xref: /freebsd/contrib/llvm-project/llvm/lib/MCA/InstrBuilder.cpp (revision 0c428864495af9dc7d2af4d0a5ae21732af9c739)
1 //===--------------------- InstrBuilder.cpp ---------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file implements the InstrBuilder interface.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/MCA/InstrBuilder.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/MC/MCInst.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/WithColor.h"
21 #include "llvm/Support/raw_ostream.h"
22 
23 #define DEBUG_TYPE "llvm-mca-instrbuilder"
24 
25 namespace llvm {
26 namespace mca {
27 
28 char RecycledInstErr::ID = 0;
29 
30 InstrBuilder::InstrBuilder(const llvm::MCSubtargetInfo &sti,
31                            const llvm::MCInstrInfo &mcii,
32                            const llvm::MCRegisterInfo &mri,
33                            const llvm::MCInstrAnalysis *mcia)
34     : STI(sti), MCII(mcii), MRI(mri), MCIA(mcia), FirstCallInst(true),
35       FirstReturnInst(true) {
36   const MCSchedModel &SM = STI.getSchedModel();
37   ProcResourceMasks.resize(SM.getNumProcResourceKinds());
38   computeProcResourceMasks(STI.getSchedModel(), ProcResourceMasks);
39 }
40 
41 static void initializeUsedResources(InstrDesc &ID,
42                                     const MCSchedClassDesc &SCDesc,
43                                     const MCSubtargetInfo &STI,
44                                     ArrayRef<uint64_t> ProcResourceMasks) {
45   const MCSchedModel &SM = STI.getSchedModel();
46 
47   // Populate resources consumed.
48   using ResourcePlusCycles = std::pair<uint64_t, ResourceUsage>;
49   SmallVector<ResourcePlusCycles, 4> Worklist;
50 
51   // Track cycles contributed by resources that are in a "Super" relationship.
52   // This is required if we want to correctly match the behavior of method
53   // SubtargetEmitter::ExpandProcResource() in Tablegen. When computing the set
54   // of "consumed" processor resources and resource cycles, the logic in
55   // ExpandProcResource() doesn't update the number of resource cycles
56   // contributed by a "Super" resource to a group.
57   // We need to take this into account when we find that a processor resource is
58   // part of a group, and it is also used as the "Super" of other resources.
59   // This map stores the number of cycles contributed by sub-resources that are
60   // part of a "Super" resource. The key value is the "Super" resource mask ID.
61   DenseMap<uint64_t, unsigned> SuperResources;
62 
63   unsigned NumProcResources = SM.getNumProcResourceKinds();
64   APInt Buffers(NumProcResources, 0);
65 
66   bool AllInOrderResources = true;
67   bool AnyDispatchHazards = false;
68   for (unsigned I = 0, E = SCDesc.NumWriteProcResEntries; I < E; ++I) {
69     const MCWriteProcResEntry *PRE = STI.getWriteProcResBegin(&SCDesc) + I;
70     const MCProcResourceDesc &PR = *SM.getProcResource(PRE->ProcResourceIdx);
71     if (!PRE->Cycles) {
72 #ifndef NDEBUG
73       WithColor::warning()
74           << "Ignoring invalid write of zero cycles on processor resource "
75           << PR.Name << "\n";
76       WithColor::note() << "found in scheduling class " << SCDesc.Name
77                         << " (write index #" << I << ")\n";
78 #endif
79       continue;
80     }
81 
82     uint64_t Mask = ProcResourceMasks[PRE->ProcResourceIdx];
83     if (PR.BufferSize < 0) {
84       AllInOrderResources = false;
85     } else {
86       Buffers.setBit(getResourceStateIndex(Mask));
87       AnyDispatchHazards |= (PR.BufferSize == 0);
88       AllInOrderResources &= (PR.BufferSize <= 1);
89     }
90 
91     CycleSegment RCy(0, PRE->Cycles, false);
92     Worklist.emplace_back(ResourcePlusCycles(Mask, ResourceUsage(RCy)));
93     if (PR.SuperIdx) {
94       uint64_t Super = ProcResourceMasks[PR.SuperIdx];
95       SuperResources[Super] += PRE->Cycles;
96     }
97   }
98 
99   ID.MustIssueImmediately = AllInOrderResources && AnyDispatchHazards;
100 
101   // Sort elements by mask popcount, so that we prioritize resource units over
102   // resource groups, and smaller groups over larger groups.
