xref: /freebsd/contrib/llvm-project/llvm/lib/MCA/InstrBuilder.cpp (revision ec0ea6efa1ad229d75c394c1a9b9cac33af2b1d3)
1 //===--------------------- InstrBuilder.cpp ---------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file implements the InstrBuilder interface.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/MCA/InstrBuilder.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/MC/MCInst.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/WithColor.h"
20 #include "llvm/Support/raw_ostream.h"
21 
22 #define DEBUG_TYPE "llvm-mca"
23 
24 namespace llvm {
25 namespace mca {
26 
27 InstrBuilder::InstrBuilder(const llvm::MCSubtargetInfo &sti,
28                            const llvm::MCInstrInfo &mcii,
29                            const llvm::MCRegisterInfo &mri,
30                            const llvm::MCInstrAnalysis *mcia)
31     : STI(sti), MCII(mcii), MRI(mri), MCIA(mcia), FirstCallInst(true),
32       FirstReturnInst(true) {
33   const MCSchedModel &SM = STI.getSchedModel();
34   ProcResourceMasks.resize(SM.getNumProcResourceKinds());
35   computeProcResourceMasks(STI.getSchedModel(), ProcResourceMasks);
36 }
37 
38 static void initializeUsedResources(InstrDesc &ID,
39                                     const MCSchedClassDesc &SCDesc,
40                                     const MCSubtargetInfo &STI,
41                                     ArrayRef<uint64_t> ProcResourceMasks) {
42   const MCSchedModel &SM = STI.getSchedModel();
43 
44   // Populate resources consumed.
45   using ResourcePlusCycles = std::pair<uint64_t, ResourceUsage>;
46   SmallVector<ResourcePlusCycles, 4> Worklist;
47 
48   // Track cycles contributed by resources that are in a "Super" relationship.
49   // This is required if we want to correctly match the behavior of method
50   // SubtargetEmitter::ExpandProcResource() in Tablegen. When computing the set
51   // of "consumed" processor resources and resource cycles, the logic in
52   // ExpandProcResource() doesn't update the number of resource cycles
53   // contributed by a "Super" resource to a group.
54   // We need to take this into account when we find that a processor resource is
55   // part of a group, and it is also used as the "Super" of other resources.
56   // This map stores the number of cycles contributed by sub-resources that are
57   // part of a "Super" resource. The key value is the "Super" resource mask ID.
58   DenseMap<uint64_t, unsigned> SuperResources;
59 
60   unsigned NumProcResources = SM.getNumProcResourceKinds();
61   APInt Buffers(NumProcResources, 0);
62 
63   bool AllInOrderResources = true;
64   bool AnyDispatchHazards = false;
65   for (unsigned I = 0, E = SCDesc.NumWriteProcResEntries; I < E; ++I) {
66     const MCWriteProcResEntry *PRE = STI.getWriteProcResBegin(&SCDesc) + I;
67     const MCProcResourceDesc &PR = *SM.getProcResource(PRE->ProcResourceIdx);
68     if (!PRE->Cycles) {
69 #ifndef NDEBUG
70       WithColor::warning()
71           << "Ignoring invalid write of zero cycles on processor resource "
72           << PR.Name << "\n";
73       WithColor::note() << "found in scheduling class " << SCDesc.Name
74                         << " (write index #" << I << ")\n";
75 #endif
76       continue;
77     }
78 
79     uint64_t Mask = ProcResourceMasks[PRE->ProcResourceIdx];
80     if (PR.BufferSize < 0) {
81       AllInOrderResources = false;
82     } else {
83       Buffers.setBit(getResourceStateIndex(Mask));
84       AnyDispatchHazards |= (PR.BufferSize == 0);
85       AllInOrderResources &= (PR.BufferSize <= 1);
86     }
87 
88     CycleSegment RCy(0, PRE->Cycles, false);
89     Worklist.emplace_back(ResourcePlusCycles(Mask, ResourceUsage(RCy)));
90     if (PR.SuperIdx) {
91       uint64_t Super = ProcResourceMasks[PR.SuperIdx];
92       SuperResources[Super] += PRE->Cycles;
93     }
94   }
95 
96   ID.MustIssueImmediately = AllInOrderResources && AnyDispatchHazards;
97 
98   // Sort elements by mask popcount, so that we prioritize resource units over
99   // resource groups, and smaller groups over larger groups.
