xref: /freebsd/contrib/llvm-project/llvm/lib/MCA/InstrBuilder.cpp (revision 19261079b74319502c6ffa1249920079f0f69a72)
1 //===--------------------- InstrBuilder.cpp ---------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file implements the InstrBuilder interface.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/MCA/InstrBuilder.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/MC/MCInst.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/WithColor.h"
20 #include "llvm/Support/raw_ostream.h"
21 
22 #define DEBUG_TYPE "llvm-mca"
23 
24 namespace llvm {
25 namespace mca {
26 
27 InstrBuilder::InstrBuilder(const llvm::MCSubtargetInfo &sti,
28                            const llvm::MCInstrInfo &mcii,
29                            const llvm::MCRegisterInfo &mri,
30                            const llvm::MCInstrAnalysis *mcia)
31     : STI(sti), MCII(mcii), MRI(mri), MCIA(mcia), FirstCallInst(true),
32       FirstReturnInst(true) {
33   const MCSchedModel &SM = STI.getSchedModel();
34   ProcResourceMasks.resize(SM.getNumProcResourceKinds());
35   computeProcResourceMasks(STI.getSchedModel(), ProcResourceMasks);
36 }
37 
38 static void initializeUsedResources(InstrDesc &ID,
39                                     const MCSchedClassDesc &SCDesc,
40                                     const MCSubtargetInfo &STI,
41                                     ArrayRef<uint64_t> ProcResourceMasks) {
42   const MCSchedModel &SM = STI.getSchedModel();
43 
44   // Populate resources consumed.
45   using ResourcePlusCycles = std::pair<uint64_t, ResourceUsage>;
46   std::vector<ResourcePlusCycles> Worklist;
47 
48   // Track cycles contributed by resources that are in a "Super" relationship.
49   // This is required if we want to correctly match the behavior of method
50   // SubtargetEmitter::ExpandProcResource() in Tablegen. When computing the set
51   // of "consumed" processor resources and resource cycles, the logic in
52   // ExpandProcResource() doesn't update the number of resource cycles
53   // contributed by a "Super" resource to a group.
54   // We need to take this into account when we find that a processor resource is
55   // part of a group, and it is also used as the "Super" of other resources.
56   // This map stores the number of cycles contributed by sub-resources that are
57   // part of a "Super" resource. The key value is the "Super" resource mask ID.
58   DenseMap<uint64_t, unsigned> SuperResources;
59 
60   unsigned NumProcResources = SM.getNumProcResourceKinds();
61   APInt Buffers(NumProcResources, 0);
62 
63   bool AllInOrderResources = true;
64   bool AnyDispatchHazards = false;
65   for (unsigned I = 0, E = SCDesc.NumWriteProcResEntries; I < E; ++I) {
66     const MCWriteProcResEntry *PRE = STI.getWriteProcResBegin(&SCDesc) + I;
67     const MCProcResourceDesc &PR = *SM.getProcResource(PRE->ProcResourceIdx);
68     if (!PRE->Cycles) {
69 #ifndef NDEBUG
70       WithColor::warning()
71           << "Ignoring invalid write of zero cycles on processor resource "
72           << PR.Name << "\n";
73       WithColor::note() << "found in scheduling class " << SCDesc.Name
74                         << " (write index #" << I << ")\n";
75 #endif
76       continue;
77     }
78 
79     uint64_t Mask = ProcResourceMasks[PRE->ProcResourceIdx];
80     if (PR.BufferSize < 0) {
81       AllInOrderResources = false;
82     } else {
83       Buffers.setBit(getResourceStateIndex(Mask));
84       AnyDispatchHazards |= (PR.BufferSize == 0);
85       AllInOrderResources &= (PR.BufferSize <= 1);
86     }
87 
88     CycleSegment RCy(0, PRE->Cycles, false);
89     Worklist.emplace_back(ResourcePlusCycles(Mask, ResourceUsage(RCy)));
90     if (PR.SuperIdx) {
91       uint64_t Super = ProcResourceMasks[PR.SuperIdx];
92       SuperResources[Super] += PRE->Cycles;
93     }
94   }
95 
96   ID.MustIssueImmediately = AllInOrderResources && AnyDispatchHazards;
97 
98   // Sort elements by mask popcount, so that we prioritize resource units over
99   // resource groups, and smaller groups over larger groups.