103   sort(Worklist, [](const ResourcePlusCycles &A, const ResourcePlusCycles &B) {
104     unsigned popcntA = countPopulation(A.first);
105     unsigned popcntB = countPopulation(B.first);
106     if (popcntA < popcntB)
107       return true;
108     if (popcntA > popcntB)
109       return false;
110     return A.first < B.first;
111   });
112 
113   uint64_t UsedResourceUnits = 0;
114   uint64_t UsedResourceGroups = 0;
115   auto GroupIt = find_if(Worklist, [](const ResourcePlusCycles &Elt) {
116     return countPopulation(Elt.first) > 1;
117   });
118   unsigned FirstGroupIdx = std::distance(Worklist.begin(), GroupIt);
119   uint64_t ImpliedUsesOfResourceUnits = 0;
120 
121   // Remove cycles contributed by smaller resources.
122   for (unsigned I = 0, E = Worklist.size(); I < E; ++I) {
123     ResourcePlusCycles &A = Worklist[I];
124     if (!A.second.size()) {
125       assert(countPopulation(A.first) > 1 && "Expected a group!");
126       UsedResourceGroups |= PowerOf2Floor(A.first);
127       continue;
128     }
129 
130     ID.Resources.emplace_back(A);
131     uint64_t NormalizedMask = A.first;
132     if (countPopulation(A.first) == 1) {
133       UsedResourceUnits |= A.first;
134     } else {
135       // Remove the leading 1 from the resource group mask.
136       NormalizedMask ^= PowerOf2Floor(NormalizedMask);
137       UsedResourceGroups |= (A.first ^ NormalizedMask);
138 
139       uint64_t AvailableMask = NormalizedMask & ~UsedResourceUnits;
140       if ((NormalizedMask != AvailableMask) &&
141           countPopulation(AvailableMask) == 1) {
142         // At simulation time, this resource group use will decay into a simple
143         // use of the resource unit identified by `AvailableMask`.
144         ImpliedUsesOfResourceUnits |= AvailableMask;
145         UsedResourceUnits |= AvailableMask;
146       }
147     }
148 
149     for (unsigned J = I + 1; J < E; ++J) {
150       ResourcePlusCycles &B = Worklist[J];
151       if ((NormalizedMask & B.first) == NormalizedMask) {
152         B.second.CS.subtract(A.second.size() - SuperResources[A.first]);
153         if (countPopulation(B.first) > 1)
154           B.second.NumUnits++;
155       }
156     }
157   }
158 
159   // Look for implicit uses of processor resource units. These are resource
160   // units which are indirectly consumed by resource groups, and that must be
161   // always available on instruction issue.
162   while (ImpliedUsesOfResourceUnits) {
163     ID.ImplicitlyUsedProcResUnits |= ImpliedUsesOfResourceUnits;
164     ImpliedUsesOfResourceUnits = 0;
165     for (unsigned I = FirstGroupIdx, E = Worklist.size(); I < E; ++I) {
166       ResourcePlusCycles &A = Worklist[I];
167       if (!A.second.size())
168         continue;
169 
170       uint64_t NormalizedMask = A.first;
171       assert(countPopulation(NormalizedMask) > 1);
172       // Remove the leading 1 from the resource group mask.
173       NormalizedMask ^= PowerOf2Floor(NormalizedMask);
174       uint64_t AvailableMask = NormalizedMask & ~UsedResourceUnits;
175       if ((NormalizedMask != AvailableMask) &&
176           countPopulation(AvailableMask) != 1)
177         continue;
178 
179       UsedResourceUnits |= AvailableMask;
180       ImpliedUsesOfResourceUnits |= AvailableMask;
181     }
182   }
183 
184   // A SchedWrite may specify a number of cycles in which a resource group
185   // is reserved. For example (on target x86; cpu Haswell):
186   //
187   //  SchedWriteRes<[HWPort0, HWPort1, HWPort01]> {
188   //    let ResourceCycles = [2, 2, 3];
189   //  }
190   //
191   // This means:
192   // Resource units HWPort0 and HWPort1 are both used for 2cy.
193   // Resource group HWPort01 is the union of HWPort0 and HWPort1.
194   // Since this write touches both HWPort0 and HWPort1 for 2cy, HWPort01
195   // will not be usable for 2 entire cycles from instruction issue.
196   //
197   // On top of those 2cy, SchedWriteRes explicitly specifies an extra latency
198   // of 3 cycles for HWPort01. This tool assumes that the 3cy latency is an
199   // extra delay on top of the 2 cycles latency.
200   // During those extra cycles, HWPort01 is not usable by other instructions.
