesToEntryPointsCount *
787                                       sizeof(chpe_code_range_entry)))
788           return E;
789       }
790 
791       if (CHPEMetadata->RedirectionMetadataCount) {
792         if (Error E = getRvaPtr(CHPEMetadata->RedirectionMetadata, IntPtr,
793                                 "CHPE redirection metadata"))
794           return E;
795         if (Error E = checkOffset(Data, IntPtr,
796                                   CHPEMetadata->RedirectionMetadataCount *
797                                       sizeof(chpe_redirection_entry)))
798           return E;
799       }
800     }
801   }
802 
803   return Error::success();
804 }
805 
806 Expected<std::unique_ptr<COFFObjectFile>>
807 COFFObjectFile::create(MemoryBufferRef Object) {
808   std::unique_ptr<COFFObjectFile> Obj(new COFFObjectFile(std::move(Object)));
809   if (Error E = Obj->initialize())
810     return E;
811   return std::move(Obj);
812 }
813 
814 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object)
815     : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
816       COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
817       DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
818       SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
819       ImportDirectory(nullptr), DelayImportDirectory(nullptr),
820       NumberOfDelayImportDirectory(0), ExportDirectory(nullptr),
821       BaseRelocHeader(nullptr), BaseRelocEnd(nullptr),
822       DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr),
823       TLSDirectory32(nullptr), TLSDirectory64(nullptr) {}
824 
825 static Error ignoreStrippedErrors(Error E) {
826   if (E.isA<SectionStrippedError>()) {
827     consumeError(std::move(E));
828     return Error::success();
829   }
830   return E;
831 }
832 
833 Error COFFObjectFile::initialize() {
834   // Check that we at least have enough room for a header.
835   std::error_code EC;
836   if (!checkSize(Data, EC, sizeof(coff_file_header)))
837     return errorCodeToError(EC);
838 
839   // The current location in the file where we are looking at.
840   uint64_t CurPtr = 0;
841 
842   // PE header is optional and is present only in executables. If it exists,
843   // it is placed right after COFF header.
844   bool HasPEHeader = false;
845 
846   // Check if this is a PE/COFF file.
847   if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
848     // PE/COFF, seek through MS-DOS compatibility stub and 4-byte
849     // PE signature to find 'normal' COFF header.
850     const auto *DH = reinterpret_cast<const dos_header *>(base());
851     if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
852       CurPtr = DH->AddressOfNewExeHeader;
853       // Check the PE magic bytes. ("PE\0\0")
854       if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
855         return createStringError(object_error::parse_failed,
856                                  "incorrect PE magic");
857       }
858       CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
859       HasPEHeader = true;
860     }
861   }
862 
863   if (Error E = getObject(COFFHeader, Data, base() + CurPtr))
864     return E;
865 
866   // It might be a bigobj file, let's check.  Note that COFF bigobj and COFF
867   // import libraries share a common prefix but bigobj is more restrictive.
868   if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
869       COFFHeader->NumberOfSections == uint16_t(0xffff) &&
870       checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
871     if (Error E = getObject(COFFBigObjHeader, Data, base() + CurPtr))
872       return E;
873 
874     // Verify that we are dealing with bigobj.
875     if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
876         std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
877                     sizeof(COFF::BigObjMagic)) == 0) {
878       COFFHeader = nullptr;
879       CurPtr += sizeof(coff_bigobj_file_header);
880     } else {
881       // It's not a bigobj.
882       COFFBigObjHeader = nullptr;
883     }
884   }
885   if (COFFHeader) {
886     // The prior checkSize call may have failed.  This isn't a hard error
887     // because we were just trying to sniff out bigobj.
888     EC = std::error_code();
889     CurPtr += sizeof(coff_file_header);
890 
891     if (COFFHeader->isImportLibrary())
892       return errorCodeToError(EC);
893   }
894 
895   if (HasPEHeader) {
896     const pe32_header *Header;
897     if (Error E = getObject(Header, Data, base() + CurPtr))
898       return E;
899 
900     const uint8_t *DataDirAddr;
901     uint64_t DataDirSize;
902     if (Header->Magic == COFF::PE32Header::PE32) {
903       PE32Header = Header;
904       DataDirAddr = base() + CurPtr + sizeof(pe32_header);
905       DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
906     } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
907       PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
908       DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
909       DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
910     } else {
911       // It's neither PE32 nor PE32+.
912       return createStringError(object_error::parse_failed,
913                                "incorrect PE magic");
914     }
915     if (Error E = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))
916       return E;
917   }
918 
919   if (COFFHeader)
920     CurPtr += COFFHeader->SizeOfOptionalHeader;
921 
922   assert(COFFHeader || COFFBigObjHeader);
923 
924   if (Error E =
925           getObject(SectionTable, Data, base() + CurPtr,
926                     (uint64_t)getNumberOfSections() * sizeof(coff_section)))
927     return E;
928 
929   // Initialize the pointer to the symbol table.
930   if (getPointerToSymbolTable() != 0) {
931     if (Error E = initSymbolTablePtr()) {
932       // Recover from errors reading the symbol table.