100   sort(Worklist, [](const ResourcePlusCycles &A, const ResourcePlusCycles &B) {
101     unsigned popcntA = countPopulation(A.first);
102     unsigned popcntB = countPopulation(B.first);
103     if (popcntA < popcntB)
104       return true;
105     if (popcntA > popcntB)
106       return false;
107     return A.first < B.first;
108   });
109 
110   uint64_t UsedResourceUnits = 0;
111   uint64_t UsedResourceGroups = 0;
112   auto GroupIt = find_if(Worklist, [](const ResourcePlusCycles &Elt) {
113     return countPopulation(Elt.first) > 1;
114   });
115   unsigned FirstGroupIdx = std::distance(Worklist.begin(), GroupIt);
116   uint64_t ImpliedUsesOfResourceUnits = 0;
117 
118   // Remove cycles contributed by smaller resources.
119   for (unsigned I = 0, E = Worklist.size(); I < E; ++I) {
120     ResourcePlusCycles &A = Worklist[I];
121     if (!A.second.size()) {
122       assert(countPopulation(A.first) > 1 && "Expected a group!");
123       UsedResourceGroups |= PowerOf2Floor(A.first);
124       continue;
125     }
126 
127     ID.Resources.emplace_back(A);
128     uint64_t NormalizedMask = A.first;
129     if (countPopulation(A.first) == 1) {
130       UsedResourceUnits |= A.first;
131     } else {
132       // Remove the leading 1 from the resource group mask.
133       NormalizedMask ^= PowerOf2Floor(NormalizedMask);
134       UsedResourceGroups |= (A.first ^ NormalizedMask);
135 
136       uint64_t AvailableMask = NormalizedMask & ~UsedResourceUnits;
137       if ((NormalizedMask != AvailableMask) &&
138           countPopulation(AvailableMask) == 1) {
139         // At simulation time, this resource group use will decay into a simple
140         // use of the resource unit identified by `AvailableMask`.
141         ImpliedUsesOfResourceUnits |= AvailableMask;
142         UsedResourceUnits |= AvailableMask;
143       }
144     }
145 
146     for (unsigned J = I + 1; J < E; ++J) {
147       ResourcePlusCycles &B = Worklist[J];
148       if ((NormalizedMask & B.first) == NormalizedMask) {
149         B.second.CS.subtract(A.second.size() - SuperResources[A.first]);
150         if (countPopulation(B.first) > 1)
151           B.second.NumUnits++;
152       }
153     }
154   }
155 
156   // Look for implicit uses of processor resource units. These are resource
157   // units which are indirectly consumed by resource groups, and that must be
158   // always available on instruction issue.
159   while (ImpliedUsesOfResourceUnits) {
160     ID.ImplicitlyUsedProcResUnits |= ImpliedUsesOfResourceUnits;
161     ImpliedUsesOfResourceUnits = 0;
162     for (unsigned I = FirstGroupIdx, E = Worklist.size(); I < E; ++I) {
163       ResourcePlusCycles &A = Worklist[I];
164       if (!A.second.size())
165         continue;
166 
167       uint64_t NormalizedMask = A.first;
168       assert(countPopulation(NormalizedMask) > 1);
169       // Remove the leading 1 from the resource group mask.
170       NormalizedMask ^= PowerOf2Floor(NormalizedMask);
171       uint64_t AvailableMask = NormalizedMask & ~UsedResourceUnits;
172       if ((NormalizedMask != AvailableMask) &&
173           countPopulation(AvailableMask) != 1)
174         continue;
175 
176       UsedResourceUnits |= AvailableMask;
177       ImpliedUsesOfResourceUnits |= AvailableMask;
178     }
179   }
180 
181   // A SchedWrite may specify a number of cycles in which a resource group
182   // is reserved. For example (on target x86; cpu Haswell):
183   //
184   //  SchedWriteRes<[HWPort0, HWPort1, HWPort01]> {
185   //    let ResourceCycles = [2, 2, 3];
186   //  }
187   //
188   // This means:
189   // Resource units HWPort0 and HWPort1 are both used for 2cy.
190   // Resource group HWPort01 is the union of HWPort0 and HWPort1.
