xref: /freebsd/contrib/llvm-project/llvm/lib/ObjCopy/MachO/MachOObject.h (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 //===- MachOObject.h - Mach-O object file model -----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_LIB_OBJCOPY_MACHO_MACHOOBJECT_H
10 #define LLVM_LIB_OBJCOPY_MACHO_MACHOOBJECT_H
11 
12 #include "llvm/ADT/Optional.h"
13 #include "llvm/ADT/StringRef.h"
14 #include "llvm/BinaryFormat/MachO.h"
15 #include "llvm/MC/StringTableBuilder.h"
16 #include "llvm/ObjectYAML/DWARFYAML.h"
17 #include "llvm/Support/StringSaver.h"
18 #include "llvm/Support/YAMLTraits.h"
19 #include <cstdint>
20 #include <string>
21 #include <vector>
22 
23 namespace llvm {
24 namespace objcopy {
25 namespace macho {
26 
27 struct MachHeader {
28   uint32_t Magic;
29   uint32_t CPUType;
30   uint32_t CPUSubType;
31   uint32_t FileType;
32   uint32_t NCmds;
33   uint32_t SizeOfCmds;
34   uint32_t Flags;
35   uint32_t Reserved = 0;
36 };
37 
38 struct RelocationInfo;
39 struct Section {
40   uint32_t Index;
41   std::string Segname;
42   std::string Sectname;
43   // CanonicalName is a string formatted as “<Segname>,<Sectname>".
44   std::string CanonicalName;
45   uint64_t Addr = 0;
46   uint64_t Size = 0;
47   // Offset in the input file.
48   Optional<uint32_t> OriginalOffset;
49   uint32_t Offset = 0;
50   uint32_t Align = 0;
51   uint32_t RelOff = 0;
52   uint32_t NReloc = 0;
53   uint32_t Flags = 0;
54   uint32_t Reserved1 = 0;
55   uint32_t Reserved2 = 0;
56   uint32_t Reserved3 = 0;
57   StringRef Content;
58   std::vector<RelocationInfo> Relocations;
59 
60   Section(StringRef SegName, StringRef SectName)
61       : Segname(std::string(SegName)), Sectname(std::string(SectName)),
62         CanonicalName((Twine(SegName) + Twine(',') + SectName).str()) {}
63 
64   Section(StringRef SegName, StringRef SectName, StringRef Content)
65       : Segname(std::string(SegName)), Sectname(std::string(SectName)),
66         CanonicalName((Twine(SegName) + Twine(',') + SectName).str()),
67         Content(Content) {}
68 
69   MachO::SectionType getType() const {
70     return static_cast<MachO::SectionType>(Flags & MachO::SECTION_TYPE);
71   }
72 
73   bool isVirtualSection() const {
74     return (getType() == MachO::S_ZEROFILL ||
75             getType() == MachO::S_GB_ZEROFILL ||
76             getType() == MachO::S_THREAD_LOCAL_ZEROFILL);
77   }
78 
79   bool hasValidOffset() const {
80     return !(isVirtualSection() || (OriginalOffset && *OriginalOffset == 0));
81   }
82 };
83 
84 struct LoadCommand {
85   // The type MachO::macho_load_command is defined in llvm/BinaryFormat/MachO.h
86   // and it is a union of all the structs corresponding to various load
87   // commands.
88   MachO::macho_load_command MachOLoadCommand;
89 
90   // The raw content of the payload of the load command (located right after the
91   // corresponding struct). In some cases it is either empty or can be
92   // copied-over without digging into its structure.
93   std::vector<uint8_t> Payload;
94 
95   // Some load commands can contain (inside the payload) an array of sections,
96   // though the contents of the sections are stored separately. The struct
97   // Section describes only sections' metadata and where to find the
98   // corresponding content inside the binary.
99   std::vector<std::unique_ptr<Section>> Sections;
100 
101   // Returns the segment name if the load command is a segment command.
102   Optional<StringRef> getSegmentName() const;
103 
104   // Returns the segment vm address if the load command is a segment command.
105   Optional<uint64_t> getSegmentVMAddr() const;
106 };
107 
108 // A symbol information. Fields which starts with "n_" are same as them in the
109 // nlist.
