1 //===- ELFObject.cpp ------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ELFObject.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/StringRef.h" 13 #include "llvm/ADT/Twine.h" 14 #include "llvm/ADT/iterator_range.h" 15 #include "llvm/BinaryFormat/ELF.h" 16 #include "llvm/MC/MCELFExtras.h" 17 #include "llvm/MC/MCTargetOptions.h" 18 #include "llvm/Object/ELF.h" 19 #include "llvm/Object/ELFObjectFile.h" 20 #include "llvm/Support/Compression.h" 21 #include "llvm/Support/Endian.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include "llvm/Support/FileOutputBuffer.h" 24 #include "llvm/Support/Path.h" 25 #include <algorithm> 26 #include <cstddef> 27 #include <cstdint> 28 #include <iterator> 29 #include <unordered_set> 30 #include <utility> 31 #include <vector> 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::objcopy::elf; 36 using namespace llvm::object; 37 using namespace llvm::support; 38 39 template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) { 40 uint8_t *B = reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + 41 Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr); 42 Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B); 43 Phdr.p_type = Seg.Type; 44 Phdr.p_flags = Seg.Flags; 45 Phdr.p_offset = Seg.Offset; 46 Phdr.p_vaddr = Seg.VAddr; 47 Phdr.p_paddr = Seg.PAddr; 48 Phdr.p_filesz = Seg.FileSize; 49 Phdr.p_memsz = Seg.MemSize; 50 Phdr.p_align = Seg.Align; 51 } 52 53 Error SectionBase::removeSectionReferences( 54 bool, function_ref<bool(const SectionBase *)>) { 55 return Error::success(); 56 } 57 58 Error SectionBase::removeSymbols(function_ref<bool(const Symbol &)>) { 59 return Error::success(); 60 } 61 62 Error SectionBase::initialize(SectionTableRef) { return Error::success(); } 63 void SectionBase::finalize() {} 64 void SectionBase::markSymbols() {} 65 void SectionBase::replaceSectionReferences( 66 const DenseMap<SectionBase *, SectionBase *> &) {} 67 void SectionBase::onRemove() {} 68 69 template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) { 70 uint8_t *B = 71 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Sec.HeaderOffset; 72 Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B); 73 Shdr.sh_name = Sec.NameIndex; 74 Shdr.sh_type = Sec.Type; 75 Shdr.sh_flags = Sec.Flags; 76 Shdr.sh_addr = Sec.Addr; 77 Shdr.sh_offset = Sec.Offset; 78 Shdr.sh_size = Sec.Size; 79 Shdr.sh_link = Sec.Link; 80 Shdr.sh_info = Sec.Info; 81 Shdr.sh_addralign = Sec.Align; 82 Shdr.sh_entsize = Sec.EntrySize; 83 } 84 85 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(Section &) { 86 return Error::success(); 87 } 88 89 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(OwnedDataSection &) { 90 return Error::success(); 91 } 92 93 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(StringTableSection &) { 94 return Error::success(); 95 } 96 97 template <class ELFT> 98 Error ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &) { 99 return Error::success(); 100 } 101 102 template <class ELFT> 103 Error ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) { 104 Sec.EntrySize = sizeof(Elf_Sym); 105 Sec.Size = Sec.Symbols.size() * Sec.EntrySize; 106 // Align to the largest field in Elf_Sym. 107 Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word); 108 return Error::success(); 109 } 110 111 template <bool Is64> 112 static SmallVector<char, 0> encodeCrel(ArrayRef<Relocation> Relocations) { 113 using uint = std::conditional_t<Is64, uint64_t, uint32_t>; 114 SmallVector<char, 0> Content; 115 raw_svector_ostream OS(Content); 116 ELF::encodeCrel<Is64>(OS, Relocations, [&](const Relocation &R) { 117 uint32_t CurSymIdx = R.RelocSymbol ? R.RelocSymbol->Index : 0; 118 return ELF::Elf_Crel<Is64>{static_cast<uint>(R.Offset), CurSymIdx, R.Type, 119 std::make_signed_t<uint>(R.Addend)}; 120 }); 121 return Content; 122 } 123 124 template <class ELFT> 125 Error ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) { 126 if (Sec.Type == SHT_CREL) { 127 Sec.Size = encodeCrel<ELFT::Is64Bits>(Sec.Relocations).size(); 128 } else { 129 Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela); 130 Sec.Size = Sec.Relocations.size() * Sec.EntrySize; 131 // Align to the largest field in Elf_Rel(a). 132 Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word); 133 } 134 return Error::success(); 135 } 136 137 template <class ELFT> 138 Error ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &) { 139 return Error::success(); 140 } 141 142 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(GroupSection &Sec) { 143 Sec.Size = sizeof(Elf_Word) + Sec.GroupMembers.size() * sizeof(Elf_Word); 144 return Error::success(); 145 } 146 147 template <class ELFT> 148 Error ELFSectionSizer<ELFT>::visit(SectionIndexSection &) { 149 return Error::success(); 150 } 151 152 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(CompressedSection &) { 153 return Error::success(); 154 } 155 156 template <class ELFT> 157 Error ELFSectionSizer<ELFT>::visit(DecompressedSection &) { 158 return Error::success(); 159 } 160 161 Error BinarySectionWriter::visit(const SectionIndexSection &Sec) { 162 return createStringError(errc::operation_not_permitted, 163 "cannot write symbol section index table '" + 164 Sec.Name + "' "); 165 } 166 167 Error BinarySectionWriter::visit(const SymbolTableSection &Sec) { 168 return createStringError(errc::operation_not_permitted, 169 "cannot write symbol table '" + Sec.Name + 170 "' out to binary"); 171 } 172 173 Error BinarySectionWriter::visit(const RelocationSection &Sec) { 174 return createStringError(errc::operation_not_permitted, 175 "cannot write relocation section '" + Sec.Name + 176 "' out to binary"); 177 } 178 179 Error BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) { 180 return createStringError(errc::operation_not_permitted, 181 "cannot write '" + Sec.Name + "' out to binary"); 182 } 183 184 Error BinarySectionWriter::visit(const GroupSection &Sec) { 185 return createStringError(errc::operation_not_permitted, 186 "cannot write '" + Sec.Name + "' out to binary"); 187 } 188 189 Error SectionWriter::visit(const Section &Sec) { 190 if (Sec.Type != SHT_NOBITS) 191 llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset); 192 193 return Error::success(); 194 } 195 196 static bool addressOverflows32bit(uint64_t Addr) { 197 // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok 198 return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX; 199 } 200 201 template <class T> static T checkedGetHex(StringRef S) { 202 T Value; 203 bool Fail = S.getAsInteger(16, Value); 204 assert(!Fail); 205 (void)Fail; 206 return Value; 207 } 208 209 // Fills exactly Len bytes of buffer with hexadecimal characters 210 // representing value 'X' 211 template <class T, class Iterator> 212 static Iterator toHexStr(T X, Iterator It, size_t Len) { 213 // Fill range with '0' 214 std::fill(It, It + Len, '0'); 215 216 for (long I = Len - 1; I >= 0; --I) { 217 unsigned char Mod = static_cast<unsigned char>(X) & 15; 218 *(It + I) = hexdigit(Mod, false); 219 X >>= 4; 220 } 221 assert(X == 0); 222 return It + Len; 223 } 224 225 uint8_t IHexRecord::getChecksum(StringRef S) { 226 assert((S.size() & 1) == 0); 227 uint8_t Checksum = 0; 228 while (!S.empty()) { 229 Checksum += checkedGetHex<uint8_t>(S.take_front(2)); 230 S = S.drop_front(2); 231 } 232 return -Checksum; 233 } 234 235 IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr, 236 ArrayRef<uint8_t> Data) { 237 IHexLineData Line(getLineLength(Data.size())); 238 assert(Line.size()); 239 auto Iter = Line.begin(); 240 *Iter++ = ':'; 241 Iter = toHexStr(Data.size(), Iter, 2); 242 Iter = toHexStr(Addr, Iter, 4); 243 Iter = toHexStr(Type, Iter, 2); 244 for (uint8_t X : Data) 245 Iter = toHexStr(X, Iter, 2); 246 StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter)); 247 Iter = toHexStr(getChecksum(S), Iter, 2); 248 *Iter++ = '\r'; 249 *Iter++ = '\n'; 250 assert(Iter == Line.end()); 251 return Line; 252 } 253 254 static Error checkRecord(const IHexRecord &R) { 255 switch (R.Type) { 256 case IHexRecord::Data: 257 if (R.HexData.size() == 0) 258 return createStringError( 259 errc::invalid_argument, 260 "zero data length is not allowed for data records"); 261 break; 262 case IHexRecord::EndOfFile: 263 break; 264 case IHexRecord::SegmentAddr: 265 // 20-bit segment address. Data length must be 2 bytes 266 // (4 bytes in hex) 267 if (R.HexData.size() != 4) 268 return createStringError( 269 errc::invalid_argument, 270 "segment address data should be 2 bytes in size"); 271 break; 272 case IHexRecord::StartAddr80x86: 273 case IHexRecord::StartAddr: 274 if (R.HexData.size() != 8) 275 return createStringError(errc::invalid_argument, 276 "start address data should be 4 bytes in size"); 277 // According to Intel HEX specification '03' record 278 // only specifies the code address within the 20-bit 279 // segmented address space of the 8086/80186. This 280 // means 12 high order bits should be zeroes. 281 if (R.Type == IHexRecord::StartAddr80x86 && 282 R.HexData.take_front(3) != "000") 283 return createStringError(errc::invalid_argument, 284 "start address exceeds 20 bit for 80x86"); 285 break; 286 case IHexRecord::ExtendedAddr: 287 // 16-31 bits of linear base address 288 if (R.HexData.size() != 4) 289 return createStringError( 290 errc::invalid_argument, 291 "extended address data should be 2 bytes in size"); 292 break; 293 default: 294 // Unknown record type 295 return createStringError(errc::invalid_argument, "unknown record type: %u", 296 static_cast<unsigned>(R.Type)); 297 } 298 return Error::success(); 299 } 300 301 // Checks that IHEX line contains valid characters. 302 // This allows converting hexadecimal data to integers 303 // without extra verification. 304 static Error checkChars(StringRef Line) { 305 assert(!Line.empty()); 306 if (Line[0] != ':') 307 return createStringError(errc::invalid_argument, 308 "missing ':' in the beginning of line."); 309 310 for (size_t Pos = 1; Pos < Line.size(); ++Pos) 311 if (hexDigitValue(Line[Pos]) == -1U) 312 return createStringError(errc::invalid_argument, 313 "invalid character at position %zu.", Pos + 1); 314 return Error::success(); 315 } 316 317 Expected<IHexRecord> IHexRecord::parse(StringRef Line) { 318 assert(!Line.empty()); 319 320 // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC' 321 if (Line.size() < 11) 322 return createStringError(errc::invalid_argument, 323 "line is too short: %zu chars.", Line.size()); 324 325 if (Error E = checkChars(Line)) 326 return std::move(E); 327 328 IHexRecord Rec; 329 size_t DataLen = checkedGetHex<uint8_t>(Line.substr(1, 2)); 330 if (Line.size() != getLength(DataLen)) 331 return createStringError(errc::invalid_argument, 332 "invalid line length %zu (should be %zu)", 333 Line.size(), getLength(DataLen)); 334 335 Rec.Addr = checkedGetHex<uint16_t>(Line.substr(3, 4)); 336 Rec.Type = checkedGetHex<uint8_t>(Line.substr(7, 2)); 337 Rec.HexData = Line.substr(9, DataLen * 2); 338 339 if (getChecksum(Line.drop_front(1)) != 0) 340 return createStringError(errc::invalid_argument, "incorrect checksum."); 341 if (Error E = checkRecord(Rec)) 342 return std::move(E); 343 return Rec; 344 } 345 346 static uint64_t sectionPhysicalAddr(const SectionBase *Sec) { 347 Segment *Seg = Sec->ParentSegment; 348 if (Seg && Seg->Type != ELF::PT_LOAD) 349 Seg = nullptr; 350 return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset 351 : Sec->Addr; 352 } 353 354 void IHexSectionWriterBase::writeSection(const SectionBase *Sec, 355 ArrayRef<uint8_t> Data) { 356 assert(Data.size() == Sec->Size); 357 const uint32_t ChunkSize = 16; 358 uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU; 359 while (!Data.empty()) { 360 uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize); 361 if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) { 362 if (Addr > 0xFFFFFU) { 363 // Write extended address record, zeroing segment address 364 // if needed. 365 if (SegmentAddr != 0) 366 SegmentAddr = writeSegmentAddr(0U); 367 BaseAddr = writeBaseAddr(Addr); 368 } else { 369 // We can still remain 16-bit 370 SegmentAddr = writeSegmentAddr(Addr); 371 } 372 } 373 uint64_t SegOffset = Addr - BaseAddr - SegmentAddr; 374 assert(SegOffset <= 0xFFFFU); 375 DataSize = std::min(DataSize, 0x10000U - SegOffset); 376 writeData(0, SegOffset, Data.take_front(DataSize)); 377 Addr += DataSize; 378 Data = Data.drop_front(DataSize); 379 } 380 } 381 382 uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) { 383 assert(Addr <= 0xFFFFFU); 384 uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0}; 385 writeData(2, 0, Data); 386 return Addr & 0xF0000U; 387 } 388 389 uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) { 390 assert(Addr <= 0xFFFFFFFFU); 391 uint64_t Base = Addr & 0xFFFF0000U; 392 uint8_t Data[] = {static_cast<uint8_t>(Base >> 24), 393 static_cast<uint8_t>((Base >> 16) & 0xFF)}; 394 writeData(4, 0, Data); 395 return Base; 396 } 397 398 void IHexSectionWriterBase::writeData(uint8_t, uint16_t, 399 ArrayRef<uint8_t> Data) { 400 Offset += IHexRecord::getLineLength(Data.size()); 401 } 402 403 Error IHexSectionWriterBase::visit(const Section &Sec) { 404 writeSection(&Sec, Sec.Contents); 405 return Error::success(); 406 } 407 408 Error IHexSectionWriterBase::visit(const OwnedDataSection &Sec) { 409 writeSection(&Sec, Sec.Data); 410 return Error::success(); 411 } 412 413 Error IHexSectionWriterBase::visit(const StringTableSection &Sec) { 414 // Check that sizer has already done its work 415 assert(Sec.Size == Sec.StrTabBuilder.getSize()); 416 // We are free to pass an invalid pointer to writeSection as long 417 // as we don't actually write any data. The real writer class has 418 // to override this method . 