100   sort(Worklist, [](const ResourcePlusCycles &A, const ResourcePlusCycles &B) {
101     unsigned popcntA = countPopulation(A.first);
102     unsigned popcntB = countPopulation(B.first);
103     if (popcntA < popcntB)
104       return true;
105     if (popcntA > popcntB)
106       return false;
107     return A.first < B.first;
108   });
109 
110   uint64_t UsedResourceUnits = 0;
111   uint64_t UsedResourceGroups = 0;
112 
113   // Remove cycles contributed by smaller resources.
114   for (unsigned I = 0, E = Worklist.size(); I < E; ++I) {
115     ResourcePlusCycles &A = Worklist[I];
116     if (!A.second.size()) {
117       assert(countPopulation(A.first) > 1 && "Expected a group!");
118       UsedResourceGroups |= PowerOf2Floor(A.first);
119       continue;
120     }
121 
122     ID.Resources.emplace_back(A);
123     uint64_t NormalizedMask = A.first;
124     if (countPopulation(A.first) == 1) {
125       UsedResourceUnits |= A.first;
126     } else {
127       // Remove the leading 1 from the resource group mask.
128       NormalizedMask ^= PowerOf2Floor(NormalizedMask);
129       UsedResourceGroups |= (A.first ^ NormalizedMask);
130     }
131 
132     for (unsigned J = I + 1; J < E; ++J) {
133       ResourcePlusCycles &B = Worklist[J];
134       if ((NormalizedMask & B.first) == NormalizedMask) {
135         B.second.CS.subtract(A.second.size() - SuperResources[A.first]);
136         if (countPopulation(B.first) > 1)
137           B.second.NumUnits++;
138       }
139     }
140   }
141 
142   // A SchedWrite may specify a number of cycles in which a resource group
143   // is reserved. For example (on target x86; cpu Haswell):
144   //
145   //  SchedWriteRes<[HWPort0, HWPort1, HWPort01]> {
146   //    let ResourceCycles = [2, 2, 3];
147   //  }
148   //
149   // This means:
150   // Resource units HWPort0 and HWPort1 are both used for 2cy.
151   // Resource group HWPort01 is the union of HWPort0 and HWPort1.
152   // Since this write touches both HWPort0 and HWPort1 for 2cy, HWPort01
153   // will not be usable for 2 entire cycles from instruction issue.
154   //
155   // On top of those 2cy, SchedWriteRes explicitly specifies an extra latency
156   // of 3 cycles for HWPort01. This tool assumes that the 3cy latency is an
157   // extra delay on top of the 2 cycles latency.
158   // During those extra cycles, HWPort01 is not usable by other instructions.
159   for (ResourcePlusCycles &RPC : ID.Resources) {
160     if (countPopulation(RPC.first) > 1 && !RPC.second.isReserved()) {
161       // Remove the leading 1 from the resource group mask.
162       uint64_t Mask = RPC.first ^ PowerOf2Floor(RPC.first);
163       uint64_t MaxResourceUnits = countPopulation(Mask);
164       if (RPC.second.NumUnits > countPopulation(Mask)) {
165         RPC.second.setReserved();
166         RPC.second.NumUnits = MaxResourceUnits;
167       }
168     }
169   }
170 
171   // Identify extra buffers that are consumed through super resources.