110 struct SymbolEntry {
111   std::string Name;
112   bool Referenced = false;
113   uint32_t Index;
114   uint8_t n_type;
115   uint8_t n_sect;
116   uint16_t n_desc;
117   uint64_t n_value;
118 
119   bool isExternalSymbol() const { return n_type & MachO::N_EXT; }
120 
121   bool isLocalSymbol() const { return !isExternalSymbol(); }
122 
123   bool isUndefinedSymbol() const {
124     return (n_type & MachO::N_TYPE) == MachO::N_UNDF;
125   }
126 
127   bool isSwiftSymbol() const {
128     return StringRef(Name).startswith("_$s") ||
129            StringRef(Name).startswith("_$S");
130   }
131 
132   Optional<uint32_t> section() const {
133     return n_sect == MachO::NO_SECT ? None : Optional<uint32_t>(n_sect);
134   }
135 };
136 
137 /// The location of the symbol table inside the binary is described by LC_SYMTAB
138 /// load command.
139 struct SymbolTable {
140   std::vector<std::unique_ptr<SymbolEntry>> Symbols;
141 
142   using iterator = pointee_iterator<
143       std::vector<std::unique_ptr<SymbolEntry>>::const_iterator>;
144 
145   iterator begin() const { return iterator(Symbols.begin()); }
146   iterator end() const { return iterator(Symbols.end()); }
147 
148   const SymbolEntry *getSymbolByIndex(uint32_t Index) const;
149   SymbolEntry *getSymbolByIndex(uint32_t Index);
150   void removeSymbols(
151       function_ref<bool(const std::unique_ptr<SymbolEntry> &)> ToRemove);
152 };
153 
154 struct IndirectSymbolEntry {
155   // The original value in an indirect symbol table. Higher bits encode extra
156   // information (INDIRECT_SYMBOL_LOCAL and INDIRECT_SYMBOL_ABS).
157   uint32_t OriginalIndex;
158   /// The Symbol referenced by this entry. It's None if the index is
159   /// INDIRECT_SYMBOL_LOCAL or INDIRECT_SYMBOL_ABS.
160   Optional<SymbolEntry *> Symbol;
161 
162   IndirectSymbolEntry(uint32_t OriginalIndex, Optional<SymbolEntry *> Symbol)
163       : OriginalIndex(OriginalIndex), Symbol(Symbol) {}
164 };
165 
166 struct IndirectSymbolTable {
167   std::vector<IndirectSymbolEntry> Symbols;
168 };
169 
170 /// The location of the string table inside the binary is described by LC_SYMTAB
171 /// load command.
172 struct StringTable {
173   std::vector<std::string> Strings;
174 };
175 
176 struct RelocationInfo {
177   // The referenced symbol entry. Set if !Scattered && Extern.
178   Optional<const SymbolEntry *> Symbol;
179   // The referenced section. Set if !Scattered && !Extern.
180   Optional<const Section *> Sec;
181   // True if Info is a scattered_relocation_info.
182   bool Scattered;
183   // True if the type is an ADDEND. r_symbolnum holds the addend instead of a
184   // symbol index.
185   bool IsAddend;
186   // True if the r_symbolnum points to a section number (i.e. r_extern=0).
187   bool Extern;
188   MachO::any_relocation_info Info;
189 
190   unsigned getPlainRelocationSymbolNum(bool IsLittleEndian) {
191     if (IsLittleEndian)
192       return Info.r_word1 & 0xffffff;
193     return Info.r_word1 >> 8;
194   }
195 
196   void setPlainRelocationSymbolNum(unsigned SymbolNum, bool IsLittleEndian) {
197     assert(SymbolNum < (1 << 24) && "SymbolNum out of range");
198     if (IsLittleEndian)
199       Info.r_word1 = (Info.r_word1 & ~0x00ffffff) | SymbolNum;
200     else
201       Info.r_word1 = (Info.r_word1 & ~0xffffff00) | (SymbolNum << 8);
202   }
203 };
204 
205 /// The location of the rebase info inside the binary is described by
206 /// LC_DYLD_INFO load command. Dyld rebases an image whenever dyld loads it at
207 /// an address different from its preferred address.  The rebase information is
208 /// a stream of byte sized opcodes whose symbolic names start with
209 /// REBASE_OPCODE_. Conceptually the rebase information is a table of tuples:
210 ///   <seg-index, seg-offset, type>
211 /// The opcodes are a compressed way to encode the table by only
212 /// encoding when a column changes.  In addition simple patterns
213 /// like "every n'th offset for m times" can be encoded in a few
214 /// bytes.