419 writeSection(&Sec, {nullptr, static_cast<size_t>(Sec.Size)}); 420 return Error::success(); 421 } 422 423 Error IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) { 424 writeSection(&Sec, Sec.Contents); 425 return Error::success(); 426 } 427 428 void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr, 429 ArrayRef<uint8_t> Data) { 430 IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data); 431 memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size()); 432 Offset += HexData.size(); 433 } 434 435 Error IHexSectionWriter::visit(const StringTableSection &Sec) { 436 assert(Sec.Size == Sec.StrTabBuilder.getSize()); 437 std::vector<uint8_t> Data(Sec.Size); 438 Sec.StrTabBuilder.write(Data.data()); 439 writeSection(&Sec, Data); 440 return Error::success(); 441 } 442 443 Error Section::accept(SectionVisitor &Visitor) const { 444 return Visitor.visit(*this); 445 } 446 447 Error Section::accept(MutableSectionVisitor &Visitor) { 448 return Visitor.visit(*this); 449 } 450 451 void Section::restoreSymTabLink(SymbolTableSection &SymTab) { 452 if (HasSymTabLink) { 453 assert(LinkSection == nullptr); 454 LinkSection = &SymTab; 455 } 456 } 457 458 Error SectionWriter::visit(const OwnedDataSection &Sec) { 459 llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset); 460 return Error::success(); 461 } 462 463 template <class ELFT> 464 Error ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) { 465 ArrayRef<uint8_t> Compressed = 466 Sec.OriginalData.slice(sizeof(Elf_Chdr_Impl<ELFT>)); 467 SmallVector<uint8_t, 128> Decompressed; 468 DebugCompressionType Type; 469 switch (Sec.ChType) { 470 case ELFCOMPRESS_ZLIB: 471 Type = DebugCompressionType::Zlib; 472 break; 473 case ELFCOMPRESS_ZSTD: 474 Type = DebugCompressionType::Zstd; 475 break; 476 default: 477 return createStringError(errc::invalid_argument, 478 "--decompress-debug-sections: ch_type (" + 479 Twine(Sec.ChType) + ") of section '" + 480 Sec.Name + "' is unsupported"); 481 } 482 if (auto *Reason = 483 compression::getReasonIfUnsupported(compression::formatFor(Type))) 484 return createStringError(errc::invalid_argument, 485 "failed to decompress section '" + Sec.Name + 486 "': " + Reason); 487 if (Error E = compression::decompress(Type, Compressed, Decompressed, 488 static_cast<size_t>(Sec.Size))) 489 return createStringError(errc::invalid_argument, 490 "failed to decompress section '" + Sec.Name + 491 "': " + toString(std::move(E))); 492 493 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; 494 std::copy(Decompressed.begin(), Decompressed.end(), Buf); 495 496 return Error::success(); 497 } 498 499 Error BinarySectionWriter::visit(const DecompressedSection &Sec) { 500 return createStringError(errc::operation_not_permitted, 501 "cannot write compressed section '" + Sec.Name + 502 "' "); 503 } 504 505 Error DecompressedSection::accept(SectionVisitor &Visitor) const { 506 return Visitor.visit(*this); 507 } 508 509 Error DecompressedSection::accept(MutableSectionVisitor &Visitor) { 510 return Visitor.visit(*this); 511 } 512 513 Error OwnedDataSection::accept(SectionVisitor &Visitor) const { 514 return Visitor.visit(*this); 515 } 516 517 Error OwnedDataSection::accept(MutableSectionVisitor &Visitor) { 518 return Visitor.visit(*this); 519 } 520 521 void OwnedDataSection::appendHexData(StringRef HexData) { 522 assert((HexData.size() & 1) == 0); 523 while (!HexData.empty()) { 524 Data.push_back(checkedGetHex<uint8_t>(HexData.take_front(2))); 525 HexData = HexData.drop_front(2); 526 } 527 Size = Data.size(); 528 } 529 530 Error BinarySectionWriter::visit(const CompressedSection &Sec) { 531 return createStringError(errc::operation_not_permitted, 532 "cannot write compressed section '" + Sec.Name + 533 "' "); 534 } 535 536 template <class ELFT> 537 Error ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) { 538 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; 539 Elf_Chdr_Impl<ELFT> Chdr = {}; 540 switch (Sec.CompressionType) { 541 case DebugCompressionType::None: 542 std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf); 543 return Error::success(); 544 case DebugCompressionType::Zlib: 545 Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB; 546 break; 547 case DebugCompressionType::Zstd: 548 Chdr.ch_type = ELF::ELFCOMPRESS_ZSTD; 549 break; 550 } 551 Chdr.ch_size = Sec.DecompressedSize; 552 Chdr.ch_addralign = Sec.DecompressedAlign; 553 memcpy(Buf, &Chdr, sizeof(Chdr)); 554 Buf += sizeof(Chdr); 555 556 std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf); 557 return Error::success(); 558 } 559 560 CompressedSection::CompressedSection(const SectionBase &Sec, 561 DebugCompressionType CompressionType, 562 bool Is64Bits) 563 : SectionBase(Sec), CompressionType(CompressionType), 564 DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) { 565 compression::compress(compression::Params(CompressionType), OriginalData, 566 CompressedData); 567 568 Flags |= ELF::SHF_COMPRESSED; 569 OriginalFlags |= ELF::SHF_COMPRESSED; 570 size_t ChdrSize = Is64Bits ? sizeof(object::Elf_Chdr_Impl<object::ELF64LE>) 571 : sizeof(object::Elf_Chdr_Impl<object::ELF32LE>); 572 Size = ChdrSize + CompressedData.size(); 573 Align = 8; 574 } 575 576 CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData, 577 uint32_t ChType, uint64_t DecompressedSize, 578 uint64_t DecompressedAlign) 579 : ChType(ChType), CompressionType(DebugCompressionType::None), 580 DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) { 581 OriginalData = CompressedData; 582 } 583 584 Error CompressedSection::accept(SectionVisitor &Visitor) const { 585 return Visitor.visit(*this); 586 } 587 588 Error CompressedSection::accept(MutableSectionVisitor &Visitor) { 589 return Visitor.visit(*this); 590 } 591 592 void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); } 593 594 uint32_t StringTableSection::findIndex(StringRef Name) const { 595 return StrTabBuilder.getOffset(Name); 596 } 597 598 void StringTableSection::prepareForLayout() { 599 StrTabBuilder.finalize(); 600 Size = StrTabBuilder.getSize(); 601 } 602 603 Error SectionWriter::visit(const StringTableSection &Sec) { 604 Sec.StrTabBuilder.write(reinterpret_cast<uint8_t *>(Out.getBufferStart()) + 605 Sec.Offset); 606 return Error::success(); 607 } 608 609 Error StringTableSection::accept(SectionVisitor &Visitor) const { 610 return Visitor.visit(*this); 611 } 612 613 Error StringTableSection::accept(MutableSectionVisitor &Visitor) { 614 return Visitor.visit(*this); 615 } 616 617 template <class ELFT> 618 Error ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) { 619 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; 620 llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf)); 621 return Error::success(); 622 } 623 624 Error SectionIndexSection::initialize(SectionTableRef SecTable) { 625 Size = 0; 626 Expected<SymbolTableSection *> Sec = 627 SecTable.getSectionOfType<SymbolTableSection>( 628 Link, 629 "Link field value " + Twine(Link) + " in section " + Name + 630 " is invalid", 631 "Link field value " + Twine(Link) + " in section " + Name + 632 " is not a symbol table"); 633 if (!Sec) 634 return Sec.takeError(); 635 636 setSymTab(*Sec); 637 Symbols->setShndxTable(this); 638 return Error::success(); 639 } 640 641 void SectionIndexSection::finalize() { Link = Symbols->Index; } 642 643 Error SectionIndexSection::accept(SectionVisitor &Visitor) const { 644 return Visitor.visit(*this); 645 } 646 647 Error SectionIndexSection::accept(MutableSectionVisitor &Visitor) { 648 return Visitor.visit(*this); 649 } 650 651 static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) { 652 switch (Index) { 653 case SHN_ABS: 654 case SHN_COMMON: 655 return true; 656 } 657 658 if (Machine == EM_AMDGPU) { 659 return Index == SHN_AMDGPU_LDS; 660 } 661 662 if (Machine == EM_MIPS) { 663 switch (Index) { 664 case SHN_MIPS_ACOMMON: 665 case SHN_MIPS_SCOMMON: 666 case SHN_MIPS_SUNDEFINED: 667 return true; 668 } 669 } 670 671 if (Machine == EM_HEXAGON) { 672 switch (Index) { 673 case SHN_HEXAGON_SCOMMON: 674 case SHN_HEXAGON_SCOMMON_1: 675 case SHN_HEXAGON_SCOMMON_2: 676 case SHN_HEXAGON_SCOMMON_4: 677 case SHN_HEXAGON_SCOMMON_8: 678 return true; 679 } 680 } 681 return false; 682 } 683 684 // Large indexes force us to clarify exactly what this function should do. This 685 // function should return the value that will appear in st_shndx when written 686 // out. 687 uint16_t Symbol::getShndx() const { 688 if (DefinedIn != nullptr) { 689 if (DefinedIn->Index >= SHN_LORESERVE) 690 return SHN_XINDEX; 691 return DefinedIn->Index; 692 } 693 694 if (ShndxType == SYMBOL_SIMPLE_INDEX) { 695 // This means that we don't have a defined section but we do need to 696 // output a legitimate section index. 697 return SHN_UNDEF; 698 } 699 700 assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON || 701 (ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) || 702 (ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS)); 703 return static_cast<uint16_t>(ShndxType); 704 } 705 706 bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; } 707 708 void SymbolTableSection::assignIndices() { 709 uint32_t Index = 0; 710 for (auto &Sym : Symbols) { 711 if (Sym->Index != Index) 712 IndicesChanged = true; 713 Sym->Index = Index++; 714 } 715 } 716 717 void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type, 718 SectionBase *DefinedIn, uint64_t Value, 719 uint8_t Visibility, uint16_t Shndx, 720 uint64_t SymbolSize) { 721 Symbol Sym; 722 Sym.Name = Name.str(); 723 Sym.Binding = Bind; 724 Sym.Type = Type; 725 Sym.DefinedIn = DefinedIn; 726 if (DefinedIn != nullptr) 727 DefinedIn->HasSymbol = true; 728 if (DefinedIn == nullptr) { 729 if (Shndx >= SHN_LORESERVE) 730 Sym.ShndxType = static_cast<SymbolShndxType>(Shndx); 731 else 732 Sym.ShndxType = SYMBOL_SIMPLE_INDEX; 733 } 734 Sym.Value = Value; 735 Sym.Visibility = Visibility; 736 Sym.Size = SymbolSize; 737 Sym.Index = Symbols.size(); 738 Symbols.emplace_back(std::make_unique<Symbol>(Sym)); 739 Size += this->EntrySize; 740 } 741 742 Error SymbolTableSection::removeSectionReferences( 743 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { 744 if (ToRemove(SectionIndexTable)) 745 SectionIndexTable = nullptr; 746 if (ToRemove(SymbolNames)) { 747 if (!AllowBrokenLinks) 748 return createStringError( 749 llvm::errc::invalid_argument, 750 "string table '%s' cannot be removed because it is " 751 "referenced by the symbol table '%s'", 752 SymbolNames->Name.data(), this->Name.data()); 753 SymbolNames = nullptr; 754 } 755 return removeSymbols( 756 [ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); }); 757 } 758 759 void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) { 760 for (SymPtr &Sym : llvm::drop_begin(Symbols)) 761 Callable(*Sym); 762 std::stable_partition( 763 std::begin(Symbols), std::end(Symbols), 764 [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; }); 765 assignIndices(); 766 } 767 768 Error SymbolTableSection::removeSymbols( 769 function_ref<bool(const Symbol &)> ToRemove) { 770 Symbols.erase( 771 std::remove_if(std::begin(Symbols) + 1, std::end(Symbols), 772 [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }), 773 std::end(Symbols)); 774 auto PrevSize = Size; 775 Size = Symbols.size() * EntrySize; 776 if (Size < PrevSize) 777 IndicesChanged = true; 778 assignIndices(); 779 return Error::success(); 780 } 781 782 void SymbolTableSection::replaceSectionReferences( 783 const DenseMap<SectionBase *, SectionBase *> &FromTo) { 784 for (std::unique_ptr<Symbol> &Sym : Symbols) 785 if (SectionBase *To = FromTo.lookup(Sym->DefinedIn)) 786 Sym->DefinedIn = To; 787 } 788 789 Error SymbolTableSection::initialize(SectionTableRef SecTable) { 790 Size = 0; 791 Expected<StringTableSection *> Sec = 792 SecTable.getSectionOfType<StringTableSection>( 793 Link, 794 "Symbol table has link index of " + Twine(Link) + 795 " which is not a valid index", 796 "Symbol table has link index of " + Twine(Link) + 797 " which is not a string table"); 798 if (!Sec) 799 return Sec.takeError(); 800 801 setStrTab(*Sec); 802 return Error::success(); 803 } 804 805 void SymbolTableSection::finalize() { 806 uint32_t MaxLocalIndex = 0; 807 for (std::unique_ptr<Symbol> &Sym : Symbols) { 808 Sym->NameIndex = 809 SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name); 810 if (Sym->Binding == STB_LOCAL) 811 MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index); 812 } 813 // Now we need to set the Link and Info fields. 814 Link = SymbolNames == nullptr ? 0 : SymbolNames->Index; 815 Info = MaxLocalIndex + 1; 816 } 817 818 void SymbolTableSection::prepareForLayout() { 819 // Reserve proper amount of space in section index table, so we can 820 // layout sections correctly. We will fill the table with correct 821 // indexes later in fillShdnxTable. 822 if (SectionIndexTable) 823 SectionIndexTable->reserve(Symbols.size()); 824 825 // Add all of our strings to SymbolNames so that SymbolNames has the right 826 // size before layout is decided. 827 // If the symbol names section has been removed, don't try to add strings to 828 // the table. 829 if (SymbolNames != nullptr) 830 for (std::unique_ptr<Symbol> &Sym : Symbols) 831 SymbolNames->addString(Sym->Name); 832 } 833 834 void SymbolTableSection::fillShndxTable() { 835 if (SectionIndexTable == nullptr) 836 return; 837 // Fill section index table with real section indexes. This function must 838 // be called after assignOffsets. 