xref: /freebsd/contrib/llvm-project/llvm/lib/MCA/InstrBuilder.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===--------------------- InstrBuilder.cpp ---------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file implements the InstrBuilder interface.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/MCA/InstrBuilder.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/MC/MCInst.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/WithColor.h"
20 #include "llvm/Support/raw_ostream.h"
21 
22 #define DEBUG_TYPE "llvm-mca"
23 
24 namespace llvm {
25 namespace mca {
26 
27 InstrBuilder::InstrBuilder(const llvm::MCSubtargetInfo &sti,
28                            const llvm::MCInstrInfo &mcii,
29                            const llvm::MCRegisterInfo &mri,
30                            const llvm::MCInstrAnalysis *mcia)
31     : STI(sti), MCII(mcii), MRI(mri), MCIA(mcia), FirstCallInst(true),
32       FirstReturnInst(true) {
33   const MCSchedModel &SM = STI.getSchedModel();
34   ProcResourceMasks.resize(SM.getNumProcResourceKinds());
35   computeProcResourceMasks(STI.getSchedModel(), ProcResourceMasks);
36 }
37 
38 static void initializeUsedResources(InstrDesc &ID,
39                                     const MCSchedClassDesc &SCDesc,
40                                     const MCSubtargetInfo &STI,
41                                     ArrayRef<uint64_t> ProcResourceMasks) {
42   const MCSchedModel &SM = STI.getSchedModel();
43 
44   // Populate resources consumed.
45   using ResourcePlusCycles = std::pair<uint64_t, ResourceUsage>;
46   std::vector<ResourcePlusCycles> Worklist;
47 
48   // Track cycles contributed by resources that are in a "Super" relationship.
49   // This is required if we want to correctly match the behavior of method
50   // SubtargetEmitter::ExpandProcResource() in Tablegen. When computing the set
51   // of "consumed" processor resources and resource cycles, the logic in
52   // ExpandProcResource() doesn't update the number of resource cycles
53   // contributed by a "Super" resource to a group.
54   // We need to take this into account when we find that a processor resource is
55   // part of a group, and it is also used as the "Super" of other resources.
56   // This map stores the number of cycles contributed by sub-resources that are
57   // part of a "Super" resource. The key value is the "Super" resource mask ID.
58   DenseMap<uint64_t, unsigned> SuperResources;
59 
60   unsigned NumProcResources = SM.getNumProcResourceKinds();
61   APInt Buffers(NumProcResources, 0);
62 
63   bool AllInOrderResources = true;
64   bool AnyDispatchHazards = false;
65   for (unsigned I = 0, E = SCDesc.NumWriteProcResEntries; I < E; ++I) {
66     const MCWriteProcResEntry *PRE = STI.getWriteProcResBegin(&SCDesc) + I;
67     const MCProcResourceDesc &PR = *SM.getProcResource(PRE->ProcResourceIdx);
68     if (!PRE->Cycles) {
69 #ifndef NDEBUG
70       WithColor::warning()
71           << "Ignoring invalid write of zero cycles on processor resource "
72           << PR.Name << "\n";
73       WithColor::note() << "found in scheduling class " << SCDesc.Name
74                         << " (write index #" << I << ")\n";
75 #endif
76       continue;
77     }
78 
79     uint64_t Mask = ProcResourceMasks[PRE->ProcResourceIdx];
80     if (PR.BufferSize < 0) {
81       AllInOrderResources = false;
82     } else {
83       Buffers.setBit(getResourceStateIndex(Mask));
84       AnyDispatchHazards |= (PR.BufferSize == 0);
85       AllInOrderResources &= (PR.BufferSize <= 1);
86     }
87 
88     CycleSegment RCy(0, PRE->Cycles, false);
89     Worklist.emplace_back(ResourcePlusCycles(Mask, ResourceUsage(RCy)));
90     if (PR.SuperIdx) {
91       uint64_t Super = ProcResourceMasks[PR.SuperIdx];
92       SuperResources[Super] += PRE->Cycles;
93     }
94   }
95 
96   ID.MustIssueImmediately = AllInOrderResources && AnyDispatchHazards;
97 
98   // Sort elements by mask popcount, so that we prioritize resource units over
99   // resource groups, and smaller groups over larger groups.
