xref: /freebsd/contrib/llvm-project/llvm/lib/Object/COFFObjectFile.cpp (revision 02e9120893770924227138ba49df1edb3896112a)
1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the COFFObjectFile class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/StringSwitch.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/BinaryFormat/COFF.h"
18 #include "llvm/Object/Binary.h"
19 #include "llvm/Object/COFF.h"
20 #include "llvm/Object/Error.h"
21 #include "llvm/Object/ObjectFile.h"
22 #include "llvm/Support/BinaryStreamReader.h"
23 #include "llvm/Support/Endian.h"
24 #include "llvm/Support/Error.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/MemoryBufferRef.h"
28 #include "llvm/TargetParser/Triple.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <cinttypes>
32 #include <cstddef>
33 #include <cstring>
34 #include <limits>
35 #include <memory>
36 #include <system_error>
37 
38 using namespace llvm;
39 using namespace object;
40 
41 using support::ulittle16_t;
42 using support::ulittle32_t;
43 using support::ulittle64_t;
44 using support::little16_t;
45 
46 // Returns false if size is greater than the buffer size. And sets ec.
47 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
48   if (M.getBufferSize() < Size) {
49     EC = object_error::unexpected_eof;
50     return false;
51   }
52   return true;
53 }
54 
55 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
56 // Returns unexpected_eof if error.
57 template <typename T>
58 static Error getObject(const T *&Obj, MemoryBufferRef M, const void *Ptr,
59                        const uint64_t Size = sizeof(T)) {
60   uintptr_t Addr = reinterpret_cast<uintptr_t>(Ptr);
61   if (Error E = Binary::checkOffset(M, Addr, Size))
62     return E;
63   Obj = reinterpret_cast<const T *>(Addr);
64   return Error::success();
65 }
66 
67 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
68 // prefixed slashes.
69 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
70   assert(Str.size() <= 6 && "String too long, possible overflow.");
71   if (Str.size() > 6)
72     return true;
73 
74   uint64_t Value = 0;
75   while (!Str.empty()) {
76     unsigned CharVal;
77     if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
78       CharVal = Str[0] - 'A';
79     else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
80       CharVal = Str[0] - 'a' + 26;
81     else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
82       CharVal = Str[0] - '0' + 52;
83     else if (Str[0] == '+') // 62
84       CharVal = 62;
85     else if (Str[0] == '/') // 63
86       CharVal = 63;
87     else
88       return true;
89 
90     Value = (Value * 64) + CharVal;
91     Str = Str.substr(1);
92   }
93 
94   if (Value > std::numeric_limits<uint32_t>::max())
95     return true;
96 
97   Result = static_cast<uint32_t>(Value);
98   return false;
99 }
100 
101 template <typename coff_symbol_type>
102 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
103   const coff_symbol_type *Addr =
104       reinterpret_cast<const coff_symbol_type *>(Ref.p);
105 
106   assert(!checkOffset(Data, reinterpret_cast<uintptr_t>(Addr), sizeof(*Addr)));
107 #ifndef NDEBUG
108   // Verify that the symbol points to a valid entry in the symbol table.
109   uintptr_t Offset =
110       reinterpret_cast<uintptr_t>(Addr) - reinterpret_cast<uintptr_t>(base());
111 
112   assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
113          "Symbol did not point to the beginning of a symbol");
114 #endif
115 
116   return Addr;
117 }
118 
119 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
120   const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
121 
122 #ifndef NDEBUG
123   // Verify that the section points to a valid entry in the section table.
124   if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
125     report_fatal_error("Section was outside of section table.");
126 
127   uintptr_t Offset = reinterpret_cast<uintptr_t>(Addr) -
128                      reinterpret_cast<uintptr_t>(SectionTable);
129   assert(Offset % sizeof(coff_section) == 0 &&
130          "Section did not point to the beginning of a section");
131 #endif
132 
133   return Addr;
134 }
135 
136 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
137   auto End = reinterpret_cast<uintptr_t>(StringTable);
138   if (SymbolTable16) {
139     const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
140     Symb += 1 + Symb->NumberOfAuxSymbols;
141     Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
142   } else if (SymbolTable32) {
143     const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
144     Symb += 1 + Symb->NumberOfAuxSymbols;
145     Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
146   } else {
147     llvm_unreachable("no symbol table pointer!");
148   }
149 }
150 
151 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
152   return getSymbolName(getCOFFSymbol(Ref));
153 }
154 
155 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
156   return getCOFFSymbol(Ref).getValue();
157 }
158 
159 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const {
160   // MSVC/link.exe seems to align symbols to the next-power-of-2
161   // up to 32 bytes.
162   COFFSymbolRef Symb = getCOFFSymbol(Ref);
163   return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue()));
164 }
165 
166 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
167   uint64_t Result = cantFail(getSymbolValue(Ref));
168   COFFSymbolRef Symb = getCOFFSymbol(Ref);
169   int32_t SectionNumber = Symb.getSectionNumber();
170 
171   if (Symb.isAnyUndefined() || Symb.isCommon() ||
172       COFF::isReservedSectionNumber(SectionNumber))
173     return Result;
174 
175   Expected<const coff_section *> Section = getSection(SectionNumber);
176   if (!Section)
177     return Section.takeError();
178   Result += (*Section)->VirtualAddress;
179 
180   // The section VirtualAddress does not include ImageBase, and we want to
181   // return virtual addresses.
182   Result += getImageBase();
183 
184   return Result;
185 }
186 
187 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
188   COFFSymbolRef Symb = getCOFFSymbol(Ref);
189   int32_t SectionNumber = Symb.getSectionNumber();
190 
191   if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
192     return SymbolRef::ST_Function;
193   if (Symb.isAnyUndefined())
194     return SymbolRef::ST_Unknown;
195   if (Symb.isCommon())
196     return SymbolRef::ST_Data;
197   if (Symb.isFileRecord())
198     return SymbolRef::ST_File;
199 
200   // TODO: perhaps we need a new symbol type ST_Section.
201   if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
202     return SymbolRef::ST_Debug;
203 
204   if (!COFF::isReservedSectionNumber(SectionNumber))
205     return SymbolRef::ST_Data;
206 
207   return SymbolRef::ST_Other;
208 }
209 
210 Expected<uint32_t> COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
211   COFFSymbolRef Symb = getCOFFSymbol(Ref);
212   uint32_t Result = SymbolRef::SF_None;
213 
214   if (Symb.isExternal() || Symb.isWeakExternal())
215     Result |= SymbolRef::SF_Global;
216 
217   if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) {
218     Result |= SymbolRef::SF_Weak;
219     if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS)
220       Result |= SymbolRef::SF_Undefined;
221   }
222 
223   if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
224     Result |= SymbolRef::SF_Absolute;
225 
226   if (Symb.isFileRecord())
227     Result |= SymbolRef::SF_FormatSpecific;
228 
229   if (Symb.isSectionDefinition())
230     Result |= SymbolRef::SF_FormatSpecific;
231 
232   if (Symb.isCommon())
233     Result |= SymbolRef::SF_Common;
234 
235   if (Symb.isUndefined())
236     Result |= SymbolRef::SF_Undefined;
237 
238   return Result;
239 }
240 
241 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
242   COFFSymbolRef Symb = getCOFFSymbol(Ref);
243   return Symb.getValue();
244 }
245 
246 Expected<section_iterator>
247 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
248   COFFSymbolRef Symb = getCOFFSymbol(Ref);
249   if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
250     return section_end();
251   Expected<const coff_section *> Sec = getSection(Symb.getSectionNumber());
252   if (!Sec)
253     return Sec.takeError();
254   DataRefImpl Ret;
255   Ret.p = reinterpret_cast<uintptr_t>(*Sec);
256   return section_iterator(SectionRef(Ret, this));
257 }
258 
259 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
260   COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
261   return Symb.getSectionNumber();
262 }
263 
264 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
265   const coff_section *Sec = toSec(Ref);
266   Sec += 1;
267   Ref.p = reinterpret_cast<uintptr_t>(Sec);
268 }
269 
270 Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const {
271   const coff_section *Sec = toSec(Ref);
272   return getSectionName(Sec);
273 }
274 
275 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
276   const coff_section *Sec = toSec(Ref);
277   uint64_t Result = Sec->VirtualAddress;
278 
279   // The section VirtualAddress does not include ImageBase, and we want to
280   // return virtual addresses.