201   for (ResourcePlusCycles &RPC : ID.Resources) {
202     if (countPopulation(RPC.first) > 1 && !RPC.second.isReserved()) {
203       // Remove the leading 1 from the resource group mask.
204       uint64_t Mask = RPC.first ^ PowerOf2Floor(RPC.first);
205       uint64_t MaxResourceUnits = countPopulation(Mask);
206       if (RPC.second.NumUnits > countPopulation(Mask)) {
207         RPC.second.setReserved();
208         RPC.second.NumUnits = MaxResourceUnits;
209       }
210     }
211   }
212 
213   // Identify extra buffers that are consumed through super resources.
214   for (const std::pair<uint64_t, unsigned> &SR : SuperResources) {
215     for (unsigned I = 1, E = NumProcResources; I < E; ++I) {
216       const MCProcResourceDesc &PR = *SM.getProcResource(I);
217       if (PR.BufferSize == -1)
218         continue;
219 
220       uint64_t Mask = ProcResourceMasks[I];
221       if (Mask != SR.first && ((Mask & SR.first) == SR.first))
222         Buffers.setBit(getResourceStateIndex(Mask));
223     }
224   }
225 
226   ID.UsedBuffers = Buffers.getZExtValue();
227   ID.UsedProcResUnits = UsedResourceUnits;
228   ID.UsedProcResGroups = UsedResourceGroups;
229 
230   LLVM_DEBUG({
231     for (const std::pair<uint64_t, ResourceUsage> &R : ID.Resources)
232       dbgs() << "\t\tResource Mask=" << format_hex(R.first, 16) << ", "
233              << "Reserved=" << R.second.isReserved() << ", "
234              << "#Units=" << R.second.NumUnits << ", "
235              << "cy=" << R.second.size() << '\n';
236     uint64_t BufferIDs = ID.UsedBuffers;
237     while (BufferIDs) {
238       uint64_t Current = BufferIDs & (-BufferIDs);
239       dbgs() << "\t\tBuffer Mask=" << format_hex(Current, 16) << '\n';
240       BufferIDs ^= Current;
241     }
242     dbgs() << "\t\t Used Units=" << format_hex(ID.UsedProcResUnits, 16) << '\n';
243     dbgs() << "\t\tImplicitly Used Units="
244            << format_hex(ID.ImplicitlyUsedProcResUnits, 16) << '\n';
245     dbgs() << "\t\tUsed Groups=" << format_hex(ID.UsedProcResGroups, 16)
246            << '\n';
247   });
248 }
249 
250 static void computeMaxLatency(InstrDesc &ID, const MCInstrDesc &MCDesc,
251                               const MCSchedClassDesc &SCDesc,
252                               const MCSubtargetInfo &STI) {
253   if (MCDesc.isCall()) {
254     // We cannot estimate how long this call will take.
255     // Artificially set an arbitrarily high latency (100cy).
256     ID.MaxLatency = 100U;
257     return;
258   }
259 
260   int Latency = MCSchedModel::computeInstrLatency(STI, SCDesc);
261   // If latency is unknown, then conservatively assume a MaxLatency of 100cy.
262   ID.MaxLatency = Latency < 0 ? 100U : static_cast<unsigned>(Latency);
263 }
264 
265 static Error verifyOperands(const MCInstrDesc &MCDesc, const MCInst &MCI) {
266   // Count register definitions, and skip non register operands in the process.
267   unsigned I, E;
268   unsigned NumExplicitDefs = MCDesc.getNumDefs();
269   for (I = 0, E = MCI.getNumOperands(); NumExplicitDefs && I < E; ++I) {
270     const MCOperand &Op = MCI.getOperand(I);
271     if (Op.isReg())
272       --NumExplicitDefs;
273   }
274 
275   if (NumExplicitDefs) {
276     return make_error<InstructionError<MCInst>>(
277         "Expected more register operand definitions.", MCI);
278   }
279 
280   if (MCDesc.hasOptionalDef()) {
281     // Always assume that the optional definition is the last operand.
282     const MCOperand &Op = MCI.getOperand(MCDesc.getNumOperands() - 1);
283     if (I == MCI.getNumOperands() || !Op.isReg()) {
284       std::string Message =
285           "expected a register operand for an optional definition. Instruction "
286           "has not been correctly analyzed.";
287       return make_error<InstructionError<MCInst>>(Message, MCI);
288     }
289   }
290 
291   return ErrorSuccess();
292 }
293 
294 void InstrBuilder::populateWrites(InstrDesc &ID, const MCInst &MCI,
295                                   unsigned SchedClassID) {
296   const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
297   const MCSchedModel &SM = STI.getSchedModel();
298   const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
299 
300   // Assumptions made by this algorithm:
301   //  1. The number of explicit and implicit register definitions in a MCInst
302   //     matches the number of explicit and implicit definitions according to
303   //     the opcode descriptor (MCInstrDesc).