100   sort(Worklist, [](const ResourcePlusCycles &A, const ResourcePlusCycles &B) {
101     unsigned popcntA = countPopulation(A.first);
102     unsigned popcntB = countPopulation(B.first);
103     if (popcntA < popcntB)
104       return true;
105     if (popcntA > popcntB)
106       return false;
107     return A.first < B.first;
108   });
109 
110   uint64_t UsedResourceUnits = 0;
111   uint64_t UsedResourceGroups = 0;
112 
113   // Remove cycles contributed by smaller resources.
114   for (unsigned I = 0, E = Worklist.size(); I < E; ++I) {
115     ResourcePlusCycles &A = Worklist[I];
116     if (!A.second.size()) {
117       assert(countPopulation(A.first) > 1 && "Expected a group!");
118       UsedResourceGroups |= PowerOf2Floor(A.first);
119       continue;
120     }
121 
122     ID.Resources.emplace_back(A);
123     uint64_t NormalizedMask = A.first;
124     if (countPopulation(A.first) == 1) {
125       UsedResourceUnits |= A.first;
126     } else {
127       // Remove the leading 1 from the resource group mask.
128       NormalizedMask ^= PowerOf2Floor(NormalizedMask);
129       UsedResourceGroups |= (A.first ^ NormalizedMask);
130     }
131 
132     for (unsigned J = I + 1; J < E; ++J) {
133       ResourcePlusCycles &B = Worklist[J];
134       if ((NormalizedMask & B.first) == NormalizedMask) {
135         B.second.CS.subtract(A.second.size() - SuperResources[A.first]);
136         if (countPopulation(B.first) > 1)
137           B.second.NumUnits++;
138       }
139     }
140   }
141 
142   // A SchedWrite may specify a number of cycles in which a resource group
143   // is reserved. For example (on target x86; cpu Haswell):
144   //
145   //  SchedWriteRes<[HWPort0, HWPort1, HWPort01]> {
146   //    let ResourceCycles = [2, 2, 3];
147   //  }
148   //
149   // This means:
150   // Resource units HWPort0 and HWPort1 are both used for 2cy.
151   // Resource group HWPort01 is the union of HWPort0 and HWPort1.
152   // Since this write touches both HWPort0 and HWPort1 for 2cy, HWPort01
153   // will not be usable for 2 entire cycles from instruction issue.
154   //
155   // On top of those 2cy, SchedWriteRes explicitly specifies an extra latency
156   // of 3 cycles for HWPort01. This tool assumes that the 3cy latency is an
157   // extra delay on top of the 2 cycles latency.
158   // During those extra cycles, HWPort01 is not usable by other instructions.
159   for (ResourcePlusCycles &RPC : ID.Resources) {
160     if (countPopulation(RPC.first) > 1 && !RPC.second.isReserved()) {
161       // Remove the leading 1 from the resource group mask.
162       uint64_t Mask = RPC.first ^ PowerOf2Floor(RPC.first);
163       if ((Mask & UsedResourceUnits) == Mask)
164         RPC.second.setReserved();
165     }
166   }
167 
168   // Identify extra buffers that are consumed through super resources.