281   Result += getImageBase();
282   return Result;
283 }
284 
285 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const {
286   return toSec(Sec) - SectionTable;
287 }
288 
289 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
290   return getSectionSize(toSec(Ref));
291 }
292 
293 Expected<ArrayRef<uint8_t>>
294 COFFObjectFile::getSectionContents(DataRefImpl Ref) const {
295   const coff_section *Sec = toSec(Ref);
296   ArrayRef<uint8_t> Res;
297   if (Error E = getSectionContents(Sec, Res))
298     return std::move(E);
299   return Res;
300 }
301 
302 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
303   const coff_section *Sec = toSec(Ref);
304   return Sec->getAlignment();
305 }
306 
307 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const {
308   return false;
309 }
310 
311 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
312   const coff_section *Sec = toSec(Ref);
313   return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
314 }
315 
316 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
317   const coff_section *Sec = toSec(Ref);
318   return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
319 }
320 
321 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
322   const coff_section *Sec = toSec(Ref);
323   const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
324                             COFF::IMAGE_SCN_MEM_READ |
325                             COFF::IMAGE_SCN_MEM_WRITE;
326   return (Sec->Characteristics & BssFlags) == BssFlags;
327 }
328 
329 // The .debug sections are the only debug sections for COFF
330 // (\see MCObjectFileInfo.cpp).
331 bool COFFObjectFile::isDebugSection(DataRefImpl Ref) const {
332   Expected<StringRef> SectionNameOrErr = getSectionName(Ref);
333   if (!SectionNameOrErr) {
334     // TODO: Report the error message properly.
335     consumeError(SectionNameOrErr.takeError());
336     return false;
337   }
338   StringRef SectionName = SectionNameOrErr.get();
339   return SectionName.startswith(".debug");
340 }
341 
342 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
343   uintptr_t Offset =
344       Sec.getRawDataRefImpl().p - reinterpret_cast<uintptr_t>(SectionTable);
345   assert((Offset % sizeof(coff_section)) == 0);
346   return (Offset / sizeof(coff_section)) + 1;
347 }
348 
349 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
350   const coff_section *Sec = toSec(Ref);
351   // In COFF, a virtual section won't have any in-file
352   // content, so the file pointer to the content will be zero.
353   return Sec->PointerToRawData == 0;
354 }
355 
356 static uint32_t getNumberOfRelocations(const coff_section *Sec,
357                                        MemoryBufferRef M, const uint8_t *base) {
358   // The field for the number of relocations in COFF section table is only
359   // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
360   // NumberOfRelocations field, and the actual relocation count is stored in the
361   // VirtualAddress field in the first relocation entry.
362   if (Sec->hasExtendedRelocations()) {
363     const coff_relocation *FirstReloc;
364     if (Error E = getObject(FirstReloc, M,
365                             reinterpret_cast<const coff_relocation *>(
366                                 base + Sec->PointerToRelocations))) {
367       consumeError(std::move(E));
368       return 0;
369     }
370     // -1 to exclude this first relocation entry.
371     return FirstReloc->VirtualAddress - 1;
372   }
373   return Sec->NumberOfRelocations;
374 }
375 
376 static const coff_relocation *
377 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
378   uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
379   if (!NumRelocs)
380     return nullptr;
381   auto begin = reinterpret_cast<const coff_relocation *>(
382       Base + Sec->PointerToRelocations);
383   if (Sec->hasExtendedRelocations()) {
384     // Skip the first relocation entry repurposed to store the number of
385     // relocations.
386     begin++;
387   }
388   if (auto E = Binary::checkOffset(M, reinterpret_cast<uintptr_t>(begin),
389                                    sizeof(coff_relocation) * NumRelocs)) {
390     consumeError(std::move(E));
391     return nullptr;
392   }
393   return begin;
394 }
395 
396 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
397   const coff_section *Sec = toSec(Ref);
398   const coff_relocation *begin = getFirstReloc(Sec, Data, base());
399   if (begin && Sec->VirtualAddress != 0)
400     report_fatal_error("Sections with relocations should have an address of 0");
401   DataRefImpl Ret;
402   Ret.p = reinterpret_cast<uintptr_t>(begin);
403   return relocation_iterator(RelocationRef(Ret, this));
404 }
405 
406 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
407   const coff_section *Sec = toSec(Ref);
408   const coff_relocation *I = getFirstReloc(Sec, Data, base());
409   if (I)
410     I += getNumberOfRelocations(Sec, Data, base());
411   DataRefImpl Ret;
412   Ret.p = reinterpret_cast<uintptr_t>(I);
413   return relocation_iterator(RelocationRef(Ret, this));
414 }
415 
416 // Initialize the pointer to the symbol table.
417 Error COFFObjectFile::initSymbolTablePtr() {
418   if (COFFHeader)
419     if (Error E = getObject(
420             SymbolTable16, Data, base() + getPointerToSymbolTable(),
421             (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
422       return E;
423 
424   if (COFFBigObjHeader)
425     if (Error E = getObject(
426             SymbolTable32, Data, base() + getPointerToSymbolTable(),
427             (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
428       return E;
429 
430   // Find string table. The first four byte of the string table contains the
431   // total size of the string table, including the size field itself. If the
432   // string table is empty, the value of the first four byte would be 4.
433   uint32_t StringTableOffset = getPointerToSymbolTable() +
434                                getNumberOfSymbols() * getSymbolTableEntrySize();
435   const uint8_t *StringTableAddr = base() + StringTableOffset;
436   const ulittle32_t *StringTableSizePtr;
437   if (Error E = getObject(StringTableSizePtr, Data, StringTableAddr))
438     return E;
439   StringTableSize = *StringTableSizePtr;
440   if (Error E = getObject(StringTable, Data, StringTableAddr, StringTableSize))
441     return E;
442 
443   // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
444   // tools like cvtres write a size of 0 for an empty table instead of 4.
445   if (StringTableSize < 4)
446     StringTableSize = 4;
447 
448   // Check that the string table is null terminated if has any in it.
449   if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
450     return createStringError(object_error::parse_failed,
451                              "string table missing null terminator");
452   return Error::success();
453 }
454 
455 uint64_t COFFObjectFile::getImageBase() const {
456   if (PE32Header)
457     return PE32Header->ImageBase;
458   else if (PE32PlusHeader)
459     return PE32PlusHeader->ImageBase;
460   // This actually comes up in practice.
461   return 0;
462 }
463 
464 // Returns the file offset for the given VA.
465 Error COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
466   uint64_t ImageBase = getImageBase();
467   uint64_t Rva = Addr - ImageBase;
468   assert(Rva <= UINT32_MAX);
469   return getRvaPtr((uint32_t)Rva, Res);
470 }
471 
472 // Returns the file offset for the given RVA.
473 Error COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res,
474                                 const char *ErrorContext) const {
475   for (const SectionRef &S : sections()) {
476     const coff_section *Section = getCOFFSection(S);
477     uint32_t SectionStart = Section->VirtualAddress;
478     uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
479     if (SectionStart <= Addr && Addr < SectionEnd) {
480       // A table/directory entry can be pointing to somewhere in a stripped
481       // section, in an object that went through `objcopy --only-keep-debug`.
482       // In this case we don't want to cause the parsing of the object file to
483       // fail, otherwise it will be impossible to use this object as debug info
484       // in LLDB. Return SectionStrippedError here so that
485       // COFFObjectFile::initialize can ignore the error.
486       // Somewhat common binaries may have RVAs pointing outside of the
487       // provided raw data. Instead of rejecting the binaries, just
488       // treat the section as stripped for these purposes.
489       if (Section->SizeOfRawData < Section->VirtualSize &&
490           Addr >= SectionStart + Section->SizeOfRawData) {
491         return make_error<SectionStrippedError>();
492       }
493       uint32_t Offset = Addr - SectionStart;
494       Res = reinterpret_cast<uintptr_t>(base()) + Section->PointerToRawData +
495             Offset;
496       return Error::success();
497     }
498   }
499   if (ErrorContext)
500     return createStringError(object_error::parse_failed,
501                              "RVA 0x%" PRIx32 " for %s not found", Addr,
502                              ErrorContext);
503   return createStringError(object_error::parse_failed,
504                            "RVA 0x%" PRIx32 " not found", Addr);
505 }
506 
507 Error COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size,
508                                            ArrayRef<uint8_t> &Contents,
509                                            const char *ErrorContext) const {
510   for (const SectionRef &S : sections()) {
511     const coff_section *Section = getCOFFSection(S);
512     uint32_t SectionStart = Section->VirtualAddress;
513     // Check if this RVA is within the section bounds. Be careful about integer
514     // overflow.