191   // Since this write touches both HWPort0 and HWPort1 for 2cy, HWPort01
192   // will not be usable for 2 entire cycles from instruction issue.
193   //
194   // On top of those 2cy, SchedWriteRes explicitly specifies an extra latency
195   // of 3 cycles for HWPort01. This tool assumes that the 3cy latency is an
196   // extra delay on top of the 2 cycles latency.
197   // During those extra cycles, HWPort01 is not usable by other instructions.
198   for (ResourcePlusCycles &RPC : ID.Resources) {
199     if (countPopulation(RPC.first) > 1 && !RPC.second.isReserved()) {
200       // Remove the leading 1 from the resource group mask.
201       uint64_t Mask = RPC.first ^ PowerOf2Floor(RPC.first);
202       uint64_t MaxResourceUnits = countPopulation(Mask);
203       if (RPC.second.NumUnits > countPopulation(Mask)) {
204         RPC.second.setReserved();
205         RPC.second.NumUnits = MaxResourceUnits;
206       }
207     }
208   }
209 
210   // Identify extra buffers that are consumed through super resources.
211   for (const std::pair<uint64_t, unsigned> &SR : SuperResources) {
212     for (unsigned I = 1, E = NumProcResources; I < E; ++I) {
213       const MCProcResourceDesc &PR = *SM.getProcResource(I);
214       if (PR.BufferSize == -1)
215         continue;
216 
217       uint64_t Mask = ProcResourceMasks[I];
218       if (Mask != SR.first && ((Mask & SR.first) == SR.first))
219         Buffers.setBit(getResourceStateIndex(Mask));
220     }
221   }
222 
223   ID.UsedBuffers = Buffers.getZExtValue();
224   ID.UsedProcResUnits = UsedResourceUnits;
225   ID.UsedProcResGroups = UsedResourceGroups;
226 
227   LLVM_DEBUG({
228     for (const std::pair<uint64_t, ResourceUsage> &R : ID.Resources)
229       dbgs() << "\t\tResource Mask=" << format_hex(R.first, 16) << ", "
230              << "Reserved=" << R.second.isReserved() << ", "
231              << "#Units=" << R.second.NumUnits << ", "
232              << "cy=" << R.second.size() << '\n';
233     uint64_t BufferIDs = ID.UsedBuffers;
234     while (BufferIDs) {
235       uint64_t Current = BufferIDs & (-BufferIDs);
236       dbgs() << "\t\tBuffer Mask=" << format_hex(Current, 16) << '\n';
237       BufferIDs ^= Current;
238     }
239     dbgs() << "\t\t Used Units=" << format_hex(ID.UsedProcResUnits, 16) << '\n';
240     dbgs() << "\t\tImplicitly Used Units="
241            << format_hex(ID.ImplicitlyUsedProcResUnits, 16) << '\n';
242     dbgs() << "\t\tUsed Groups=" << format_hex(ID.UsedProcResGroups, 16)
243            << '\n';
244   });
245 }
246 
247 static void computeMaxLatency(InstrDesc &ID, const MCInstrDesc &MCDesc,
248                               const MCSchedClassDesc &SCDesc,
249                               const MCSubtargetInfo &STI) {
250   if (MCDesc.isCall()) {
251     // We cannot estimate how long this call will take.
252     // Artificially set an arbitrarily high latency (100cy).
253     ID.MaxLatency = 100U;
254     return;
255   }
256 
257   int Latency = MCSchedModel::computeInstrLatency(STI, SCDesc);
258   // If latency is unknown, then conservatively assume a MaxLatency of 100cy.
259   ID.MaxLatency = Latency < 0 ? 100U : static_cast<unsigned>(Latency);
260 }
261 
262 static Error verifyOperands(const MCInstrDesc &MCDesc, const MCInst &MCI) {
263   // Count register definitions, and skip non register operands in the process.
264   unsigned I, E;
265   unsigned NumExplicitDefs = MCDesc.getNumDefs();
266   for (I = 0, E = MCI.getNumOperands(); NumExplicitDefs && I < E; ++I) {
267     const MCOperand &Op = MCI.getOperand(I);
268     if (Op.isReg())
269       --NumExplicitDefs;
270   }
271 
272   if (NumExplicitDefs) {
273     return make_error<InstructionError<MCInst>>(
274         "Expected more register operand definitions.", MCI);
275   }
276 
277   if (MCDesc.hasOptionalDef()) {
278     // Always assume that the optional definition is the last operand.