933       consumeError(std::move(E));
934       SymbolTable16 = nullptr;
935       SymbolTable32 = nullptr;
936       StringTable = nullptr;
937       StringTableSize = 0;
938     }
939   } else {
940     // We had better not have any symbols if we don't have a symbol table.
941     if (getNumberOfSymbols() != 0) {
942       return createStringError(object_error::parse_failed,
943                                "symbol table missing");
944     }
945   }
946 
947   // Initialize the pointer to the beginning of the import table.
948   if (Error E = ignoreStrippedErrors(initImportTablePtr()))
949     return E;
950   if (Error E = ignoreStrippedErrors(initDelayImportTablePtr()))
951     return E;
952 
953   // Initialize the pointer to the export table.
954   if (Error E = ignoreStrippedErrors(initExportTablePtr()))
955     return E;
956 
957   // Initialize the pointer to the base relocation table.
958   if (Error E = ignoreStrippedErrors(initBaseRelocPtr()))
959     return E;
960 
961   // Initialize the pointer to the debug directory.
962   if (Error E = ignoreStrippedErrors(initDebugDirectoryPtr()))
963     return E;
964 
965   // Initialize the pointer to the TLS directory.
966   if (Error E = ignoreStrippedErrors(initTLSDirectoryPtr()))
967     return E;
968 
969   if (Error E = ignoreStrippedErrors(initLoadConfigPtr()))
970     return E;
971 
972   return Error::success();
973 }
974 
975 basic_symbol_iterator COFFObjectFile::symbol_begin() const {
976   DataRefImpl Ret;
977   Ret.p = getSymbolTable();
978   return basic_symbol_iterator(SymbolRef(Ret, this));
979 }
980 
981 basic_symbol_iterator COFFObjectFile::symbol_end() const {
982   // The symbol table ends where the string table begins.
983   DataRefImpl Ret;
984   Ret.p = reinterpret_cast<uintptr_t>(StringTable);
985   return basic_symbol_iterator(SymbolRef(Ret, this));
986 }
987 
988 import_directory_iterator COFFObjectFile::import_directory_begin() const {
989   if (!ImportDirectory)
990     return import_directory_end();
991   if (ImportDirectory->isNull())
992     return import_directory_end();
993   return import_directory_iterator(
994       ImportDirectoryEntryRef(ImportDirectory, 0, this));
995 }
996 
997 import_directory_iterator COFFObjectFile::import_directory_end() const {
998   return import_directory_iterator(
999       ImportDirectoryEntryRef(nullptr, -1, this));
1000 }
1001 
1002 delay_import_directory_iterator
1003 COFFObjectFile::delay_import_directory_begin() const {
1004   return delay_import_directory_iterator(
1005       DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
1006 }
1007 
1008 delay_import_directory_iterator
1009 COFFObjectFile::delay_import_directory_end() const {
1010   return delay_import_directory_iterator(
1011       DelayImportDirectoryEntryRef(
1012           DelayImportDirectory, NumberOfDelayImportDirectory, this));
1013 }
1014 
1015 export_directory_iterator COFFObjectFile::export_directory_begin() const {
1016   return export_directory_iterator(
1017       ExportDirectoryEntryRef(ExportDirectory, 0, this));
1018 }
1019 
1020 export_directory_iterator COFFObjectFile::export_directory_end() const {
1021   if (!ExportDirectory)
1022     return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
1023   ExportDirectoryEntryRef Ref(ExportDirectory,
1024                               ExportDirectory->AddressTableEntries, this);
1025   return export_directory_iterator(Ref);
1026 }
1027 
1028 section_iterator COFFObjectFile::section_begin() const {
1029   DataRefImpl Ret;
1030   Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
1031   return section_iterator(SectionRef(Ret, this));
1032 }
1033 
1034 section_iterator COFFObjectFile::section_end() const {
1035   DataRefImpl Ret;
1036   int NumSections =
1037       COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
1038   Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
1039   return section_iterator(SectionRef(Ret, this));
1040 }
1041 
1042 base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
1043   return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
1044 }
1045 
1046 base_reloc_iterator COFFObjectFile::base_reloc_end() const {
1047   return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
1048 }
1049 
1050 uint8_t COFFObjectFile::getBytesInAddress() const {
1051   return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4;
1052 }
1053 
1054 StringRef COFFObjectFile::getFileFormatName() const {
1055   switch(getMachine()) {
1056   case COFF::IMAGE_FILE_MACHINE_I386:
1057     return "COFF-i386";
1058   case COFF::IMAGE_FILE_MACHINE_AMD64:
1059     return "COFF-x86-64";
1060   case COFF::IMAGE_FILE_MACHINE_ARMNT:
1061     return "COFF-ARM";
1062   case COFF::IMAGE_FILE_MACHINE_ARM64:
1063     return "COFF-ARM64";
1064   case COFF::IMAGE_FILE_MACHINE_ARM64EC:
1065     return "COFF-ARM64EC";
1066   case COFF::IMAGE_FILE_MACHINE_ARM64X:
1067     return "COFF-ARM64X";
1068   default:
1069     return "COFF-<unknown arch>";
1070   }
1071 }
1072 
1073 Triple::ArchType COFFObjectFile::getArch() const {
1074   return getMachineArchType(getMachine());
1075 }
1076 
1077 Expected<uint64_t> COFFObjectFile::getStartAddress() const {
1078   if (PE32Header)
1079     return PE32Header->AddressOfEntryPoint;
1080   return 0;
1081 }
1082 
1083 iterator_range<import_directory_iterator>
1084 COFFObjectFile::import_directories() const {
1085   return make_range(import_directory_begin(), import_directory_end());
1086 }
1087 
1088 iterator_range<delay_import_directory_iterator>
1089 COFFObjectFile::delay_import_directories() const {
1090   return make_range(delay_import_directory_begin(),
1091                     delay_import_directory_end());
1092 }
1093 
1094 iterator_range<export_directory_iterator>
1095 COFFObjectFile::export_directories() const {
1096   return make_range(export_directory_begin(), export_directory_end());
1097 }
1098 
1099 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
1100   return make_range(base_reloc_begin(), base_reloc_end());
1101 }
1102 
1103 const data_directory *COFFObjectFile::getDataDirectory(uint32_t Index) const {
1104   if (!DataDirectory)
1105     return nullptr;
1106   assert(PE32Header || PE32PlusHeader);
1107   uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
1108                                : PE32PlusHeader->NumberOfRvaAndSize;
1109   if (Index >= NumEnt)
1110     return nullptr;
1111   return &DataDirectory[Index];
1112 }
1113 
1114 Expected<const coff_section *> COFFObjectFile::getSection(int32_t Index) const {
1115   // Perhaps getting the section of a reserved section index should be an error,
1116   // but callers rely on this to return null.