515     uint32_t OffsetIntoSection = RVA - SectionStart;
516     if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize &&
517         Size <= Section->VirtualSize - OffsetIntoSection) {
518       uintptr_t Begin = reinterpret_cast<uintptr_t>(base()) +
519                         Section->PointerToRawData + OffsetIntoSection;
520       Contents =
521           ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size);
522       return Error::success();
523     }
524   }
525   if (ErrorContext)
526     return createStringError(object_error::parse_failed,
527                              "RVA 0x%" PRIx32 " for %s not found", RVA,
528                              ErrorContext);
529   return createStringError(object_error::parse_failed,
530                            "RVA 0x%" PRIx32 " not found", RVA);
531 }
532 
533 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
534 // table entry.
535 Error COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
536                                   StringRef &Name) const {
537   uintptr_t IntPtr = 0;
538   if (Error E = getRvaPtr(Rva, IntPtr))
539     return E;
540   const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
541   Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
542   Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
543   return Error::success();
544 }
545 
546 Error COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir,
547                                       const codeview::DebugInfo *&PDBInfo,
548                                       StringRef &PDBFileName) const {
549   ArrayRef<uint8_t> InfoBytes;
550   if (Error E =
551           getRvaAndSizeAsBytes(DebugDir->AddressOfRawData, DebugDir->SizeOfData,
552                                InfoBytes, "PDB info"))
553     return E;
554   if (InfoBytes.size() < sizeof(*PDBInfo) + 1)
555     return createStringError(object_error::parse_failed, "PDB info too small");
556   PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data());
557   InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo));
558   PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()),
559                           InfoBytes.size());
560   // Truncate the name at the first null byte. Ignore any padding.
561   PDBFileName = PDBFileName.split('\0').first;
562   return Error::success();
563 }
564 
565 Error COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo,
566                                       StringRef &PDBFileName) const {
567   for (const debug_directory &D : debug_directories())
568     if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW)
569       return getDebugPDBInfo(&D, PDBInfo, PDBFileName);
570   // If we get here, there is no PDB info to return.
571   PDBInfo = nullptr;
572   PDBFileName = StringRef();
573   return Error::success();
574 }
575 
576 // Find the import table.
577 Error COFFObjectFile::initImportTablePtr() {
578   // First, we get the RVA of the import table. If the file lacks a pointer to
579   // the import table, do nothing.
580   const data_directory *DataEntry = getDataDirectory(COFF::IMPORT_TABLE);
581   if (!DataEntry)
582     return Error::success();
583 
584   // Do nothing if the pointer to import table is NULL.
585   if (DataEntry->RelativeVirtualAddress == 0)
586     return Error::success();
587 
588   uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
589 
590   // Find the section that contains the RVA. This is needed because the RVA is
591   // the import table's memory address which is different from its file offset.
592   uintptr_t IntPtr = 0;
593   if (Error E = getRvaPtr(ImportTableRva, IntPtr, "import table"))
594     return E;
595   if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
596     return E;
597   ImportDirectory = reinterpret_cast<
598       const coff_import_directory_table_entry *>(IntPtr);
599   return Error::success();
600 }
601 
602 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
603 Error COFFObjectFile::initDelayImportTablePtr() {
604   const data_directory *DataEntry =
605       getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR);
606   if (!DataEntry)
607     return Error::success();
608   if (DataEntry->RelativeVirtualAddress == 0)
609     return Error::success();
610 
611   uint32_t RVA = DataEntry->RelativeVirtualAddress;
612   NumberOfDelayImportDirectory = DataEntry->Size /
613       sizeof(delay_import_directory_table_entry) - 1;
614 
615   uintptr_t IntPtr = 0;
616   if (Error E = getRvaPtr(RVA, IntPtr, "delay import table"))
617     return E;
618   if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
619     return E;
620 
621   DelayImportDirectory = reinterpret_cast<
622       const delay_import_directory_table_entry *>(IntPtr);
623   return Error::success();
624 }
625 
626 // Find the export table.
627 Error COFFObjectFile::initExportTablePtr() {
628   // First, we get the RVA of the export table. If the file lacks a pointer to
629   // the export table, do nothing.
630   const data_directory *DataEntry = getDataDirectory(COFF::EXPORT_TABLE);
631   if (!DataEntry)
632     return Error::success();
633 
634   // Do nothing if the pointer to export table is NULL.
635   if (DataEntry->RelativeVirtualAddress == 0)
636     return Error::success();
637 
638   uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
639   uintptr_t IntPtr = 0;
640   if (Error E = getRvaPtr(ExportTableRva, IntPtr, "export table"))
641     return E;
642   if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
643     return E;
644 
645   ExportDirectory =
646       reinterpret_cast<const export_directory_table_entry *>(IntPtr);
647   return Error::success();
648 }
649 
650 Error COFFObjectFile::initBaseRelocPtr() {
651   const data_directory *DataEntry =
652       getDataDirectory(COFF::BASE_RELOCATION_TABLE);
653   if (!DataEntry)
654     return Error::success();
655   if (DataEntry->RelativeVirtualAddress == 0)
656     return Error::success();
657 
658   uintptr_t IntPtr = 0;
659   if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr,
660                           "base reloc table"))
661     return E;
662   if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
663     return E;
664 
665   BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
666       IntPtr);
667   BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
668       IntPtr + DataEntry->Size);
669   // FIXME: Verify the section containing BaseRelocHeader has at least
670   // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
671   return Error::success();
672 }
673 
674 Error COFFObjectFile::initDebugDirectoryPtr() {
675   // Get the RVA of the debug directory. Do nothing if it does not exist.
676   const data_directory *DataEntry = getDataDirectory(COFF::DEBUG_DIRECTORY);
677   if (!DataEntry)
678     return Error::success();
679 
680   // Do nothing if the RVA is NULL.
681   if (DataEntry->RelativeVirtualAddress == 0)
682     return Error::success();
683 
684   // Check that the size is a multiple of the entry size.
685   if (DataEntry->Size % sizeof(debug_directory) != 0)
686     return createStringError(object_error::parse_failed,
687                              "debug directory has uneven size");
688 
689   uintptr_t IntPtr = 0;
690   if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr,
691                           "debug directory"))
692     return E;
693   if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
694     return E;
695 
696   DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr);
697   DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(
698       IntPtr + DataEntry->Size);
699   // FIXME: Verify the section containing DebugDirectoryBegin has at least
700   // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
701   return Error::success();
702 }
703 
704 Error COFFObjectFile::initTLSDirectoryPtr() {
705   // Get the RVA of the TLS directory. Do nothing if it does not exist.
706   const data_directory *DataEntry = getDataDirectory(COFF::TLS_TABLE);
707   if (!DataEntry)
708     return Error::success();
709 
710   // Do nothing if the RVA is NULL.
711   if (DataEntry->RelativeVirtualAddress == 0)
712     return Error::success();
713 
714   uint64_t DirSize =
715       is64() ? sizeof(coff_tls_directory64) : sizeof(coff_tls_directory32);
716 
717   // Check that the size is correct.
718   if (DataEntry->Size != DirSize)
719     return createStringError(
720         object_error::parse_failed,
721         "TLS Directory size (%u) is not the expected size (%" PRIu64 ").",
722         static_cast<uint32_t>(DataEntry->Size), DirSize);
723 
724   uintptr_t IntPtr = 0;
725   if (Error E =
726           getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, "TLS directory"))
727     return E;
728   if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
729     return E;
730 
731   if (is64())
732     TLSDirectory64 = reinterpret_cast<const coff_tls_directory64 *>(IntPtr);
733   else
734     TLSDirectory32 = reinterpret_cast<const coff_tls_directory32 *>(IntPtr);
735 
736   return Error::success();
737 }
738 
739 Error COFFObjectFile::initLoadConfigPtr() {
740   // Get the RVA of the debug directory. Do nothing if it does not exist.
741   const data_directory *DataEntry = getDataDirectory(COFF::LOAD_CONFIG_TABLE);
742   if (!DataEntry)
743     return Error::success();
744 
745   // Do nothing if the RVA is NULL.
