1 //===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements XCOFF object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/BinaryFormat/XCOFF.h" 14 #include "llvm/MC/MCAsmBackend.h" 15 #include "llvm/MC/MCAssembler.h" 16 #include "llvm/MC/MCFixup.h" 17 #include "llvm/MC/MCFixupKindInfo.h" 18 #include "llvm/MC/MCObjectWriter.h" 19 #include "llvm/MC/MCSectionXCOFF.h" 20 #include "llvm/MC/MCSymbolXCOFF.h" 21 #include "llvm/MC/MCValue.h" 22 #include "llvm/MC/MCXCOFFObjectWriter.h" 23 #include "llvm/MC/StringTableBuilder.h" 24 #include "llvm/Support/Casting.h" 25 #include "llvm/Support/EndianStream.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 29 #include <deque> 30 #include <map> 31 32 using namespace llvm; 33 34 // An XCOFF object file has a limited set of predefined sections. The most 35 // important ones for us (right now) are: 36 // .text --> contains program code and read-only data. 37 // .data --> contains initialized data, function descriptors, and the TOC. 38 // .bss --> contains uninitialized data. 39 // Each of these sections is composed of 'Control Sections'. A Control Section 40 // is more commonly referred to as a csect. A csect is an indivisible unit of 41 // code or data, and acts as a container for symbols. A csect is mapped 42 // into a section based on its storage-mapping class, with the exception of 43 // XMC_RW which gets mapped to either .data or .bss based on whether it's 44 // explicitly initialized or not. 45 // 46 // We don't represent the sections in the MC layer as there is nothing 47 // interesting about them at at that level: they carry information that is 48 // only relevant to the ObjectWriter, so we materialize them in this class. 49 namespace { 50 51 constexpr unsigned DefaultSectionAlign = 4; 52 constexpr int16_t MaxSectionIndex = INT16_MAX; 53 54 // Packs the csect's alignment and type into a byte. 55 uint8_t getEncodedType(const MCSectionXCOFF *); 56 57 struct XCOFFRelocation { 58 uint32_t SymbolTableIndex; 59 uint32_t FixupOffsetInCsect; 60 uint8_t SignAndSize; 61 uint8_t Type; 62 }; 63 64 // Wrapper around an MCSymbolXCOFF. 65 struct Symbol { 66 const MCSymbolXCOFF *const MCSym; 67 uint32_t SymbolTableIndex; 68 69 XCOFF::VisibilityType getVisibilityType() const { 70 return MCSym->getVisibilityType(); 71 } 72 73 XCOFF::StorageClass getStorageClass() const { 74 return MCSym->getStorageClass(); 75 } 76 StringRef getSymbolTableName() const { return MCSym->getSymbolTableName(); } 77 Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {} 78 }; 79 80 // Wrapper for an MCSectionXCOFF. 81 // It can be a Csect or debug section or DWARF section and so on. 82 struct XCOFFSection { 83 const MCSectionXCOFF *const MCSec; 84 uint32_t SymbolTableIndex; 85 uint64_t Address; 86 uint64_t Size; 87 88 SmallVector<Symbol, 1> Syms; 89 SmallVector<XCOFFRelocation, 1> Relocations; 90 StringRef getSymbolTableName() const { return MCSec->getSymbolTableName(); } 91 XCOFF::VisibilityType getVisibilityType() const { 92 return MCSec->getVisibilityType(); 93 } 94 XCOFFSection(const MCSectionXCOFF *MCSec) 95 : MCSec(MCSec), SymbolTableIndex(-1), Address(-1), Size(0) {} 96 }; 97 98 // Type to be used for a container representing a set of csects with 99 // (approximately) the same storage mapping class. For example all the csects 100 // with a storage mapping class of `xmc_pr` will get placed into the same 101 // container. 102 using CsectGroup = std::deque<XCOFFSection>; 103 using CsectGroups = std::deque<CsectGroup *>; 104 105 // The basic section entry defination. This Section represents a section entry 106 // in XCOFF section header table. 