304   //  2. Uses start at index #(MCDesc.getNumDefs()).
305   //  3. There can only be a single optional register definition, an it is
306   //     either the last operand of the sequence (excluding extra operands
307   //     contributed by variadic opcodes) or one of the explicit register
308   //     definitions. The latter occurs for some Thumb1 instructions.
309   //
310   // These assumptions work quite well for most out-of-order in-tree targets
311   // like x86. This is mainly because the vast majority of instructions is
312   // expanded to MCInst using a straightforward lowering logic that preserves
313   // the ordering of the operands.
314   //
315   // About assumption 1.
316   // The algorithm allows non-register operands between register operand
317   // definitions. This helps to handle some special ARM instructions with
318   // implicit operand increment (-mtriple=armv7):
319   //
320   // vld1.32  {d18, d19}, [r1]!  @ <MCInst #1463 VLD1q32wb_fixed
321   //                             @  <MCOperand Reg:59>
322   //                             @  <MCOperand Imm:0>     (!!)
323   //                             @  <MCOperand Reg:67>
324   //                             @  <MCOperand Imm:0>
325   //                             @  <MCOperand Imm:14>
326   //                             @  <MCOperand Reg:0>>
327   //
328   // MCDesc reports:
329   //  6 explicit operands.
330   //  1 optional definition
331   //  2 explicit definitions (!!)
332   //
333   // The presence of an 'Imm' operand between the two register definitions
334   // breaks the assumption that "register definitions are always at the
335   // beginning of the operand sequence".
336   //
337   // To workaround this issue, this algorithm ignores (i.e. skips) any
338   // non-register operands between register definitions.  The optional
339   // definition is still at index #(NumOperands-1).
340   //
341   // According to assumption 2. register reads start at #(NumExplicitDefs-1).
342   // That means, register R1 from the example is both read and written.
343   unsigned NumExplicitDefs = MCDesc.getNumDefs();
344   unsigned NumImplicitDefs = MCDesc.getNumImplicitDefs();
345   unsigned NumWriteLatencyEntries = SCDesc.NumWriteLatencyEntries;
346   unsigned TotalDefs = NumExplicitDefs + NumImplicitDefs;
347   if (MCDesc.hasOptionalDef())
348     TotalDefs++;
349 
350   unsigned NumVariadicOps = MCI.getNumOperands() - MCDesc.getNumOperands();
351   ID.Writes.resize(TotalDefs + NumVariadicOps);
352   // Iterate over the operands list, and skip non-register operands.
353   // The first NumExplicitDefs register operands are expected to be register
354   // definitions.
355   unsigned CurrentDef = 0;
356   unsigned OptionalDefIdx = MCDesc.getNumOperands() - 1;
357   unsigned i = 0;
358   for (; i < MCI.getNumOperands() && CurrentDef < NumExplicitDefs; ++i) {
359     const MCOperand &Op = MCI.getOperand(i);
360     if (!Op.isReg())
361       continue;
362 
363     if (MCDesc.OpInfo[CurrentDef].isOptionalDef()) {
364       OptionalDefIdx = CurrentDef++;
365       continue;
366     }
367 
368     WriteDescriptor &Write = ID.Writes[CurrentDef];
369     Write.OpIndex = i;
370     if (CurrentDef < NumWriteLatencyEntries) {
371       const MCWriteLatencyEntry &WLE =
372           *STI.getWriteLatencyEntry(&SCDesc, CurrentDef);
373       // Conservatively default to MaxLatency.
374       Write.Latency =
375           WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
376       Write.SClassOrWriteResourceID = WLE.WriteResourceID;
377     } else {
378       // Assign a default latency for this write.
379       Write.Latency = ID.MaxLatency;
380       Write.SClassOrWriteResourceID = 0;
381     }
382     Write.IsOptionalDef = false;
383     LLVM_DEBUG({
384       dbgs() << "\t\t[Def]    OpIdx=" << Write.OpIndex
385              << ", Latency=" << Write.Latency
386              << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
387     });
388     CurrentDef++;
389   }
390 
391   assert(CurrentDef == NumExplicitDefs &&
392          "Expected more register operand definitions.");
393   for (CurrentDef = 0; CurrentDef < NumImplicitDefs; ++CurrentDef) {
394     unsigned Index = NumExplicitDefs + CurrentDef;
395     WriteDescriptor &Write = ID.Writes[Index];
396     Write.OpIndex = ~CurrentDef;
397     Write.RegisterID = MCDesc.getImplicitDefs()[CurrentDef];
398     if (Index < NumWriteLatencyEntries) {
399       const MCWriteLatencyEntry &WLE =
400           *STI.getWriteLatencyEntry(&SCDesc, Index);
401       // Conservatively default to MaxLatency.