746   if (DataEntry->RelativeVirtualAddress == 0)
747     return Error::success();
748   uintptr_t IntPtr = 0;
749   if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr,
750                           "load config table"))
751     return E;
752   if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
753     return E;
754 
755   LoadConfig = (const void *)IntPtr;
756 
757   if (is64()) {
758     auto Config = getLoadConfig64();
759     if (Config->Size >=
760             offsetof(coff_load_configuration64, CHPEMetadataPointer) +
761                 sizeof(Config->CHPEMetadataPointer) &&
762         Config->CHPEMetadataPointer) {
763       uint64_t ChpeOff = Config->CHPEMetadataPointer;
764       if (Error E =
765               getRvaPtr(ChpeOff - getImageBase(), IntPtr, "CHPE metadata"))
766         return E;
767       if (Error E = checkOffset(Data, IntPtr, sizeof(CHPEMetadata)))
768         return E;
769 
770       CHPEMetadata = reinterpret_cast<const chpe_metadata *>(IntPtr);
771 
772       // Validate CHPE metadata
773       if (CHPEMetadata->CodeMapCount) {
774         if (Error E = getRvaPtr(CHPEMetadata->CodeMap, IntPtr, "CHPE code map"))
775           return E;
776         if (Error E = checkOffset(Data, IntPtr,
777                                   CHPEMetadata->CodeMapCount *
778                                       sizeof(chpe_range_entry)))
779           return E;
780       }
781 
782       if (CHPEMetadata->CodeRangesToEntryPointsCount) {
783         if (Error E = getRvaPtr(CHPEMetadata->CodeRangesToEntryPoints, IntPtr,
784                                 "CHPE entry point ranges"))
785           return E;
786         if (Error E = checkOffset(Data, IntPtr,
787                                   CHPEMetadata->CodeRangesToEntryPointsCount *
788                                       sizeof(chpe_code_range_entry)))
789           return E;
790       }
791 
792       if (CHPEMetadata->RedirectionMetadataCount) {
793         if (Error E = getRvaPtr(CHPEMetadata->RedirectionMetadata, IntPtr,
794                                 "CHPE redirection metadata"))
795           return E;
796         if (Error E = checkOffset(Data, IntPtr,
797                                   CHPEMetadata->RedirectionMetadataCount *
798                                       sizeof(chpe_redirection_entry)))
799           return E;
800       }
801     }
802   }
803 
804   return Error::success();
805 }
806 
807 Expected<std::unique_ptr<COFFObjectFile>>
808 COFFObjectFile::create(MemoryBufferRef Object) {
809   std::unique_ptr<COFFObjectFile> Obj(new COFFObjectFile(std::move(Object)));
810   if (Error E = Obj->initialize())
811     return std::move(E);
812   return std::move(Obj);
813 }
814 
815 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object)
816     : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
817       COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
818       DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
819       SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
820       ImportDirectory(nullptr), DelayImportDirectory(nullptr),
821       NumberOfDelayImportDirectory(0), ExportDirectory(nullptr),
822       BaseRelocHeader(nullptr), BaseRelocEnd(nullptr),
823       DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr),
824       TLSDirectory32(nullptr), TLSDirectory64(nullptr) {}
825 
826 static Error ignoreStrippedErrors(Error E) {
827   if (E.isA<SectionStrippedError>()) {
828     consumeError(std::move(E));
829     return Error::success();
830   }
831   return E;
832 }
833 
834 Error COFFObjectFile::initialize() {
835   // Check that we at least have enough room for a header.
836   std::error_code EC;
837   if (!checkSize(Data, EC, sizeof(coff_file_header)))
838     return errorCodeToError(EC);
839 
840   // The current location in the file where we are looking at.
841   uint64_t CurPtr = 0;
842 
843   // PE header is optional and is present only in executables. If it exists,
844   // it is placed right after COFF header.
845   bool HasPEHeader = false;
846 
847   // Check if this is a PE/COFF file.
848   if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
849     // PE/COFF, seek through MS-DOS compatibility stub and 4-byte
850     // PE signature to find 'normal' COFF header.
851     const auto *DH = reinterpret_cast<const dos_header *>(base());
852     if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
853       CurPtr = DH->AddressOfNewExeHeader;
854       // Check the PE magic bytes. ("PE\0\0")
855       if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
856         return createStringError(object_error::parse_failed,
857                                  "incorrect PE magic");
858       }
859       CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
860       HasPEHeader = true;
861     }
862   }
863 
864   if (Error E = getObject(COFFHeader, Data, base() + CurPtr))
865     return E;
866 
867   // It might be a bigobj file, let's check.  Note that COFF bigobj and COFF
868   // import libraries share a common prefix but bigobj is more restrictive.
869   if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
870       COFFHeader->NumberOfSections == uint16_t(0xffff) &&
871       checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
872     if (Error E = getObject(COFFBigObjHeader, Data, base() + CurPtr))
873       return E;
874 
875     // Verify that we are dealing with bigobj.
876     if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
877         std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
878                     sizeof(COFF::BigObjMagic)) == 0) {
879       COFFHeader = nullptr;
880       CurPtr += sizeof(coff_bigobj_file_header);
881     } else {
882       // It's not a bigobj.
883       COFFBigObjHeader = nullptr;
884     }
885   }
886   if (COFFHeader) {
887     // The prior checkSize call may have failed.  This isn't a hard error
888     // because we were just trying to sniff out bigobj.
889     EC = std::error_code();
890     CurPtr += sizeof(coff_file_header);
891 
892     if (COFFHeader->isImportLibrary())
893       return errorCodeToError(EC);
894   }
895 
896   if (HasPEHeader) {
897     const pe32_header *Header;
898     if (Error E = getObject(Header, Data, base() + CurPtr))
899       return E;
900 
901     const uint8_t *DataDirAddr;
902     uint64_t DataDirSize;
903     if (Header->Magic == COFF::PE32Header::PE32) {
904       PE32Header = Header;
905       DataDirAddr = base() + CurPtr + sizeof(pe32_header);
906       DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
907     } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
908       PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
909       DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
910       DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
911     } else {
912       // It's neither PE32 nor PE32+.
913       return createStringError(object_error::parse_failed,
914                                "incorrect PE magic");
915     }
916     if (Error E = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))
917       return E;
918   }
919 
920   if (COFFHeader)
921     CurPtr += COFFHeader->SizeOfOptionalHeader;
922 
923   assert(COFFHeader || COFFBigObjHeader);
924 
925   if (Error E =
926           getObject(SectionTable, Data, base() + CurPtr,
927                     (uint64_t)getNumberOfSections() * sizeof(coff_section)))
928     return E;
929 
930   // Initialize the pointer to the symbol table.
931   if (getPointerToSymbolTable() != 0) {
932     if (Error E = initSymbolTablePtr()) {
933       // Recover from errors reading the symbol table.
934       consumeError(std::move(E));
935       SymbolTable16 = nullptr;
936       SymbolTable32 = nullptr;
937       StringTable = nullptr;
938       StringTableSize = 0;
939     }
940   } else {
941     // We had better not have any symbols if we don't have a symbol table.
942     if (getNumberOfSymbols() != 0) {
943       return createStringError(object_error::parse_failed,
944                                "symbol table missing");
945     }
946   }
947 
948   // Initialize the pointer to the beginning of the import table.
949   if (Error E = ignoreStrippedErrors(initImportTablePtr()))
950     return E;
951   if (Error E = ignoreStrippedErrors(initDelayImportTablePtr()))
952     return E;
953 
954   // Initialize the pointer to the export table.
955   if (Error E = ignoreStrippedErrors(initExportTablePtr()))
956     return E;
957 
958   // Initialize the pointer to the base relocation table.
959   if (Error E = ignoreStrippedErrors(initBaseRelocPtr()))
960     return E;
961 
962   // Initialize the pointer to the debug directory.
963   if (Error E = ignoreStrippedErrors(initDebugDirectoryPtr()))
964     return E;
965 
966   // Initialize the pointer to the TLS directory.
967   if (Error E = ignoreStrippedErrors(initTLSDirectoryPtr()))
968     return E;
969 
970   if (Error E = ignoreStrippedErrors(initLoadConfigPtr()))
971     return E;
972 
973   return Error::success();
974 }
975 
976 basic_symbol_iterator COFFObjectFile::symbol_begin() const {
977   DataRefImpl Ret;
978   Ret.p = getSymbolTable();
979   return basic_symbol_iterator(SymbolRef(Ret, this));
980 }
981 
982 basic_symbol_iterator COFFObjectFile::symbol_end() const {
983   // The symbol table ends where the string table begins.