107 struct SectionEntry { 108 char Name[XCOFF::NameSize]; 109 // The physical/virtual address of the section. For an object file these 110 // values are equivalent, except for in the overflow section header, where 111 // the physical address specifies the number of relocation entries and the 112 // virtual address specifies the number of line number entries. 113 // TODO: Divide Address into PhysicalAddress and VirtualAddress when line 114 // number entries are supported. 115 uint64_t Address; 116 uint64_t Size; 117 uint64_t FileOffsetToData; 118 uint64_t FileOffsetToRelocations; 119 uint32_t RelocationCount; 120 int32_t Flags; 121 122 int16_t Index; 123 124 virtual uint64_t advanceFileOffset(const uint64_t MaxRawDataSize, 125 const uint64_t RawPointer) { 126 FileOffsetToData = RawPointer; 127 uint64_t NewPointer = RawPointer + Size; 128 if (NewPointer > MaxRawDataSize) 129 report_fatal_error("Section raw data overflowed this object file."); 130 return NewPointer; 131 } 132 133 // XCOFF has special section numbers for symbols: 134 // -2 Specifies N_DEBUG, a special symbolic debugging symbol. 135 // -1 Specifies N_ABS, an absolute symbol. The symbol has a value but is not 136 // relocatable. 137 // 0 Specifies N_UNDEF, an undefined external symbol. 138 // Therefore, we choose -3 (N_DEBUG - 1) to represent a section index that 139 // hasn't been initialized. 140 static constexpr int16_t UninitializedIndex = 141 XCOFF::ReservedSectionNum::N_DEBUG - 1; 142 143 SectionEntry(StringRef N, int32_t Flags) 144 : Name(), Address(0), Size(0), FileOffsetToData(0), 145 FileOffsetToRelocations(0), RelocationCount(0), Flags(Flags), 146 Index(UninitializedIndex) { 147 assert(N.size() <= XCOFF::NameSize && "section name too long"); 148 memcpy(Name, N.data(), N.size()); 149 } 150 151 virtual void reset() { 152 Address = 0; 153 Size = 0; 154 FileOffsetToData = 0; 155 FileOffsetToRelocations = 0; 156 RelocationCount = 0; 157 Index = UninitializedIndex; 158 } 159 160 virtual ~SectionEntry() = default; 161 }; 162 163 // Represents the data related to a section excluding the csects that make up 164 // the raw data of the section. The csects are stored separately as not all 165 // sections contain csects, and some sections contain csects which are better 166 // stored separately, e.g. the .data section containing read-write, descriptor, 167 // TOCBase and TOC-entry csects. 168 struct CsectSectionEntry : public SectionEntry { 169 // Virtual sections do not need storage allocated in the object file. 170 const bool IsVirtual; 171 172 // This is a section containing csect groups. 173 CsectGroups Groups; 174 175 CsectSectionEntry(StringRef N, XCOFF::SectionTypeFlags Flags, bool IsVirtual, 176 CsectGroups Groups) 177 : SectionEntry(N, Flags), IsVirtual(IsVirtual), Groups(Groups) { 178 assert(N.size() <= XCOFF::NameSize && "section name too long"); 179 memcpy(Name, N.data(), N.size()); 180 } 181 182 void reset() override { 183 SectionEntry::reset(); 184 // Clear any csects we have stored. 185 for (auto *Group : Groups) 186 Group->clear(); 187 } 188 189 virtual ~CsectSectionEntry() = default; 190 }; 191 192 struct DwarfSectionEntry : public SectionEntry { 193 // For DWARF section entry. 194 std::unique_ptr<XCOFFSection> DwarfSect; 195 196 // For DWARF section, we must use real size in the section header. MemorySize 197 // is for the size the DWARF section occupies including paddings. 198 uint32_t MemorySize; 199 200 // TODO: Remove this override. Loadable sections (e.g., .text, .data) may need 201 // to be aligned. Other sections generally don't need any alignment, but if 202 // they're aligned, the RawPointer should be adjusted before writing the 203 // section. Then a dwarf-specific function wouldn't be needed. 