402       Write.Latency =
403           WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
404       Write.SClassOrWriteResourceID = WLE.WriteResourceID;
405     } else {
406       // Assign a default latency for this write.
407       Write.Latency = ID.MaxLatency;
408       Write.SClassOrWriteResourceID = 0;
409     }
410 
411     Write.IsOptionalDef = false;
412     assert(Write.RegisterID != 0 && "Expected a valid phys register!");
413     LLVM_DEBUG({
414       dbgs() << "\t\t[Def][I] OpIdx=" << ~Write.OpIndex
415              << ", PhysReg=" << MRI.getName(Write.RegisterID)
416              << ", Latency=" << Write.Latency
417              << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
418     });
419   }
420 
421   if (MCDesc.hasOptionalDef()) {
422     WriteDescriptor &Write = ID.Writes[NumExplicitDefs + NumImplicitDefs];
423     Write.OpIndex = OptionalDefIdx;
424     // Assign a default latency for this write.
425     Write.Latency = ID.MaxLatency;
426     Write.SClassOrWriteResourceID = 0;
427     Write.IsOptionalDef = true;
428     LLVM_DEBUG({
429       dbgs() << "\t\t[Def][O] OpIdx=" << Write.OpIndex
430              << ", Latency=" << Write.Latency
431              << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
432     });
433   }
434 
435   if (!NumVariadicOps)
436     return;
437 
438   bool AssumeUsesOnly = !MCDesc.variadicOpsAreDefs();
439   CurrentDef = NumExplicitDefs + NumImplicitDefs + MCDesc.hasOptionalDef();
440   for (unsigned I = 0, OpIndex = MCDesc.getNumOperands();
441        I < NumVariadicOps && !AssumeUsesOnly; ++I, ++OpIndex) {
442     const MCOperand &Op = MCI.getOperand(OpIndex);
443     if (!Op.isReg())
444       continue;
445 
446     WriteDescriptor &Write = ID.Writes[CurrentDef];
447     Write.OpIndex = OpIndex;
448     // Assign a default latency for this write.
449     Write.Latency = ID.MaxLatency;
450     Write.SClassOrWriteResourceID = 0;
451     Write.IsOptionalDef = false;
452     ++CurrentDef;
453     LLVM_DEBUG({
454       dbgs() << "\t\t[Def][V] OpIdx=" << Write.OpIndex
455              << ", Latency=" << Write.Latency
456              << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
457     });
458   }
459 
460   ID.Writes.resize(CurrentDef);
461 }
462 
463 void InstrBuilder::populateReads(InstrDesc &ID, const MCInst &MCI,
464                                  unsigned SchedClassID) {
465   const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
466   unsigned NumExplicitUses = MCDesc.getNumOperands() - MCDesc.getNumDefs();
467   unsigned NumImplicitUses = MCDesc.getNumImplicitUses();
468   // Remove the optional definition.
469   if (MCDesc.hasOptionalDef())
470     --NumExplicitUses;
471   unsigned NumVariadicOps = MCI.getNumOperands() - MCDesc.getNumOperands();
472   unsigned TotalUses = NumExplicitUses + NumImplicitUses + NumVariadicOps;
473   ID.Reads.resize(TotalUses);
474   unsigned CurrentUse = 0;
475   for (unsigned I = 0, OpIndex = MCDesc.getNumDefs(); I < NumExplicitUses;
476        ++I, ++OpIndex) {
477     const MCOperand &Op = MCI.getOperand(OpIndex);
478     if (!Op.isReg())
479       continue;
480 
481     ReadDescriptor &Read = ID.Reads[CurrentUse];
482     Read.OpIndex = OpIndex;
483     Read.UseIndex = I;
484     Read.SchedClassID = SchedClassID;
485     ++CurrentUse;
486     LLVM_DEBUG(dbgs() << "\t\t[Use]    OpIdx=" << Read.OpIndex
487                       << ", UseIndex=" << Read.UseIndex << '\n');
488   }
489 
490   // For the purpose of ReadAdvance, implicit uses come directly after explicit
491   // uses. The "UseIndex" must be updated according to that implicit layout.