172   for (const std::pair<uint64_t, unsigned> &SR : SuperResources) {
173     for (unsigned I = 1, E = NumProcResources; I < E; ++I) {
174       const MCProcResourceDesc &PR = *SM.getProcResource(I);
175       if (PR.BufferSize == -1)
176         continue;
177 
178       uint64_t Mask = ProcResourceMasks[I];
179       if (Mask != SR.first && ((Mask & SR.first) == SR.first))
180         Buffers.setBit(getResourceStateIndex(Mask));
181     }
182   }
183 
184   ID.UsedBuffers = Buffers.getZExtValue();
185   ID.UsedProcResUnits = UsedResourceUnits;
186   ID.UsedProcResGroups = UsedResourceGroups;
187 
188   LLVM_DEBUG({
189     for (const std::pair<uint64_t, ResourceUsage> &R : ID.Resources)
190       dbgs() << "\t\tResource Mask=" << format_hex(R.first, 16) << ", "
191              << "Reserved=" << R.second.isReserved() << ", "
192              << "#Units=" << R.second.NumUnits << ", "
193              << "cy=" << R.second.size() << '\n';
194     uint64_t BufferIDs = ID.UsedBuffers;
195     while (BufferIDs) {
196       uint64_t Current = BufferIDs & (-BufferIDs);
197       dbgs() << "\t\tBuffer Mask=" << format_hex(Current, 16) << '\n';
198       BufferIDs ^= Current;
199     }
200     dbgs() << "\t\t Used Units=" << format_hex(ID.UsedProcResUnits, 16) << '\n';
201     dbgs() << "\t\tUsed Groups=" << format_hex(ID.UsedProcResGroups, 16)
202            << '\n';
203   });
204 }
205 
206 static void computeMaxLatency(InstrDesc &ID, const MCInstrDesc &MCDesc,
207                               const MCSchedClassDesc &SCDesc,
208                               const MCSubtargetInfo &STI) {
209   if (MCDesc.isCall()) {
210     // We cannot estimate how long this call will take.
211     // Artificially set an arbitrarily high latency (100cy).
212     ID.MaxLatency = 100U;
213     return;
214   }
215 
216   int Latency = MCSchedModel::computeInstrLatency(STI, SCDesc);
217   // If latency is unknown, then conservatively assume a MaxLatency of 100cy.
218   ID.MaxLatency = Latency < 0 ? 100U : static_cast<unsigned>(Latency);
219 }
220 
221 static Error verifyOperands(const MCInstrDesc &MCDesc, const MCInst &MCI) {
222   // Count register definitions, and skip non register operands in the process.
223   unsigned I, E;
224   unsigned NumExplicitDefs = MCDesc.getNumDefs();
225   for (I = 0, E = MCI.getNumOperands(); NumExplicitDefs && I < E; ++I) {
226     const MCOperand &Op = MCI.getOperand(I);
227     if (Op.isReg())
228       --NumExplicitDefs;
229   }
230 
231   if (NumExplicitDefs) {
232     return make_error<InstructionError<MCInst>>(
233         "Expected more register operand definitions.", MCI);
234   }
235 
236   if (MCDesc.hasOptionalDef()) {
237     // Always assume that the optional definition is the last operand.
238     const MCOperand &Op = MCI.getOperand(MCDesc.getNumOperands() - 1);
239     if (I == MCI.getNumOperands() || !Op.isReg()) {
240       std::string Message =
241           "expected a register operand for an optional definition. Instruction "
242           "has not been correctly analyzed.";
243       return make_error<InstructionError<MCInst>>(Message, MCI);
244     }
245   }
246 
247   return ErrorSuccess();
248 }
249 
250 void InstrBuilder::populateWrites(InstrDesc &ID, const MCInst &MCI,
251                                   unsigned SchedClassID) {
252   const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
253   const MCSchedModel &SM = STI.getSchedModel();
254   const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
255 
256   // Assumptions made by this algorithm:
257   //  1. The number of explicit and implicit register definitions in a MCInst
258   //     matches the number of explicit and implicit definitions according to
259   //     the opcode descriptor (MCInstrDesc).
260   //  2. Uses start at index #(MCDesc.getNumDefs()).
261   //  3. There can only be a single optional register definition, an it is
262   //     either the last operand of the sequence (excluding extra operands
263   //     contributed by variadic opcodes) or one of the explicit register
264   //     definitions. The latter occurs for some Thumb1 instructions.
265   //
266   // These assumptions work quite well for most out-of-order in-tree targets
267   // like x86. This is mainly because the vast majority of instructions is
268   // expanded to MCInst using a straightforward lowering logic that preserves
269   // the ordering of the operands.