169   for (const std::pair<uint64_t, unsigned> &SR : SuperResources) {
170     for (unsigned I = 1, E = NumProcResources; I < E; ++I) {
171       const MCProcResourceDesc &PR = *SM.getProcResource(I);
172       if (PR.BufferSize == -1)
173         continue;
174 
175       uint64_t Mask = ProcResourceMasks[I];
176       if (Mask != SR.first && ((Mask & SR.first) == SR.first))
177         Buffers.setBit(getResourceStateIndex(Mask));
178     }
179   }
180 
181   ID.UsedBuffers = Buffers.getZExtValue();
182   ID.UsedProcResUnits = UsedResourceUnits;
183   ID.UsedProcResGroups = UsedResourceGroups;
184 
185   LLVM_DEBUG({
186     for (const std::pair<uint64_t, ResourceUsage> &R : ID.Resources)
187       dbgs() << "\t\tResource Mask=" << format_hex(R.first, 16) << ", "
188              << "Reserved=" << R.second.isReserved() << ", "
189              << "#Units=" << R.second.NumUnits << ", "
190              << "cy=" << R.second.size() << '\n';
191     uint64_t BufferIDs = ID.UsedBuffers;
192     while (BufferIDs) {
193       uint64_t Current = BufferIDs & (-BufferIDs);
194       dbgs() << "\t\tBuffer Mask=" << format_hex(Current, 16) << '\n';
195       BufferIDs ^= Current;
196     }
197     dbgs() << "\t\t Used Units=" << format_hex(ID.UsedProcResUnits, 16) << '\n';
198     dbgs() << "\t\tUsed Groups=" << format_hex(ID.UsedProcResGroups, 16)
199            << '\n';
200   });
201 }
202 
203 static void computeMaxLatency(InstrDesc &ID, const MCInstrDesc &MCDesc,
204                               const MCSchedClassDesc &SCDesc,
205                               const MCSubtargetInfo &STI) {
206   if (MCDesc.isCall()) {
207     // We cannot estimate how long this call will take.
208     // Artificially set an arbitrarily high latency (100cy).
209     ID.MaxLatency = 100U;
210     return;
211   }
212 
213   int Latency = MCSchedModel::computeInstrLatency(STI, SCDesc);
214   // If latency is unknown, then conservatively assume a MaxLatency of 100cy.
215   ID.MaxLatency = Latency < 0 ? 100U : static_cast<unsigned>(Latency);
216 }
217 
218 static Error verifyOperands(const MCInstrDesc &MCDesc, const MCInst &MCI) {
219   // Count register definitions, and skip non register operands in the process.
220   unsigned I, E;
221   unsigned NumExplicitDefs = MCDesc.getNumDefs();
222   for (I = 0, E = MCI.getNumOperands(); NumExplicitDefs && I < E; ++I) {
223     const MCOperand &Op = MCI.getOperand(I);
224     if (Op.isReg())
225       --NumExplicitDefs;
226   }
227 
228   if (NumExplicitDefs) {
229     return make_error<InstructionError<MCInst>>(
230         "Expected more register operand definitions.", MCI);
231   }
232 
233   if (MCDesc.hasOptionalDef()) {
234     // Always assume that the optional definition is the last operand.
235     const MCOperand &Op = MCI.getOperand(MCDesc.getNumOperands() - 1);
236     if (I == MCI.getNumOperands() || !Op.isReg()) {
237       std::string Message =
238           "expected a register operand for an optional definition. Instruction "
239           "has not been correctly analyzed.";
240       return make_error<InstructionError<MCInst>>(Message, MCI);
241     }
242   }
243 
244   return ErrorSuccess();
245 }
246 
247 void InstrBuilder::populateWrites(InstrDesc &ID, const MCInst &MCI,
248                                   unsigned SchedClassID) {
249   const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
250   const MCSchedModel &SM = STI.getSchedModel();
251   const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
252 
253   // Assumptions made by this algorithm:
254   //  1. The number of explicit and implicit register definitions in a MCInst
255   //     matches the number of explicit and implicit definitions according to
256   //     the opcode descriptor (MCInstrDesc).
257   //  2. Uses start at index #(MCDesc.getNumDefs()).
258   //  3. There can only be a single optional register definition, an it is
259   //     always the last operand of the sequence (excluding extra operands
260   //     contributed by variadic opcodes).
261   //
262   // These assumptions work quite well for most out-of-order in-tree targets
263   // like x86. This is mainly because the vast majority of instructions is
264   // expanded to MCInst using a straightforward lowering logic that preserves
265   // the ordering of the operands.
266   //
267   // About assumption 1.