984   DataRefImpl Ret;
985   Ret.p = reinterpret_cast<uintptr_t>(StringTable);
986   return basic_symbol_iterator(SymbolRef(Ret, this));
987 }
988 
989 import_directory_iterator COFFObjectFile::import_directory_begin() const {
990   if (!ImportDirectory)
991     return import_directory_end();
992   if (ImportDirectory->isNull())
993     return import_directory_end();
994   return import_directory_iterator(
995       ImportDirectoryEntryRef(ImportDirectory, 0, this));
996 }
997 
998 import_directory_iterator COFFObjectFile::import_directory_end() const {
999   return import_directory_iterator(
1000       ImportDirectoryEntryRef(nullptr, -1, this));
1001 }
1002 
1003 delay_import_directory_iterator
1004 COFFObjectFile::delay_import_directory_begin() const {
1005   return delay_import_directory_iterator(
1006       DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
1007 }
1008 
1009 delay_import_directory_iterator
1010 COFFObjectFile::delay_import_directory_end() const {
1011   return delay_import_directory_iterator(
1012       DelayImportDirectoryEntryRef(
1013           DelayImportDirectory, NumberOfDelayImportDirectory, this));
1014 }
1015 
1016 export_directory_iterator COFFObjectFile::export_directory_begin() const {
1017   return export_directory_iterator(
1018       ExportDirectoryEntryRef(ExportDirectory, 0, this));
1019 }
1020 
1021 export_directory_iterator COFFObjectFile::export_directory_end() const {
1022   if (!ExportDirectory)
1023     return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
1024   ExportDirectoryEntryRef Ref(ExportDirectory,
1025                               ExportDirectory->AddressTableEntries, this);
1026   return export_directory_iterator(Ref);
1027 }
1028 
1029 section_iterator COFFObjectFile::section_begin() const {
1030   DataRefImpl Ret;
1031   Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
1032   return section_iterator(SectionRef(Ret, this));
1033 }
1034 
1035 section_iterator COFFObjectFile::section_end() const {
1036   DataRefImpl Ret;
1037   int NumSections =
1038       COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
1039   Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
1040   return section_iterator(SectionRef(Ret, this));
1041 }
1042 
1043 base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
1044   return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
1045 }
1046 
1047 base_reloc_iterator COFFObjectFile::base_reloc_end() const {
1048   return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
1049 }
1050 
1051 uint8_t COFFObjectFile::getBytesInAddress() const {
1052   return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4;
1053 }
1054 
1055 StringRef COFFObjectFile::getFileFormatName() const {
1056   switch(getMachine()) {
1057   case COFF::IMAGE_FILE_MACHINE_I386:
1058     return "COFF-i386";
1059   case COFF::IMAGE_FILE_MACHINE_AMD64:
1060     return "COFF-x86-64";
1061   case COFF::IMAGE_FILE_MACHINE_ARMNT:
1062     return "COFF-ARM";
1063   case COFF::IMAGE_FILE_MACHINE_ARM64:
1064     return "COFF-ARM64";
1065   case COFF::IMAGE_FILE_MACHINE_ARM64EC:
1066     return "COFF-ARM64EC";
1067   case COFF::IMAGE_FILE_MACHINE_ARM64X:
1068     return "COFF-ARM64X";
1069   default:
1070     return "COFF-<unknown arch>";
1071   }
1072 }
1073 
1074 Triple::ArchType COFFObjectFile::getArch() const {
1075   switch (getMachine()) {
1076   case COFF::IMAGE_FILE_MACHINE_I386:
1077     return Triple::x86;
1078   case COFF::IMAGE_FILE_MACHINE_AMD64:
1079     return Triple::x86_64;
1080   case COFF::IMAGE_FILE_MACHINE_ARMNT:
1081     return Triple::thumb;
1082   case COFF::IMAGE_FILE_MACHINE_ARM64:
1083   case COFF::IMAGE_FILE_MACHINE_ARM64EC:
1084   case COFF::IMAGE_FILE_MACHINE_ARM64X:
1085     return Triple::aarch64;
1086   default:
1087     return Triple::UnknownArch;
1088   }
1089 }
1090 
1091 Expected<uint64_t> COFFObjectFile::getStartAddress() const {
1092   if (PE32Header)
1093     return PE32Header->AddressOfEntryPoint;
1094   return 0;
1095 }
1096 
1097 iterator_range<import_directory_iterator>
1098 COFFObjectFile::import_directories() const {
1099   return make_range(import_directory_begin(), import_directory_end());
1100 }
1101 
1102 iterator_range<delay_import_directory_iterator>
1103 COFFObjectFile::delay_import_directories() const {
1104   return make_range(delay_import_directory_begin(),
1105                     delay_import_directory_end());
1106 }
1107 
1108 iterator_range<export_directory_iterator>
1109 COFFObjectFile::export_directories() const {
1110   return make_range(export_directory_begin(), export_directory_end());
1111 }
1112 
1113 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
1114   return make_range(base_reloc_begin(), base_reloc_end());
1115 }
1116 
1117 const data_directory *COFFObjectFile::getDataDirectory(uint32_t Index) const {
1118   if (!DataDirectory)
1119     return nullptr;
1120   assert(PE32Header || PE32PlusHeader);
1121   uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
1122                                : PE32PlusHeader->NumberOfRvaAndSize;
1123   if (Index >= NumEnt)
1124     return nullptr;
1125   return &DataDirectory[Index];
1126 }
1127 
1128 Expected<const coff_section *> COFFObjectFile::getSection(int32_t Index) const {
1129   // Perhaps getting the section of a reserved section index should be an error,
1130   // but callers rely on this to return null.
1131   if (COFF::isReservedSectionNumber(Index))
1132     return (const coff_section *)nullptr;
1133   if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
1134     // We already verified the section table data, so no need to check again.
1135     return SectionTable + (Index - 1);
1136   }
1137   return createStringError(object_error::parse_failed,
1138                            "section index out of bounds");
1139 }
1140 
1141 Expected<StringRef> COFFObjectFile::getString(uint32_t Offset) const {
1142   if (StringTableSize <= 4)
1143     // Tried to get a string from an empty string table.
1144     return createStringError(object_error::parse_failed, "string table empty");
1145   if (Offset >= StringTableSize)
1146     return errorCodeToError(object_error::unexpected_eof);
1147   return StringRef(StringTable + Offset);
1148 }
1149 
1150 Expected<StringRef> COFFObjectFile::getSymbolName(COFFSymbolRef Symbol) const {
1151   return getSymbolName(Symbol.getGeneric());
1152 }
1153 
1154 Expected<StringRef>
1155 COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol) const {
1156   // Check for string table entry. First 4 bytes are 0.
1157   if (Symbol->Name.Offset.Zeroes == 0)
1158     return getString(Symbol->Name.Offset.Offset);
1159 
1160   // Null terminated, let ::strlen figure out the length.
1161   if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
1162     return StringRef(Symbol->Name.ShortName);
1163 
1164   // Not null terminated, use all 8 bytes.
1165   return StringRef(Symbol->Name.ShortName, COFF::NameSize);
1166 }
1167 
1168 ArrayRef<uint8_t>
1169 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
1170   const uint8_t *Aux = nullptr;
1171 
1172   size_t SymbolSize = getSymbolTableEntrySize();
1173   if (Symbol.getNumberOfAuxSymbols() > 0) {
1174     // AUX data comes immediately after the symbol in COFF
1175     Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
1176 #ifndef NDEBUG
1177     // Verify that the Aux symbol points to a valid entry in the symbol table.
1178     uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
1179     if (Offset < getPointerToSymbolTable() ||
1180         Offset >=
1181             getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
1182       report_fatal_error("Aux Symbol data was outside of symbol table.");
1183 
1184     assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
1185            "Aux Symbol data did not point to the beginning of a symbol");
1186 #endif
1187   }
1188   return ArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
1189 }
1190 
1191 uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const {
1192   uintptr_t Offset =
1193       reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable();
1194   assert(Offset % getSymbolTableEntrySize() == 0 &&
1195          "Symbol did not point to the beginning of a symbol");
1196   size_t Index = Offset / getSymbolTableEntrySize();
1197   assert(Index < getNumberOfSymbols());
1198   return Index;
1199 }
1200 
1201 Expected<StringRef>
1202 COFFObjectFile::getSectionName(const coff_section *Sec) const {
1203   StringRef Name = StringRef(Sec->Name, COFF::NameSize).split('\0').first;
1204 
1205   // Check for string table entry. First byte is '/'.
1206   if (Name.startswith("/")) {
1207     uint32_t Offset;
1208     if (Name.startswith("//")) {
1209       if (decodeBase64StringEntry(Name.substr(2), Offset))
1210         return createStringError(object_error::parse_failed,
1211                                  "invalid section name");
1212     } else {
1213       if (Name.substr(1).getAsInteger(10, Offset))
1214         return createStringError(object_error::parse_failed,
1215                                  "invalid section name");
1216     }
1217     return getString(Offset);
1218   }
1219 
1220   return Name;
1221 }
1222 
1223 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
1224   // SizeOfRawData and VirtualSize change what they represent depending on
1225   // whether or not we have an executable image.
1226   //
1227   // For object files, SizeOfRawData contains the size of section's data;
1228   // VirtualSize should be zero but isn't due to buggy COFF writers.
1229   //
1230   // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
1231   // actual section size is in VirtualSize.  It is possible for VirtualSize to
1232   // be greater than SizeOfRawData; the contents past that point should be
1233   // considered to be zero.