492   for (unsigned I = 0; I < NumImplicitUses; ++I) {
493     ReadDescriptor &Read = ID.Reads[CurrentUse + I];
494     Read.OpIndex = ~I;
495     Read.UseIndex = NumExplicitUses + I;
496     Read.RegisterID = MCDesc.getImplicitUses()[I];
497     Read.SchedClassID = SchedClassID;
498     LLVM_DEBUG(dbgs() << "\t\t[Use][I] OpIdx=" << ~Read.OpIndex
499                       << ", UseIndex=" << Read.UseIndex << ", RegisterID="
500                       << MRI.getName(Read.RegisterID) << '\n');
501   }
502 
503   CurrentUse += NumImplicitUses;
504 
505   bool AssumeDefsOnly = MCDesc.variadicOpsAreDefs();
506   for (unsigned I = 0, OpIndex = MCDesc.getNumOperands();
507        I < NumVariadicOps && !AssumeDefsOnly; ++I, ++OpIndex) {
508     const MCOperand &Op = MCI.getOperand(OpIndex);
509     if (!Op.isReg())
510       continue;
511 
512     ReadDescriptor &Read = ID.Reads[CurrentUse];
513     Read.OpIndex = OpIndex;
514     Read.UseIndex = NumExplicitUses + NumImplicitUses + I;
515     Read.SchedClassID = SchedClassID;
516     ++CurrentUse;
517     LLVM_DEBUG(dbgs() << "\t\t[Use][V] OpIdx=" << Read.OpIndex
518                       << ", UseIndex=" << Read.UseIndex << '\n');
519   }
520 
521   ID.Reads.resize(CurrentUse);
522 }
523 
524 Error InstrBuilder::verifyInstrDesc(const InstrDesc &ID,
525                                     const MCInst &MCI) const {
526   if (ID.NumMicroOps != 0)
527     return ErrorSuccess();
528 
529   bool UsesBuffers = ID.UsedBuffers;
530   bool UsesResources = !ID.Resources.empty();
531   if (!UsesBuffers && !UsesResources)
532     return ErrorSuccess();
533 
534   // FIXME: see PR44797. We should revisit these checks and possibly move them
535   // in CodeGenSchedule.cpp.
536   StringRef Message = "found an inconsistent instruction that decodes to zero "
537                       "opcodes and that consumes scheduler resources.";
538   return make_error<InstructionError<MCInst>>(std::string(Message), MCI);
539 }
540 
541 Expected<const InstrDesc &>
542 InstrBuilder::createInstrDescImpl(const MCInst &MCI) {
543   assert(STI.getSchedModel().hasInstrSchedModel() &&
544          "Itineraries are not yet supported!");
545 
546   // Obtain the instruction descriptor from the opcode.
547   unsigned short Opcode = MCI.getOpcode();
548   const MCInstrDesc &MCDesc = MCII.get(Opcode);
549   const MCSchedModel &SM = STI.getSchedModel();
550 
551   // Then obtain the scheduling class information from the instruction.
552   unsigned SchedClassID = MCDesc.getSchedClass();
553   bool IsVariant = SM.getSchedClassDesc(SchedClassID)->isVariant();
554 
555   // Try to solve variant scheduling classes.
556   if (IsVariant) {
557     unsigned CPUID = SM.getProcessorID();
558     while (SchedClassID && SM.getSchedClassDesc(SchedClassID)->isVariant())
559       SchedClassID =
560           STI.resolveVariantSchedClass(SchedClassID, &MCI, &MCII, CPUID);
561 
562     if (!SchedClassID) {
563       return make_error<InstructionError<MCInst>>(
564           "unable to resolve scheduling class for write variant.", MCI);
565     }
566   }
567 
568   // Check if this instruction is supported. Otherwise, report an error.
569   const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
570   if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
571     return make_error<InstructionError<MCInst>>(
572         "found an unsupported instruction in the input assembly sequence.",
573         MCI);
574   }
575 
576   LLVM_DEBUG(dbgs() << "\n\t\tOpcode Name= " << MCII.getName(Opcode) << '\n');
577   LLVM_DEBUG(dbgs() << "\t\tSchedClassID=" << SchedClassID << '\n');
578   LLVM_DEBUG(dbgs() << "\t\tOpcode=" << Opcode << '\n');
579 
580   // Create a new empty descriptor.