270   //
271   // About assumption 1.
272   // The algorithm allows non-register operands between register operand
273   // definitions. This helps to handle some special ARM instructions with
274   // implicit operand increment (-mtriple=armv7):
275   //
276   // vld1.32  {d18, d19}, [r1]!  @ <MCInst #1463 VLD1q32wb_fixed
277   //                             @  <MCOperand Reg:59>
278   //                             @  <MCOperand Imm:0>     (!!)
279   //                             @  <MCOperand Reg:67>
280   //                             @  <MCOperand Imm:0>
281   //                             @  <MCOperand Imm:14>
282   //                             @  <MCOperand Reg:0>>
283   //
284   // MCDesc reports:
285   //  6 explicit operands.
286   //  1 optional definition
287   //  2 explicit definitions (!!)
288   //
289   // The presence of an 'Imm' operand between the two register definitions
290   // breaks the assumption that "register definitions are always at the
291   // beginning of the operand sequence".
292   //
293   // To workaround this issue, this algorithm ignores (i.e. skips) any
294   // non-register operands between register definitions.  The optional
295   // definition is still at index #(NumOperands-1).
296   //
297   // According to assumption 2. register reads start at #(NumExplicitDefs-1).
298   // That means, register R1 from the example is both read and written.
299   unsigned NumExplicitDefs = MCDesc.getNumDefs();
300   unsigned NumImplicitDefs = MCDesc.getNumImplicitDefs();
301   unsigned NumWriteLatencyEntries = SCDesc.NumWriteLatencyEntries;
302   unsigned TotalDefs = NumExplicitDefs + NumImplicitDefs;
303   if (MCDesc.hasOptionalDef())
304     TotalDefs++;
305 
306   unsigned NumVariadicOps = MCI.getNumOperands() - MCDesc.getNumOperands();
307   ID.Writes.resize(TotalDefs + NumVariadicOps);
308   // Iterate over the operands list, and skip non-register operands.
309   // The first NumExplicitDefs register operands are expected to be register
310   // definitions.
311   unsigned CurrentDef = 0;
312   unsigned OptionalDefIdx = MCDesc.getNumOperands() - 1;
313   unsigned i = 0;
314   for (; i < MCI.getNumOperands() && CurrentDef < NumExplicitDefs; ++i) {
315     const MCOperand &Op = MCI.getOperand(i);
316     if (!Op.isReg())
317       continue;
318 
319     if (MCDesc.OpInfo[CurrentDef].isOptionalDef()) {
320       OptionalDefIdx = CurrentDef++;
321       continue;
322     }
323 
324     WriteDescriptor &Write = ID.Writes[CurrentDef];
325     Write.OpIndex = i;
326     if (CurrentDef < NumWriteLatencyEntries) {
327       const MCWriteLatencyEntry &WLE =
328           *STI.getWriteLatencyEntry(&SCDesc, CurrentDef);
329       // Conservatively default to MaxLatency.
330       Write.Latency =
331           WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
332       Write.SClassOrWriteResourceID = WLE.WriteResourceID;
333     } else {
334       // Assign a default latency for this write.
335       Write.Latency = ID.MaxLatency;
336       Write.SClassOrWriteResourceID = 0;
337     }
338     Write.IsOptionalDef = false;
339     LLVM_DEBUG({
340       dbgs() << "\t\t[Def]    OpIdx=" << Write.OpIndex
341              << ", Latency=" << Write.Latency
342              << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
343     });
344     CurrentDef++;
345   }
346 
347   assert(CurrentDef == NumExplicitDefs &&
348          "Expected more register operand definitions.");
349   for (CurrentDef = 0; CurrentDef < NumImplicitDefs; ++CurrentDef) {
350     unsigned Index = NumExplicitDefs + CurrentDef;
351     WriteDescriptor &Write = ID.Writes[Index];
352     Write.OpIndex = ~CurrentDef;
353     Write.RegisterID = MCDesc.getImplicitDefs()[CurrentDef];
354     if (Index < NumWriteLatencyEntries) {
355       const MCWriteLatencyEntry &WLE =
356           *STI.getWriteLatencyEntry(&SCDesc, Index);
357       // Conservatively default to MaxLatency.