839 for (const std::unique_ptr<Symbol> &Sym : Symbols) { 840 if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE) 841 SectionIndexTable->addIndex(Sym->DefinedIn->Index); 842 else 843 SectionIndexTable->addIndex(SHN_UNDEF); 844 } 845 } 846 847 Expected<const Symbol *> 848 SymbolTableSection::getSymbolByIndex(uint32_t Index) const { 849 if (Symbols.size() <= Index) 850 return createStringError(errc::invalid_argument, 851 "invalid symbol index: " + Twine(Index)); 852 return Symbols[Index].get(); 853 } 854 855 Expected<Symbol *> SymbolTableSection::getSymbolByIndex(uint32_t Index) { 856 Expected<const Symbol *> Sym = 857 static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index); 858 if (!Sym) 859 return Sym.takeError(); 860 861 return const_cast<Symbol *>(*Sym); 862 } 863 864 template <class ELFT> 865 Error ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) { 866 Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset); 867 // Loop though symbols setting each entry of the symbol table. 868 for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) { 869 Sym->st_name = Symbol->NameIndex; 870 Sym->st_value = Symbol->Value; 871 Sym->st_size = Symbol->Size; 872 Sym->st_other = Symbol->Visibility; 873 Sym->setBinding(Symbol->Binding); 874 Sym->setType(Symbol->Type); 875 Sym->st_shndx = Symbol->getShndx(); 876 ++Sym; 877 } 878 return Error::success(); 879 } 880 881 Error SymbolTableSection::accept(SectionVisitor &Visitor) const { 882 return Visitor.visit(*this); 883 } 884 885 Error SymbolTableSection::accept(MutableSectionVisitor &Visitor) { 886 return Visitor.visit(*this); 887 } 888 889 StringRef RelocationSectionBase::getNamePrefix() const { 890 switch (Type) { 891 case SHT_REL: 892 return ".rel"; 893 case SHT_RELA: 894 return ".rela"; 895 case SHT_CREL: 896 return ".crel"; 897 default: 898 llvm_unreachable("not a relocation section"); 899 } 900 } 901 902 Error RelocationSection::removeSectionReferences( 903 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { 904 if (ToRemove(Symbols)) { 905 if (!AllowBrokenLinks) 906 return createStringError( 907 llvm::errc::invalid_argument, 908 "symbol table '%s' cannot be removed because it is " 909 "referenced by the relocation section '%s'", 910 Symbols->Name.data(), this->Name.data()); 911 Symbols = nullptr; 912 } 913 914 for (const Relocation &R : Relocations) { 915 if (!R.RelocSymbol || !R.RelocSymbol->DefinedIn || 916 !ToRemove(R.RelocSymbol->DefinedIn)) 917 continue; 918 return createStringError(llvm::errc::invalid_argument, 919 "section '%s' cannot be removed: (%s+0x%" PRIx64 920 ") has relocation against symbol '%s'", 921 R.RelocSymbol->DefinedIn->Name.data(), 922 SecToApplyRel->Name.data(), R.Offset, 923 R.RelocSymbol->Name.c_str()); 924 } 925 926 return Error::success(); 927 } 928 929 template <class SymTabType> 930 Error RelocSectionWithSymtabBase<SymTabType>::initialize( 931 SectionTableRef SecTable) { 932 if (Link != SHN_UNDEF) { 933 Expected<SymTabType *> Sec = SecTable.getSectionOfType<SymTabType>( 934 Link, 935 "Link field value " + Twine(Link) + " in section " + Name + 936 " is invalid", 937 "Link field value " + Twine(Link) + " in section " + Name + 938 " is not a symbol table"); 939 if (!Sec) 940 return Sec.takeError(); 941 942 setSymTab(*Sec); 943 } 944 945 if (Info != SHN_UNDEF) { 946 Expected<SectionBase *> Sec = 947 SecTable.getSection(Info, "Info field value " + Twine(Info) + 948 " in section " + Name + " is invalid"); 949 if (!Sec) 950 return Sec.takeError(); 951 952 setSection(*Sec); 953 } else 954 setSection(nullptr); 955 956 return Error::success(); 957 } 958 959 template <class SymTabType> 960 void RelocSectionWithSymtabBase<SymTabType>::finalize() { 961 this->Link = Symbols ? Symbols->Index : 0; 962 963 if (SecToApplyRel != nullptr) 964 this->Info = SecToApplyRel->Index; 965 } 966 967 template <class ELFT> 968 static void setAddend(Elf_Rel_Impl<ELFT, false> &, uint64_t) {} 969 970 template <class ELFT> 971 static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) { 972 Rela.r_addend = Addend; 973 } 974 975 template <class RelRange, class T> 976 static void writeRel(const RelRange &Relocations, T *Buf, bool IsMips64EL) { 977 for (const auto &Reloc : Relocations) { 978 Buf->r_offset = Reloc.Offset; 979 setAddend(*Buf, Reloc.Addend); 980 Buf->setSymbolAndType(Reloc.RelocSymbol ? Reloc.RelocSymbol->Index : 0, 981 Reloc.Type, IsMips64EL); 982 ++Buf; 983 } 984 } 985 986 template <class ELFT> 987 Error ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) { 988 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; 989 if (Sec.Type == SHT_CREL) { 990 auto Content = encodeCrel<ELFT::Is64Bits>(Sec.Relocations); 991 memcpy(Buf, Content.data(), Content.size()); 992 } else if (Sec.Type == SHT_REL) { 993 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf), 994 Sec.getObject().IsMips64EL); 995 } else { 996 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf), 997 Sec.getObject().IsMips64EL); 998 } 999 return Error::success(); 1000 } 1001 1002 Error RelocationSection::accept(SectionVisitor &Visitor) const { 1003 return Visitor.visit(*this); 1004 } 1005 1006 Error RelocationSection::accept(MutableSectionVisitor &Visitor) { 1007 return Visitor.visit(*this); 1008 } 1009 1010 Error RelocationSection::removeSymbols( 1011 function_ref<bool(const Symbol &)> ToRemove) { 1012 for (const Relocation &Reloc : Relocations) 1013 if (Reloc.RelocSymbol && ToRemove(*Reloc.RelocSymbol)) 1014 return createStringError( 1015 llvm::errc::invalid_argument, 1016 "not stripping symbol '%s' because it is named in a relocation", 1017 Reloc.RelocSymbol->Name.data()); 1018 return Error::success(); 1019 } 1020 1021 void RelocationSection::markSymbols() { 1022 for (const Relocation &Reloc : Relocations) 1023 if (Reloc.RelocSymbol) 1024 Reloc.RelocSymbol->Referenced = true; 1025 } 1026 1027 void RelocationSection::replaceSectionReferences( 1028 const DenseMap<SectionBase *, SectionBase *> &FromTo) { 1029 // Update the target section if it was replaced. 1030 if (SectionBase *To = FromTo.lookup(SecToApplyRel)) 1031 SecToApplyRel = To; 1032 } 1033 1034 Error SectionWriter::visit(const DynamicRelocationSection &Sec) { 1035 llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset); 1036 return Error::success(); 1037 } 1038 1039 Error DynamicRelocationSection::accept(SectionVisitor &Visitor) const { 1040 return Visitor.visit(*this); 1041 } 1042 1043 Error DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) { 1044 return Visitor.visit(*this); 1045 } 1046 1047 Error DynamicRelocationSection::removeSectionReferences( 1048 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { 1049 if (ToRemove(Symbols)) { 1050 if (!AllowBrokenLinks) 1051 return createStringError( 1052 llvm::errc::invalid_argument, 1053 "symbol table '%s' cannot be removed because it is " 1054 "referenced by the relocation section '%s'", 1055 Symbols->Name.data(), this->Name.data()); 1056 Symbols = nullptr; 1057 } 1058 1059 // SecToApplyRel contains a section referenced by sh_info field. It keeps 1060 // a section to which the relocation section applies. When we remove any 1061 // sections we also remove their relocation sections. Since we do that much 1062 // earlier, this assert should never be triggered. 1063 assert(!SecToApplyRel || !ToRemove(SecToApplyRel)); 1064 return Error::success(); 1065 } 1066 1067 Error Section::removeSectionReferences( 1068 bool AllowBrokenDependency, 1069 function_ref<bool(const SectionBase *)> ToRemove) { 1070 if (ToRemove(LinkSection)) { 1071 if (!AllowBrokenDependency) 1072 return createStringError(llvm::errc::invalid_argument, 1073 "section '%s' cannot be removed because it is " 1074 "referenced by the section '%s'", 1075 LinkSection->Name.data(), this->Name.data()); 1076 LinkSection = nullptr; 1077 } 1078 return Error::success(); 1079 } 1080 1081 void GroupSection::finalize() { 1082 this->Info = Sym ? Sym->Index : 0; 1083 this->Link = SymTab ? SymTab->Index : 0; 1084 // Linker deduplication for GRP_COMDAT is based on Sym->Name. The local/global 1085 // status is not part of the equation. If Sym is localized, the intention is 1086 // likely to make the group fully localized. Drop GRP_COMDAT to suppress 1087 // deduplication. See https://groups.google.com/g/generic-abi/c/2X6mR-s2zoc 1088 if ((FlagWord & GRP_COMDAT) && Sym && Sym->Binding == STB_LOCAL) 1089 this->FlagWord &= ~GRP_COMDAT; 1090 } 1091 1092 Error GroupSection::removeSectionReferences( 1093 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { 1094 if (ToRemove(SymTab)) { 1095 if (!AllowBrokenLinks) 1096 return createStringError( 1097 llvm::errc::invalid_argument, 1098 "section '.symtab' cannot be removed because it is " 1099 "referenced by the group section '%s'", 1100 this->Name.data()); 1101 SymTab = nullptr; 1102 Sym = nullptr; 1103 } 1104 llvm::erase_if(GroupMembers, ToRemove); 1105 return Error::success(); 1106 } 1107 1108 Error GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) { 1109 if (ToRemove(*Sym)) 1110 return createStringError(llvm::errc::invalid_argument, 1111 "symbol '%s' cannot be removed because it is " 1112 "referenced by the section '%s[%d]'", 1113 Sym->Name.data(), this->Name.data(), this->Index); 1114 return Error::success(); 1115 } 1116 1117 void GroupSection::markSymbols() { 1118 if (Sym) 1119 Sym->Referenced = true; 1120 } 1121 1122 void GroupSection::replaceSectionReferences( 1123 const DenseMap<SectionBase *, SectionBase *> &FromTo) { 1124 for (SectionBase *&Sec : GroupMembers) 1125 if (SectionBase *To = FromTo.lookup(Sec)) 1126 Sec = To; 1127 } 1128 1129 void GroupSection::onRemove() { 1130 // As the header section of the group is removed, drop the Group flag in its 1131 // former members. 1132 for (SectionBase *Sec : GroupMembers) 1133 Sec->Flags &= ~SHF_GROUP; 1134 } 1135 1136 Error Section::initialize(SectionTableRef SecTable) { 1137 if (Link == ELF::SHN_UNDEF) 1138 return Error::success(); 1139 1140 Expected<SectionBase *> Sec = 1141 SecTable.getSection(Link, "Link field value " + Twine(Link) + 1142 " in section " + Name + " is invalid"); 1143 if (!Sec) 1144 return Sec.takeError(); 1145 1146 LinkSection = *Sec; 1147 1148 if (LinkSection->Type == ELF::SHT_SYMTAB) { 1149 HasSymTabLink = true; 1150 LinkSection = nullptr; 1151 } 1152 1153 return Error::success(); 1154 } 1155 1156 void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; } 1157 1158 void GnuDebugLinkSection::init(StringRef File) { 1159 FileName = sys::path::filename(File); 1160 // The format for the .gnu_debuglink starts with the file name and is 1161 // followed by a null terminator and then the CRC32 of the file. The CRC32 1162 // should be 4 byte aligned. So we add the FileName size, a 1 for the null 1163 // byte, and then finally push the size to alignment and add 4. 1164 Size = alignTo(FileName.size() + 1, 4) + 4; 1165 // The CRC32 will only be aligned if we align the whole section. 1166 Align = 4; 1167 Type = OriginalType = ELF::SHT_PROGBITS; 1168 Name = ".gnu_debuglink"; 1169 // For sections not found in segments, OriginalOffset is only used to 1170 // establish the order that sections should go in. By using the maximum 1171 // possible offset we cause this section to wind up at the end. 1172 OriginalOffset = std::numeric_limits<uint64_t>::max(); 1173 } 1174 1175 GnuDebugLinkSection::GnuDebugLinkSection(StringRef File, 1176 uint32_t PrecomputedCRC) 1177 : FileName(File), CRC32(PrecomputedCRC) { 1178 init(File); 1179 } 1180 1181 template <class ELFT> 1182 Error ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) { 1183 unsigned char *Buf = 1184 reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; 1185 Elf_Word *CRC = 1186 reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word)); 1187 *CRC = Sec.CRC32; 1188 llvm::copy(Sec.FileName, Buf); 1189 return Error::success(); 1190 } 1191 1192 Error GnuDebugLinkSection::accept(SectionVisitor &Visitor) const { 1193 return Visitor.visit(*this); 1194 } 1195 1196 Error GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) { 1197 return Visitor.visit(*this); 1198 } 1199 1200 template <class ELFT> 1201 Error ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) { 1202 ELF::Elf32_Word *Buf = 1203 reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset); 1204 endian::write32<ELFT::Endianness>(Buf++, Sec.FlagWord); 1205 for (SectionBase *S : Sec.GroupMembers) 1206 endian::write32<ELFT::Endianness>(Buf++, S->Index); 1207 return Error::success(); 1208 } 1209 1210 Error GroupSection::accept(SectionVisitor &Visitor) const { 1211 return Visitor.visit(*this); 1212 } 1213 1214 Error GroupSection::accept(MutableSectionVisitor &Visitor) { 1215 return Visitor.visit(*this); 1216 } 1217 1218 // Returns true IFF a section is wholly inside the range of a segment 1219 static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) { 1220 // If a section is empty it should be treated like it has a size of 1. This is 1221 // to clarify the case when an empty section lies on a boundary between two 1222 // segments and ensures that the section "belongs" to the second segment and 1223 // not the first. 1224 uint64_t SecSize = Sec.Size ? Sec.Size : 1; 1225 1226 // Ignore just added sections. 1227 if (Sec.OriginalOffset == std::numeric_limits<uint64_t>::max()) 1228 return false; 1229 1230 if (Sec.Type == SHT_NOBITS) { 1231 if (!(Sec.Flags & SHF_ALLOC)) 1232 return false; 1233 1234 bool SectionIsTLS = Sec.Flags & SHF_TLS; 1235 bool SegmentIsTLS = Seg.Type == PT_TLS; 1236 if (SectionIsTLS != SegmentIsTLS) 1237 return false; 1238 1239 return Seg.VAddr <= Sec.Addr && 1240 Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize; 1241 } 1242 1243 return Seg.Offset <= Sec.OriginalOffset && 1244 Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize; 1245 } 1246 1247 // Returns true IFF a segment's original offset is inside of another segment's 1248 // range. 