581   std::unique_ptr<InstrDesc> ID = std::make_unique<InstrDesc>();
582   ID->NumMicroOps = SCDesc.NumMicroOps;
583   ID->SchedClassID = SchedClassID;
584 
585   if (MCDesc.isCall() && FirstCallInst) {
586     // We don't correctly model calls.
587     WithColor::warning() << "found a call in the input assembly sequence.\n";
588     WithColor::note() << "call instructions are not correctly modeled. "
589                       << "Assume a latency of 100cy.\n";
590     FirstCallInst = false;
591   }
592 
593   if (MCDesc.isReturn() && FirstReturnInst) {
594     WithColor::warning() << "found a return instruction in the input"
595                          << " assembly sequence.\n";
596     WithColor::note() << "program counter updates are ignored.\n";
597     FirstReturnInst = false;
598   }
599 
600   initializeUsedResources(*ID, SCDesc, STI, ProcResourceMasks);
601   computeMaxLatency(*ID, MCDesc, SCDesc, STI);
602 
603   if (Error Err = verifyOperands(MCDesc, MCI))
604     return std::move(Err);
605 
606   populateWrites(*ID, MCI, SchedClassID);
607   populateReads(*ID, MCI, SchedClassID);
608 
609   LLVM_DEBUG(dbgs() << "\t\tMaxLatency=" << ID->MaxLatency << '\n');
610   LLVM_DEBUG(dbgs() << "\t\tNumMicroOps=" << ID->NumMicroOps << '\n');
611 
612   // Validation check on the instruction descriptor.
613   if (Error Err = verifyInstrDesc(*ID, MCI))
614     return std::move(Err);
615 
616   // Now add the new descriptor.
617   bool IsVariadic = MCDesc.isVariadic();
618   if ((ID->IsRecyclable = !IsVariadic && !IsVariant)) {
619     Descriptors[MCI.getOpcode()] = std::move(ID);
620     return *Descriptors[MCI.getOpcode()];
621   }
622 
623   VariantDescriptors[&MCI] = std::move(ID);
624   return *VariantDescriptors[&MCI];
625 }
626 
627 Expected<const InstrDesc &>
628 InstrBuilder::getOrCreateInstrDesc(const MCInst &MCI) {
629   if (Descriptors.find_as(MCI.getOpcode()) != Descriptors.end())
630     return *Descriptors[MCI.getOpcode()];
631 
632   if (VariantDescriptors.find(&MCI) != VariantDescriptors.end())
633     return *VariantDescriptors[&MCI];
634 
635   return createInstrDescImpl(MCI);
636 }
637 
638 STATISTIC(NumVariantInst, "Number of MCInsts that doesn't have static Desc");
639 
640 Expected<std::unique_ptr<Instruction>>
641 InstrBuilder::createInstruction(const MCInst &MCI) {
642   Expected<const InstrDesc &> DescOrErr = getOrCreateInstrDesc(MCI);
643   if (!DescOrErr)
644     return DescOrErr.takeError();
645   const InstrDesc &D = *DescOrErr;
646   Instruction *NewIS = nullptr;
647   std::unique_ptr<Instruction> CreatedIS;
648   bool IsInstRecycled = false;
649 
650   if (!D.IsRecyclable)
651     ++NumVariantInst;
652 
653   if (D.IsRecyclable && InstRecycleCB) {
654     if (auto *I = InstRecycleCB(D)) {
655       NewIS = I;
656       NewIS->reset();
657       IsInstRecycled = true;
658     }
659   }
660   if (!IsInstRecycled) {
661     CreatedIS = std::make_unique<Instruction>(D, MCI.getOpcode());
662     NewIS = CreatedIS.get();
663   }
664 
665   const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
666   const MCSchedClassDesc &SCDesc =
667       *STI.getSchedModel().getSchedClassDesc(D.SchedClassID);
668 
669   NewIS->setMayLoad(MCDesc.mayLoad());
670   NewIS->setMayStore(MCDesc.mayStore());
671   NewIS->setHasSideEffects(MCDesc.hasUnmodeledSideEffects());
672   NewIS->setBeginGroup(SCDesc.BeginGroup);
673   NewIS->setEndGroup(SCDesc.EndGroup);
674   NewIS->setRetireOOO(SCDesc.RetireOOO);
675 
676   // Check if this is a dependency breaking instruction.