1117   if (COFF::isReservedSectionNumber(Index))
1118     return (const coff_section *)nullptr;
1119   if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
1120     // We already verified the section table data, so no need to check again.
1121     return SectionTable + (Index - 1);
1122   }
1123   return createStringError(object_error::parse_failed,
1124                            "section index out of bounds");
1125 }
1126 
1127 Expected<StringRef> COFFObjectFile::getString(uint32_t Offset) const {
1128   if (StringTableSize <= 4)
1129     // Tried to get a string from an empty string table.
1130     return createStringError(object_error::parse_failed, "string table empty");
1131   if (Offset >= StringTableSize)
1132     return errorCodeToError(object_error::unexpected_eof);
1133   return StringRef(StringTable + Offset);
1134 }
1135 
1136 Expected<StringRef> COFFObjectFile::getSymbolName(COFFSymbolRef Symbol) const {
1137   return getSymbolName(Symbol.getGeneric());
1138 }
1139 
1140 Expected<StringRef>
1141 COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol) const {
1142   // Check for string table entry. First 4 bytes are 0.
1143   if (Symbol->Name.Offset.Zeroes == 0)
1144     return getString(Symbol->Name.Offset.Offset);
1145 
1146   // Null terminated, let ::strlen figure out the length.
1147   if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
1148     return StringRef(Symbol->Name.ShortName);
1149 
1150   // Not null terminated, use all 8 bytes.
1151   return StringRef(Symbol->Name.ShortName, COFF::NameSize);
1152 }
1153 
1154 ArrayRef<uint8_t>
1155 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
1156   const uint8_t *Aux = nullptr;
1157 
1158   size_t SymbolSize = getSymbolTableEntrySize();
1159   if (Symbol.getNumberOfAuxSymbols() > 0) {
1160     // AUX data comes immediately after the symbol in COFF
1161     Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
1162 #ifndef NDEBUG
1163     // Verify that the Aux symbol points to a valid entry in the symbol table.
1164     uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
1165     if (Offset < getPointerToSymbolTable() ||
1166         Offset >=
1167             getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
1168       report_fatal_error("Aux Symbol data was outside of symbol table.");
1169 
1170     assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
1171            "Aux Symbol data did not point to the beginning of a symbol");
1172 #endif
1173   }
1174   return ArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
1175 }
1176 
1177 uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const {
1178   uintptr_t Offset =
1179       reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable();
1180   assert(Offset % getSymbolTableEntrySize() == 0 &&
1181          "Symbol did not point to the beginning of a symbol");
1182   size_t Index = Offset / getSymbolTableEntrySize();
1183   assert(Index < getNumberOfSymbols());
1184   return Index;
1185 }
1186 
1187 Expected<StringRef>
1188 COFFObjectFile::getSectionName(const coff_section *Sec) const {
1189   StringRef Name = StringRef(Sec->Name, COFF::NameSize).split('\0').first;
1190 
1191   // Check for string table entry. First byte is '/'.
1192   if (Name.starts_with("/")) {
1193     uint32_t Offset;
1194     if (Name.starts_with("//")) {
1195       if (decodeBase64StringEntry(Name.substr(2), Offset))
1196         return createStringError(object_error::parse_failed,
1197                                  "invalid section name");
1198     } else {
1199       if (Name.substr(1).getAsInteger(10, Offset))
1200         return createStringError(object_error::parse_failed,
1201                                  "invalid section name");
1202     }
1203     return getString(Offset);
1204   }
1205 
1206   return Name;
1207 }
1208 
1209 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
1210   // SizeOfRawData and VirtualSize change what they represent depending on
1211   // whether or not we have an executable image.