204 uint64_t advanceFileOffset(const uint64_t MaxRawDataSize, 205 const uint64_t RawPointer) override { 206 FileOffsetToData = RawPointer; 207 uint64_t NewPointer = RawPointer + MemorySize; 208 assert(NewPointer <= MaxRawDataSize && 209 "Section raw data overflowed this object file."); 210 return NewPointer; 211 } 212 213 DwarfSectionEntry(StringRef N, int32_t Flags, 214 std::unique_ptr<XCOFFSection> Sect) 215 : SectionEntry(N, Flags | XCOFF::STYP_DWARF), DwarfSect(std::move(Sect)), 216 MemorySize(0) { 217 assert(DwarfSect->MCSec->isDwarfSect() && 218 "This should be a DWARF section!"); 219 assert(N.size() <= XCOFF::NameSize && "section name too long"); 220 memcpy(Name, N.data(), N.size()); 221 } 222 223 DwarfSectionEntry(DwarfSectionEntry &&s) = default; 224 225 virtual ~DwarfSectionEntry() = default; 226 }; 227 228 struct ExceptionTableEntry { 229 const MCSymbol *Trap; 230 uint64_t TrapAddress = ~0ul; 231 unsigned Lang; 232 unsigned Reason; 233 234 ExceptionTableEntry(const MCSymbol *Trap, unsigned Lang, unsigned Reason) 235 : Trap(Trap), Lang(Lang), Reason(Reason) {} 236 }; 237 238 struct ExceptionInfo { 239 const MCSymbol *FunctionSymbol; 240 unsigned FunctionSize; 241 std::vector<ExceptionTableEntry> Entries; 242 }; 243 244 struct ExceptionSectionEntry : public SectionEntry { 245 std::map<const StringRef, ExceptionInfo> ExceptionTable; 246 bool isDebugEnabled = false; 247 248 ExceptionSectionEntry(StringRef N, int32_t Flags) 249 : SectionEntry(N, Flags | XCOFF::STYP_EXCEPT) { 250 assert(N.size() <= XCOFF::NameSize && "Section too long."); 251 memcpy(Name, N.data(), N.size()); 252 } 253 254 virtual ~ExceptionSectionEntry() = default; 255 }; 256 257 struct CInfoSymInfo { 258 // Name of the C_INFO symbol associated with the section 259 std::string Name; 260 std::string Metadata; 261 // Offset into the start of the metadata in the section 262 uint64_t Offset; 263 264 CInfoSymInfo(std::string Name, std::string Metadata) 265 : Name(Name), Metadata(Metadata) {} 266 // Metadata needs to be padded out to an even word size. 267 uint32_t paddingSize() const { 268 return alignTo(Metadata.size(), sizeof(uint32_t)) - Metadata.size(); 269 }; 270 271 // Total size of the entry, including the 4 byte length 272 uint32_t size() const { 273 return Metadata.size() + paddingSize() + sizeof(uint32_t); 274 }; 275 }; 276 277 struct CInfoSymSectionEntry : public SectionEntry { 278 std::unique_ptr<CInfoSymInfo> Entry; 279 280 CInfoSymSectionEntry(StringRef N, int32_t Flags) : SectionEntry(N, Flags) {} 281 virtual ~CInfoSymSectionEntry() = default; 282 void addEntry(std::unique_ptr<CInfoSymInfo> NewEntry) { 283 Entry = std::move(NewEntry); 284 Entry->Offset = sizeof(uint32_t); 285 Size += Entry->size(); 286 } 287 void reset() override { 288 SectionEntry::reset(); 289 Entry.reset(); 290 } 291 }; 292 293 class XCOFFObjectWriter : public MCObjectWriter { 294 295 uint32_t SymbolTableEntryCount = 0; 296 uint64_t SymbolTableOffset = 0; 297 uint16_t SectionCount = 0; 298 uint32_t PaddingsBeforeDwarf = 0; 299 bool HasVisibility = false; 300 301 support::endian::Writer W; 302 std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter; 303 StringTableBuilder Strings; 304 305 const uint64_t MaxRawDataSize = 306 TargetObjectWriter->is64Bit() ? UINT64_MAX : UINT32_MAX; 307 308 // Maps the MCSection representation to its corresponding XCOFFSection 309 // wrapper. Needed for finding the XCOFFSection to insert an MCSymbol into 310 // from its containing MCSectionXCOFF. 311 DenseMap<const MCSectionXCOFF *, XCOFFSection *> SectionMap; 312 313 // Maps the MCSymbol representation to its corrresponding symbol table index. 