268   // The algorithm allows non-register operands between register operand
269   // definitions. This helps to handle some special ARM instructions with
270   // implicit operand increment (-mtriple=armv7):
271   //
272   // vld1.32  {d18, d19}, [r1]!  @ <MCInst #1463 VLD1q32wb_fixed
273   //                             @  <MCOperand Reg:59>
274   //                             @  <MCOperand Imm:0>     (!!)
275   //                             @  <MCOperand Reg:67>
276   //                             @  <MCOperand Imm:0>
277   //                             @  <MCOperand Imm:14>
278   //                             @  <MCOperand Reg:0>>
279   //
280   // MCDesc reports:
281   //  6 explicit operands.
282   //  1 optional definition
283   //  2 explicit definitions (!!)
284   //
285   // The presence of an 'Imm' operand between the two register definitions
286   // breaks the assumption that "register definitions are always at the
287   // beginning of the operand sequence".
288   //
289   // To workaround this issue, this algorithm ignores (i.e. skips) any
290   // non-register operands between register definitions.  The optional
291   // definition is still at index #(NumOperands-1).
292   //
293   // According to assumption 2. register reads start at #(NumExplicitDefs-1).
294   // That means, register R1 from the example is both read and written.
295   unsigned NumExplicitDefs = MCDesc.getNumDefs();
296   unsigned NumImplicitDefs = MCDesc.getNumImplicitDefs();
297   unsigned NumWriteLatencyEntries = SCDesc.NumWriteLatencyEntries;
298   unsigned TotalDefs = NumExplicitDefs + NumImplicitDefs;
299   if (MCDesc.hasOptionalDef())
300     TotalDefs++;
301 
302   unsigned NumVariadicOps = MCI.getNumOperands() - MCDesc.getNumOperands();
303   ID.Writes.resize(TotalDefs + NumVariadicOps);
304   // Iterate over the operands list, and skip non-register operands.
305   // The first NumExplicitDefs register operands are expected to be register
306   // definitions.
307   unsigned CurrentDef = 0;
308   unsigned i = 0;
309   for (; i < MCI.getNumOperands() && CurrentDef < NumExplicitDefs; ++i) {
310     const MCOperand &Op = MCI.getOperand(i);
311     if (!Op.isReg())
312       continue;
313 
314     WriteDescriptor &Write = ID.Writes[CurrentDef];
315     Write.OpIndex = i;
316     if (CurrentDef < NumWriteLatencyEntries) {
317       const MCWriteLatencyEntry &WLE =
318           *STI.getWriteLatencyEntry(&SCDesc, CurrentDef);
319       // Conservatively default to MaxLatency.
320       Write.Latency =
321           WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
322       Write.SClassOrWriteResourceID = WLE.WriteResourceID;
323     } else {
324       // Assign a default latency for this write.
325       Write.Latency = ID.MaxLatency;
326       Write.SClassOrWriteResourceID = 0;
327     }
328     Write.IsOptionalDef = false;
329     LLVM_DEBUG({
330       dbgs() << "\t\t[Def]    OpIdx=" << Write.OpIndex
331              << ", Latency=" << Write.Latency
332              << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
333     });
334     CurrentDef++;
335   }
336 
337   assert(CurrentDef == NumExplicitDefs &&
338          "Expected more register operand definitions.");
339   for (CurrentDef = 0; CurrentDef < NumImplicitDefs; ++CurrentDef) {
340     unsigned Index = NumExplicitDefs + CurrentDef;
341     WriteDescriptor &Write = ID.Writes[Index];
342     Write.OpIndex = ~CurrentDef;
343     Write.RegisterID = MCDesc.getImplicitDefs()[CurrentDef];
344     if (Index < NumWriteLatencyEntries) {
345       const MCWriteLatencyEntry &WLE =
346           *STI.getWriteLatencyEntry(&SCDesc, Index);
347       // Conservatively default to MaxLatency.
348       Write.Latency =
349           WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
350       Write.SClassOrWriteResourceID = WLE.WriteResourceID;
351     } else {
352       // Assign a default latency for this write.