1212   //
1213   // For object files, SizeOfRawData contains the size of section's data;
1214   // VirtualSize should be zero but isn't due to buggy COFF writers.
1215   //
1216   // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
1217   // actual section size is in VirtualSize.  It is possible for VirtualSize to
1218   // be greater than SizeOfRawData; the contents past that point should be
1219   // considered to be zero.
1220   if (getDOSHeader())
1221     return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
1222   return Sec->SizeOfRawData;
1223 }
1224 
1225 Error COFFObjectFile::getSectionContents(const coff_section *Sec,
1226                                          ArrayRef<uint8_t> &Res) const {
1227   // In COFF, a virtual section won't have any in-file
1228   // content, so the file pointer to the content will be zero.
1229   if (Sec->PointerToRawData == 0)
1230     return Error::success();
1231   // The only thing that we need to verify is that the contents is contained
1232   // within the file bounds. We don't need to make sure it doesn't cover other
1233   // data, as there's nothing that says that is not allowed.
1234   uintptr_t ConStart =
1235       reinterpret_cast<uintptr_t>(base()) + Sec->PointerToRawData;
1236   uint32_t SectionSize = getSectionSize(Sec);
1237   if (Error E = checkOffset(Data, ConStart, SectionSize))
1238     return E;
1239   Res = ArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
1240   return Error::success();
1241 }
1242 
1243 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
1244   return reinterpret_cast<const coff_relocation*>(Rel.p);
1245 }
1246 
1247 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
1248   Rel.p = reinterpret_cast<uintptr_t>(
1249             reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
1250 }
1251 
1252 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
1253   const coff_relocation *R = toRel(Rel);
1254   return R->VirtualAddress;
1255 }
1256 
1257 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
1258   const coff_relocation *R = toRel(Rel);
1259   DataRefImpl Ref;
1260   if (R->SymbolTableIndex >= getNumberOfSymbols())
1261     return symbol_end();
1262   if (SymbolTable16)
1263     Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
1264   else if (SymbolTable32)
1265     Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
1266   else
1267     llvm_unreachable("no symbol table pointer!");
1268   return symbol_iterator(SymbolRef(Ref, this));
1269 }
1270 
1271 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
1272   const coff_relocation* R = toRel(Rel);
1273   return R->Type;
1274 }
1275 
1276 const coff_section *
1277 COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
1278   return toSec(Section.getRawDataRefImpl());
1279 }
1280 
1281 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
1282   if (SymbolTable16)
1283     return toSymb<coff_symbol16>(Ref);
1284   if (SymbolTable32)
1285     return toSymb<coff_symbol32>(Ref);
1286   llvm_unreachable("no symbol table pointer!");
1287 }
1288 
1289 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
1290   return getCOFFSymbol(Symbol.getRawDataRefImpl());
1291 }
1292 
1293 const coff_relocation *
1294 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
1295   return toRel(Reloc.getRawDataRefImpl());
1296 }
1297 
1298 ArrayRef<coff_relocation>
1299 COFFObjectFile::getRelocations(const coff_section *Sec) const {
1300   return {getFirstReloc(Sec, Data, base()),
1301           getNumberOfRelocations(Sec, Data, base())};
1302 }
1303 
1304 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type)                           \
1305   case COFF::reloc_type:                                                       \
1306     return #reloc_type;
1307 
1308 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const {
1309   switch (getArch()) {
1310   case Triple::x86_64:
1311     switch (Type) {
1312     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
1313     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
1314     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
1315     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
1316     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
1317     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
1318     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
1319     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
1320     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
1321     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
1322     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
1323     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
1324     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
1325     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
1326     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
1327     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
1328     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
1329     default:
1330       return "Unknown";
1331     }
1332     break;
1333   case Triple::thumb:
1334     switch (Type) {
1335     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
1336     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
1337     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
1338     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
1339     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
1340     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
1341     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
1342     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
1343     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32);
1344     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
1345     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
1346     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
1347     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
1348     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
1349     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
1350     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
1351     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR);
1352     default:
1353       return "Unknown";
1354     }
1355     break;
1356   case Triple::aarch64:
1357     switch (Type) {
1358     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE);
1359     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32);
1360     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB);
1361     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26);
1362     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21);
1363     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21);
1364     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A);
1365     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L);
1366     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL);
1367     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A);
1368     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A);
1369     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L);
1370     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN);
1371     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION);
1372     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64);
1373     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19);
1374     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14);
1375     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32);
1376     default:
1377       return "Unknown";
1378     }
1379     break;
1380   case Triple::x86:
1381     switch (Type) {
1382     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
1383     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
1384     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
1385     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
1386     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
1387     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
1388     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
1389     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
1390     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
1391     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
1392     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
1393     default:
1394       return "Unknown";
1395     }
1396     break;
1397   default:
1398     return "Unknown";
1399   }
1400 }
1401 
1402 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
1403 
1404 void COFFObjectFile::getRelocationTypeName(
1405     DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1406   const coff_relocation *Reloc = toRel(Rel);
1407   StringRef Res = getRelocationTypeName(Reloc->Type);
1408   Result.append(Res.begin(), Res.end());
1409 }
1410 
1411 bool COFFObjectFile::isRelocatableObject() const {
1412   return !DataDirectory;
1413 }
1414 
1415 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const {
1416   return StringSwitch<StringRef>(Name)
1417       .Case("eh_fram", "eh_frame")
1418       .Default(Name);
1419 }
1420 
1421 bool ImportDirectoryEntryRef::
1422 operator==(const ImportDirectoryEntryRef &Other) const {
1423   return ImportTable == Other.ImportTable && Index == Other.Index;
1424 }
1425 
1426 void ImportDirectoryEntryRef::moveNext() {
1427   ++Index;
1428   if (ImportTable[Index].isNull()) {
1429     Index = -1;
1430     ImportTable = nullptr;
1431   }
1432 }
1433 
1434 Error ImportDirectoryEntryRef::getImportTableEntry(
1435     const coff_import_directory_table_entry *&Result) const {
1436   return getObject(Result, OwningObject->Data, ImportTable + Index);
1437 }
1438 
1439 static imported_symbol_iterator
1440 makeImportedSymbolIterator(const COFFObjectFile *Object,
1441                            uintptr_t Ptr, int Index) {
1442   if (Object->getBytesInAddress() == 4) {
1443     auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
1444     return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1445   }
1446   auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
1447   return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1448 }
1449 
1450 static imported_symbol_iterator
1451 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
1452   uintptr_t IntPtr = 0;
1453   // FIXME: Handle errors.