1234   if (getDOSHeader())
1235     return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
1236   return Sec->SizeOfRawData;
1237 }
1238 
1239 Error COFFObjectFile::getSectionContents(const coff_section *Sec,
1240                                          ArrayRef<uint8_t> &Res) const {
1241   // In COFF, a virtual section won't have any in-file
1242   // content, so the file pointer to the content will be zero.
1243   if (Sec->PointerToRawData == 0)
1244     return Error::success();
1245   // The only thing that we need to verify is that the contents is contained
1246   // within the file bounds. We don't need to make sure it doesn't cover other
1247   // data, as there's nothing that says that is not allowed.
1248   uintptr_t ConStart =
1249       reinterpret_cast<uintptr_t>(base()) + Sec->PointerToRawData;
1250   uint32_t SectionSize = getSectionSize(Sec);
1251   if (Error E = checkOffset(Data, ConStart, SectionSize))
1252     return E;
1253   Res = ArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
1254   return Error::success();
1255 }
1256 
1257 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
1258   return reinterpret_cast<const coff_relocation*>(Rel.p);
1259 }
1260 
1261 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
1262   Rel.p = reinterpret_cast<uintptr_t>(
1263             reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
1264 }
1265 
1266 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
1267   const coff_relocation *R = toRel(Rel);
1268   return R->VirtualAddress;
1269 }
1270 
1271 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
1272   const coff_relocation *R = toRel(Rel);
1273   DataRefImpl Ref;
1274   if (R->SymbolTableIndex >= getNumberOfSymbols())
1275     return symbol_end();
1276   if (SymbolTable16)
1277     Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
1278   else if (SymbolTable32)
1279     Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
1280   else
1281     llvm_unreachable("no symbol table pointer!");
1282   return symbol_iterator(SymbolRef(Ref, this));
1283 }
1284 
1285 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
1286   const coff_relocation* R = toRel(Rel);
1287   return R->Type;
1288 }
1289 
1290 const coff_section *
1291 COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
1292   return toSec(Section.getRawDataRefImpl());
1293 }
1294 
1295 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
1296   if (SymbolTable16)
1297     return toSymb<coff_symbol16>(Ref);
1298   if (SymbolTable32)
1299     return toSymb<coff_symbol32>(Ref);
1300   llvm_unreachable("no symbol table pointer!");
1301 }
1302 
1303 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
1304   return getCOFFSymbol(Symbol.getRawDataRefImpl());
1305 }
1306 
1307 const coff_relocation *
1308 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
1309   return toRel(Reloc.getRawDataRefImpl());
1310 }
1311 
1312 ArrayRef<coff_relocation>
1313 COFFObjectFile::getRelocations(const coff_section *Sec) const {
1314   return {getFirstReloc(Sec, Data, base()),
1315           getNumberOfRelocations(Sec, Data, base())};
1316 }
1317 
1318 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type)                           \
1319   case COFF::reloc_type:                                                       \
1320     return #reloc_type;
1321 
1322 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const {
1323   switch (getMachine()) {
1324   case COFF::IMAGE_FILE_MACHINE_AMD64:
1325     switch (Type) {
1326     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
1327     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
1328     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
1329     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
1330     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
1331     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
1332     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
1333     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
1334     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
1335     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
1336     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
1337     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
1338     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
1339     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
1340     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
1341     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
1342     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
1343     default:
1344       return "Unknown";
1345     }
1346     break;
1347   case COFF::IMAGE_FILE_MACHINE_ARMNT:
1348     switch (Type) {
1349     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
1350     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
1351     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
1352     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
1353     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
1354     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
1355     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
1356     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
1357     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32);
1358     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
1359     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
1360     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
1361     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
1362     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
1363     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
1364     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
1365     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR);
1366     default:
1367       return "Unknown";
1368     }
1369     break;
1370   case COFF::IMAGE_FILE_MACHINE_ARM64:
1371   case COFF::IMAGE_FILE_MACHINE_ARM64EC:
1372   case COFF::IMAGE_FILE_MACHINE_ARM64X:
1373     switch (Type) {
1374     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE);
1375     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32);
1376     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB);
1377     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26);
1378     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21);
1379     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21);
1380     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A);
1381     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L);
1382     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL);
1383     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A);
1384     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A);
1385     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L);
1386     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN);
1387     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION);
1388     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64);
1389     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19);
1390     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14);
1391     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32);
1392     default:
1393       return "Unknown";
1394     }
1395     break;
1396   case COFF::IMAGE_FILE_MACHINE_I386:
1397     switch (Type) {
1398     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
1399     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
1400     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
1401     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
1402     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
1403     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
1404     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
1405     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
1406     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
1407     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
1408     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
1409     default:
1410       return "Unknown";
1411     }
1412     break;
1413   default:
1414     return "Unknown";
1415   }
1416 }
1417 
1418 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
1419 
1420 void COFFObjectFile::getRelocationTypeName(
1421     DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1422   const coff_relocation *Reloc = toRel(Rel);
1423   StringRef Res = getRelocationTypeName(Reloc->Type);
1424   Result.append(Res.begin(), Res.end());
1425 }
1426 
1427 bool COFFObjectFile::isRelocatableObject() const {
1428   return !DataDirectory;
1429 }
1430 
1431 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const {
1432   return StringSwitch<StringRef>(Name)
1433       .Case("eh_fram", "eh_frame")
1434       .Default(Name);
1435 }
1436 
1437 bool ImportDirectoryEntryRef::
1438 operator==(const ImportDirectoryEntryRef &Other) const {
1439   return ImportTable == Other.ImportTable && Index == Other.Index;
1440 }
1441 
1442 void ImportDirectoryEntryRef::moveNext() {
1443   ++Index;
1444   if (ImportTable[Index].isNull()) {
1445     Index = -1;
1446     ImportTable = nullptr;
1447   }
1448 }
1449 
1450 Error ImportDirectoryEntryRef::getImportTableEntry(
1451     const coff_import_directory_table_entry *&Result) const {
1452   return getObject(Result, OwningObject->Data, ImportTable + Index);
1453 }
1454 
1455 static imported_symbol_iterator
1456 makeImportedSymbolIterator(const COFFObjectFile *Object,
1457                            uintptr_t Ptr, int Index) {
1458   if (Object->getBytesInAddress() == 4) {
1459     auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
1460     return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1461   }
1462   auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
1463   return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1464 }
1465 
1466 static imported_symbol_iterator
1467 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
1468   uintptr_t IntPtr = 0;
1469   // FIXME: Handle errors.
1470   cantFail(Object->getRvaPtr(RVA, IntPtr));
1471   return makeImportedSymbolIterator(Object, IntPtr, 0);
1472 }
1473 
1474 static imported_symbol_iterator
1475 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
1476   uintptr_t IntPtr = 0;
1477   // FIXME: Handle errors.
1478   cantFail(Object->getRvaPtr(RVA, IntPtr));
1479   // Forward the pointer to the last entry which is null.