353       Write.Latency = ID.MaxLatency;
354       Write.SClassOrWriteResourceID = 0;
355     }
356 
357     Write.IsOptionalDef = false;
358     assert(Write.RegisterID != 0 && "Expected a valid phys register!");
359     LLVM_DEBUG({
360       dbgs() << "\t\t[Def][I] OpIdx=" << ~Write.OpIndex
361              << ", PhysReg=" << MRI.getName(Write.RegisterID)
362              << ", Latency=" << Write.Latency
363              << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
364     });
365   }
366 
367   if (MCDesc.hasOptionalDef()) {
368     WriteDescriptor &Write = ID.Writes[NumExplicitDefs + NumImplicitDefs];
369     Write.OpIndex = MCDesc.getNumOperands() - 1;
370     // Assign a default latency for this write.
371     Write.Latency = ID.MaxLatency;
372     Write.SClassOrWriteResourceID = 0;
373     Write.IsOptionalDef = true;
374     LLVM_DEBUG({
375       dbgs() << "\t\t[Def][O] OpIdx=" << Write.OpIndex
376              << ", Latency=" << Write.Latency
377              << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
378     });
379   }
380 
381   if (!NumVariadicOps)
382     return;
383 
384   // FIXME: if an instruction opcode is flagged 'mayStore', and it has no
385   // "unmodeledSideEffects', then this logic optimistically assumes that any
386   // extra register operands in the variadic sequence is not a register
387   // definition.
388   //
389   // Otherwise, we conservatively assume that any register operand from the
390   // variadic sequence is both a register read and a register write.
391   bool AssumeUsesOnly = MCDesc.mayStore() && !MCDesc.mayLoad() &&
392                         !MCDesc.hasUnmodeledSideEffects();
393   CurrentDef = NumExplicitDefs + NumImplicitDefs + MCDesc.hasOptionalDef();
394   for (unsigned I = 0, OpIndex = MCDesc.getNumOperands();
395        I < NumVariadicOps && !AssumeUsesOnly; ++I, ++OpIndex) {
396     const MCOperand &Op = MCI.getOperand(OpIndex);
397     if (!Op.isReg())
398       continue;
399 
400     WriteDescriptor &Write = ID.Writes[CurrentDef];
401     Write.OpIndex = OpIndex;
402     // Assign a default latency for this write.
403     Write.Latency = ID.MaxLatency;
404     Write.SClassOrWriteResourceID = 0;
405     Write.IsOptionalDef = false;
406     ++CurrentDef;
407     LLVM_DEBUG({
408       dbgs() << "\t\t[Def][V] OpIdx=" << Write.OpIndex
409              << ", Latency=" << Write.Latency
410              << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
411     });
412   }
413 
414   ID.Writes.resize(CurrentDef);
415 }
416 
417 void InstrBuilder::populateReads(InstrDesc &ID, const MCInst &MCI,
418                                  unsigned SchedClassID) {
419   const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
420   unsigned NumExplicitUses = MCDesc.getNumOperands() - MCDesc.getNumDefs();
421   unsigned NumImplicitUses = MCDesc.getNumImplicitUses();
422   // Remove the optional definition.
423   if (MCDesc.hasOptionalDef())
424     --NumExplicitUses;
425   unsigned NumVariadicOps = MCI.getNumOperands() - MCDesc.getNumOperands();
426   unsigned TotalUses = NumExplicitUses + NumImplicitUses + NumVariadicOps;
427   ID.Reads.resize(TotalUses);
428   unsigned CurrentUse = 0;
429   for (unsigned I = 0, OpIndex = MCDesc.getNumDefs(); I < NumExplicitUses;
430        ++I, ++OpIndex) {
431     const MCOperand &Op = MCI.getOperand(OpIndex);
432     if (!Op.isReg())
433       continue;
434 
435     ReadDescriptor &Read = ID.Reads[CurrentUse];
436     Read.OpIndex = OpIndex;
437     Read.UseIndex = I;
438     Read.SchedClassID = SchedClassID;
439     ++CurrentUse;
440     LLVM_DEBUG(dbgs() << "\t\t[Use]    OpIdx=" << Read.OpIndex
441                       << ", UseIndex=" << Read.UseIndex << '\n');
442   }
443 
444   // For the purpose of ReadAdvance, implicit uses come directly after explicit
445   // uses. The "UseIndex" must be updated according to that implicit layout.