1249 static bool segmentOverlapsSegment(const Segment &Child, 1250 const Segment &Parent) { 1251 1252 return Parent.OriginalOffset <= Child.OriginalOffset && 1253 Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset; 1254 } 1255 1256 static bool compareSegmentsByOffset(const Segment *A, const Segment *B) { 1257 // Any segment without a parent segment should come before a segment 1258 // that has a parent segment. 1259 if (A->OriginalOffset < B->OriginalOffset) 1260 return true; 1261 if (A->OriginalOffset > B->OriginalOffset) 1262 return false; 1263 // If alignments are different, the one with a smaller alignment cannot be the 1264 // parent; otherwise, layoutSegments will not respect the larger alignment 1265 // requirement. This rule ensures that PT_LOAD/PT_INTERP/PT_GNU_RELRO/PT_TLS 1266 // segments at the same offset will be aligned correctly. 1267 if (A->Align != B->Align) 1268 return A->Align > B->Align; 1269 return A->Index < B->Index; 1270 } 1271 1272 void BasicELFBuilder::initFileHeader() { 1273 Obj->Flags = 0x0; 1274 Obj->Type = ET_REL; 1275 Obj->OSABI = ELFOSABI_NONE; 1276 Obj->ABIVersion = 0; 1277 Obj->Entry = 0x0; 1278 Obj->Machine = EM_NONE; 1279 Obj->Version = 1; 1280 } 1281 1282 void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; } 1283 1284 StringTableSection *BasicELFBuilder::addStrTab() { 1285 auto &StrTab = Obj->addSection<StringTableSection>(); 1286 StrTab.Name = ".strtab"; 1287 1288 Obj->SectionNames = &StrTab; 1289 return &StrTab; 1290 } 1291 1292 SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) { 1293 auto &SymTab = Obj->addSection<SymbolTableSection>(); 1294 1295 SymTab.Name = ".symtab"; 1296 SymTab.Link = StrTab->Index; 1297 1298 // The symbol table always needs a null symbol 1299 SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0); 1300 1301 Obj->SymbolTable = &SymTab; 1302 return &SymTab; 1303 } 1304 1305 Error BasicELFBuilder::initSections() { 1306 for (SectionBase &Sec : Obj->sections()) 1307 if (Error Err = Sec.initialize(Obj->sections())) 1308 return Err; 1309 1310 return Error::success(); 1311 } 1312 1313 void BinaryELFBuilder::addData(SymbolTableSection *SymTab) { 1314 auto Data = ArrayRef<uint8_t>( 1315 reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()), 1316 MemBuf->getBufferSize()); 1317 auto &DataSection = Obj->addSection<Section>(Data); 1318 DataSection.Name = ".data"; 1319 DataSection.Type = ELF::SHT_PROGBITS; 1320 DataSection.Size = Data.size(); 1321 DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE; 1322 1323 std::string SanitizedFilename = MemBuf->getBufferIdentifier().str(); 1324 std::replace_if( 1325 std::begin(SanitizedFilename), std::end(SanitizedFilename), 1326 [](char C) { return !isAlnum(C); }, '_'); 1327 Twine Prefix = Twine("_binary_") + SanitizedFilename; 1328 1329 SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection, 1330 /*Value=*/0, NewSymbolVisibility, 0, 0); 1331 SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection, 1332 /*Value=*/DataSection.Size, NewSymbolVisibility, 0, 0); 1333 SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr, 1334 /*Value=*/DataSection.Size, NewSymbolVisibility, SHN_ABS, 1335 0); 1336 } 1337 1338 Expected<std::unique_ptr<Object>> BinaryELFBuilder::build() { 1339 initFileHeader(); 1340 initHeaderSegment(); 1341 1342 SymbolTableSection *SymTab = addSymTab(addStrTab()); 1343 if (Error Err = initSections()) 1344 return std::move(Err); 1345 addData(SymTab); 1346 1347 return std::move(Obj); 1348 } 1349 1350 // Adds sections from IHEX data file. Data should have been 1351 // fully validated by this time. 1352 void IHexELFBuilder::addDataSections() { 1353 OwnedDataSection *Section = nullptr; 1354 uint64_t SegmentAddr = 0, BaseAddr = 0; 1355 uint32_t SecNo = 1; 1356 1357 for (const IHexRecord &R : Records) { 1358 uint64_t RecAddr; 1359 switch (R.Type) { 1360 case IHexRecord::Data: 1361 // Ignore empty data records 1362 if (R.HexData.empty()) 1363 continue; 1364 RecAddr = R.Addr + SegmentAddr + BaseAddr; 1365 if (!Section || Section->Addr + Section->Size != RecAddr) { 1366 // OriginalOffset field is only used to sort sections before layout, so 1367 // instead of keeping track of real offsets in IHEX file, and as 1368 // layoutSections() and layoutSectionsForOnlyKeepDebug() use 1369 // llvm::stable_sort(), we can just set it to a constant (zero). 1370 Section = &Obj->addSection<OwnedDataSection>( 1371 ".sec" + std::to_string(SecNo), RecAddr, 1372 ELF::SHF_ALLOC | ELF::SHF_WRITE, 0); 1373 SecNo++; 1374 } 1375 Section->appendHexData(R.HexData); 1376 break; 1377 case IHexRecord::EndOfFile: 1378 break; 1379 case IHexRecord::SegmentAddr: 1380 // 20-bit segment address. 1381 SegmentAddr = checkedGetHex<uint16_t>(R.HexData) << 4; 1382 break; 1383 case IHexRecord::StartAddr80x86: 1384 case IHexRecord::StartAddr: 1385 Obj->Entry = checkedGetHex<uint32_t>(R.HexData); 1386 assert(Obj->Entry <= 0xFFFFFU); 1387 break; 1388 case IHexRecord::ExtendedAddr: 1389 // 16-31 bits of linear base address 1390 BaseAddr = checkedGetHex<uint16_t>(R.HexData) << 16; 1391 break; 1392 default: 1393 llvm_unreachable("unknown record type"); 1394 } 1395 } 1396 } 1397 1398 Expected<std::unique_ptr<Object>> IHexELFBuilder::build() { 1399 initFileHeader(); 1400 initHeaderSegment(); 1401 StringTableSection *StrTab = addStrTab(); 1402 addSymTab(StrTab); 1403 if (Error Err = initSections()) 1404 return std::move(Err); 1405 addDataSections(); 1406 1407 return std::move(Obj); 1408 } 1409 1410 template <class ELFT> 1411 ELFBuilder<ELFT>::ELFBuilder(const ELFObjectFile<ELFT> &ElfObj, Object &Obj, 1412 std::optional<StringRef> ExtractPartition) 1413 : ElfFile(ElfObj.getELFFile()), Obj(Obj), 1414 ExtractPartition(ExtractPartition) { 1415 Obj.IsMips64EL = ElfFile.isMips64EL(); 1416 } 1417 1418 template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) { 1419 for (Segment &Parent : Obj.segments()) { 1420 // Every segment will overlap with itself but we don't want a segment to 1421 // be its own parent so we avoid that situation. 1422 if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) { 1423 // We want a canonical "most parental" segment but this requires 1424 // inspecting the ParentSegment. 1425 if (compareSegmentsByOffset(&Parent, &Child)) 1426 if (Child.ParentSegment == nullptr || 1427 compareSegmentsByOffset(&Parent, Child.ParentSegment)) { 1428 Child.ParentSegment = &Parent; 1429 } 1430 } 1431 } 1432 } 1433 1434 template <class ELFT> Error ELFBuilder<ELFT>::findEhdrOffset() { 1435 if (!ExtractPartition) 1436 return Error::success(); 1437 1438 for (const SectionBase &Sec : Obj.sections()) { 1439 if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) { 1440 EhdrOffset = Sec.Offset; 1441 return Error::success(); 1442 } 1443 } 1444 return createStringError(errc::invalid_argument, 1445 "could not find partition named '" + 1446 *ExtractPartition + "'"); 1447 } 1448 1449 template <class ELFT> 1450 Error ELFBuilder<ELFT>::readProgramHeaders(const ELFFile<ELFT> &HeadersFile) { 1451 uint32_t Index = 0; 1452 1453 Expected<typename ELFFile<ELFT>::Elf_Phdr_Range> Headers = 1454 HeadersFile.program_headers(); 1455 if (!Headers) 1456 return Headers.takeError(); 1457 1458 for (const typename ELFFile<ELFT>::Elf_Phdr &Phdr : *Headers) { 1459 if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize()) 1460 return createStringError( 1461 errc::invalid_argument, 1462 "program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) + 1463 " and file size 0x" + Twine::utohexstr(Phdr.p_filesz) + 1464 " goes past the end of the file"); 1465 1466 ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset, 1467 (size_t)Phdr.p_filesz}; 1468 Segment &Seg = Obj.addSegment(Data); 1469 Seg.Type = Phdr.p_type; 1470 Seg.Flags = Phdr.p_flags; 1471 Seg.OriginalOffset = Phdr.p_offset + EhdrOffset; 1472 Seg.Offset = Phdr.p_offset + EhdrOffset; 1473 Seg.VAddr = Phdr.p_vaddr; 1474 Seg.PAddr = Phdr.p_paddr; 1475 Seg.FileSize = Phdr.p_filesz; 1476 Seg.MemSize = Phdr.p_memsz; 1477 Seg.Align = Phdr.p_align; 1478 Seg.Index = Index++; 1479 for (SectionBase &Sec : Obj.sections()) 1480 if (sectionWithinSegment(Sec, Seg)) { 1481 Seg.addSection(&Sec); 1482 if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset) 1483 Sec.ParentSegment = &Seg; 1484 } 1485 } 1486 1487 auto &ElfHdr = Obj.ElfHdrSegment; 1488 ElfHdr.Index = Index++; 1489 ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset; 1490 1491 const typename ELFT::Ehdr &Ehdr = HeadersFile.getHeader(); 1492 auto &PrHdr = Obj.ProgramHdrSegment; 1493 PrHdr.Type = PT_PHDR; 1494 PrHdr.Flags = 0; 1495 // The spec requires us to have p_vaddr % p_align == p_offset % p_align. 1496 // Whereas this works automatically for ElfHdr, here OriginalOffset is 1497 // always non-zero and to ensure the equation we assign the same value to 1498 // VAddr as well. 1499 PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff; 1500 PrHdr.PAddr = 0; 1501 PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum; 1502 // The spec requires us to naturally align all the fields. 1503 PrHdr.Align = sizeof(Elf_Addr); 1504 PrHdr.Index = Index++; 1505 1506 // Now we do an O(n^2) loop through the segments in order to match up 1507 // segments. 1508 for (Segment &Child : Obj.segments()) 1509 setParentSegment(Child); 1510 setParentSegment(ElfHdr); 1511 setParentSegment(PrHdr); 1512 1513 return Error::success(); 1514 } 1515 1516 template <class ELFT> 1517 Error ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) { 1518 if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0) 1519 return createStringError(errc::invalid_argument, 1520 "invalid alignment " + Twine(GroupSec->Align) + 1521 " of group section '" + GroupSec->Name + "'"); 1522 SectionTableRef SecTable = Obj.sections(); 1523 if (GroupSec->Link != SHN_UNDEF) { 1524 auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>( 1525 GroupSec->Link, 1526 "link field value '" + Twine(GroupSec->Link) + "' in section '" + 1527 GroupSec->Name + "' is invalid", 1528 "link field value '" + Twine(GroupSec->Link) + "' in section '" + 1529 GroupSec->Name + "' is not a symbol table"); 1530 if (!SymTab) 1531 return SymTab.takeError(); 1532 1533 Expected<Symbol *> Sym = (*SymTab)->getSymbolByIndex(GroupSec->Info); 1534 if (!Sym) 1535 return createStringError(errc::invalid_argument, 1536 "info field value '" + Twine(GroupSec->Info) + 1537 "' in section '" + GroupSec->Name + 1538 "' is not a valid symbol index"); 1539 GroupSec->setSymTab(*SymTab); 1540 GroupSec->setSymbol(*Sym); 1541 } 1542 if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) || 1543 GroupSec->Contents.empty()) 1544 return createStringError(errc::invalid_argument, 1545 "the content of the section " + GroupSec->Name + 1546 " is malformed"); 1547 const ELF::Elf32_Word *Word = 1548 reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data()); 1549 const ELF::Elf32_Word *End = 1550 Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word); 1551 GroupSec->setFlagWord(endian::read32<ELFT::Endianness>(Word++)); 1552 for (; Word != End; ++Word) { 1553 uint32_t Index = support::endian::read32<ELFT::Endianness>(Word); 1554 Expected<SectionBase *> Sec = SecTable.getSection( 1555 Index, "group member index " + Twine(Index) + " in section '" + 1556 GroupSec->Name + "' is invalid"); 1557 if (!Sec) 1558 return Sec.takeError(); 1559 1560 GroupSec->addMember(*Sec); 1561 } 1562 1563 return Error::success(); 1564 } 1565 1566 template <class ELFT> 1567 Error ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) { 1568 Expected<const Elf_Shdr *> Shdr = ElfFile.getSection(SymTab->Index); 1569 if (!Shdr) 1570 return Shdr.takeError(); 1571 1572 Expected<StringRef> StrTabData = ElfFile.getStringTableForSymtab(**Shdr); 1573 if (!StrTabData) 1574 return StrTabData.takeError(); 1575 1576 ArrayRef<Elf_Word> ShndxData; 1577 1578 Expected<typename ELFFile<ELFT>::Elf_Sym_Range> Symbols = 1579 ElfFile.symbols(*Shdr); 1580 if (!Symbols) 1581 return Symbols.takeError(); 1582 1583 for (const typename ELFFile<ELFT>::Elf_Sym &Sym : *Symbols) { 1584 SectionBase *DefSection = nullptr; 1585 1586 Expected<StringRef> Name = Sym.getName(*StrTabData); 1587 if (!Name) 1588 return Name.takeError(); 1589 1590 if (Sym.st_shndx == SHN_XINDEX) { 1591 if (SymTab->getShndxTable() == nullptr) 1592 return createStringError(errc::invalid_argument, 1593 "symbol '" + *Name + 1594 "' has index SHN_XINDEX but no " 1595 "SHT_SYMTAB_SHNDX section exists"); 1596 if (ShndxData.data() == nullptr) { 1597 Expected<const Elf_Shdr *> ShndxSec = 1598 ElfFile.getSection(SymTab->getShndxTable()->Index); 1599 if (!ShndxSec) 1600 return ShndxSec.takeError(); 1601 1602 Expected<ArrayRef<Elf_Word>> Data = 1603 ElfFile.template getSectionContentsAsArray<Elf_Word>(**ShndxSec); 1604 if (!Data) 1605 return Data.takeError(); 1606 1607 ShndxData = *Data; 1608 if (ShndxData.size() != Symbols->size()) 1609 return createStringError( 1610 errc::invalid_argument, 1611 "symbol section index table does not have the same number of " 1612 "entries as the symbol table"); 1613 } 1614 Elf_Word Index = ShndxData[&Sym - Symbols->begin()]; 1615 Expected<SectionBase *> Sec = Obj.sections().getSection( 1616 Index, 1617 "symbol '" + *Name + "' has invalid section index " + Twine(Index)); 1618 if (!Sec) 1619 return Sec.takeError(); 1620 1621 DefSection = *Sec; 1622 } else if (Sym.st_shndx >= SHN_LORESERVE) { 1623 if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) { 1624 return createStringError( 1625 errc::invalid_argument, 1626 "symbol '" + *Name + 1627 "' has unsupported value greater