1480   int Index = 0;
1481   if (Object->getBytesInAddress() == 4) {
1482     auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
1483     while (*Entry++)
1484       ++Index;
1485   } else {
1486     auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
1487     while (*Entry++)
1488       ++Index;
1489   }
1490   return makeImportedSymbolIterator(Object, IntPtr, Index);
1491 }
1492 
1493 imported_symbol_iterator
1494 ImportDirectoryEntryRef::imported_symbol_begin() const {
1495   return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA,
1496                              OwningObject);
1497 }
1498 
1499 imported_symbol_iterator
1500 ImportDirectoryEntryRef::imported_symbol_end() const {
1501   return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA,
1502                            OwningObject);
1503 }
1504 
1505 iterator_range<imported_symbol_iterator>
1506 ImportDirectoryEntryRef::imported_symbols() const {
1507   return make_range(imported_symbol_begin(), imported_symbol_end());
1508 }
1509 
1510 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const {
1511   return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
1512                              OwningObject);
1513 }
1514 
1515 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const {
1516   return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
1517                            OwningObject);
1518 }
1519 
1520 iterator_range<imported_symbol_iterator>
1521 ImportDirectoryEntryRef::lookup_table_symbols() const {
1522   return make_range(lookup_table_begin(), lookup_table_end());
1523 }
1524 
1525 Error ImportDirectoryEntryRef::getName(StringRef &Result) const {
1526   uintptr_t IntPtr = 0;
1527   if (Error E = OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr,
1528                                         "import directory name"))
1529     return E;
1530   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1531   return Error::success();
1532 }
1533 
1534 Error
1535 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t  &Result) const {
1536   Result = ImportTable[Index].ImportLookupTableRVA;
1537   return Error::success();
1538 }
1539 
1540 Error ImportDirectoryEntryRef::getImportAddressTableRVA(
1541     uint32_t &Result) const {
1542   Result = ImportTable[Index].ImportAddressTableRVA;
1543   return Error::success();
1544 }
1545 
1546 bool DelayImportDirectoryEntryRef::
1547 operator==(const DelayImportDirectoryEntryRef &Other) const {
1548   return Table == Other.Table && Index == Other.Index;
1549 }
1550 
1551 void DelayImportDirectoryEntryRef::moveNext() {
1552   ++Index;
1553 }
1554 
1555 imported_symbol_iterator
1556 DelayImportDirectoryEntryRef::imported_symbol_begin() const {
1557   return importedSymbolBegin(Table[Index].DelayImportNameTable,
1558                              OwningObject);
1559 }
1560 
1561 imported_symbol_iterator
1562 DelayImportDirectoryEntryRef::imported_symbol_end() const {
1563   return importedSymbolEnd(Table[Index].DelayImportNameTable,
1564                            OwningObject);
1565 }
1566 
1567 iterator_range<imported_symbol_iterator>
1568 DelayImportDirectoryEntryRef::imported_symbols() const {
1569   return make_range(imported_symbol_begin(), imported_symbol_end());
1570 }
1571 
1572 Error DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
1573   uintptr_t IntPtr = 0;
1574   if (Error E = OwningObject->getRvaPtr(Table[Index].Name, IntPtr,
1575                                         "delay import directory name"))
1576     return E;
1577   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1578   return Error::success();
1579 }
1580 
1581 Error DelayImportDirectoryEntryRef::getDelayImportTable(
1582     const delay_import_directory_table_entry *&Result) const {
1583   Result = &Table[Index];
1584   return Error::success();
1585 }
1586 
1587 Error DelayImportDirectoryEntryRef::getImportAddress(int AddrIndex,
1588                                                      uint64_t &Result) const {
1589   uint32_t RVA = Table[Index].DelayImportAddressTable +
1590       AddrIndex * (OwningObject->is64() ? 8 : 4);
1591   uintptr_t IntPtr = 0;
1592   if (Error E = OwningObject->getRvaPtr(RVA, IntPtr, "import address"))
1593     return E;
1594   if (OwningObject->is64())
1595     Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
1596   else
1597     Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
1598   return Error::success();
1599 }
1600 
1601 bool ExportDirectoryEntryRef::
1602 operator==(const ExportDirectoryEntryRef &Other) const {
1603   return ExportTable == Other.ExportTable && Index == Other.Index;
1604 }
1605 
1606 void ExportDirectoryEntryRef::moveNext() {
1607   ++Index;
1608 }
1609 
1610 // Returns the name of the current export symbol. If the symbol is exported only
1611 // by ordinal, the empty string is set as a result.
1612 Error ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
1613   uintptr_t IntPtr = 0;
1614   if (Error E =
1615           OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr, "dll name"))
1616     return E;
1617   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1618   return Error::success();
1619 }
1620 
1621 // Returns the starting ordinal number.
1622 Error ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
1623   Result = ExportTable->OrdinalBase;
1624   return Error::success();
1625 }
1626 
1627 // Returns the export ordinal of the current export symbol.
1628 Error ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
1629   Result = ExportTable->OrdinalBase + Index;
1630   return Error::success();
1631 }
1632 
1633 // Returns the address of the current export symbol.
1634 Error ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
1635   uintptr_t IntPtr = 0;
1636   if (Error EC = OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA,
1637                                          IntPtr, "export address"))
1638     return EC;
1639   const export_address_table_entry *entry =
1640       reinterpret_cast<const export_address_table_entry *>(IntPtr);
1641   Result = entry[Index].ExportRVA;
1642   return Error::success();
1643 }
1644 
1645 // Returns the name of the current export symbol. If the symbol is exported only
1646 // by ordinal, the empty string is set as a result.
1647 Error
1648 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
1649   uintptr_t IntPtr = 0;
1650   if (Error EC = OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr,
1651                                          "export ordinal table"))
1652     return EC;
1653   const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
1654 
1655   uint32_t NumEntries = ExportTable->NumberOfNamePointers;
1656   int Offset = 0;
1657   for (const ulittle16_t *I = Start, *E = Start + NumEntries;
1658        I < E; ++I, ++Offset) {
1659     if (*I != Index)
1660       continue;
1661     if (Error EC = OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr,
1662                                            "export table entry"))
1663       return EC;
1664     const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
1665     if (Error EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr,
1666                                            "export symbol name"))
1667       return EC;
1668     Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1669     return Error::success();
1670   }
1671   Result = "";
1672   return Error::success();
1673 }
1674 
1675 Error ExportDirectoryEntryRef::isForwarder(bool &Result) const {
1676   const data_directory *DataEntry =
1677       OwningObject->getDataDirectory(COFF::EXPORT_TABLE);
1678   if (!DataEntry)
1679     return createStringError(object_error::parse_failed,
1680                              "export table missing");
1681   uint32_t RVA;
1682   if (auto EC = getExportRVA(RVA))
1683     return EC;
1684   uint32_t Begin = DataEntry->RelativeVirtualAddress;
1685   uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size;
1686   Result = (Begin <= RVA && RVA < End);
1687   return Error::success();
1688 }
1689 
1690 Error ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const {
1691   uint32_t RVA;
1692   if (auto EC = getExportRVA(RVA))
1693     return EC;
1694   uintptr_t IntPtr = 0;
1695   if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr, "export forward target"))
1696     return EC;
1697   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1698   return Error::success();
1699 }
1700 
1701 bool ImportedSymbolRef::
1702 operator==(const ImportedSymbolRef &Other) const {
1703   return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
1704       && Index == Other.Index;
1705 }
1706 
1707 void ImportedSymbolRef::moveNext() {
1708   ++Index;
1709 }
1710 
1711 Error ImportedSymbolRef::getSymbolName(StringRef &Result) const {
1712   uint32_t RVA;
1713   if (Entry32) {
1714     // If a symbol is imported only by ordinal, it has no name.
1715     if (Entry32[Index].isOrdinal())
1716       return Error::success();
1717     RVA = Entry32[Index].getHintNameRVA();
1718   } else {
1719     if (Entry64[Index].isOrdinal())
1720       return Error::success();
1721     RVA = Entry64[Index].getHintNameRVA();
1722   }
1723   uintptr_t IntPtr = 0;
1724   if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol name"))
1725     return EC;
1726   // +2 because the first two bytes is hint.
1727   Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
1728   return Error::success();
1729 }
1730 
1731 Error ImportedSymbolRef::isOrdinal(bool &Result) const {
1732   if (Entry32)
1733     Result = Entry32[Index].isOrdinal();
1734   else
1735     Result = Entry64[Index].isOrdinal();
1736   return Error::success();
1737 }
1738 
1739 Error ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const {
1740   if (Entry32)
1741     Result = Entry32[Index].getHintNameRVA();
1742   else
1743     Result = Entry64[Index].getHintNameRVA();
1744   return Error::success();
1745 }
1746 
1747 Error ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
1748   uint32_t RVA;
1749   if (Entry32) {
1750     if (Entry32[Index].isOrdinal()) {
1751       Result = Entry32[Index].getOrdinal();
1752       return Error::success();
1753     }
1754     RVA = Entry32[Index].getHintNameRVA();
1755   } else {
1756     if (Entry64[Index].isOrdinal()) {
1757       Result = Entry64[Index].getOrdinal();
1758       return Error::success();
1759     }
1760     RVA = Entry64[Index].getHintNameRVA();
1761   }
1762   uintptr_t IntPtr = 0;
1763   if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol ordinal"))
1764     return EC;
1765   Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
1766   return Error::success();
1767 }
1768 
1769 Expected<std::unique_ptr<COFFObjectFile>>
1770 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
1771   return COFFObjectFile::create(Object);
1772 }
1773 
1774 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
1775   return Header == Other.Header && Index == Other.Index;
1776 }
1777 
1778 void BaseRelocRef::moveNext() {
1779   // Header->BlockSize is the size of the current block, including the
1780   // size of the header itself.
1781   uint32_t Size = sizeof(*Header) +
1782       sizeof(coff_base_reloc_block_entry) * (Index + 1);
1783   if (Size == Header->BlockSize) {
1784     // .reloc contains a list of base relocation blocks. Each block
1785     // consists of the header followed by entries. The header contains
1786     // how many entories will follow. When we reach the end of the
1787     // current block, proceed to the next block.