279     const MCOperand &Op = MCI.getOperand(MCDesc.getNumOperands() - 1);
280     if (I == MCI.getNumOperands() || !Op.isReg()) {
281       std::string Message =
282           "expected a register operand for an optional definition. Instruction "
283           "has not been correctly analyzed.";
284       return make_error<InstructionError<MCInst>>(Message, MCI);
285     }
286   }
287 
288   return ErrorSuccess();
289 }
290 
291 void InstrBuilder::populateWrites(InstrDesc &ID, const MCInst &MCI,
292                                   unsigned SchedClassID) {
293   const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
294   const MCSchedModel &SM = STI.getSchedModel();
295   const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
296 
297   // Assumptions made by this algorithm:
298   //  1. The number of explicit and implicit register definitions in a MCInst
299   //     matches the number of explicit and implicit definitions according to
300   //     the opcode descriptor (MCInstrDesc).
301   //  2. Uses start at index #(MCDesc.getNumDefs()).
302   //  3. There can only be a single optional register definition, an it is
303   //     either the last operand of the sequence (excluding extra operands
304   //     contributed by variadic opcodes) or one of the explicit register
305   //     definitions. The latter occurs for some Thumb1 instructions.
306   //
307   // These assumptions work quite well for most out-of-order in-tree targets
308   // like x86. This is mainly because the vast majority of instructions is
309   // expanded to MCInst using a straightforward lowering logic that preserves
310   // the ordering of the operands.
311   //
312   // About assumption 1.
313   // The algorithm allows non-register operands between register operand
314   // definitions. This helps to handle some special ARM instructions with
315   // implicit operand increment (-mtriple=armv7):
316   //
317   // vld1.32  {d18, d19}, [r1]!  @ <MCInst #1463 VLD1q32wb_fixed
318   //                             @  <MCOperand Reg:59>
319   //                             @  <MCOperand Imm:0>     (!!)
320   //                             @  <MCOperand Reg:67>
321   //                             @  <MCOperand Imm:0>
322   //                             @  <MCOperand Imm:14>
323   //                             @  <MCOperand Reg:0>>
324   //
325   // MCDesc reports:
326   //  6 explicit operands.
327   //  1 optional definition
328   //  2 explicit definitions (!!)
329   //
330   // The presence of an 'Imm' operand between the two register definitions
331   // breaks the assumption that "register definitions are always at the
332   // beginning of the operand sequence".
333   //
334   // To workaround this issue, this algorithm ignores (i.e. skips) any
335   // non-register operands between register definitions.  The optional
336   // definition is still at index #(NumOperands-1).
337   //
338   // According to assumption 2. register reads start at #(NumExplicitDefs-1).
339   // That means, register R1 from the example is both read and written.
340   unsigned NumExplicitDefs = MCDesc.getNumDefs();
341   unsigned NumImplicitDefs = MCDesc.getNumImplicitDefs();
342   unsigned NumWriteLatencyEntries = SCDesc.NumWriteLatencyEntries;
343   unsigned TotalDefs = NumExplicitDefs + NumImplicitDefs;
344   if (MCDesc.hasOptionalDef())
345     TotalDefs++;
346 
347   unsigned NumVariadicOps = MCI.getNumOperands() - MCDesc.getNumOperands();
348   ID.Writes.resize(TotalDefs + NumVariadicOps);
349   // Iterate over the operands list, and skip non-register operands.
350   // The first NumExplicitDefs register operands are expected to be register
351   // definitions.
352   unsigned CurrentDef = 0;
353   unsigned OptionalDefIdx = MCDesc.getNumOperands() - 1;
354   unsigned i = 0;
355   for (; i < MCI.getNumOperands() && CurrentDef < NumExplicitDefs; ++i) {
356     const MCOperand &Op = MCI.getOperand(i);
357     if (!Op.isReg())
358       continue;
359 
360     if (MCDesc.OpInfo[CurrentDef].isOptionalDef()) {
361       OptionalDefIdx = CurrentDef++;
362       continue;
363     }
364 
365     WriteDescriptor &Write = ID.Writes[CurrentDef];
366     Write.OpIndex = i;
367     if (CurrentDef < NumWriteLatencyEntries) {
368       const MCWriteLatencyEntry &WLE =
369           *STI.getWriteLatencyEntry(&SCDesc, CurrentDef);
370       // Conservatively default to MaxLatency.