than or equal " 1628 "to SHN_LORESERVE: " + 1629 Twine(Sym.st_shndx)); 1630 } 1631 } else if (Sym.st_shndx != SHN_UNDEF) { 1632 Expected<SectionBase *> Sec = Obj.sections().getSection( 1633 Sym.st_shndx, "symbol '" + *Name + 1634 "' is defined has invalid section index " + 1635 Twine(Sym.st_shndx)); 1636 if (!Sec) 1637 return Sec.takeError(); 1638 1639 DefSection = *Sec; 1640 } 1641 1642 SymTab->addSymbol(*Name, Sym.getBinding(), Sym.getType(), DefSection, 1643 Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size); 1644 } 1645 1646 return Error::success(); 1647 } 1648 1649 template <class ELFT> 1650 static void getAddend(uint64_t &, const Elf_Rel_Impl<ELFT, false> &) {} 1651 1652 template <class ELFT> 1653 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) { 1654 ToSet = Rela.r_addend; 1655 } 1656 1657 template <class T> 1658 static Error initRelocations(RelocationSection *Relocs, T RelRange) { 1659 for (const auto &Rel : RelRange) { 1660 Relocation ToAdd; 1661 ToAdd.Offset = Rel.r_offset; 1662 getAddend(ToAdd.Addend, Rel); 1663 ToAdd.Type = Rel.getType(Relocs->getObject().IsMips64EL); 1664 1665 if (uint32_t Sym = Rel.getSymbol(Relocs->getObject().IsMips64EL)) { 1666 if (!Relocs->getObject().SymbolTable) 1667 return createStringError( 1668 errc::invalid_argument, 1669 "'" + Relocs->Name + "': relocation references symbol with index " + 1670 Twine(Sym) + ", but there is no symbol table"); 1671 Expected<Symbol *> SymByIndex = 1672 Relocs->getObject().SymbolTable->getSymbolByIndex(Sym); 1673 if (!SymByIndex) 1674 return SymByIndex.takeError(); 1675 1676 ToAdd.RelocSymbol = *SymByIndex; 1677 } 1678 1679 Relocs->addRelocation(ToAdd); 1680 } 1681 1682 return Error::success(); 1683 } 1684 1685 Expected<SectionBase *> SectionTableRef::getSection(uint32_t Index, 1686 Twine ErrMsg) { 1687 if (Index == SHN_UNDEF || Index > Sections.size()) 1688 return createStringError(errc::invalid_argument, ErrMsg); 1689 return Sections[Index - 1].get(); 1690 } 1691 1692 template <class T> 1693 Expected<T *> SectionTableRef::getSectionOfType(uint32_t Index, 1694 Twine IndexErrMsg, 1695 Twine TypeErrMsg) { 1696 Expected<SectionBase *> BaseSec = getSection(Index, IndexErrMsg); 1697 if (!BaseSec) 1698 return BaseSec.takeError(); 1699 1700 if (T *Sec = dyn_cast<T>(*BaseSec)) 1701 return Sec; 1702 1703 return createStringError(errc::invalid_argument, TypeErrMsg); 1704 } 1705 1706 template <class ELFT> 1707 Expected<SectionBase &> ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) { 1708 switch (Shdr.sh_type) { 1709 case SHT_REL: 1710 case SHT_RELA: 1711 case SHT_CREL: 1712 if (Shdr.sh_flags & SHF_ALLOC) { 1713 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) 1714 return Obj.addSection<DynamicRelocationSection>(*Data); 1715 else 1716 return Data.takeError(); 1717 } 1718 return Obj.addSection<RelocationSection>(Obj); 1719 case SHT_STRTAB: 1720 // If a string table is allocated we don't want to mess with it. That would 1721 // mean altering the memory image. There are no special link types or 1722 // anything so we can just use a Section. 1723 if (Shdr.sh_flags & SHF_ALLOC) { 1724 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) 1725 return Obj.addSection<Section>(*Data); 1726 else 1727 return Data.takeError(); 1728 } 1729 return Obj.addSection<StringTableSection>(); 1730 case SHT_HASH: 1731 case SHT_GNU_HASH: 1732 // Hash tables should refer to SHT_DYNSYM which we're not going to change. 1733 // Because of this we don't need to mess with the hash tables either. 1734 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) 1735 return Obj.addSection<Section>(*Data); 1736 else 1737 return Data.takeError(); 1738 case SHT_GROUP: 1739 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) 1740 return Obj.addSection<GroupSection>(*Data); 1741 else 1742 return Data.takeError(); 1743 case SHT_DYNSYM: 1744 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) 1745 return Obj.addSection<DynamicSymbolTableSection>(*Data); 1746 else 1747 return Data.takeError(); 1748 case SHT_DYNAMIC: 1749 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) 1750 return Obj.addSection<DynamicSection>(*Data); 1751 else 1752 return Data.takeError(); 1753 case SHT_SYMTAB: { 1754 // Multiple SHT_SYMTAB sections are forbidden by the ELF gABI. 1755 if (Obj.SymbolTable != nullptr) 1756 return createStringError(llvm::errc::invalid_argument, 1757 "found multiple SHT_SYMTAB sections"); 1758 auto &SymTab = Obj.addSection<SymbolTableSection>(); 1759 Obj.SymbolTable = &SymTab; 1760 return SymTab; 1761 } 1762 case SHT_SYMTAB_SHNDX: { 1763 auto &ShndxSection = Obj.addSection<SectionIndexSection>(); 1764 Obj.SectionIndexTable = &ShndxSection; 1765 return ShndxSection; 1766 } 1767 case SHT_NOBITS: 1768 return Obj.addSection<Section>(ArrayRef<uint8_t>()); 1769 default: { 1770 Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr); 1771 if (!Data) 1772 return Data.takeError(); 1773 1774 Expected<StringRef> Name = ElfFile.getSectionName(Shdr); 1775 if (!Name) 1776 return Name.takeError(); 1777 1778 if (!(Shdr.sh_flags & ELF::SHF_COMPRESSED)) 1779 return Obj.addSection<Section>(*Data); 1780 auto *Chdr = reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data->data()); 1781 return Obj.addSection<CompressedSection>(CompressedSection( 1782 *Data, Chdr->ch_type, Chdr->ch_size, Chdr->ch_addralign)); 1783 } 1784 } 1785 } 1786 1787 template <class ELFT> Error ELFBuilder<ELFT>::readSectionHeaders() { 1788 uint32_t Index = 0; 1789 Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections = 1790 ElfFile.sections(); 1791 if (!Sections) 1792 return Sections.takeError(); 1793 1794 for (const typename ELFFile<ELFT>::Elf_Shdr &Shdr : *Sections) { 1795 if (Index == 0) { 1796 ++Index; 1797 continue; 1798 } 1799 Expected<SectionBase &> Sec = makeSection(Shdr); 1800 if (!Sec) 1801 return Sec.takeError(); 1802 1803 Expected<StringRef> SecName = ElfFile.getSectionName(Shdr); 1804 if (!SecName) 1805 return SecName.takeError(); 1806 Sec->Name = SecName->str(); 1807 Sec->Type = Sec->OriginalType = Shdr.sh_type; 1808 Sec->Flags = Sec->OriginalFlags = Shdr.sh_flags; 1809 Sec->Addr = Shdr.sh_addr; 1810 Sec->Offset = Shdr.sh_offset; 1811 Sec->OriginalOffset = Shdr.sh_offset; 1812 Sec->Size = Shdr.sh_size; 1813 Sec->Link = Shdr.sh_link; 1814 Sec->Info = Shdr.sh_info; 1815 Sec->Align = Shdr.sh_addralign; 1816 Sec->EntrySize = Shdr.sh_entsize; 1817 Sec->Index = Index++; 1818 Sec->OriginalIndex = Sec->Index; 1819 Sec->OriginalData = ArrayRef<uint8_t>( 1820 ElfFile.base() + Shdr.sh_offset, 1821 (Shdr.sh_type == SHT_NOBITS) ? (size_t)0 : Shdr.sh_size); 1822 } 1823 1824 return Error::success(); 1825 } 1826 1827 template <class ELFT> Error ELFBuilder<ELFT>::readSections(bool EnsureSymtab) { 1828 uint32_t ShstrIndex = ElfFile.getHeader().e_shstrndx; 1829 if (ShstrIndex == SHN_XINDEX) { 1830 Expected<const Elf_Shdr *> Sec = ElfFile.getSection(0); 1831 if (!Sec) 1832 return Sec.takeError(); 1833 1834 ShstrIndex = (*Sec)->sh_link; 1835 } 1836 1837 if (ShstrIndex == SHN_UNDEF) 1838 Obj.HadShdrs = false; 1839 else { 1840 Expected<StringTableSection *> Sec = 1841 Obj.sections().template getSectionOfType<StringTableSection>( 1842 ShstrIndex, 1843 "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " + 1844 " is invalid", 1845 "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " + 1846 " does not reference a string table"); 1847 if (!Sec) 1848 return Sec.takeError(); 1849 1850 Obj.SectionNames = *Sec; 1851 } 1852 1853 // If a section index table exists we'll need to initialize it before we 1854 // initialize the symbol table because the symbol table might need to 1855 // reference it. 1856 if (Obj.SectionIndexTable) 1857 if (Error Err = Obj.SectionIndexTable->initialize(Obj.sections())) 1858 return Err; 1859 1860 // Now that all of the sections have been added we can fill out some extra 1861 // details about symbol tables. We need the symbol table filled out before 1862 // any relocations. 1863 if (Obj.SymbolTable) { 1864 if (Error Err = Obj.SymbolTable->initialize(Obj.sections())) 1865 return Err; 1866 if (Error Err = initSymbolTable(Obj.SymbolTable)) 1867 return Err; 1868 } else if (EnsureSymtab) { 1869 if (Error Err = Obj.addNewSymbolTable()) 1870 return Err; 1871 } 1872 1873 // Now that all sections and symbols have been added we can add 1874 // relocations that reference symbols and set the link and info fields for 1875 // relocation sections. 1876 for (SectionBase &Sec : Obj.sections()) { 1877 if (&Sec == Obj.SymbolTable) 1878 continue; 1879 if (Error Err = Sec.initialize(Obj.sections())) 1880 return Err; 1881 if (auto RelSec = dyn_cast<RelocationSection>(&Sec)) { 1882 Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections = 1883 ElfFile.sections(); 1884 if (!Sections) 1885 return Sections.takeError(); 1886 1887 const typename ELFFile<ELFT>::Elf_Shdr *Shdr = 1888 Sections->begin() + RelSec->Index; 1889 if (RelSec->Type == SHT_CREL) { 1890 auto RelsOrRelas = ElfFile.crels(*Shdr); 1891 if (!RelsOrRelas) 1892 return RelsOrRelas.takeError(); 1893 if (Error Err = initRelocations(RelSec, RelsOrRelas->first)) 1894 return Err; 1895 if (Error Err = initRelocations(RelSec, RelsOrRelas->second)) 1896 return Err; 1897 } else if (RelSec->Type == SHT_REL) { 1898 Expected<typename ELFFile<ELFT>::Elf_Rel_Range> Rels = 1899 ElfFile.rels(*Shdr); 1900 if (!Rels) 1901 return Rels.takeError(); 1902 1903 if (Error Err = initRelocations(RelSec, *Rels)) 1904 return Err; 1905 } else { 1906 Expected<typename ELFFile<ELFT>::Elf_Rela_Range> Relas = 1907 ElfFile.relas(*Shdr); 1908 if (!Relas) 1909 return Relas.takeError(); 1910 1911 if (Error Err = initRelocations(RelSec, *Relas)) 1912 return Err; 1913 } 1914 } else if (auto GroupSec = dyn_cast<GroupSection>(&Sec)) { 1915 if (Error Err = initGroupSection(GroupSec)) 1916 return Err; 1917 } 1918 } 1919 1920 return Error::success(); 1921 } 1922 1923 template <class ELFT> Error ELFBuilder<ELFT>::build(bool EnsureSymtab) { 1924 if (Error E = readSectionHeaders()) 1925 return E; 1926 if (Error E = findEhdrOffset()) 1927 return E; 1928 1929 // The ELFFile whose ELF headers and program headers are copied into the 1930 // output file. Normally the same as ElfFile, but if we're extracting a 1931 // loadable partition it will point to the partition's headers. 1932 Expected<ELFFile<ELFT>> HeadersFile = ELFFile<ELFT>::create(toStringRef( 1933 {ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset})); 1934 if (!HeadersFile) 1935 return HeadersFile.takeError(); 1936 1937 const typename ELFFile<ELFT>::Elf_Ehdr &Ehdr = HeadersFile->getHeader(); 1938 Obj.Is64Bits = Ehdr.e_ident[EI_CLASS] == ELFCLASS64; 1939 Obj.OSABI = Ehdr.e_ident[EI_OSABI]; 1940 Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION]; 1941 Obj.Type = Ehdr.e_type; 1942 Obj.Machine = Ehdr.e_machine; 1943 Obj.Version = Ehdr.e_version; 1944 Obj.Entry = Ehdr.e_entry; 1945 Obj.Flags = Ehdr.e_flags; 1946 1947 if (Error E = readSections(EnsureSymtab)) 1948 return E; 1949 return readProgramHeaders(*HeadersFile); 1950 } 1951 1952 Writer::~Writer() = default; 1953 1954 Reader::~Reader() = default; 1955 1956 Expected<std::unique_ptr<Object>> 1957 BinaryReader::create(bool /*EnsureSymtab*/) const { 1958 return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build(); 1959 } 1960 1961 Expected<std::vector<IHexRecord>> IHexReader::parse() const { 1962 SmallVector<StringRef, 16> Lines; 1963 std::vector<IHexRecord> Records; 1964 bool HasSections = false; 1965 1966 MemBuf->getBuffer().split(Lines, '\n'); 1967 Records.reserve(Lines.size()); 1968 for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) { 1969 StringRef Line = Lines[LineNo - 1].trim(); 1970 if (Line.empty()) 1971 continue; 1972 1973 Expected<IHexRecord> R = IHexRecord::parse(Line); 1974 if (!R) 1975 return parseError(LineNo, R.takeError()); 1976 if (R->Type == IHexRecord::EndOfFile) 1977 break; 1978 HasSections |= (R->Type == IHexRecord::Data); 1979 Records.push_back(*R); 1980 } 1981 if (!HasSections) 1982 return parseError(-1U, "no sections"); 1983 1984 return std::move(Records); 1985 } 1986 1987 Expected<std::unique_ptr<Object>> 1988 IHexReader::create(bool /*EnsureSymtab*/) const { 1989 Expected<std::vector<IHexRecord>> Records = parse(); 1990 if (!Records) 1991 return Records.takeError(); 1992 1993 return IHexELFBuilder(*Records).build(); 1994 } 1995 1996 Expected<std::unique_ptr<Object>> ELFReader::create(bool EnsureSymtab) const { 1997 auto Obj = std::make_unique<Object>(); 1998 if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) { 1999 ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition); 2000 if (Error Err = Builder.build(EnsureSymtab)) 2001 return std::move(Err); 2002 return std::move(Obj); 2003 } else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) { 2004 ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition); 2005 if (Error Err = Builder.build(EnsureSymtab)) 2006 return std::move(Err); 2007 return std::move(Obj); 2008 } else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) { 2009 ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition); 2010 if (Error Err = Builder.build(EnsureSymtab)) 2011 return std::move(Err); 2012 return std::move(Obj); 2013 } else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) { 2014 ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition); 2015 if (Error Err = Builder.build(EnsureSymtab)) 2016 return std::move(Err); 2017 return std::move(Obj); 2018 } 2019 return createStringError(errc::invalid_argument, "invalid file type"); 2020 } 2021 2022 template <class ELFT> void ELFWriter<ELFT>::writeEhdr() { 2023 Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf->getBufferStart()); 2024 std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0); 2025 Ehdr.e_ident[EI_MAG0] = 0x7f; 2026 Ehdr.e_ident[EI_MAG1] = 'E'; 2027 Ehdr.e_ident[EI_MAG2] = 'L'; 2028 Ehdr.e_ident[EI_MAG3] = 'F'; 2029 Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; 2030 Ehdr.e_ident[EI_DATA] = 2031 ELFT::Endianness == llvm::endianness::big ? ELFDATA2MSB : ELFDATA2LSB; 2032 Ehdr.e_ident[EI_VERSION] = EV_CURRENT; 2033 Ehdr.e_ident[EI_OSABI] = Obj.OSABI; 2034 Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion; 2035 2036 Ehdr.e_type = Obj.Type; 2037 Ehdr.e_machine = Obj.Machine; 2038 Ehdr.e_version = Obj.Version; 2039 Ehdr.e_entry = Obj.Entry; 2040 // We have to use the fully-qualified name llvm::size 2041 // since some compilers complain on ambiguous resolution. 