1454   cantFail(Object->getRvaPtr(RVA, IntPtr));
1455   return makeImportedSymbolIterator(Object, IntPtr, 0);
1456 }
1457 
1458 static imported_symbol_iterator
1459 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
1460   uintptr_t IntPtr = 0;
1461   // FIXME: Handle errors.
1462   cantFail(Object->getRvaPtr(RVA, IntPtr));
1463   // Forward the pointer to the last entry which is null.
1464   int Index = 0;
1465   if (Object->getBytesInAddress() == 4) {
1466     auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
1467     while (*Entry++)
1468       ++Index;
1469   } else {
1470     auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
1471     while (*Entry++)
1472       ++Index;
1473   }
1474   return makeImportedSymbolIterator(Object, IntPtr, Index);
1475 }
1476 
1477 imported_symbol_iterator
1478 ImportDirectoryEntryRef::imported_symbol_begin() const {
1479   return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA,
1480                              OwningObject);
1481 }
1482 
1483 imported_symbol_iterator
1484 ImportDirectoryEntryRef::imported_symbol_end() const {
1485   return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA,
1486                            OwningObject);
1487 }
1488 
1489 iterator_range<imported_symbol_iterator>
1490 ImportDirectoryEntryRef::imported_symbols() const {
1491   return make_range(imported_symbol_begin(), imported_symbol_end());
1492 }
1493 
1494 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const {
1495   return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
1496                              OwningObject);
1497 }
1498 
1499 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const {
1500   return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
1501                            OwningObject);
1502 }
1503 
1504 iterator_range<imported_symbol_iterator>
1505 ImportDirectoryEntryRef::lookup_table_symbols() const {
1506   return make_range(lookup_table_begin(), lookup_table_end());
1507 }
1508 
1509 Error ImportDirectoryEntryRef::getName(StringRef &Result) const {
1510   uintptr_t IntPtr = 0;
1511   if (Error E = OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr,
1512                                         "import directory name"))
1513     return E;
1514   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1515   return Error::success();
1516 }
1517 
1518 Error
1519 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t  &Result) const {
1520   Result = ImportTable[Index].ImportLookupTableRVA;
1521   return Error::success();
1522 }
1523 
1524 Error ImportDirectoryEntryRef::getImportAddressTableRVA(
1525     uint32_t &Result) const {
1526   Result = ImportTable[Index].ImportAddressTableRVA;
1527   return Error::success();
1528 }
1529 
1530 bool DelayImportDirectoryEntryRef::
1531 operator==(const DelayImportDirectoryEntryRef &Other) const {
1532   return Table == Other.Table && Index == Other.Index;
1533 }
1534 
1535 void DelayImportDirectoryEntryRef::moveNext() {
1536   ++Index;
1537 }
1538 
1539 imported_symbol_iterator
1540 DelayImportDirectoryEntryRef::imported_symbol_begin() const {
1541   return importedSymbolBegin(Table[Index].DelayImportNameTable,
1542                              OwningObject);
1543 }
1544 
1545 imported_symbol_iterator
1546 DelayImportDirectoryEntryRef::imported_symbol_end() const {
1547   return importedSymbolEnd(Table[Index].DelayImportNameTable,
1548                            OwningObject);
1549 }
1550 
1551 iterator_range<imported_symbol_iterator>
1552 DelayImportDirectoryEntryRef::imported_symbols() const {
1553   return make_range(imported_symbol_begin(), imported_symbol_end());
1554 }
1555 
1556 Error DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
1557   uintptr_t IntPtr = 0;
1558   if (Error E = OwningObject->getRvaPtr(Table[Index].Name, IntPtr,
1559                                         "delay import directory name"))
1560     return E;
1561   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1562   return Error::success();
1563 }
1564 
1565 Error DelayImportDirectoryEntryRef::getDelayImportTable(
1566     const delay_import_directory_table_entry *&Result) const {
1567   Result = &Table[Index];
1568   return Error::success();
1569 }
1570 
1571 Error DelayImportDirectoryEntryRef::getImportAddress(int AddrIndex,
1572                                                      uint64_t &Result) const {
1573   uint32_t RVA = Table[Index].DelayImportAddressTable +
1574       AddrIndex * (OwningObject->is64() ? 8 : 4);
1575   uintptr_t IntPtr = 0;
1576   if (Error E = OwningObject->getRvaPtr(RVA, IntPtr, "import address"))
1577     return E;
1578   if (OwningObject->is64())
1579     Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
1580   else
1581     Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
1582   return Error::success();
1583 }
1584 
1585 bool ExportDirectoryEntryRef::
1586 operator==(const ExportDirectoryEntryRef &Other) const {
1587   return ExportTable == Other.ExportTable && Index == Other.Index;
1588 }
1589 
1590 void ExportDirectoryEntryRef::moveNext() {
1591   ++Index;
1592 }
1593 
1594 // Returns the name of the current export symbol. If the symbol is exported only
1595 // by ordinal, the empty string is set as a result.