215 struct RebaseInfo {
216   // At the moment we do not parse this info (and it is simply copied over),
217   // but the proper support will be added later.
218   ArrayRef<uint8_t> Opcodes;
219 };
220 
221 /// The location of the bind info inside the binary is described by
222 /// LC_DYLD_INFO load command. Dyld binds an image during the loading process,
223 /// if the image requires any pointers to be initialized to symbols in other
224 /// images. The bind information is a stream of byte sized opcodes whose
225 /// symbolic names start with BIND_OPCODE_. Conceptually the bind information is
226 /// a table of tuples: <seg-index, seg-offset, type, symbol-library-ordinal,
227 /// symbol-name, addend> The opcodes are a compressed way to encode the table by
228 /// only encoding when a column changes.  In addition simple patterns like for
229 /// runs of pointers initialized to the same value can be encoded in a few
230 /// bytes.
231 struct BindInfo {
232   // At the moment we do not parse this info (and it is simply copied over),
233   // but the proper support will be added later.
234   ArrayRef<uint8_t> Opcodes;
235 };
236 
237 /// The location of the weak bind info inside the binary is described by
238 /// LC_DYLD_INFO load command. Some C++ programs require dyld to unique symbols
239 /// so that all images in the process use the same copy of some code/data. This
240 /// step is done after binding. The content of the weak_bind info is an opcode
241 /// stream like the bind_info.  But it is sorted alphabetically by symbol name.
242 /// This enable dyld to walk all images with weak binding information in order
243 /// and look for collisions.  If there are no collisions, dyld does no updating.
244 /// That means that some fixups are also encoded in the bind_info.  For
245 /// instance, all calls to "operator new" are first bound to libstdc++.dylib
246 /// using the information in bind_info.  Then if some image overrides operator
247 /// new that is detected when the weak_bind information is processed and the
248 /// call to operator new is then rebound.
249 struct WeakBindInfo {
250   // At the moment we do not parse this info (and it is simply copied over),
251   // but the proper support will be added later.
252   ArrayRef<uint8_t> Opcodes;
253 };
254 
255 /// The location of the lazy bind info inside the binary is described by
256 /// LC_DYLD_INFO load command. Some uses of external symbols do not need to be
257 /// bound immediately. Instead they can be lazily bound on first use.  The
258 /// lazy_bind contains a stream of BIND opcodes to bind all lazy symbols. Normal
259 /// use is that dyld ignores the lazy_bind section when loading an image.
260 /// Instead the static linker arranged for the lazy pointer to initially point
261 /// to a helper function which pushes the offset into the lazy_bind area for the
262 /// symbol needing to be bound, then jumps to dyld which simply adds the offset
263 /// to lazy_bind_off to get the information on what to bind.
264 struct LazyBindInfo {
265   ArrayRef<uint8_t> Opcodes;
266 };
267 
268 /// The location of the export info inside the binary is described by
269 /// LC_DYLD_INFO load command. The symbols exported by a dylib are encoded in a
270 /// trie.  This is a compact representation that factors out common prefixes. It
271 /// also reduces LINKEDIT pages in RAM because it encodes all information (name,
272 /// address, flags) in one small, contiguous range. The export area is a stream
273 /// of nodes.  The first node sequentially is the start node for the trie. Nodes
274 /// for a symbol start with a uleb128 that is the length of the exported symbol
275 /// information for the string so far. If there is no exported symbol, the node
276 /// starts with a zero byte. If there is exported info, it follows the length.
277 /// First is a uleb128 containing flags. Normally, it is followed by
278 /// a uleb128 encoded offset which is location of the content named
279 /// by the symbol from the mach_header for the image.  If the flags
280 /// is EXPORT_SYMBOL_FLAGS_REEXPORT, then following the flags is
281 /// a uleb128 encoded library ordinal, then a zero terminated
282 /// UTF8 string.  If the string is zero length, then the symbol
283 /// is re-export from the specified dylib with the same name.