371       Write.Latency =
372           WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
373       Write.SClassOrWriteResourceID = WLE.WriteResourceID;
374     } else {
375       // Assign a default latency for this write.
376       Write.Latency = ID.MaxLatency;
377       Write.SClassOrWriteResourceID = 0;
378     }
379     Write.IsOptionalDef = false;
380     LLVM_DEBUG({
381       dbgs() << "\t\t[Def]    OpIdx=" << Write.OpIndex
382              << ", Latency=" << Write.Latency
383              << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
384     });
385     CurrentDef++;
386   }
387 
388   assert(CurrentDef == NumExplicitDefs &&
389          "Expected more register operand definitions.");
390   for (CurrentDef = 0; CurrentDef < NumImplicitDefs; ++CurrentDef) {
391     unsigned Index = NumExplicitDefs + CurrentDef;
392     WriteDescriptor &Write = ID.Writes[Index];
393     Write.OpIndex = ~CurrentDef;
394     Write.RegisterID = MCDesc.getImplicitDefs()[CurrentDef];
395     if (Index < NumWriteLatencyEntries) {
396       const MCWriteLatencyEntry &WLE =
397           *STI.getWriteLatencyEntry(&SCDesc, Index);
398       // Conservatively default to MaxLatency.
399       Write.Latency =
400           WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
401       Write.SClassOrWriteResourceID = WLE.WriteResourceID;
402     } else {
403       // Assign a default latency for this write.
404       Write.Latency = ID.MaxLatency;
405       Write.SClassOrWriteResourceID = 0;
406     }
407 
408     Write.IsOptionalDef = false;
409     assert(Write.RegisterID != 0 && "Expected a valid phys register!");
410     LLVM_DEBUG({
411       dbgs() << "\t\t[Def][I] OpIdx=" << ~Write.OpIndex
412              << ", PhysReg=" << MRI.getName(Write.RegisterID)
413              << ", Latency=" << Write.Latency
414              << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
415     });
416   }
417 
418   if (MCDesc.hasOptionalDef()) {
419     WriteDescriptor &Write = ID.Writes[NumExplicitDefs + NumImplicitDefs];
420     Write.OpIndex = OptionalDefIdx;
421     // Assign a default latency for this write.
422     Write.Latency = ID.MaxLatency;
423     Write.SClassOrWriteResourceID = 0;
424     Write.IsOptionalDef = true;
425     LLVM_DEBUG({
426       dbgs() << "\t\t[Def][O] OpIdx=" << Write.OpIndex
427              << ", Latency=" << Write.Latency
428              << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
429     });
430   }
431 
432   if (!NumVariadicOps)
433     return;
434 
435   bool AssumeUsesOnly = !MCDesc.variadicOpsAreDefs();
436   CurrentDef = NumExplicitDefs + NumImplicitDefs + MCDesc.hasOptionalDef();
437   for (unsigned I = 0, OpIndex = MCDesc.getNumOperands();
438        I < NumVariadicOps && !AssumeUsesOnly; ++I, ++OpIndex) {
439     const MCOperand &Op = MCI.getOperand(OpIndex);
440     if (!Op.isReg())
441       continue;
442 
443     WriteDescriptor &Write = ID.Writes[CurrentDef];
444     Write.OpIndex = OpIndex;
445     // Assign a default latency for this write.
446     Write.Latency = ID.MaxLatency;
447     Write.SClassOrWriteResourceID = 0;
448     Write.IsOptionalDef = false;
449     ++CurrentDef;
450     LLVM_DEBUG({
451       dbgs() << "\t\t[Def][V] OpIdx=" << Write.OpIndex
452              << ", Latency=" << Write.Latency
453              << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
454     });
455   }
456 
457   ID.Writes.resize(CurrentDef);
458 }
459 
460 void InstrBuilder::populateReads(InstrDesc &ID, const MCInst &MCI,
461                                  unsigned SchedClassID) {
462   const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
463   unsigned NumExplicitUses = MCDesc.getNumOperands() - MCDesc.getNumDefs();
464   unsigned NumImplicitUses = MCDesc.getNumImplicitUses();
465   // Remove the optional definition.