2042 Ehdr.e_phnum = llvm::size(Obj.segments()); 2043 Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0; 2044 Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0; 2045 Ehdr.e_flags = Obj.Flags; 2046 Ehdr.e_ehsize = sizeof(Elf_Ehdr); 2047 if (WriteSectionHeaders && Obj.sections().size() != 0) { 2048 Ehdr.e_shentsize = sizeof(Elf_Shdr); 2049 Ehdr.e_shoff = Obj.SHOff; 2050 // """ 2051 // If the number of sections is greater than or equal to 2052 // SHN_LORESERVE (0xff00), this member has the value zero and the actual 2053 // number of section header table entries is contained in the sh_size field 2054 // of the section header at index 0. 2055 // """ 2056 auto Shnum = Obj.sections().size() + 1; 2057 if (Shnum >= SHN_LORESERVE) 2058 Ehdr.e_shnum = 0; 2059 else 2060 Ehdr.e_shnum = Shnum; 2061 // """ 2062 // If the section name string table section index is greater than or equal 2063 // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff) 2064 // and the actual index of the section name string table section is 2065 // contained in the sh_link field of the section header at index 0. 2066 // """ 2067 if (Obj.SectionNames->Index >= SHN_LORESERVE) 2068 Ehdr.e_shstrndx = SHN_XINDEX; 2069 else 2070 Ehdr.e_shstrndx = Obj.SectionNames->Index; 2071 } else { 2072 Ehdr.e_shentsize = 0; 2073 Ehdr.e_shoff = 0; 2074 Ehdr.e_shnum = 0; 2075 Ehdr.e_shstrndx = 0; 2076 } 2077 } 2078 2079 template <class ELFT> void ELFWriter<ELFT>::writePhdrs() { 2080 for (auto &Seg : Obj.segments()) 2081 writePhdr(Seg); 2082 } 2083 2084 template <class ELFT> void ELFWriter<ELFT>::writeShdrs() { 2085 // This reference serves to write the dummy section header at the begining 2086 // of the file. It is not used for anything else 2087 Elf_Shdr &Shdr = 2088 *reinterpret_cast<Elf_Shdr *>(Buf->getBufferStart() + Obj.SHOff); 2089 Shdr.sh_name = 0; 2090 Shdr.sh_type = SHT_NULL; 2091 Shdr.sh_flags = 0; 2092 Shdr.sh_addr = 0; 2093 Shdr.sh_offset = 0; 2094 // See writeEhdr for why we do this. 2095 uint64_t Shnum = Obj.sections().size() + 1; 2096 if (Shnum >= SHN_LORESERVE) 2097 Shdr.sh_size = Shnum; 2098 else 2099 Shdr.sh_size = 0; 2100 // See writeEhdr for why we do this. 2101 if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE) 2102 Shdr.sh_link = Obj.SectionNames->Index; 2103 else 2104 Shdr.sh_link = 0; 2105 Shdr.sh_info = 0; 2106 Shdr.sh_addralign = 0; 2107 Shdr.sh_entsize = 0; 2108 2109 for (SectionBase &Sec : Obj.sections()) 2110 writeShdr(Sec); 2111 } 2112 2113 template <class ELFT> Error ELFWriter<ELFT>::writeSectionData() { 2114 for (SectionBase &Sec : Obj.sections()) 2115 // Segments are responsible for writing their contents, so only write the 2116 // section data if the section is not in a segment. Note that this renders 2117 // sections in segments effectively immutable. 2118 if (Sec.ParentSegment == nullptr) 2119 if (Error Err = Sec.accept(*SecWriter)) 2120 return Err; 2121 2122 return Error::success(); 2123 } 2124 2125 template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() { 2126 for (Segment &Seg : Obj.segments()) { 2127 size_t Size = std::min<size_t>(Seg.FileSize, Seg.getContents().size()); 2128 std::memcpy(Buf->getBufferStart() + Seg.Offset, Seg.getContents().data(), 2129 Size); 2130 } 2131 2132 for (const auto &it : Obj.getUpdatedSections()) { 2133 SectionBase *Sec = it.first; 2134 ArrayRef<uint8_t> Data = it.second; 2135 2136 auto *Parent = Sec->ParentSegment; 2137 assert(Parent && "This section should've been part of a segment."); 2138 uint64_t Offset = 2139 Sec->OriginalOffset - Parent->OriginalOffset + Parent->Offset; 2140 llvm::copy(Data, Buf->getBufferStart() + Offset); 2141 } 2142 2143 // Iterate over removed sections and overwrite their old data with zeroes. 2144 for (auto &Sec : Obj.removedSections()) { 2145 Segment *Parent = Sec.ParentSegment; 2146 if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0) 2147 continue; 2148 uint64_t Offset = 2149 Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset; 2150 std::memset(Buf->getBufferStart() + Offset, 0, Sec.Size); 2151 } 2152 } 2153 2154 template <class ELFT> 2155 ELFWriter<ELFT>::ELFWriter(Object &Obj, raw_ostream &Buf, bool WSH, 2156 bool OnlyKeepDebug) 2157 : Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs), 2158 OnlyKeepDebug(OnlyKeepDebug) {} 2159 2160 Error Object::updateSection(StringRef Name, ArrayRef<uint8_t> Data) { 2161 auto It = llvm::find_if(Sections, 2162 [&](const SecPtr &Sec) { return Sec->Name == Name; }); 2163 if (It == Sections.end()) 2164 return createStringError(errc::invalid_argument, "section '%s' not found", 2165 Name.str().c_str()); 2166 2167 auto *OldSec = It->get(); 2168 if (!OldSec->hasContents()) 2169 return createStringError( 2170 errc::invalid_argument, 2171 "section '%s' cannot be updated because it does not have contents", 2172 Name.str().c_str()); 2173 2174 if (Data.size() > OldSec->Size && OldSec->ParentSegment) 2175 return createStringError(errc::invalid_argument, 2176 "cannot fit data of size %zu into section '%s' " 2177 "with size %" PRIu64 " that is part of a segment", 2178 Data.size(), Name.str().c_str(), OldSec->Size); 2179 2180 if (!OldSec->ParentSegment) { 2181 *It = std::make_unique<OwnedDataSection>(*OldSec, Data); 2182 } else { 2183 // The segment writer will be in charge of updating these contents. 2184 OldSec->Size = Data.size(); 2185 UpdatedSections[OldSec] = Data; 2186 } 2187 2188 return Error::success(); 2189 } 2190 2191 Error Object::removeSections( 2192 bool AllowBrokenLinks, std::function<bool(const SectionBase &)> ToRemove) { 2193 2194 auto Iter = std::stable_partition( 2195 std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) { 2196 if (ToRemove(*Sec)) 2197 return false; 2198 // TODO: A compressed relocation section may be recognized as 2199 // RelocationSectionBase. We don't want such a section to be removed. 2200 if (isa<CompressedSection>(Sec)) 2201 return true; 2202 if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) { 2203 if (auto ToRelSec = RelSec->getSection()) 2204 return !ToRemove(*ToRelSec); 2205 } 2206 // Remove empty group sections. 2207 if (Sec->Type == ELF::SHT_GROUP) { 2208 auto GroupSec = cast<GroupSection>(Sec.get()); 2209 return !llvm::all_of(GroupSec->members(), ToRemove); 2210 } 2211 return true; 2212 }); 2213 if (SymbolTable != nullptr && ToRemove(*SymbolTable)) 2214 SymbolTable = nullptr; 2215 if (SectionNames != nullptr && ToRemove(*SectionNames)) 2216 SectionNames = nullptr; 2217 if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable)) 2218 SectionIndexTable = nullptr; 2219 // Now make sure there are no remaining references to the sections that will 2220 // be removed. Sometimes it is impossible to remove a reference so we emit 2221 // an error here instead. 2222 std::unordered_set<const SectionBase *> RemoveSections; 2223 RemoveSections.reserve(std::distance(Iter, std::end(Sections))); 2224 for (auto &RemoveSec : make_range(Iter, std::end(Sections))) { 2225 for (auto &Segment : Segments) 2226 Segment->removeSection(RemoveSec.get()); 2227 RemoveSec->onRemove(); 2228 RemoveSections.insert(RemoveSec.get()); 2229 } 2230 2231 // For each section that remains alive, we want to remove the dead references. 2232 // This either might update the content of the section (e.g. remove symbols 2233 // from symbol table that belongs to removed section) or trigger an error if 2234 // a live section critically depends on a section being removed somehow 2235 // (e.g. the removed section is referenced by a relocation). 2236 for (auto &KeepSec : make_range(std::begin(Sections), Iter)) { 2237 if (Error E = KeepSec->removeSectionReferences( 2238 AllowBrokenLinks, [&RemoveSections](const SectionBase *Sec) { 2239 return RemoveSections.find(Sec) != RemoveSections.end(); 2240 })) 2241 return E; 2242 } 2243 2244 // Transfer removed sections into the Object RemovedSections container for use 2245 // later. 2246 std::move(Iter, Sections.end(), std::back_inserter(RemovedSections)); 2247 // Now finally get rid of them all together. 2248 Sections.erase(Iter, std::end(Sections)); 2249 return Error::success(); 2250 } 2251 2252 Error Object::replaceSections( 2253 const DenseMap<SectionBase *, SectionBase *> &FromTo) { 2254 auto SectionIndexLess = [](const SecPtr &Lhs, const SecPtr &Rhs) { 2255 return Lhs->Index < Rhs->Index; 2256 }; 2257 assert(llvm::is_sorted(Sections, SectionIndexLess) && 2258 "Sections are expected to be sorted by Index"); 2259 // Set indices of new sections so that they can be later sorted into positions 2260 // of removed ones. 2261 for (auto &I : FromTo) 2262 I.second->Index = I.first->Index; 2263 2264 // Notify all sections about the replacement. 2265 for (auto &Sec : Sections) 2266 Sec->replaceSectionReferences(FromTo); 2267 2268 if (Error E = removeSections( 2269 /*AllowBrokenLinks=*/false, 2270 [=](const SectionBase &Sec) { return FromTo.count(&Sec) > 0; })) 2271 return E; 2272 llvm::sort(Sections, SectionIndexLess); 2273 return Error::success(); 2274 } 2275 2276 Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) { 2277 if (SymbolTable) 2278 for (const SecPtr &Sec : Sections) 2279 if (Error E = Sec->removeSymbols(ToRemove)) 2280 return E; 2281 return Error::success(); 2282 } 2283 2284 Error Object::addNewSymbolTable() { 2285 assert(!SymbolTable && "Object must not has a SymbolTable."); 2286 2287 // Reuse an existing SHT_STRTAB section if it exists. 2288 StringTableSection *StrTab = nullptr; 2289 for (SectionBase &Sec : sections()) { 2290 if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) { 2291 StrTab = static_cast<StringTableSection *>(&Sec); 2292 2293 // Prefer a string table that is not the section header string table, if 2294 // such a table exists. 2295 if (SectionNames != &Sec) 2296 break; 2297 } 2298 } 2299 if (!StrTab) 2300 StrTab = &addSection<StringTableSection>(); 2301 2302 SymbolTableSection &SymTab = addSection<SymbolTableSection>(); 2303 SymTab.Name = ".symtab"; 2304 SymTab.Link = StrTab->Index; 2305 if (Error Err = SymTab.initialize(sections())) 2306 return Err; 2307 SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0); 2308 2309 SymbolTable = &SymTab; 2310 2311 return Error::success(); 2312 } 2313 2314 // Orders segments such that if x = y->ParentSegment then y comes before x. 2315 static void orderSegments(std::vector<Segment *> &Segments) { 2316 llvm::stable_sort(Segments, compareSegmentsByOffset); 2317 } 2318 2319 // This function finds a consistent layout for a list of segments starting from 2320 // an Offset. It assumes that Segments have been sorted by orderSegments and 2321 // returns an Offset one past the end of the last segment. 2322 static uint64_t layoutSegments(std::vector<Segment *> &Segments, 2323 uint64_t Offset) { 2324 assert(llvm::is_sorted(Segments, compareSegmentsByOffset)); 2325 // The only way a segment should move is if a section was between two 2326 // segments and that section was removed. If that section isn't in a segment 2327 // then it's acceptable, but not ideal, to simply move it to after the 2328 // segments. So we can simply layout segments one after the other accounting 2329 // for alignment. 2330 for (Segment *Seg : Segments) { 2331 // We assume that segments have been ordered by OriginalOffset and Index 2332 // such that a parent segment will always come before a child segment in 2333 // OrderedSegments. This means that the Offset of the ParentSegment should 2334 // already be set and we can set our offset relative to it. 2335 if (Seg->ParentSegment != nullptr) { 2336 Segment *Parent = Seg->ParentSegment; 2337 Seg->Offset = 2338 Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset; 2339 } else { 2340 Seg->Offset = 2341 alignTo(Offset, std::max<uint64_t>(Seg->Align, 1), Seg->VAddr); 2342 } 2343 Offset = std::max(Offset, Seg->Offset + Seg->FileSize); 2344 } 2345 return Offset; 2346 } 2347 2348 // This function finds a consistent layout for a list of sections. It assumes 2349 // that the ->ParentSegment of each section has already been laid out. The 2350 // supplied starting Offset is used for the starting offset of any section that 2351 // does not have a ParentSegment. It returns either the offset given if all 2352 // sections had a ParentSegment or an offset one past the last section if there 2353 // was a section that didn't have a ParentSegment. 2354 template <class Range> 2355 static uint64_t layoutSections(Range Sections, uint64_t Offset) { 2356 // Now the offset of every segment has been set we can assign the offsets 2357 // of each section. For sections that are covered by a segment we should use 2358 // the segment's original offset and the section's original offset to compute 2359 // the offset from the start of the segment. Using the offset from the start 2360 // of the segment we can assign a new offset to the section. For sections not 2361 // covered by segments we can just bump Offset to the next valid location. 