446   for (unsigned I = 0; I < NumImplicitUses; ++I) {
447     ReadDescriptor &Read = ID.Reads[CurrentUse + I];
448     Read.OpIndex = ~I;
449     Read.UseIndex = NumExplicitUses + I;
450     Read.RegisterID = MCDesc.getImplicitUses()[I];
451     Read.SchedClassID = SchedClassID;
452     LLVM_DEBUG(dbgs() << "\t\t[Use][I] OpIdx=" << ~Read.OpIndex
453                       << ", UseIndex=" << Read.UseIndex << ", RegisterID="
454                       << MRI.getName(Read.RegisterID) << '\n');
455   }
456 
457   CurrentUse += NumImplicitUses;
458 
459   // FIXME: If an instruction opcode is marked as 'mayLoad', and it has no
460   // "unmodeledSideEffects", then this logic optimistically assumes that any
461   // extra register operand in the variadic sequence is not a register
462   // definition.
463   bool AssumeDefsOnly = !MCDesc.mayStore() && MCDesc.mayLoad() &&
464                         !MCDesc.hasUnmodeledSideEffects();
465   for (unsigned I = 0, OpIndex = MCDesc.getNumOperands();
466        I < NumVariadicOps && !AssumeDefsOnly; ++I, ++OpIndex) {
467     const MCOperand &Op = MCI.getOperand(OpIndex);
468     if (!Op.isReg())
469       continue;
470 
471     ReadDescriptor &Read = ID.Reads[CurrentUse];
472     Read.OpIndex = OpIndex;
473     Read.UseIndex = NumExplicitUses + NumImplicitUses + I;
474     Read.SchedClassID = SchedClassID;
475     ++CurrentUse;
476     LLVM_DEBUG(dbgs() << "\t\t[Use][V] OpIdx=" << Read.OpIndex
477                       << ", UseIndex=" << Read.UseIndex << '\n');
478   }
479 
480   ID.Reads.resize(CurrentUse);
481 }
482 
483 Error InstrBuilder::verifyInstrDesc(const InstrDesc &ID,
484                                     const MCInst &MCI) const {
485   if (ID.NumMicroOps != 0)
486     return ErrorSuccess();
487 
488   bool UsesMemory = ID.MayLoad || ID.MayStore;
489   bool UsesBuffers = ID.UsedBuffers;
490   bool UsesResources = !ID.Resources.empty();
491   if (!UsesMemory && !UsesBuffers && !UsesResources)
492     return ErrorSuccess();
493 
494   StringRef Message;
495   if (UsesMemory) {
496     Message = "found an inconsistent instruction that decodes "
497               "into zero opcodes and that consumes load/store "
498               "unit resources.";
499   } else {
500     Message = "found an inconsistent instruction that decodes "
501               "to zero opcodes and that consumes scheduler "
502               "resources.";
503   }
504 
505   return make_error<InstructionError<MCInst>>(Message, MCI);
506 }
507 
508 Expected<const InstrDesc &>
509 InstrBuilder::createInstrDescImpl(const MCInst &MCI) {
510   assert(STI.getSchedModel().hasInstrSchedModel() &&
511          "Itineraries are not yet supported!");
512 
513   // Obtain the instruction descriptor from the opcode.
514   unsigned short Opcode = MCI.getOpcode();
515   const MCInstrDesc &MCDesc = MCII.get(Opcode);
516   const MCSchedModel &SM = STI.getSchedModel();
517 
518   // Then obtain the scheduling class information from the instruction.
519   unsigned SchedClassID = MCDesc.getSchedClass();
520   bool IsVariant = SM.getSchedClassDesc(SchedClassID)->isVariant();
521 
522   // Try to solve variant scheduling classes.