466   if (MCDesc.hasOptionalDef())
467     --NumExplicitUses;
468   unsigned NumVariadicOps = MCI.getNumOperands() - MCDesc.getNumOperands();
469   unsigned TotalUses = NumExplicitUses + NumImplicitUses + NumVariadicOps;
470   ID.Reads.resize(TotalUses);
471   unsigned CurrentUse = 0;
472   for (unsigned I = 0, OpIndex = MCDesc.getNumDefs(); I < NumExplicitUses;
473        ++I, ++OpIndex) {
474     const MCOperand &Op = MCI.getOperand(OpIndex);
475     if (!Op.isReg())
476       continue;
477 
478     ReadDescriptor &Read = ID.Reads[CurrentUse];
479     Read.OpIndex = OpIndex;
480     Read.UseIndex = I;
481     Read.SchedClassID = SchedClassID;
482     ++CurrentUse;
483     LLVM_DEBUG(dbgs() << "\t\t[Use]    OpIdx=" << Read.OpIndex
484                       << ", UseIndex=" << Read.UseIndex << '\n');
485   }
486 
487   // For the purpose of ReadAdvance, implicit uses come directly after explicit
488   // uses. The "UseIndex" must be updated according to that implicit layout.
489   for (unsigned I = 0; I < NumImplicitUses; ++I) {
490     ReadDescriptor &Read = ID.Reads[CurrentUse + I];
491     Read.OpIndex = ~I;
492     Read.UseIndex = NumExplicitUses + I;
493     Read.RegisterID = MCDesc.getImplicitUses()[I];
494     Read.SchedClassID = SchedClassID;
495     LLVM_DEBUG(dbgs() << "\t\t[Use][I] OpIdx=" << ~Read.OpIndex
496                       << ", UseIndex=" << Read.UseIndex << ", RegisterID="
497                       << MRI.getName(Read.RegisterID) << '\n');
498   }
499 
500   CurrentUse += NumImplicitUses;
501 
502   bool AssumeDefsOnly = MCDesc.variadicOpsAreDefs();
503   for (unsigned I = 0, OpIndex = MCDesc.getNumOperands();
504        I < NumVariadicOps && !AssumeDefsOnly; ++I, ++OpIndex) {
505     const MCOperand &Op = MCI.getOperand(OpIndex);
506     if (!Op.isReg())
507       continue;
508 
509     ReadDescriptor &Read = ID.Reads[CurrentUse];
510     Read.OpIndex = OpIndex;
511     Read.UseIndex = NumExplicitUses + NumImplicitUses + I;
512     Read.SchedClassID = SchedClassID;
513     ++CurrentUse;
514     LLVM_DEBUG(dbgs() << "\t\t[Use][V] OpIdx=" << Read.OpIndex
515                       << ", UseIndex=" << Read.UseIndex << '\n');
516   }
517 
518   ID.Reads.resize(CurrentUse);
519 }
520 
521 Error InstrBuilder::verifyInstrDesc(const InstrDesc &ID,
522                                     const MCInst &MCI) const {
523   if (ID.NumMicroOps != 0)
524     return ErrorSuccess();
525 
526   bool UsesBuffers = ID.UsedBuffers;
527   bool UsesResources = !ID.Resources.empty();
528   if (!UsesBuffers && !UsesResources)
529     return ErrorSuccess();
530 
531   // FIXME: see PR44797. We should revisit these checks and possibly move them
532   // in CodeGenSchedule.cpp.
533   StringRef Message = "found an inconsistent instruction that decodes to zero "
534                       "opcodes and that consumes scheduler resources.";
535   return make_error<InstructionError<MCInst>>(std::string(Message), MCI);
536 }
537 
538 Expected<const InstrDesc &>
539 InstrBuilder::createInstrDescImpl(const MCInst &MCI) {
540   assert(STI.getSchedModel().hasInstrSchedModel() &&
541          "Itineraries are not yet supported!");
542 
543   // Obtain the instruction descriptor from the opcode.