284 /// If the flags is EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER, then following
285 /// the flags is two uleb128s: the stub offset and the resolver offset.
286 /// The stub is used by non-lazy pointers.  The resolver is used
287 /// by lazy pointers and must be called to get the actual address to use.
288 /// After the optional exported symbol information is a byte of
289 /// how many edges (0-255) that this node has leaving it,
290 /// followed by each edge.
291 /// Each edge is a zero terminated UTF8 of the addition chars
292 /// in the symbol, followed by a uleb128 offset for the node that
293 /// edge points to.
294 struct ExportInfo {
295   ArrayRef<uint8_t> Trie;
296 };
297 
298 struct LinkData {
299   ArrayRef<uint8_t> Data;
300 };
301 
302 struct Object {
303   MachHeader Header;
304   std::vector<LoadCommand> LoadCommands;
305 
306   SymbolTable SymTable;
307   StringTable StrTable;
308 
309   RebaseInfo Rebases;
310   BindInfo Binds;
311   WeakBindInfo WeakBinds;
312   LazyBindInfo LazyBinds;
313   ExportInfo Exports;
314   IndirectSymbolTable IndirectSymTable;
315   LinkData DataInCode;
316   LinkData LinkerOptimizationHint;
317   LinkData FunctionStarts;
318   LinkData ExportsTrie;
319   LinkData ChainedFixups;
320 
321   Optional<uint32_t> SwiftVersion;
322 
323   /// The index of LC_CODE_SIGNATURE load command if present.
324   Optional<size_t> CodeSignatureCommandIndex;
325   /// The index of LC_SYMTAB load command if present.
326   Optional<size_t> SymTabCommandIndex;
327   /// The index of LC_DYLD_INFO or LC_DYLD_INFO_ONLY load command if present.
328   Optional<size_t> DyLdInfoCommandIndex;
329   /// The index LC_DYSYMTAB load command if present.
330   Optional<size_t> DySymTabCommandIndex;
331   /// The index LC_DATA_IN_CODE load command if present.
332   Optional<size_t> DataInCodeCommandIndex;
333   /// The index of LC_LINKER_OPTIMIZATIN_HINT load command if present.
334   Optional<size_t> LinkerOptimizationHintCommandIndex;
335   /// The index LC_FUNCTION_STARTS load command if present.
336   Optional<size_t> FunctionStartsCommandIndex;
337   /// The index LC_DYLD_CHAINED_FIXUPS load command if present.
338   Optional<size_t> ChainedFixupsCommandIndex;
339   /// The index LC_DYLD_EXPORTS_TRIE load command if present.
340   Optional<size_t> ExportsTrieCommandIndex;
341   /// The index of the LC_SEGMENT or LC_SEGMENT_64 load command
342   /// corresponding to the __TEXT segment.
343   Optional<size_t> TextSegmentCommandIndex;
344 
345   BumpPtrAllocator Alloc;
346   StringSaver NewSectionsContents;
347 
348   Object() : NewSectionsContents(Alloc) {}
349 
350   Error
351   removeSections(function_ref<bool(const std::unique_ptr<Section> &)> ToRemove);
352 
353   Error removeLoadCommands(function_ref<bool(const LoadCommand &)> ToRemove);
354 
355   void updateLoadCommandIndexes();
356 
357   /// Creates a new segment load command in the object and returns a reference
358   /// to the newly created load command. The caller should verify that SegName
359   /// is not too long (SegName.size() should be less than or equal to 16).
360   LoadCommand &addSegment(StringRef SegName, uint64_t SegVMSize);
361 
362   bool is64Bit() const {
363     return Header.Magic == MachO::MH_MAGIC_64 ||
364            Header.Magic == MachO::MH_CIGAM_64;
365   }
366 
367   uint64_t nextAvailableSegmentAddress() const;
368 };
369 
370 } // end namespace macho
371 } // end namespace objcopy
372 } // end namespace llvm
373 
374 #endif // LLVM_LIB_OBJCOPY_MACHO_MACHOOBJECT_H
375