358       Write.Latency =
359           WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
360       Write.SClassOrWriteResourceID = WLE.WriteResourceID;
361     } else {
362       // Assign a default latency for this write.
363       Write.Latency = ID.MaxLatency;
364       Write.SClassOrWriteResourceID = 0;
365     }
366 
367     Write.IsOptionalDef = false;
368     assert(Write.RegisterID != 0 && "Expected a valid phys register!");
369     LLVM_DEBUG({
370       dbgs() << "\t\t[Def][I] OpIdx=" << ~Write.OpIndex
371              << ", PhysReg=" << MRI.getName(Write.RegisterID)
372              << ", Latency=" << Write.Latency
373              << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
374     });
375   }
376 
377   if (MCDesc.hasOptionalDef()) {
378     WriteDescriptor &Write = ID.Writes[NumExplicitDefs + NumImplicitDefs];
379     Write.OpIndex = OptionalDefIdx;
380     // Assign a default latency for this write.
381     Write.Latency = ID.MaxLatency;
382     Write.SClassOrWriteResourceID = 0;
383     Write.IsOptionalDef = true;
384     LLVM_DEBUG({
385       dbgs() << "\t\t[Def][O] OpIdx=" << Write.OpIndex
386              << ", Latency=" << Write.Latency
387              << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
388     });
389   }
390 
391   if (!NumVariadicOps)
392     return;
393 
394   // FIXME: if an instruction opcode is flagged 'mayStore', and it has no
395   // "unmodeledSideEffects', then this logic optimistically assumes that any
396   // extra register operands in the variadic sequence is not a register
397   // definition.
398   //
399   // Otherwise, we conservatively assume that any register operand from the
400   // variadic sequence is both a register read and a register write.
401   bool AssumeUsesOnly = MCDesc.mayStore() && !MCDesc.mayLoad() &&
402                         !MCDesc.hasUnmodeledSideEffects();
403   CurrentDef = NumExplicitDefs + NumImplicitDefs + MCDesc.hasOptionalDef();
404   for (unsigned I = 0, OpIndex = MCDesc.getNumOperands();
405        I < NumVariadicOps && !AssumeUsesOnly; ++I, ++OpIndex) {
406     const MCOperand &Op = MCI.getOperand(OpIndex);
407     if (!Op.isReg())
408       continue;
409 
410     WriteDescriptor &Write = ID.Writes[CurrentDef];
411     Write.OpIndex = OpIndex;
412     // Assign a default latency for this write.
413     Write.Latency = ID.MaxLatency;
414     Write.SClassOrWriteResourceID = 0;
415     Write.IsOptionalDef = false;
416     ++CurrentDef;
417     LLVM_DEBUG({
418       dbgs() << "\t\t[Def][V] OpIdx=" << Write.OpIndex
419              << ", Latency=" << Write.Latency
420              << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
421     });
422   }
423 
424   ID.Writes.resize(CurrentDef);
425 }
426 
427 void InstrBuilder::populateReads(InstrDesc &ID, const MCInst &MCI,
428                                  unsigned SchedClassID) {
429   const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
430   unsigned NumExplicitUses = MCDesc.getNumOperands() - MCDesc.getNumDefs();
431   unsigned NumImplicitUses = MCDesc.getNumImplicitUses();
432   // Remove the optional definition.