523   if (IsVariant) {
524     unsigned CPUID = SM.getProcessorID();
525     while (SchedClassID && SM.getSchedClassDesc(SchedClassID)->isVariant())
526       SchedClassID = STI.resolveVariantSchedClass(SchedClassID, &MCI, CPUID);
527 
528     if (!SchedClassID) {
529       return make_error<InstructionError<MCInst>>(
530           "unable to resolve scheduling class for write variant.", MCI);
531     }
532   }
533 
534   // Check if this instruction is supported. Otherwise, report an error.
535   const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
536   if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
537     return make_error<InstructionError<MCInst>>(
538         "found an unsupported instruction in the input assembly sequence.",
539         MCI);
540   }
541 
542   LLVM_DEBUG(dbgs() << "\n\t\tOpcode Name= " << MCII.getName(Opcode) << '\n');
543   LLVM_DEBUG(dbgs() << "\t\tSchedClassID=" << SchedClassID << '\n');
544 
545   // Create a new empty descriptor.
546   std::unique_ptr<InstrDesc> ID = std::make_unique<InstrDesc>();
547   ID->NumMicroOps = SCDesc.NumMicroOps;
548   ID->SchedClassID = SchedClassID;
549 
550   if (MCDesc.isCall() && FirstCallInst) {
551     // We don't correctly model calls.
552     WithColor::warning() << "found a call in the input assembly sequence.\n";
553     WithColor::note() << "call instructions are not correctly modeled. "
554                       << "Assume a latency of 100cy.\n";
555     FirstCallInst = false;
556   }
557 
558   if (MCDesc.isReturn() && FirstReturnInst) {
559     WithColor::warning() << "found a return instruction in the input"
560                          << " assembly sequence.\n";
561     WithColor::note() << "program counter updates are ignored.\n";
562     FirstReturnInst = false;
563   }
564 
565   ID->MayLoad = MCDesc.mayLoad();
566   ID->MayStore = MCDesc.mayStore();
567   ID->HasSideEffects = MCDesc.hasUnmodeledSideEffects();
568   ID->BeginGroup = SCDesc.BeginGroup;
569   ID->EndGroup = SCDesc.EndGroup;
570 
571   initializeUsedResources(*ID, SCDesc, STI, ProcResourceMasks);
572   computeMaxLatency(*ID, MCDesc, SCDesc, STI);
573 
574   if (Error Err = verifyOperands(MCDesc, MCI))
575     return std::move(Err);
576 
577   populateWrites(*ID, MCI, SchedClassID);
578   populateReads(*ID, MCI, SchedClassID);
579 
580   LLVM_DEBUG(dbgs() << "\t\tMaxLatency=" << ID->MaxLatency << '\n');
581   LLVM_DEBUG(dbgs() << "\t\tNumMicroOps=" << ID->NumMicroOps << '\n');
582 
583   // Sanity check on the instruction descriptor.
584   if (Error Err = verifyInstrDesc(*ID, MCI))
585     return std::move(Err);
586 
587   // Now add the new descriptor.
588   bool IsVariadic = MCDesc.isVariadic();
589   if (!IsVariadic && !IsVariant) {
590     Descriptors[MCI.getOpcode()] = std::move(ID);
591     return *Descriptors[MCI.getOpcode()];
592   }
593 
594   VariantDescriptors[&MCI] = std::move(ID);
595   return *VariantDescriptors[&MCI];
596 }
597 
598 Expected<const InstrDesc &>
599 InstrBuilder::getOrCreateInstrDesc(const MCInst &MCI) {
600   if (Descriptors.find_as(MCI.getOpcode()) != Descriptors.end())
601     return *Descriptors[MCI.getOpcode()];
602 
603   if (VariantDescriptors.find(&MCI) != VariantDescriptors.end())
604     return *VariantDescriptors[&MCI];
605 
606   return createInstrDescImpl(MCI);
607 }
608 
609 Expected<std::unique_ptr<Instruction>>
610 InstrBuilder::createInstruction(const MCInst &MCI) {
611   Expected<const InstrDesc &> DescOrErr = getOrCreateInstrDesc(MCI);
612   if (!DescOrErr)
613     return DescOrErr.takeError();
614   const InstrDesc &D = *DescOrErr;
615   std::unique_ptr<Instruction> NewIS = std::make_unique<Instruction>(D);
616 
617   // Check if this is a dependency breaking instruction.