544   unsigned short Opcode = MCI.getOpcode();
545   const MCInstrDesc &MCDesc = MCII.get(Opcode);
546   const MCSchedModel &SM = STI.getSchedModel();
547 
548   // Then obtain the scheduling class information from the instruction.
549   unsigned SchedClassID = MCDesc.getSchedClass();
550   bool IsVariant = SM.getSchedClassDesc(SchedClassID)->isVariant();
551 
552   // Try to solve variant scheduling classes.
553   if (IsVariant) {
554     unsigned CPUID = SM.getProcessorID();
555     while (SchedClassID && SM.getSchedClassDesc(SchedClassID)->isVariant())
556       SchedClassID =
557           STI.resolveVariantSchedClass(SchedClassID, &MCI, &MCII, CPUID);
558 
559     if (!SchedClassID) {
560       return make_error<InstructionError<MCInst>>(
561           "unable to resolve scheduling class for write variant.", MCI);
562     }
563   }
564 
565   // Check if this instruction is supported. Otherwise, report an error.
566   const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
567   if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
568     return make_error<InstructionError<MCInst>>(
569         "found an unsupported instruction in the input assembly sequence.",
570         MCI);
571   }
572 
573   LLVM_DEBUG(dbgs() << "\n\t\tOpcode Name= " << MCII.getName(Opcode) << '\n');
574   LLVM_DEBUG(dbgs() << "\t\tSchedClassID=" << SchedClassID << '\n');
575 
576   // Create a new empty descriptor.
577   std::unique_ptr<InstrDesc> ID = std::make_unique<InstrDesc>();
578   ID->NumMicroOps = SCDesc.NumMicroOps;
579   ID->SchedClassID = SchedClassID;
580 
581   if (MCDesc.isCall() && FirstCallInst) {
582     // We don't correctly model calls.
583     WithColor::warning() << "found a call in the input assembly sequence.\n";
584     WithColor::note() << "call instructions are not correctly modeled. "
585                       << "Assume a latency of 100cy.\n";
586     FirstCallInst = false;
587   }
588 
589   if (MCDesc.isReturn() && FirstReturnInst) {
590     WithColor::warning() << "found a return instruction in the input"
591                          << " assembly sequence.\n";
592     WithColor::note() << "program counter updates are ignored.\n";
593     FirstReturnInst = false;
594   }
595 
596   ID->MayLoad = MCDesc.mayLoad();
597   ID->MayStore = MCDesc.mayStore();
598   ID->HasSideEffects = MCDesc.hasUnmodeledSideEffects();
599   ID->BeginGroup = SCDesc.BeginGroup;
600   ID->EndGroup = SCDesc.EndGroup;
601   ID->RetireOOO = SCDesc.RetireOOO;
602 
603   initializeUsedResources(*ID, SCDesc, STI, ProcResourceMasks);
604   computeMaxLatency(*ID, MCDesc, SCDesc, STI);
605 
606   if (Error Err = verifyOperands(MCDesc, MCI))
607     return std::move(Err);
608 
609   populateWrites(*ID, MCI, SchedClassID);
610   populateReads(*ID, MCI, SchedClassID);
611 
612   LLVM_DEBUG(dbgs() << "\t\tMaxLatency=" << ID->MaxLatency << '\n');
613   LLVM_DEBUG(dbgs() << "\t\tNumMicroOps=" << ID->NumMicroOps << '\n');
614 
615   // Sanity check on the instruction descriptor.
616   if (Error Err = verifyInstrDesc(*ID, MCI))
617     return std::move(Err);
618 
619   // Now add the new descriptor.