433   if (MCDesc.hasOptionalDef())
434     --NumExplicitUses;
435   unsigned NumVariadicOps = MCI.getNumOperands() - MCDesc.getNumOperands();
436   unsigned TotalUses = NumExplicitUses + NumImplicitUses + NumVariadicOps;
437   ID.Reads.resize(TotalUses);
438   unsigned CurrentUse = 0;
439   for (unsigned I = 0, OpIndex = MCDesc.getNumDefs(); I < NumExplicitUses;
440        ++I, ++OpIndex) {
441     const MCOperand &Op = MCI.getOperand(OpIndex);
442     if (!Op.isReg())
443       continue;
444 
445     ReadDescriptor &Read = ID.Reads[CurrentUse];
446     Read.OpIndex = OpIndex;
447     Read.UseIndex = I;
448     Read.SchedClassID = SchedClassID;
449     ++CurrentUse;
450     LLVM_DEBUG(dbgs() << "\t\t[Use]    OpIdx=" << Read.OpIndex
451                       << ", UseIndex=" << Read.UseIndex << '\n');
452   }
453 
454   // For the purpose of ReadAdvance, implicit uses come directly after explicit
455   // uses. The "UseIndex" must be updated according to that implicit layout.
456   for (unsigned I = 0; I < NumImplicitUses; ++I) {
457     ReadDescriptor &Read = ID.Reads[CurrentUse + I];
458     Read.OpIndex = ~I;
459     Read.UseIndex = NumExplicitUses + I;
460     Read.RegisterID = MCDesc.getImplicitUses()[I];
461     Read.SchedClassID = SchedClassID;
462     LLVM_DEBUG(dbgs() << "\t\t[Use][I] OpIdx=" << ~Read.OpIndex
463                       << ", UseIndex=" << Read.UseIndex << ", RegisterID="
464                       << MRI.getName(Read.RegisterID) << '\n');
465   }
466 
467   CurrentUse += NumImplicitUses;
468 
469   // FIXME: If an instruction opcode is marked as 'mayLoad', and it has no
470   // "unmodeledSideEffects", then this logic optimistically assumes that any
471   // extra register operand in the variadic sequence is not a register
472   // definition.
473   bool AssumeDefsOnly = !MCDesc.mayStore() && MCDesc.mayLoad() &&
474                         !MCDesc.hasUnmodeledSideEffects();
475   for (unsigned I = 0, OpIndex = MCDesc.getNumOperands();
476        I < NumVariadicOps && !AssumeDefsOnly; ++I, ++OpIndex) {
477     const MCOperand &Op = MCI.getOperand(OpIndex);
478     if (!Op.isReg())
479       continue;
480 
481     ReadDescriptor &Read = ID.Reads[CurrentUse];
482     Read.OpIndex = OpIndex;
483     Read.UseIndex = NumExplicitUses + NumImplicitUses + I;
484     Read.SchedClassID = SchedClassID;
485     ++CurrentUse;
486     LLVM_DEBUG(dbgs() << "\t\t[Use][V] OpIdx=" << Read.OpIndex
487                       << ", UseIndex=" << Read.UseIndex << '\n');
488   }
489 
490   ID.Reads.resize(CurrentUse);
491 }
492 
493 Error InstrBuilder::verifyInstrDesc(const InstrDesc &ID,
494                                     const MCInst &MCI) const {
495   if (ID.NumMicroOps != 0)
496     return ErrorSuccess();
497 
498   bool UsesBuffers = ID.UsedBuffers;
499   bool UsesResources = !ID.Resources.empty();
500   if (!UsesBuffers && !UsesResources)
501     return ErrorSuccess();
502 
503   // FIXME: see PR44797. We should revisit these checks and possibly move them
504   // in CodeGenSchedule.cpp.
505   StringRef Message = "found an inconsistent instruction that decodes to zero "
506                       "opcodes and that consumes scheduler resources.";
507   return make_error<InstructionError<MCInst>>(std::string(Message), MCI);
508 }
509 
510 Expected<const InstrDesc &>
511 InstrBuilder::createInstrDescImpl(const MCInst &MCI) {
512   assert(STI.getSchedModel().hasInstrSchedModel() &&
513          "Itineraries are not yet supported!");
514 
515   // Obtain the instruction descriptor from the opcode.
516   unsigned short Opcode = MCI.getOpcode();
517   const MCInstrDesc &MCDesc = MCII.get(Opcode);
518   const MCSchedModel &SM = STI.getSchedModel();
519 
520   // Then obtain the scheduling class information from the instruction.