618   APInt Mask;
619 
620   bool IsZeroIdiom = false;
621   bool IsDepBreaking = false;
622   if (MCIA) {
623     unsigned ProcID = STI.getSchedModel().getProcessorID();
624     IsZeroIdiom = MCIA->isZeroIdiom(MCI, Mask, ProcID);
625     IsDepBreaking =
626         IsZeroIdiom || MCIA->isDependencyBreaking(MCI, Mask, ProcID);
627     if (MCIA->isOptimizableRegisterMove(MCI, ProcID))
628       NewIS->setOptimizableMove();
629   }
630 
631   // Initialize Reads first.
632   MCPhysReg RegID = 0;
633   for (const ReadDescriptor &RD : D.Reads) {
634     if (!RD.isImplicitRead()) {
635       // explicit read.
636       const MCOperand &Op = MCI.getOperand(RD.OpIndex);
637       // Skip non-register operands.
638       if (!Op.isReg())
639         continue;
640       RegID = Op.getReg();
641     } else {
642       // Implicit read.
643       RegID = RD.RegisterID;
644     }
645 
646     // Skip invalid register operands.
647     if (!RegID)
648       continue;
649 
650     // Okay, this is a register operand. Create a ReadState for it.
651     NewIS->getUses().emplace_back(RD, RegID);
652     ReadState &RS = NewIS->getUses().back();
653 
654     if (IsDepBreaking) {
655       // A mask of all zeroes means: explicit input operands are not
656       // independent.
657       if (Mask.isNullValue()) {
658         if (!RD.isImplicitRead())
659           RS.setIndependentFromDef();
660       } else {
661         // Check if this register operand is independent according to `Mask`.
662         // Note that Mask may not have enough bits to describe all explicit and
663         // implicit input operands. If this register operand doesn't have a
664         // corresponding bit in Mask, then conservatively assume that it is
665         // dependent.
666         if (Mask.getBitWidth() > RD.UseIndex) {
667           // Okay. This map describe register use `RD.UseIndex`.
668           if (Mask[RD.UseIndex])
669             RS.setIndependentFromDef();
670         }
671       }
672     }
673   }
674 
675   // Early exit if there are no writes.
676   if (D.Writes.empty())
677     return std::move(NewIS);
678 
679   // Track register writes that implicitly clear the upper portion of the
680   // underlying super-registers using an APInt.
681   APInt WriteMask(D.Writes.size(), 0);
682 
683   // Now query the MCInstrAnalysis object to obtain information about which
684   // register writes implicitly clear the upper portion of a super-register.
685   if (MCIA)
686     MCIA->clearsSuperRegisters(MRI, MCI, WriteMask);
687 
688   // Initialize writes.
689   unsigned WriteIndex = 0;
690   for (const WriteDescriptor &WD : D.Writes) {
691     RegID = WD.isImplicitWrite() ? WD.RegisterID
692                                  : MCI.getOperand(WD.OpIndex).getReg();
693     // Check if this is a optional definition that references NoReg.
694     if (WD.IsOptionalDef && !RegID) {
695       ++WriteIndex;
696       continue;
697     }
698 
699     assert(RegID && "Expected a valid register ID!");
700     NewIS->getDefs().emplace_back(WD, RegID,
701                                   /* ClearsSuperRegs */ WriteMask[WriteIndex],
702                                   /* WritesZero */ IsZeroIdiom);
703     ++WriteIndex;
704   }
705 
706   return std::move(NewIS);
707 }
708 } // namespace mca
709 } // namespace llvm
710