1596 Error ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
1597   uintptr_t IntPtr = 0;
1598   if (Error E =
1599           OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr, "dll name"))
1600     return E;
1601   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1602   return Error::success();
1603 }
1604 
1605 // Returns the starting ordinal number.
1606 Error ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
1607   Result = ExportTable->OrdinalBase;
1608   return Error::success();
1609 }
1610 
1611 // Returns the export ordinal of the current export symbol.
1612 Error ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
1613   Result = ExportTable->OrdinalBase + Index;
1614   return Error::success();
1615 }
1616 
1617 // Returns the address of the current export symbol.
1618 Error ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
1619   uintptr_t IntPtr = 0;
1620   if (Error EC = OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA,
1621                                          IntPtr, "export address"))
1622     return EC;
1623   const export_address_table_entry *entry =
1624       reinterpret_cast<const export_address_table_entry *>(IntPtr);
1625   Result = entry[Index].ExportRVA;
1626   return Error::success();
1627 }
1628 
1629 // Returns the name of the current export symbol. If the symbol is exported only
1630 // by ordinal, the empty string is set as a result.
1631 Error
1632 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
1633   uintptr_t IntPtr = 0;
1634   if (Error EC = OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr,
1635                                          "export ordinal table"))
1636     return EC;
1637   const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
1638 
1639   uint32_t NumEntries = ExportTable->NumberOfNamePointers;
1640   int Offset = 0;
1641   for (const ulittle16_t *I = Start, *E = Start + NumEntries;
1642        I < E; ++I, ++Offset) {
1643     if (*I != Index)
1644       continue;
1645     if (Error EC = OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr,
1646                                            "export table entry"))
1647       return EC;
1648     const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
1649     if (Error EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr,
1650                                            "export symbol name"))
1651       return EC;
1652     Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1653     return Error::success();
1654   }
1655   Result = "";
1656   return Error::success();
1657 }
1658 
1659 Error ExportDirectoryEntryRef::isForwarder(bool &Result) const {
1660   const data_directory *DataEntry =
1661       OwningObject->getDataDirectory(COFF::EXPORT_TABLE);
1662   if (!DataEntry)
1663     return createStringError(object_error::parse_failed,
1664                              "export table missing");
1665   uint32_t RVA;
1666   if (auto EC = getExportRVA(RVA))
1667     return EC;
1668   uint32_t Begin = DataEntry->RelativeVirtualAddress;
1669   uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size;
1670   Result = (Begin <= RVA && RVA < End);
1671   return Error::success();
1672 }
1673 
1674 Error ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const {
1675   uint32_t RVA;
1676   if (auto EC = getExportRVA(RVA))
1677     return EC;
1678   uintptr_t IntPtr = 0;
1679   if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr, "export forward target"))
1680     return EC;
1681   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1682   return Error::success();
1683 }
1684 
1685 bool ImportedSymbolRef::
1686 operator==(const ImportedSymbolRef &Other) const {
1687   return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
1688       && Index == Other.Index;
1689 }
1690 
1691 void ImportedSymbolRef::moveNext() {
1692   ++Index;
1693 }
1694 
1695 Error ImportedSymbolRef::getSymbolName(StringRef &Result) const {
1696   uint32_t RVA;
1697   if (Entry32) {
1698     // If a symbol is imported only by ordinal, it has no name.
1699     if (Entry32[Index].isOrdinal())
1700       return Error::success();
1701     RVA = Entry32[Index].getHintNameRVA();
1702   } else {
1703     if (Entry64[Index].isOrdinal())
1704       return Error::success();
1705     RVA = Entry64[Index].getHintNameRVA();
1706   }
1707   uintptr_t IntPtr = 0;
1708   if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol name"))
1709     return EC;
1710   // +2 because the first two bytes is hint.