1788     Header = reinterpret_cast<const coff_base_reloc_block_header *>(
1789         reinterpret_cast<const uint8_t *>(Header) + Size);
1790     Index = 0;
1791   } else {
1792     ++Index;
1793   }
1794 }
1795 
1796 Error BaseRelocRef::getType(uint8_t &Type) const {
1797   auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1798   Type = Entry[Index].getType();
1799   return Error::success();
1800 }
1801 
1802 Error BaseRelocRef::getRVA(uint32_t &Result) const {
1803   auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1804   Result = Header->PageRVA + Entry[Index].getOffset();
1805   return Error::success();
1806 }
1807 
1808 #define RETURN_IF_ERROR(Expr)                                                  \
1809   do {                                                                         \
1810     Error E = (Expr);                                                          \
1811     if (E)                                                                     \
1812       return std::move(E);                                                     \
1813   } while (0)
1814 
1815 Expected<ArrayRef<UTF16>>
1816 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) {
1817   BinaryStreamReader Reader = BinaryStreamReader(BBS);
1818   Reader.setOffset(Offset);
1819   uint16_t Length;
1820   RETURN_IF_ERROR(Reader.readInteger(Length));
1821   ArrayRef<UTF16> RawDirString;
1822   RETURN_IF_ERROR(Reader.readArray(RawDirString, Length));
1823   return RawDirString;
1824 }
1825 
1826 Expected<ArrayRef<UTF16>>
1827 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) {
1828   return getDirStringAtOffset(Entry.Identifier.getNameOffset());
1829 }
1830 
1831 Expected<const coff_resource_dir_table &>
1832 ResourceSectionRef::getTableAtOffset(uint32_t Offset) {
1833   const coff_resource_dir_table *Table = nullptr;
1834 
1835   BinaryStreamReader Reader(BBS);
1836   Reader.setOffset(Offset);
1837   RETURN_IF_ERROR(Reader.readObject(Table));
1838   assert(Table != nullptr);
1839   return *Table;
1840 }
1841 
1842 Expected<const coff_resource_dir_entry &>
1843 ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) {
1844   const coff_resource_dir_entry *Entry = nullptr;
1845 
1846   BinaryStreamReader Reader(BBS);
1847   Reader.setOffset(Offset);
1848   RETURN_IF_ERROR(Reader.readObject(Entry));
1849   assert(Entry != nullptr);
1850   return *Entry;
1851 }
1852 
1853 Expected<const coff_resource_data_entry &>
1854 ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) {
1855   const coff_resource_data_entry *Entry = nullptr;
1856 
1857   BinaryStreamReader Reader(BBS);
1858   Reader.setOffset(Offset);
1859   RETURN_IF_ERROR(Reader.readObject(Entry));
1860   assert(Entry != nullptr);
1861   return *Entry;
1862 }
1863 
1864 Expected<const coff_resource_dir_table &>
1865 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) {
1866   assert(Entry.Offset.isSubDir());
1867   return getTableAtOffset(Entry.Offset.value());
1868 }
1869 
1870 Expected<const coff_resource_data_entry &>
1871 ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) {
1872   assert(!Entry.Offset.isSubDir());
1873   return getDataEntryAtOffset(Entry.Offset.value());
1874 }
1875 
1876 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() {
1877   return getTableAtOffset(0);
1878 }
1879 
1880 Expected<const coff_resource_dir_entry &>
1881 ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table,
1882                                   uint32_t Index) {
1883   if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries))
1884     return createStringError(object_error::parse_failed, "index out of range");
1885   const uint8_t *TablePtr = reinterpret_cast<const uint8_t *>(&Table);
1886   ptrdiff_t TableOffset = TablePtr - BBS.data().data();
1887   return getTableEntryAtOffset(TableOffset + sizeof(Table) +
1888                                Index * sizeof(coff_resource_dir_entry));
1889 }
1890 
1891 Error ResourceSectionRef::load(const COFFObjectFile *O) {
1892   for (const SectionRef &S : O->sections()) {
1893     Expected<StringRef> Name = S.getName();
1894     if (!Name)
1895       return Name.takeError();
1896 
1897     if (*Name == ".rsrc" || *Name == ".rsrc$01")
1898       return load(O, S);
1899   }
1900   return createStringError(object_error::parse_failed,
1901                            "no resource section found");
1902 }
1903 
1904 Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) {
1905   Obj = O;
1906   Section = S;
1907   Expected<StringRef> Contents = Section.getContents();
1908   if (!Contents)
1909     return Contents.takeError();
1910   BBS = BinaryByteStream(*Contents, support::little);
1911   const coff_section *COFFSect = Obj->getCOFFSection(Section);
1912   ArrayRef<coff_relocation> OrigRelocs = Obj->getRelocations(COFFSect);
1913   Relocs.reserve(OrigRelocs.size());
1914   for (const coff_relocation &R : OrigRelocs)
1915     Relocs.push_back(&R);
1916   llvm::sort(Relocs, [](const coff_relocation *A, const coff_relocation *B) {
1917     return A->VirtualAddress < B->VirtualAddress;
1918   });
1919   return Error::success();
1920 }
1921 
1922 Expected<StringRef>
1923 ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) {
1924   if (!Obj)
1925     return createStringError(object_error::parse_failed, "no object provided");
1926 
1927   // Find a potential relocation at the DataRVA field (first member of
1928   // the coff_resource_data_entry struct).
1929   const uint8_t *EntryPtr = reinterpret_cast<const uint8_t *>(&Entry);
1930   ptrdiff_t EntryOffset = EntryPtr - BBS.data().data();
1931   coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0),
1932                               ulittle16_t(0)};
1933   auto RelocsForOffset =
1934       std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget,
1935                        [](const coff_relocation *A, const coff_relocation *B) {
1936                          return A->VirtualAddress < B->VirtualAddress;
1937                        });
1938 
1939   if (RelocsForOffset.first != RelocsForOffset.second) {
1940     // We found a relocation with the right offset. Check that it does have
1941     // the expected type.
1942     const coff_relocation &R = **RelocsForOffset.first;
1943     uint16_t RVAReloc;
1944     switch (Obj->getMachine()) {
1945     case COFF::IMAGE_FILE_MACHINE_I386:
1946       RVAReloc = COFF::IMAGE_REL_I386_DIR32NB;
1947       break;
1948     case COFF::IMAGE_FILE_MACHINE_AMD64:
1949       RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB;
1950       break;
1951     case COFF::IMAGE_FILE_MACHINE_ARMNT:
1952       RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB;
1953       break;
1954     case COFF::IMAGE_FILE_MACHINE_ARM64:
1955     case COFF::IMAGE_FILE_MACHINE_ARM64EC:
1956     case COFF::IMAGE_FILE_MACHINE_ARM64X:
1957       RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB;
1958       break;
1959     default:
1960       return createStringError(object_error::parse_failed,
1961                                "unsupported architecture");
1962     }
1963     if (R.Type != RVAReloc)
1964       return createStringError(object_error::parse_failed,
1965                                "unexpected relocation type");
1966     // Get the relocation's symbol
1967     Expected<COFFSymbolRef> Sym = Obj->getSymbol(R.SymbolTableIndex);
1968     if (!Sym)
1969       return Sym.takeError();
1970     // And the symbol's section
1971     Expected<const coff_section *> Section =
1972         Obj->getSection(Sym->getSectionNumber());
1973     if (!Section)
1974       return Section.takeError();
1975     // Add the initial value of DataRVA to the symbol's offset to find the
1976     // data it points at.
1977     uint64_t Offset = Entry.DataRVA + Sym->getValue();
1978     ArrayRef<uint8_t> Contents;
1979     if (Error E = Obj->getSectionContents(*Section, Contents))
1980       return std::move(E);
1981     if (Offset + Entry.DataSize > Contents.size())
1982       return createStringError(object_error::parse_failed,
1983                                "data outside of section");
1984     // Return a reference to the data inside the section.
1985     return StringRef(reinterpret_cast<const char *>(Contents.data()) + Offset,
1986                      Entry.DataSize);
1987   } else {
1988     // Relocatable objects need a relocation for the DataRVA field.
1989     if (Obj->isRelocatableObject())
1990       return createStringError(object_error::parse_failed,
1991                                "no relocation found for DataRVA");
1992 
1993     // Locate the section that contains the address that DataRVA points at.
1994     uint64_t VA = Entry.DataRVA + Obj->getImageBase();
1995     for (const SectionRef &S : Obj->sections()) {
1996       if (VA >= S.getAddress() &&
1997           VA + Entry.DataSize <= S.getAddress() + S.getSize()) {
1998         uint64_t Offset = VA - S.getAddress();
1999         Expected<StringRef> Contents = S.getContents();
2000         if (!Contents)
2001           return Contents.takeError();
2002         return Contents->slice(Offset, Offset + Entry.DataSize);
2003       }
2004     }
2005     return createStringError(object_error::parse_failed,
2006                              "address not found in image");
2007   }
2008 }
2009