521   unsigned SchedClassID = MCDesc.getSchedClass();
522   bool IsVariant = SM.getSchedClassDesc(SchedClassID)->isVariant();
523 
524   // Try to solve variant scheduling classes.
525   if (IsVariant) {
526     unsigned CPUID = SM.getProcessorID();
527     while (SchedClassID && SM.getSchedClassDesc(SchedClassID)->isVariant())
528       SchedClassID =
529           STI.resolveVariantSchedClass(SchedClassID, &MCI, &MCII, CPUID);
530 
531     if (!SchedClassID) {
532       return make_error<InstructionError<MCInst>>(
533           "unable to resolve scheduling class for write variant.", MCI);
534     }
535   }
536 
537   // Check if this instruction is supported. Otherwise, report an error.
538   const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
539   if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
540     return make_error<InstructionError<MCInst>>(
541         "found an unsupported instruction in the input assembly sequence.",
542         MCI);
543   }
544 
545   LLVM_DEBUG(dbgs() << "\n\t\tOpcode Name= " << MCII.getName(Opcode) << '\n');
546   LLVM_DEBUG(dbgs() << "\t\tSchedClassID=" << SchedClassID << '\n');
547 
548   // Create a new empty descriptor.
549   std::unique_ptr<InstrDesc> ID = std::make_unique<InstrDesc>();
550   ID->NumMicroOps = SCDesc.NumMicroOps;
551   ID->SchedClassID = SchedClassID;
552 
553   if (MCDesc.isCall() && FirstCallInst) {
554     // We don't correctly model calls.
555     WithColor::warning() << "found a call in the input assembly sequence.\n";
556     WithColor::note() << "call instructions are not correctly modeled. "
557                       << "Assume a latency of 100cy.\n";
558     FirstCallInst = false;
559   }
560 
561   if (MCDesc.isReturn() && FirstReturnInst) {
562     WithColor::warning() << "found a return instruction in the input"
563                          << " assembly sequence.\n";
564     WithColor::note() << "program counter updates are ignored.\n";
565     FirstReturnInst = false;
566   }
567 
568   ID->MayLoad = MCDesc.mayLoad();
569   ID->MayStore = MCDesc.mayStore();
570   ID->HasSideEffects = MCDesc.hasUnmodeledSideEffects();
571   ID->BeginGroup = SCDesc.BeginGroup;
572   ID->EndGroup = SCDesc.EndGroup;
573 
574   initializeUsedResources(*ID, SCDesc, STI, ProcResourceMasks);
575   computeMaxLatency(*ID, MCDesc, SCDesc, STI);
576 
577   if (Error Err = verifyOperands(MCDesc, MCI))
578     return std::move(Err);
579 
580   populateWrites(*ID, MCI, SchedClassID);
581   populateReads(*ID, MCI, SchedClassID);
582 
583   LLVM_DEBUG(dbgs() << "\t\tMaxLatency=" << ID->MaxLatency << '\n');
584   LLVM_DEBUG(dbgs() << "\t\tNumMicroOps=" << ID->NumMicroOps << '\n');
585 
586   // Sanity check on the instruction descriptor.
587   if (Error Err = verifyInstrDesc(*ID, MCI))
588     return std::move(Err);
589 
590   // Now add the new descriptor.
591   bool IsVariadic = MCDesc.isVariadic();
592   if (!IsVariadic && !IsVariant) {
593     Descriptors[MCI.getOpcode()] = std::move(ID);
594     return *Descriptors[MCI.getOpcode()];
595   }
596 
597   VariantDescriptors[&MCI] = std::move(ID);
598   return *VariantDescriptors[&MCI];
599 }
600 
601 Expected<const InstrDesc &>
602 InstrBuilder::getOrCreateInstrDesc(const MCInst &MCI) {
603   if (Descriptors.find_as(MCI.getOpcode()) != Descriptors.end())
604     return *Descriptors[MCI.getOpcode()];
605 
606   if (VariantDescriptors.find(&MCI) != VariantDescriptors.end())
607     return *VariantDescriptors[&MCI];
608 
609   return createInstrDescImpl(MCI);
610 }
611 
612 Expected<std::unique_ptr<Instruction>>
613 InstrBuilder::createInstruction(const MCInst &MCI) {
614   Expected<const InstrDesc &> DescOrErr = getOrCreateInstrDesc(MCI);
615   if (!DescOrErr)
616     return DescOrErr.takeError();
617   const InstrDesc &D = *DescOrErr;
618   std::unique_ptr<Instruction> NewIS = std::make_unique<Instruction>(D);
619 
620   // Check if this is a dependency breaking instruction.