620   bool IsVariadic = MCDesc.isVariadic();
621   if (!IsVariadic && !IsVariant) {
622     Descriptors[MCI.getOpcode()] = std::move(ID);
623     return *Descriptors[MCI.getOpcode()];
624   }
625 
626   VariantDescriptors[&MCI] = std::move(ID);
627   return *VariantDescriptors[&MCI];
628 }
629 
630 Expected<const InstrDesc &>
631 InstrBuilder::getOrCreateInstrDesc(const MCInst &MCI) {
632   if (Descriptors.find_as(MCI.getOpcode()) != Descriptors.end())
633     return *Descriptors[MCI.getOpcode()];
634 
635   if (VariantDescriptors.find(&MCI) != VariantDescriptors.end())
636     return *VariantDescriptors[&MCI];
637 
638   return createInstrDescImpl(MCI);
639 }
640 
641 Expected<std::unique_ptr<Instruction>>
642 InstrBuilder::createInstruction(const MCInst &MCI) {
643   Expected<const InstrDesc &> DescOrErr = getOrCreateInstrDesc(MCI);
644   if (!DescOrErr)
645     return DescOrErr.takeError();
646   const InstrDesc &D = *DescOrErr;
647   std::unique_ptr<Instruction> NewIS =
648       std::make_unique<Instruction>(D, MCI.getOpcode());
649 
650   // Check if this is a dependency breaking instruction.
651   APInt Mask;
652 
653   bool IsZeroIdiom = false;
654   bool IsDepBreaking = false;
655   if (MCIA) {
656     unsigned ProcID = STI.getSchedModel().getProcessorID();
657     IsZeroIdiom = MCIA->isZeroIdiom(MCI, Mask, ProcID);
658     IsDepBreaking =
659         IsZeroIdiom || MCIA->isDependencyBreaking(MCI, Mask, ProcID);
660     if (MCIA->isOptimizableRegisterMove(MCI, ProcID))
661       NewIS->setOptimizableMove();
662   }
663 
664   // Initialize Reads first.
665   MCPhysReg RegID = 0;
666   for (const ReadDescriptor &RD : D.Reads) {
667     if (!RD.isImplicitRead()) {
668       // explicit read.
669       const MCOperand &Op = MCI.getOperand(RD.OpIndex);
670       // Skip non-register operands.
671       if (!Op.isReg())
672         continue;
673       RegID = Op.getReg();
674     } else {
675       // Implicit read.
676       RegID = RD.RegisterID;
677     }
678 
679     // Skip invalid register operands.
680     if (!RegID)
681       continue;
682 
683     // Okay, this is a register operand. Create a ReadState for it.
684     NewIS->getUses().emplace_back(RD, RegID);
685     ReadState &RS = NewIS->getUses().back();
686 
687     if (IsDepBreaking) {
688       // A mask of all zeroes means: explicit input operands are not
689       // independent.
690       if (Mask.isNullValue()) {
691         if (!RD.isImplicitRead())
692           RS.setIndependentFromDef();
693       } else {
694         // Check if this register operand is independent according to `Mask`.
695         // Note that Mask may not have enough bits to describe all explicit and
696         // implicit input operands. If this register operand doesn't have a
697         // corresponding bit in Mask, then conservatively assume that it is
698         // dependent.
699         if (Mask.getBitWidth() > RD.UseIndex) {
700           // Okay. This map describe register use `RD.UseIndex`.
701           if (Mask[RD.UseIndex])
702             RS.setIndependentFromDef();
703         }
704       }
705     }
706   }
707 
708   // Early exit if there are no writes.
709   if (D.Writes.empty())
710     return std::move(NewIS);
711 
712   // Track register writes that implicitly clear the upper portion of the
713   // underlying super-registers using an APInt.
714   APInt WriteMask(D.Writes.size(), 0);
715 
716   // Now query the MCInstrAnalysis object to obtain information about which
717   // register writes implicitly clear the upper portion of a super-register.
718   if (MCIA)
719     MCIA->clearsSuperRegisters(MRI, MCI, WriteMask);
720 
721   // Initialize writes.
722   unsigned WriteIndex = 0;
723   for (const WriteDescriptor &WD : D.Writes) {
724     RegID = WD.isImplicitWrite() ? WD.RegisterID
725                                  : MCI.getOperand(WD.OpIndex).getReg();
726     // Check if this is a optional definition that references NoReg.
727     if (WD.IsOptionalDef && !RegID) {
728       ++WriteIndex;
729       continue;
730     }
731 
732     assert(RegID && "Expected a valid register ID!");
733     NewIS->getDefs().emplace_back(WD, RegID,
734                                   /* ClearsSuperRegs */ WriteMask[WriteIndex],
735                                   /* WritesZero */ IsZeroIdiom);
736     ++WriteIndex;
737   }
738 
739   return std::move(NewIS);
740 }
741 } // namespace mca
742 } // namespace llvm
743