2362 // While it is not necessary, layout the sections in the order based on their 2363 // original offsets to resemble the input file as close as possible. 2364 std::vector<SectionBase *> OutOfSegmentSections; 2365 uint32_t Index = 1; 2366 for (auto &Sec : Sections) { 2367 Sec.Index = Index++; 2368 if (Sec.ParentSegment != nullptr) { 2369 const Segment &Segment = *Sec.ParentSegment; 2370 Sec.Offset = 2371 Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset); 2372 } else 2373 OutOfSegmentSections.push_back(&Sec); 2374 } 2375 2376 llvm::stable_sort(OutOfSegmentSections, 2377 [](const SectionBase *Lhs, const SectionBase *Rhs) { 2378 return Lhs->OriginalOffset < Rhs->OriginalOffset; 2379 }); 2380 for (auto *Sec : OutOfSegmentSections) { 2381 Offset = alignTo(Offset, Sec->Align == 0 ? 1 : Sec->Align); 2382 Sec->Offset = Offset; 2383 if (Sec->Type != SHT_NOBITS) 2384 Offset += Sec->Size; 2385 } 2386 return Offset; 2387 } 2388 2389 // Rewrite sh_offset after some sections are changed to SHT_NOBITS and thus 2390 // occupy no space in the file. 2391 static uint64_t layoutSectionsForOnlyKeepDebug(Object &Obj, uint64_t Off) { 2392 // The layout algorithm requires the sections to be handled in the order of 2393 // their offsets in the input file, at least inside segments. 2394 std::vector<SectionBase *> Sections; 2395 Sections.reserve(Obj.sections().size()); 2396 uint32_t Index = 1; 2397 for (auto &Sec : Obj.sections()) { 2398 Sec.Index = Index++; 2399 Sections.push_back(&Sec); 2400 } 2401 llvm::stable_sort(Sections, 2402 [](const SectionBase *Lhs, const SectionBase *Rhs) { 2403 return Lhs->OriginalOffset < Rhs->OriginalOffset; 2404 }); 2405 2406 for (auto *Sec : Sections) { 2407 auto *FirstSec = Sec->ParentSegment && Sec->ParentSegment->Type == PT_LOAD 2408 ? Sec->ParentSegment->firstSection() 2409 : nullptr; 2410 2411 // The first section in a PT_LOAD has to have congruent offset and address 2412 // modulo the alignment, which usually equals the maximum page size. 2413 if (FirstSec && FirstSec == Sec) 2414 Off = alignTo(Off, Sec->ParentSegment->Align, Sec->Addr); 2415 2416 // sh_offset is not significant for SHT_NOBITS sections, but the congruence 2417 // rule must be followed if it is the first section in a PT_LOAD. Do not 2418 // advance Off. 2419 if (Sec->Type == SHT_NOBITS) { 2420 Sec->Offset = Off; 2421 continue; 2422 } 2423 2424 if (!FirstSec) { 2425 // FirstSec being nullptr generally means that Sec does not have the 2426 // SHF_ALLOC flag. 2427 Off = Sec->Align ? alignTo(Off, Sec->Align) : Off; 2428 } else if (FirstSec != Sec) { 2429 // The offset is relative to the first section in the PT_LOAD segment. Use 2430 // sh_offset for non-SHF_ALLOC sections. 2431 Off = Sec->OriginalOffset - FirstSec->OriginalOffset + FirstSec->Offset; 2432 } 2433 Sec->Offset = Off; 2434 Off += Sec->Size; 2435 } 2436 return Off; 2437 } 2438 2439 // Rewrite p_offset and p_filesz of non-PT_PHDR segments after sh_offset values 2440 // have been updated. 2441 static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector<Segment *> &Segments, 2442 uint64_t HdrEnd) { 2443 uint64_t MaxOffset = 0; 2444 for (Segment *Seg : Segments) { 2445 if (Seg->Type == PT_PHDR) 2446 continue; 2447 2448 // The segment offset is generally the offset of the first section. 2449 // 2450 // For a segment containing no section (see sectionWithinSegment), if it has 2451 // a parent segment, copy the parent segment's offset field. This works for 2452 // empty PT_TLS. If no parent segment, use 0: the segment is not useful for 2453 // debugging anyway. 2454 const SectionBase *FirstSec = Seg->firstSection(); 2455 uint64_t Offset = 2456 FirstSec ? FirstSec->Offset 2457 : (Seg->ParentSegment ? Seg->ParentSegment->Offset : 0); 2458 uint64_t FileSize = 0; 2459 for (const SectionBase *Sec : Seg->Sections) { 2460 uint64_t Size = Sec->Type == SHT_NOBITS ? 0 : Sec->Size; 2461 if (Sec->Offset + Size > Offset) 2462 FileSize = std::max(FileSize, Sec->Offset + Size - Offset); 2463 } 2464 2465 // If the segment includes EHDR and program headers, don't make it smaller 2466 // than the headers. 2467 if (Seg->Offset < HdrEnd && HdrEnd <= Seg->Offset + Seg->FileSize) { 2468 FileSize += Offset - Seg->Offset; 2469 Offset = Seg->Offset; 2470 FileSize = std::max(FileSize, HdrEnd - Offset); 2471 } 2472 2473 Seg->Offset = Offset; 2474 Seg->FileSize = FileSize; 2475 MaxOffset = std::max(MaxOffset, Offset + FileSize); 2476 } 2477 return MaxOffset; 2478 } 2479 2480 template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() { 2481 Segment &ElfHdr = Obj.ElfHdrSegment; 2482 ElfHdr.Type = PT_PHDR; 2483 ElfHdr.Flags = 0; 2484 ElfHdr.VAddr = 0; 2485 ElfHdr.PAddr = 0; 2486 ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr); 2487 ElfHdr.Align = 0; 2488 } 2489 2490 template <class ELFT> void ELFWriter<ELFT>::assignOffsets() { 2491 // We need a temporary list of segments that has a special order to it 2492 // so that we know that anytime ->ParentSegment is set that segment has 2493 // already had its offset properly set. 2494 std::vector<Segment *> OrderedSegments; 2495 for (Segment &Segment : Obj.segments()) 2496 OrderedSegments.push_back(&Segment); 2497 OrderedSegments.push_back(&Obj.ElfHdrSegment); 2498 OrderedSegments.push_back(&Obj.ProgramHdrSegment); 2499 orderSegments(OrderedSegments); 2500 2501 uint64_t Offset; 2502 if (OnlyKeepDebug) { 2503 // For --only-keep-debug, the sections that did not preserve contents were 2504 // changed to SHT_NOBITS. We now rewrite sh_offset fields of sections, and 2505 // then rewrite p_offset/p_filesz of program headers. 2506 uint64_t HdrEnd = 2507 sizeof(Elf_Ehdr) + llvm::size(Obj.segments()) * sizeof(Elf_Phdr); 2508 Offset = layoutSectionsForOnlyKeepDebug(Obj, HdrEnd); 2509 Offset = std::max(Offset, 2510 layoutSegmentsForOnlyKeepDebug(OrderedSegments, HdrEnd)); 2511 } else { 2512 // Offset is used as the start offset of the first segment to be laid out. 2513 // Since the ELF Header (ElfHdrSegment) must be at the start of the file, 2514 // we start at offset 0. 2515 Offset = layoutSegments(OrderedSegments, 0); 2516 Offset = layoutSections(Obj.sections(), Offset); 2517 } 2518 // If we need to write the section header table out then we need to align the 2519 // Offset so that SHOffset is valid. 2520 if (WriteSectionHeaders) 2521 Offset = alignTo(Offset, sizeof(Elf_Addr)); 2522 Obj.SHOff = Offset; 2523 } 2524 2525 template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const { 2526 // We already have the section header offset so we can calculate the total 2527 // size by just adding up the size of each section header. 2528 if (!WriteSectionHeaders) 2529 return Obj.SHOff; 2530 size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr. 2531 return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr); 2532 } 2533 2534 template <class ELFT> Error ELFWriter<ELFT>::write() { 2535 // Segment data must be written first, so that the ELF header and program 2536 // header tables can overwrite it, if covered by a segment. 2537 writeSegmentData(); 2538 writeEhdr(); 2539 writePhdrs(); 2540 if (Error E = writeSectionData()) 2541 return E; 2542 if (WriteSectionHeaders) 2543 writeShdrs(); 2544 2545 // TODO: Implement direct writing to the output stream (without intermediate 2546 // memory buffer Buf). 2547 Out.write(Buf->getBufferStart(), Buf->getBufferSize()); 2548 return Error::success(); 2549 } 2550 2551 static Error removeUnneededSections(Object &Obj) { 2552 // We can remove an empty symbol table from non-relocatable objects. 2553 // Relocatable objects typically have relocation sections whose 2554 // sh_link field points to .symtab, so we can't remove .symtab 2555 // even if it is empty. 2556 if (Obj.isRelocatable() || Obj.SymbolTable == nullptr || 2557 !Obj.SymbolTable->empty()) 2558 return Error::success(); 2559 2560 // .strtab can be used for section names. In such a case we shouldn't 2561 // remove it. 2562 auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames 2563 ? nullptr 2564 : Obj.SymbolTable->getStrTab(); 2565 return Obj.removeSections(false, [&](const SectionBase &Sec) { 2566 return &Sec == Obj.SymbolTable || &Sec == StrTab; 2567 }); 2568 } 2569 2570 template <class ELFT> Error ELFWriter<ELFT>::finalize() { 2571 // It could happen that SectionNames has been removed and yet the user wants 2572 // a section header table output. We need to throw an error if a user tries 2573 // to do that. 2574 if (Obj.SectionNames == nullptr && WriteSectionHeaders) 2575 return createStringError(llvm::errc::invalid_argument, 2576 "cannot write section header table because " 2577 "section header string table was removed"); 2578 2579 if (Error E = removeUnneededSections(Obj)) 2580 return E; 2581 2582 // If the .symtab indices have not been changed, restore the sh_link to 2583 // .symtab for sections that were linked to .symtab. 2584 if (Obj.SymbolTable && !Obj.SymbolTable->indicesChanged()) 2585 for (SectionBase &Sec : Obj.sections()) 2586 Sec.restoreSymTabLink(*Obj.SymbolTable); 2587 2588 // We need to assign indexes before we perform layout because we need to know 2589 // if we need large indexes or not. We can assign indexes first and check as 2590 // we go to see if we will actully need large indexes. 2591 bool NeedsLargeIndexes = false; 2592 if (Obj.sections().size() >= SHN_LORESERVE) { 2593 SectionTableRef Sections = Obj.sections(); 2594 // Sections doesn't include the null section header, so account for this 2595 // when skipping the first N sections. 2596 NeedsLargeIndexes = 2597 any_of(drop_begin(Sections, SHN_LORESERVE - 1), 2598 [](const SectionBase &Sec) { return Sec.HasSymbol; }); 2599 // TODO: handle case where only one section needs the large index table but 2600 // only needs it because the large index table hasn't been removed yet. 2601 } 2602 2603 if (NeedsLargeIndexes) { 2604 // This means we definitely need to have a section index table but if we 2605 // already have one then we should use it instead of making a new one. 2606 if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) { 2607 // Addition of a section to the end does not invalidate the indexes of 2608 // other sections and assigns the correct index to the new section. 2609 auto &Shndx = Obj.addSection<SectionIndexSection>(); 2610 Obj.SymbolTable->setShndxTable(&Shndx); 2611 Shndx.setSymTab(Obj.SymbolTable); 2612 } 2613 } else { 2614 // Since we don't need SectionIndexTable we should remove it and all 2615 // references to it. 2616 if (Obj.SectionIndexTable != nullptr) { 2617 // We do not support sections referring to the section index table. 2618 if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/, 2619 [this](const SectionBase &Sec) { 2620 return &Sec == Obj.SectionIndexTable; 2621 })) 2622 return E; 2623 } 2624 } 2625 2626 // Make sure we add the names of all the sections. Importantly this must be 2627 // done after we decide to add or remove SectionIndexes. 2628 if (Obj.SectionNames != nullptr) 2629 for (const SectionBase &Sec : Obj.sections()) 2630 Obj.SectionNames->addString(Sec.Name); 2631 2632 initEhdrSegment(); 2633 2634 // Before we can prepare for layout the indexes need to be finalized. 2635 // Also, the output arch may not be the same as the input arch, so fix up 2636 // size-related fields before doing layout calculations. 2637 uint64_t Index = 0; 2638 auto SecSizer = std::make_unique<ELFSectionSizer<ELFT>>(); 2639 for (SectionBase &Sec : Obj.sections()) { 2640 Sec.Index = Index++; 2641 if (Error Err = Sec.accept(*SecSizer)) 2642 return Err; 2643 } 2644 2645 // The symbol table does not update all other sections on update. For 2646 // instance, symbol names are not added as new symbols are added. This means 2647 // that some sections, like .strtab, don't yet have their final size. 2648 if (Obj.SymbolTable != nullptr) 2649 Obj.SymbolTable->prepareForLayout(); 2650 2651 // Now that all strings are added we want to finalize string table builders, 2652 // because that affects section sizes which in turn affects section offsets. 2653 for (SectionBase &Sec : Obj.sections()) 2654 if (auto StrTab = dyn_cast<StringTableSection>(&Sec)) 2655 StrTab->prepareForLayout(); 2656 2657 assignOffsets(); 2658 2659 // layoutSections could have modified section indexes, so we need 2660 // to fill the index table after assignOffsets. 2661 if (Obj.SymbolTable != nullptr) 2662 Obj.SymbolTable->fillShndxTable(); 2663 2664 // Finally now that all offsets and indexes have been set we can finalize any 2665 // remaining issues. 2666 uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr); 2667 for (SectionBase &Sec : Obj.sections()) { 2668 Sec.HeaderOffset = Offset; 2669 Offset += sizeof(Elf_Shdr); 2670 if (WriteSectionHeaders) 2671 Sec.NameIndex = Obj.SectionNames->findIndex(Sec.Name); 2672 Sec.finalize(); 2673 } 2674 2675 size_t TotalSize = totalSize(); 2676 Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize); 2677 if (!Buf) 2678 return createStringError(errc::not_enough_memory, 2679 "failed to allocate memory buffer of " + 2680 Twine::utohexstr(TotalSize) + " bytes"); 2681 2682 SecWriter = std::make_unique<ELFSectionWriter<ELFT>>(*Buf); 2683 return Error::success(); 2684 } 2685 2686 Error BinaryWriter::write() { 2687 SmallVector<const SectionBase *, 30> SectionsToWrite; 2688 for (const SectionBase &Sec : Obj.allocSections()) { 2689 if (Sec.Type != SHT_NOBITS && Sec.Size > 0) 2690 SectionsToWrite.push_back(&Sec); 2691 } 2692 2693 if (SectionsToWrite.empty()) 2694 return Error::success(); 2695 2696 llvm::stable_sort(SectionsToWrite, 2697 [](const SectionBase *LHS, const SectionBase *RHS) { 2698 return LHS->Offset < RHS->Offset; 2699 }); 2700 2701 assert(SectionsToWrite.front()->Offset == 0); 2702 2703 for (size_t i = 0; i != SectionsToWrite.size(); ++i) { 2704 const SectionBase &Sec = *SectionsToWrite[i]; 2705 if (Error Err = Sec.accept(*SecWriter)) 2706 return Err; 2707 if (GapFill == 0) 2708 continue; 2709 uint64_t PadOffset = (i < SectionsToWrite.size() - 1) 2710 ? SectionsToWrite[i + 1]->Offset 2711 : Buf->getBufferSize(); 2712 assert(PadOffset <= Buf->getBufferSize()); 2713 assert(Sec.Offset + Sec.Size <= PadOffset); 2714 std::fill(Buf->getBufferStart() + Sec.Offset + Sec.Size, 2715 Buf->getBufferStart() + PadOffset, GapFill); 2716 } 2717 2718 // TODO: Implement direct writing to the output stream (without intermediate 2719 // memory buffer Buf). 