1711   Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
1712   return Error::success();
1713 }
1714 
1715 Error ImportedSymbolRef::isOrdinal(bool &Result) const {
1716   if (Entry32)
1717     Result = Entry32[Index].isOrdinal();
1718   else
1719     Result = Entry64[Index].isOrdinal();
1720   return Error::success();
1721 }
1722 
1723 Error ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const {
1724   if (Entry32)
1725     Result = Entry32[Index].getHintNameRVA();
1726   else
1727     Result = Entry64[Index].getHintNameRVA();
1728   return Error::success();
1729 }
1730 
1731 Error ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
1732   uint32_t RVA;
1733   if (Entry32) {
1734     if (Entry32[Index].isOrdinal()) {
1735       Result = Entry32[Index].getOrdinal();
1736       return Error::success();
1737     }
1738     RVA = Entry32[Index].getHintNameRVA();
1739   } else {
1740     if (Entry64[Index].isOrdinal()) {
1741       Result = Entry64[Index].getOrdinal();
1742       return Error::success();
1743     }
1744     RVA = Entry64[Index].getHintNameRVA();
1745   }
1746   uintptr_t IntPtr = 0;
1747   if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol ordinal"))
1748     return EC;
1749   Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
1750   return Error::success();
1751 }
1752 
1753 Expected<std::unique_ptr<COFFObjectFile>>
1754 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
1755   return COFFObjectFile::create(Object);
1756 }
1757 
1758 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
1759   return Header == Other.Header && Index == Other.Index;
1760 }
1761 
1762 void BaseRelocRef::moveNext() {
1763   // Header->BlockSize is the size of the current block, including the
1764   // size of the header itself.
1765   uint32_t Size = sizeof(*Header) +
1766       sizeof(coff_base_reloc_block_entry) * (Index + 1);
1767   if (Size == Header->BlockSize) {
1768     // .reloc contains a list of base relocation blocks. Each block
1769     // consists of the header followed by entries. The header contains
1770     // how many entories will follow. When we reach the end of the
1771     // current block, proceed to the next block.
1772     Header = reinterpret_cast<const coff_base_reloc_block_header *>(
1773         reinterpret_cast<const uint8_t *>(Header) + Size);
1774     Index = 0;
1775   } else {
1776     ++Index;
1777   }
1778 }
1779 
1780 Error BaseRelocRef::getType(uint8_t &Type) const {
1781   auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1782   Type = Entry[Index].getType();
1783   return Error::success();
1784 }
1785 
1786 Error BaseRelocRef::getRVA(uint32_t &Result) const {
1787   auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1788   Result = Header->PageRVA + Entry[Index].getOffset();
1789   return Error::success();
1790 }
1791 
1792 #define RETURN_IF_ERROR(Expr)                                                  \
1793   do {                                                                         \
1794     Error E = (Expr);                                                          \
1795     if (E)                                                                     \
1796       return std::move(E);                                                     \
1797   } while (0)
1798 
1799 Expected<ArrayRef<UTF16>>
1800 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) {
1801   BinaryStreamReader Reader = BinaryStreamReader(BBS);
1802   Reader.setOffset(Offset);
1803   uint16_t Length;
1804   RETURN_IF_ERROR(Reader.readInteger(Length));
1805   ArrayRef<UTF16> RawDirString;
1806   RETURN_IF_ERROR(Reader.readArray(RawDirString, Length));
1807   return RawDirString;
1808 }
1809 
1810 Expected<ArrayRef<UTF16>>
1811 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) {
1812   return getDirStringAtOffset(Entry.Identifier.getNameOffset());
1813 }
1814 
1815 Expected<const coff_resource_dir_table &>
1816 ResourceSectionRef::getTableAtOffset(uint32_t Offset) {
1817   const coff_resource_dir_table *Table = nullptr;
1818 
1819   BinaryStreamReader Reader(BBS);
1820   Reader.setOffset(Offset);
1821   RETURN_IF_ERROR(Reader.readObject(Table));
1822   assert(Table != nullptr);
1823   return *Table;
1824 }
1825 
1826 Expected<const coff_resource_dir_entry &>
1827 ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) {
1828   const coff_resource_dir_entry *Entry = nullptr;
1829 
1830   BinaryStreamReader Reader(BBS);
1831   Reader.setOffset(Offset);
1832   RETURN_IF_ERROR(Reader.readObject(Entry));
1833   assert(Entry != nullptr);
1834   return *Entry;
1835 }
1836 
1837 Expected<const coff_resource_data_entry &>
1838 ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) {
1839   const coff_resource_data_entry *Entry = nullptr;
1840 
1841   BinaryStreamReader Reader(BBS);
1842   Reader.setOffset(Offset);
1843   RETURN_IF_ERROR(Reader.readObject(Entry));
1844   assert(Entry != nullptr);
1845   return *Entry;
1846 }
1847 
1848 Expected<const coff_resource_dir_table &>
1849 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) {
1850   assert(Entry.Offset.isSubDir());
1851   return getTableAtOffset(Entry.Offset.value());
1852 }
1853 
1854 Expected<const coff_resource_data_entry &>
1855 ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) {
1856   assert(!Entry.Offset.isSubDir());
1857   return getDataEntryAtOffset(Entry.Offset.value());
1858 }
1859 
1860 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() {
1861   return getTableAtOffset(0);
1862 }
1863 
1864 Expected<const coff_resource_dir_entry &>
1865 ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table,
1866                                   uint32_t Index) {