677   APInt Mask;
678 
679   bool IsZeroIdiom = false;
680   bool IsDepBreaking = false;
681   if (MCIA) {
682     unsigned ProcID = STI.getSchedModel().getProcessorID();
683     IsZeroIdiom = MCIA->isZeroIdiom(MCI, Mask, ProcID);
684     IsDepBreaking =
685         IsZeroIdiom || MCIA->isDependencyBreaking(MCI, Mask, ProcID);
686     if (MCIA->isOptimizableRegisterMove(MCI, ProcID))
687       NewIS->setOptimizableMove();
688   }
689 
690   // Initialize Reads first.
691   MCPhysReg RegID = 0;
692   size_t Idx = 0U;
693   for (const ReadDescriptor &RD : D.Reads) {
694     if (!RD.isImplicitRead()) {
695       // explicit read.
696       const MCOperand &Op = MCI.getOperand(RD.OpIndex);
697       // Skip non-register operands.
698       if (!Op.isReg())
699         continue;
700       RegID = Op.getReg();
701     } else {
702       // Implicit read.
703       RegID = RD.RegisterID;
704     }
705 
706     // Skip invalid register operands.
707     if (!RegID)
708       continue;
709 
710     // Okay, this is a register operand. Create a ReadState for it.
711     ReadState *RS = nullptr;
712     if (IsInstRecycled && Idx < NewIS->getUses().size()) {
713       NewIS->getUses()[Idx] = ReadState(RD, RegID);
714       RS = &NewIS->getUses()[Idx++];
715     } else {
716       NewIS->getUses().emplace_back(RD, RegID);
717       RS = &NewIS->getUses().back();
718       ++Idx;
719     }
720 
721     if (IsDepBreaking) {
722       // A mask of all zeroes means: explicit input operands are not
723       // independent.
724       if (Mask.isZero()) {
725         if (!RD.isImplicitRead())
726           RS->setIndependentFromDef();
727       } else {
728         // Check if this register operand is independent according to `Mask`.
729         // Note that Mask may not have enough bits to describe all explicit and
730         // implicit input operands. If this register operand doesn't have a
731         // corresponding bit in Mask, then conservatively assume that it is
732         // dependent.
733         if (Mask.getBitWidth() > RD.UseIndex) {
734           // Okay. This map describe register use `RD.UseIndex`.
735           if (Mask[RD.UseIndex])
736             RS->setIndependentFromDef();
737         }
738       }
739     }
740   }
741   if (IsInstRecycled && Idx < NewIS->getUses().size())
742     NewIS->getUses().pop_back_n(NewIS->getUses().size() - Idx);
743 
744   // Early exit if there are no writes.
745   if (D.Writes.empty()) {
746     if (IsInstRecycled)
747       return llvm::make_error<RecycledInstErr>(NewIS);
748     else
749       return std::move(CreatedIS);
750   }
751 
752   // Track register writes that implicitly clear the upper portion of the
753   // underlying super-registers using an APInt.
754   APInt WriteMask(D.Writes.size(), 0);
755 
756   // Now query the MCInstrAnalysis object to obtain information about which
757   // register writes implicitly clear the upper portion of a super-register.
758   if (MCIA)
759     MCIA->clearsSuperRegisters(MRI, MCI, WriteMask);
760 
761   // Initialize writes.
762   unsigned WriteIndex = 0;
763   Idx = 0U;
764   for (const WriteDescriptor &WD : D.Writes) {
765     RegID = WD.isImplicitWrite() ? WD.RegisterID
766                                  : MCI.getOperand(WD.OpIndex).getReg();
767     // Check if this is a optional definition that references NoReg.
768     if (WD.IsOptionalDef && !RegID) {
769       ++WriteIndex;
770       continue;
771     }
772 
773     assert(RegID && "Expected a valid register ID!");
774     if (IsInstRecycled && Idx < NewIS->getDefs().size()) {
775       NewIS->getDefs()[Idx++] =
776           WriteState(WD, RegID,
777                      /* ClearsSuperRegs */ WriteMask[WriteIndex],
778                      /* WritesZero */ IsZeroIdiom);
779     } else {
780       NewIS->getDefs().emplace_back(WD, RegID,
781                                     /* ClearsSuperRegs */ WriteMask[WriteIndex],
782                                     /* WritesZero */ IsZeroIdiom);
783       ++Idx;
784     }
785     ++WriteIndex;
786   }
787   if (IsInstRecycled && Idx < NewIS->getDefs().size())
788     NewIS->getDefs().pop_back_n(NewIS->getDefs().size() - Idx);
789 
790   if (IsInstRecycled)
791     return llvm::make_error<RecycledInstErr>(NewIS);
792   else
793     return std::move(CreatedIS);
794 }
795 } // namespace mca
796 } // namespace llvm
797