2720 Out.write(Buf->getBufferStart(), Buf->getBufferSize()); 2721 return Error::success(); 2722 } 2723 2724 Error BinaryWriter::finalize() { 2725 // Compute the section LMA based on its sh_offset and the containing segment's 2726 // p_offset and p_paddr. Also compute the minimum LMA of all non-empty 2727 // sections as MinAddr. In the output, the contents between address 0 and 2728 // MinAddr will be skipped. 2729 uint64_t MinAddr = UINT64_MAX; 2730 for (SectionBase &Sec : Obj.allocSections()) { 2731 if (Sec.ParentSegment != nullptr) 2732 Sec.Addr = 2733 Sec.Offset - Sec.ParentSegment->Offset + Sec.ParentSegment->PAddr; 2734 if (Sec.Type != SHT_NOBITS && Sec.Size > 0) 2735 MinAddr = std::min(MinAddr, Sec.Addr); 2736 } 2737 2738 // Now that every section has been laid out we just need to compute the total 2739 // file size. This might not be the same as the offset returned by 2740 // layoutSections, because we want to truncate the last segment to the end of 2741 // its last non-empty section, to match GNU objcopy's behaviour. 2742 TotalSize = PadTo > MinAddr ? PadTo - MinAddr : 0; 2743 for (SectionBase &Sec : Obj.allocSections()) 2744 if (Sec.Type != SHT_NOBITS && Sec.Size > 0) { 2745 Sec.Offset = Sec.Addr - MinAddr; 2746 TotalSize = std::max(TotalSize, Sec.Offset + Sec.Size); 2747 } 2748 2749 Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize); 2750 if (!Buf) 2751 return createStringError(errc::not_enough_memory, 2752 "failed to allocate memory buffer of " + 2753 Twine::utohexstr(TotalSize) + " bytes"); 2754 SecWriter = std::make_unique<BinarySectionWriter>(*Buf); 2755 return Error::success(); 2756 } 2757 2758 Error ASCIIHexWriter::checkSection(const SectionBase &S) const { 2759 if (addressOverflows32bit(S.Addr) || 2760 addressOverflows32bit(S.Addr + S.Size - 1)) 2761 return createStringError( 2762 errc::invalid_argument, 2763 "section '%s' address range [0x%llx, 0x%llx] is not 32 bit", 2764 S.Name.c_str(), S.Addr, S.Addr + S.Size - 1); 2765 return Error::success(); 2766 } 2767 2768 Error ASCIIHexWriter::finalize() { 2769 // We can't write 64-bit addresses. 2770 if (addressOverflows32bit(Obj.Entry)) 2771 return createStringError(errc::invalid_argument, 2772 "entry point address 0x%llx overflows 32 bits", 2773 Obj.Entry); 2774 2775 for (const SectionBase &S : Obj.sections()) { 2776 if ((S.Flags & ELF::SHF_ALLOC) && S.Type != ELF::SHT_NOBITS && S.Size > 0) { 2777 if (Error E = checkSection(S)) 2778 return E; 2779 Sections.push_back(&S); 2780 } 2781 } 2782 2783 llvm::sort(Sections, [](const SectionBase *A, const SectionBase *B) { 2784 return sectionPhysicalAddr(A) < sectionPhysicalAddr(B); 2785 }); 2786 2787 std::unique_ptr<WritableMemoryBuffer> EmptyBuffer = 2788 WritableMemoryBuffer::getNewMemBuffer(0); 2789 if (!EmptyBuffer) 2790 return createStringError(errc::not_enough_memory, 2791 "failed to allocate memory buffer of 0 bytes"); 2792 2793 Expected<size_t> ExpTotalSize = getTotalSize(*EmptyBuffer); 2794 if (!ExpTotalSize) 2795 return ExpTotalSize.takeError(); 2796 TotalSize = *ExpTotalSize; 2797 2798 Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize); 2799 if (!Buf) 2800 return createStringError(errc::not_enough_memory, 2801 "failed to allocate memory buffer of 0x" + 2802 Twine::utohexstr(TotalSize) + " bytes"); 2803 return Error::success(); 2804 } 2805 2806 uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) { 2807 IHexLineData HexData; 2808 uint8_t Data[4] = {}; 2809 // We don't write entry point record if entry is zero. 2810 if (Obj.Entry == 0) 2811 return 0; 2812 2813 if (Obj.Entry <= 0xFFFFFU) { 2814 Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF; 2815 support::endian::write(&Data[2], static_cast<uint16_t>(Obj.Entry), 2816 llvm::endianness::big); 2817 HexData = IHexRecord::getLine(IHexRecord::StartAddr80x86, 0, Data); 2818 } else { 2819 support::endian::write(Data, static_cast<uint32_t>(Obj.Entry), 2820 llvm::endianness::big); 2821 HexData = IHexRecord::getLine(IHexRecord::StartAddr, 0, Data); 2822 } 2823 memcpy(Buf, HexData.data(), HexData.size()); 2824 return HexData.size(); 2825 } 2826 2827 uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) { 2828 IHexLineData HexData = IHexRecord::getLine(IHexRecord::EndOfFile, 0, {}); 2829 memcpy(Buf, HexData.data(), HexData.size()); 2830 return HexData.size(); 2831 } 2832 2833 Expected<size_t> 2834 IHexWriter::getTotalSize(WritableMemoryBuffer &EmptyBuffer) const { 2835 IHexSectionWriterBase LengthCalc(EmptyBuffer); 2836 for (const SectionBase *Sec : Sections) 2837 if (Error Err = Sec->accept(LengthCalc)) 2838 return std::move(Err); 2839 2840 // We need space to write section records + StartAddress record 2841 // (if start adress is not zero) + EndOfFile record. 2842 return LengthCalc.getBufferOffset() + 2843 (Obj.Entry ? IHexRecord::getLineLength(4) : 0) + 2844 IHexRecord::getLineLength(0); 2845 } 2846 2847 Error IHexWriter::write() { 2848 IHexSectionWriter Writer(*Buf); 2849 // Write sections. 2850 for (const SectionBase *Sec : Sections) 2851 if (Error Err = Sec->accept(Writer)) 2852 return Err; 2853 2854 uint64_t Offset = Writer.getBufferOffset(); 2855 // Write entry point address. 2856 Offset += writeEntryPointRecord( 2857 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset); 2858 // Write EOF. 2859 Offset += writeEndOfFileRecord( 2860 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset); 2861 assert(Offset == TotalSize); 2862 2863 // TODO: Implement direct writing to the output stream (without intermediate 2864 // memory buffer Buf). 2865 Out.write(Buf->getBufferStart(), Buf->getBufferSize()); 2866 return Error::success(); 2867 } 2868 2869 Error SRECSectionWriterBase::visit(const StringTableSection &Sec) { 2870 // Check that the sizer has already done its work. 2871 assert(Sec.Size == Sec.StrTabBuilder.getSize() && 2872 "Expected section size to have been finalized"); 2873 // We don't need to write anything here because the real writer has already 2874 // done it. 2875 return Error::success(); 2876 } 2877 2878 Error SRECSectionWriterBase::visit(const Section &Sec) { 2879 writeSection(Sec, Sec.Contents); 2880 return Error::success(); 2881 } 2882 2883 Error SRECSectionWriterBase::visit(const OwnedDataSection &Sec) { 2884 writeSection(Sec, Sec.Data); 2885 return Error::success(); 2886 } 2887 2888 Error SRECSectionWriterBase::visit(const DynamicRelocationSection &Sec) { 2889 writeSection(Sec, Sec.Contents); 2890 return Error::success(); 2891 } 2892 2893 void SRECSectionWriter::writeRecord(SRecord &Record, uint64_t Off) { 2894 SRecLineData Data = Record.toString(); 2895 memcpy(Out.getBufferStart() + Off, Data.data(), Data.size()); 2896 } 2897 2898 void SRECSectionWriterBase::writeRecords(uint32_t Entry) { 2899 // The ELF header could contain an entry point outside of the sections we have 2900 // seen that does not fit the current record Type. 2901 Type = std::max(Type, SRecord::getType(Entry)); 2902 uint64_t Off = HeaderSize; 2903 for (SRecord &Record : Records) { 2904 Record.Type = Type; 2905 writeRecord(Record, Off); 2906 Off += Record.getSize(); 2907 } 2908 Offset = Off; 2909 } 2910 2911 void SRECSectionWriterBase::writeSection(const SectionBase &S, 2912 ArrayRef<uint8_t> Data) { 2913 const uint32_t ChunkSize = 16; 2914 uint32_t Address = sectionPhysicalAddr(&S); 2915 uint32_t EndAddr = Address + S.Size - 1; 2916 Type = std::max(SRecord::getType(EndAddr), Type); 2917 while (!Data.empty()) { 2918 uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize); 2919 SRecord Record{Type, Address, Data.take_front(DataSize)}; 2920 Records.push_back(Record); 2921 Data = Data.drop_front(DataSize); 2922 Address += DataSize; 2923 } 2924 } 2925 2926 Error SRECSectionWriter::visit(const StringTableSection &Sec) { 2927 assert(Sec.Size == Sec.StrTabBuilder.getSize() && 2928 "Section size does not match the section's string table builder size"); 2929 std::vector<uint8_t> Data(Sec.Size); 2930 Sec.StrTabBuilder.write(Data.data()); 2931 writeSection(Sec, Data); 2932 return Error::success(); 2933 } 2934 2935 SRecLineData SRecord::toString() const { 2936 SRecLineData Line(getSize()); 2937 auto *Iter = Line.begin(); 2938 *Iter++ = 'S'; 2939 *Iter++ = '0' + Type; 2940 // Write 1 byte (2 hex characters) record count. 2941 Iter = toHexStr(getCount(), Iter, 2); 2942 // Write the address field with length depending on record type. 2943 Iter = toHexStr(Address, Iter, getAddressSize()); 2944 // Write data byte by byte. 2945 for (uint8_t X : Data) 2946 Iter = toHexStr(X, Iter, 2); 2947 // Write the 1 byte checksum. 2948 Iter = toHexStr(getChecksum(), Iter, 2); 2949 *Iter++ = '\r'; 2950 *Iter++ = '\n'; 2951 assert(Iter == Line.end()); 2952 return Line; 2953 } 2954 2955 uint8_t SRecord::getChecksum() const { 2956 uint32_t Sum = getCount(); 2957 Sum += (Address >> 24) & 0xFF; 2958 Sum += (Address >> 16) & 0xFF; 2959 Sum += (Address >> 8) & 0xFF; 2960 Sum += Address & 0xFF; 2961 for (uint8_t Byte : Data) 2962 Sum += Byte; 2963 return 0xFF - (Sum & 0xFF); 2964 } 2965 2966 size_t SRecord::getSize() const { 2967 // Type, Count, Checksum, and CRLF are two characters each. 2968 return 2 + 2 + getAddressSize() + Data.size() * 2 + 2 + 2; 2969 } 2970 2971 uint8_t SRecord::getAddressSize() const { 2972 switch (Type) { 2973 case Type::S2: 2974 return 6; 2975 case Type::S3: 2976 return 8; 2977 case Type::S7: 2978 return 8; 2979 case Type::S8: 2980 return 6; 2981 default: 2982 return 4; 2983 } 2984 } 2985 2986 uint8_t SRecord::getCount() const { 2987 uint8_t DataSize = Data.size(); 2988 uint8_t ChecksumSize = 1; 2989 return getAddressSize() / 2 + DataSize + ChecksumSize; 2990 } 2991 2992 uint8_t SRecord::getType(uint32_t Address) { 2993 if (isUInt<16>(Address)) 2994 return SRecord::S1; 2995 if (isUInt<24>(Address)) 2996 return SRecord::S2; 2997 return SRecord::S3; 2998 } 2999 3000 SRecord SRecord::getHeader(StringRef FileName) { 3001 // Header is a record with Type S0, Address 0, and Data that is a 3002 // vendor-specific text comment. For the comment we will use the output file 3003 // name truncated to 40 characters to match the behavior of GNU objcopy. 3004 StringRef HeaderContents = FileName.slice(0, 40); 3005 ArrayRef<uint8_t> Data( 3006 reinterpret_cast<const uint8_t *>(HeaderContents.data()), 3007 HeaderContents.size()); 3008 return {SRecord::S0, 0, Data}; 3009 } 3010 3011 size_t SRECWriter::writeHeader(uint8_t *Buf) { 3012 SRecLineData Record = SRecord::getHeader(OutputFileName).toString(); 3013 memcpy(Buf, Record.data(), Record.size()); 3014 return Record.size(); 3015 } 3016 3017 size_t SRECWriter::writeTerminator(uint8_t *Buf, uint8_t Type) { 3018 assert(Type >= SRecord::S7 && Type <= SRecord::S9 && 3019 "Invalid record type for terminator"); 3020 uint32_t Entry = Obj.Entry; 3021 SRecLineData Data = SRecord{Type, Entry, {}}.toString(); 3022 memcpy(Buf, Data.data(), Data.size()); 3023 return Data.size(); 3024 } 3025 3026 Expected<size_t> 3027 SRECWriter::getTotalSize(WritableMemoryBuffer &EmptyBuffer) const { 3028 SRECSizeCalculator SizeCalc(EmptyBuffer, 0); 3029 for (const SectionBase *Sec : Sections) 3030 if (Error Err = Sec->accept(SizeCalc)) 3031 return std::move(Err); 3032 3033 SizeCalc.writeRecords(Obj.Entry); 3034 // We need to add the size of the Header and Terminator records. 3035 SRecord Header = SRecord::getHeader(OutputFileName); 3036 uint8_t TerminatorType = 10 - SizeCalc.getType(); 3037 SRecord Terminator = {TerminatorType, static_cast<uint32_t>(Obj.Entry), {}}; 3038 return Header.getSize() + SizeCalc.getBufferOffset() + Terminator.getSize(); 3039 } 3040 3041 Error SRECWriter::write() { 3042 uint32_t HeaderSize = 3043 writeHeader(reinterpret_cast<uint8_t *>(Buf->getBufferStart())); 3044 SRECSectionWriter Writer(*Buf, HeaderSize); 3045 for (const SectionBase *S : Sections) { 3046 if (Error E = S->accept(Writer)) 3047 return E; 3048 } 3049 Writer.writeRecords(Obj.Entry); 3050 uint64_t Offset = Writer.getBufferOffset(); 3051 3052 // An S1 record terminates with an S9 record, S2 with S8, and S3 with S7. 3053 uint8_t TerminatorType = 10 - Writer.getType(); 3054 Offset += writeTerminator( 3055 reinterpret_cast<uint8_t *>(Buf->getBufferStart() + Offset), 3056 TerminatorType); 3057 assert(Offset == TotalSize); 3058 Out.write(Buf->getBufferStart(), Buf->getBufferSize()); 3059 return Error::success(); 3060 } 3061 3062 namespace llvm { 3063 namespace objcopy { 3064 namespace elf { 3065 3066 template class ELFBuilder<ELF64LE>; 3067 template class ELFBuilder<ELF64BE>; 3068 template class ELFBuilder<ELF32LE>; 3069 template class ELFBuilder<ELF32BE>; 3070 3071 template class ELFWriter<ELF64LE>; 3072 template class ELFWriter<ELF64BE>; 3073 template class ELFWriter<ELF32LE>; 3074 template class ELFWriter<ELF32BE>; 3075 3076 } // end namespace elf 3077 } // end namespace objcopy 3078 } // end namespace llvm 3079