621   APInt Mask;
622 
623   bool IsZeroIdiom = false;
624   bool IsDepBreaking = false;
625   if (MCIA) {
626     unsigned ProcID = STI.getSchedModel().getProcessorID();
627     IsZeroIdiom = MCIA->isZeroIdiom(MCI, Mask, ProcID);
628     IsDepBreaking =
629         IsZeroIdiom || MCIA->isDependencyBreaking(MCI, Mask, ProcID);
630     if (MCIA->isOptimizableRegisterMove(MCI, ProcID))
631       NewIS->setOptimizableMove();
632   }
633 
634   // Initialize Reads first.
635   MCPhysReg RegID = 0;
636   for (const ReadDescriptor &RD : D.Reads) {
637     if (!RD.isImplicitRead()) {
638       // explicit read.
639       const MCOperand &Op = MCI.getOperand(RD.OpIndex);
640       // Skip non-register operands.
641       if (!Op.isReg())
642         continue;
643       RegID = Op.getReg();
644     } else {
645       // Implicit read.
646       RegID = RD.RegisterID;
647     }
648 
649     // Skip invalid register operands.
650     if (!RegID)
651       continue;
652 
653     // Okay, this is a register operand. Create a ReadState for it.
654     NewIS->getUses().emplace_back(RD, RegID);
655     ReadState &RS = NewIS->getUses().back();
656 
657     if (IsDepBreaking) {
658       // A mask of all zeroes means: explicit input operands are not
659       // independent.
660       if (Mask.isNullValue()) {
661         if (!RD.isImplicitRead())
662           RS.setIndependentFromDef();
663       } else {
664         // Check if this register operand is independent according to `Mask`.
665         // Note that Mask may not have enough bits to describe all explicit and
666         // implicit input operands. If this register operand doesn't have a
667         // corresponding bit in Mask, then conservatively assume that it is
668         // dependent.
669         if (Mask.getBitWidth() > RD.UseIndex) {
670           // Okay. This map describe register use `RD.UseIndex`.
671           if (Mask[RD.UseIndex])
672             RS.setIndependentFromDef();
673         }
674       }
675     }
676   }
677 
678   // Early exit if there are no writes.
679   if (D.Writes.empty())
680     return std::move(NewIS);
681 
682   // Track register writes that implicitly clear the upper portion of the
683   // underlying super-registers using an APInt.
684   APInt WriteMask(D.Writes.size(), 0);
685 
686   // Now query the MCInstrAnalysis object to obtain information about which
687   // register writes implicitly clear the upper portion of a super-register.
688   if (MCIA)
689     MCIA->clearsSuperRegisters(MRI, MCI, WriteMask);
690 
691   // Initialize writes.
692   unsigned WriteIndex = 0;
693   for (const WriteDescriptor &WD : D.Writes) {
694     RegID = WD.isImplicitWrite() ? WD.RegisterID
695                                  : MCI.getOperand(WD.OpIndex).getReg();
696     // Check if this is a optional definition that references NoReg.
697     if (WD.IsOptionalDef && !RegID) {
698       ++WriteIndex;
699       continue;
700     }
701 
702     assert(RegID && "Expected a valid register ID!");
703     NewIS->getDefs().emplace_back(WD, RegID,
704                                   /* ClearsSuperRegs */ WriteMask[WriteIndex],
705                                   /* WritesZero */ IsZeroIdiom);
706     ++WriteIndex;
707   }
708 
709   return std::move(NewIS);
710 }
711 } // namespace mca
712 } // namespace llvm
713