1867   if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries))
1868     return createStringError(object_error::parse_failed, "index out of range");
1869   const uint8_t *TablePtr = reinterpret_cast<const uint8_t *>(&Table);
1870   ptrdiff_t TableOffset = TablePtr - BBS.data().data();
1871   return getTableEntryAtOffset(TableOffset + sizeof(Table) +
1872                                Index * sizeof(coff_resource_dir_entry));
1873 }
1874 
1875 Error ResourceSectionRef::load(const COFFObjectFile *O) {
1876   for (const SectionRef &S : O->sections()) {
1877     Expected<StringRef> Name = S.getName();
1878     if (!Name)
1879       return Name.takeError();
1880 
1881     if (*Name == ".rsrc" || *Name == ".rsrc$01")
1882       return load(O, S);
1883   }
1884   return createStringError(object_error::parse_failed,
1885                            "no resource section found");
1886 }
1887 
1888 Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) {
1889   Obj = O;
1890   Section = S;
1891   Expected<StringRef> Contents = Section.getContents();
1892   if (!Contents)
1893     return Contents.takeError();
1894   BBS = BinaryByteStream(*Contents, llvm::endianness::little);
1895   const coff_section *COFFSect = Obj->getCOFFSection(Section);
1896   ArrayRef<coff_relocation> OrigRelocs = Obj->getRelocations(COFFSect);
1897   Relocs.reserve(OrigRelocs.size());
1898   for (const coff_relocation &R : OrigRelocs)
1899     Relocs.push_back(&R);
1900   llvm::sort(Relocs, [](const coff_relocation *A, const coff_relocation *B) {
1901     return A->VirtualAddress < B->VirtualAddress;
1902   });
1903   return Error::success();
1904 }
1905 
1906 Expected<StringRef>
1907 ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) {
1908   if (!Obj)
1909     return createStringError(object_error::parse_failed, "no object provided");
1910 
1911   // Find a potential relocation at the DataRVA field (first member of
1912   // the coff_resource_data_entry struct).
1913   const uint8_t *EntryPtr = reinterpret_cast<const uint8_t *>(&Entry);
1914   ptrdiff_t EntryOffset = EntryPtr - BBS.data().data();
1915   coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0),
1916                               ulittle16_t(0)};
1917   auto RelocsForOffset =
1918       std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget,
1919                        [](const coff_relocation *A, const coff_relocation *B) {
1920                          return A->VirtualAddress < B->VirtualAddress;
1921                        });
1922 
1923   if (RelocsForOffset.first != RelocsForOffset.second) {
1924     // We found a relocation with the right offset. Check that it does have
1925     // the expected type.
1926     const coff_relocation &R = **RelocsForOffset.first;
1927     uint16_t RVAReloc;
1928     switch (Obj->getArch()) {
1929     case Triple::x86:
1930       RVAReloc = COFF::IMAGE_REL_I386_DIR32NB;
1931       break;
1932     case Triple::x86_64:
1933       RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB;
1934       break;
1935     case Triple::thumb:
1936       RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB;
1937       break;
1938     case Triple::aarch64:
1939       RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB;
1940       break;
1941     default:
1942       return createStringError(object_error::parse_failed,
1943                                "unsupported architecture");
1944     }
1945     if (R.Type != RVAReloc)
1946       return createStringError(object_error::parse_failed,
1947                                "unexpected relocation type");
1948     // Get the relocation's symbol
1949     Expected<COFFSymbolRef> Sym = Obj->getSymbol(R.SymbolTableIndex);
1950     if (!Sym)
1951       return Sym.takeError();
1952     // And the symbol's section
1953     Expected<const coff_section *> Section =
1954         Obj->getSection(Sym->getSectionNumber());
1955     if (!Section)
1956       return Section.takeError();
1957     // Add the initial value of DataRVA to the symbol's offset to find the
1958     // data it points at.
1959     uint64_t Offset = Entry.DataRVA + Sym->getValue();
1960     ArrayRef<uint8_t> Contents;
1961     if (Error E = Obj->getSectionContents(*Section, Contents))
1962       return E;
1963     if (Offset + Entry.DataSize > Contents.size())
1964       return createStringError(object_error::parse_failed,
1965                                "data outside of section");
1966     // Return a reference to the data inside the section.
1967     return StringRef(reinterpret_cast<const char *>(Contents.data()) + Offset,
1968                      Entry.DataSize);
1969   } else {
1970     // Relocatable objects need a relocation for the DataRVA field.
1971     if (Obj->isRelocatableObject())
1972       return createStringError(object_error::parse_failed,
1973                                "no relocation found for DataRVA");
1974 
1975     // Locate the section that contains the address that DataRVA points at.
1976     uint64_t VA = Entry.DataRVA + Obj->getImageBase();
1977     for (const SectionRef &S : Obj->sections()) {
1978       if (VA >= S.getAddress() &&
1979           VA + Entry.DataSize <= S.getAddress() + S.getSize()) {
1980         uint64_t Offset = VA - S.getAddress();
1981         Expected<StringRef> Contents = S.getContents();
1982         if (!Contents)
1983           return Contents.takeError();
1984         return Contents->slice(Offset, Offset + Entry.DataSize);
1985       }
1986     }
1987     return createStringError(object_error::parse_failed,
1988                              "address not found in image");
1989   }
1990 }
1991