314 // Needed for relocation. 315 DenseMap<const MCSymbol *, uint32_t> SymbolIndexMap; 316 317 // CsectGroups. These store the csects which make up different parts of 318 // the sections. Should have one for each set of csects that get mapped into 319 // the same section and get handled in a 'similar' way. 320 CsectGroup UndefinedCsects; 321 CsectGroup ProgramCodeCsects; 322 CsectGroup ReadOnlyCsects; 323 CsectGroup DataCsects; 324 CsectGroup FuncDSCsects; 325 CsectGroup TOCCsects; 326 CsectGroup BSSCsects; 327 CsectGroup TDataCsects; 328 CsectGroup TBSSCsects; 329 330 // The Predefined sections. 331 CsectSectionEntry Text; 332 CsectSectionEntry Data; 333 CsectSectionEntry BSS; 334 CsectSectionEntry TData; 335 CsectSectionEntry TBSS; 336 337 // All the XCOFF sections, in the order they will appear in the section header 338 // table. 339 std::array<CsectSectionEntry *const, 5> Sections{ 340 {&Text, &Data, &BSS, &TData, &TBSS}}; 341 342 std::vector<DwarfSectionEntry> DwarfSections; 343 std::vector<SectionEntry> OverflowSections; 344 345 ExceptionSectionEntry ExceptionSection; 346 CInfoSymSectionEntry CInfoSymSection; 347 348 CsectGroup &getCsectGroup(const MCSectionXCOFF *MCSec); 349 350 void reset() override; 351 352 void executePostLayoutBinding(MCAssembler &) override; 353 354 void recordRelocation(MCAssembler &, const MCFragment *, const MCFixup &, 355 MCValue, uint64_t &) override; 356 357 uint64_t writeObject(MCAssembler &) override; 358 359 bool is64Bit() const { return TargetObjectWriter->is64Bit(); } 360 bool nameShouldBeInStringTable(const StringRef &); 361 void writeSymbolName(const StringRef &); 362 bool auxFileSymNameShouldBeInStringTable(const StringRef &); 363 void writeAuxFileSymName(const StringRef &); 364 365 void writeSymbolEntryForCsectMemberLabel(const Symbol &SymbolRef, 366 const XCOFFSection &CSectionRef, 367 int16_t SectionIndex, 368 uint64_t SymbolOffset); 369 void writeSymbolEntryForControlSection(const XCOFFSection &CSectionRef, 370 int16_t SectionIndex, 371 XCOFF::StorageClass StorageClass); 372 void writeSymbolEntryForDwarfSection(const XCOFFSection &DwarfSectionRef, 373 int16_t SectionIndex); 374 void writeFileHeader(); 375 void writeAuxFileHeader(); 376 void writeSectionHeader(const SectionEntry *Sec); 377 void writeSectionHeaderTable(); 378 void writeSections(const MCAssembler &Asm); 379 void writeSectionForControlSectionEntry(const MCAssembler &Asm, 380 const CsectSectionEntry &CsectEntry, 381 uint64_t &CurrentAddressLocation); 382 void writeSectionForDwarfSectionEntry(const MCAssembler &Asm, 383 const DwarfSectionEntry &DwarfEntry, 384 uint64_t &CurrentAddressLocation); 385 void 386 writeSectionForExceptionSectionEntry(const MCAssembler &Asm, 387 ExceptionSectionEntry &ExceptionEntry, 388 uint64_t &CurrentAddressLocation); 389 void writeSectionForCInfoSymSectionEntry(const MCAssembler &Asm, 390 CInfoSymSectionEntry &CInfoSymEntry, 391 uint64_t &CurrentAddressLocation); 392 void writeSymbolTable(MCAssembler &Asm); 393 void writeSymbolAuxFileEntry(StringRef &Name, uint8_t ftype); 394 void writeSymbolAuxDwarfEntry(uint64_t LengthOfSectionPortion, 395 uint64_t NumberOfRelocEnt = 0); 396 void writeSymbolAuxCsectEntry(uint64_t SectionOrLength, 397 uint8_t SymbolAlignmentAndType, 398 uint8_t StorageMappingClass); 399 void writeSymbolAuxFunctionEntry(uint32_t EntryOffset, uint32_t FunctionSize, 400 uint64_t LineNumberPointer, 401 uint32_t EndIndex); 402 void writeSymbolAuxExceptionEntry(uint64_t EntryOffset, uint32_t FunctionSize, 403 uint32_t EndIndex); 404 void writeSymbolEntry(StringRef SymbolName, uint64_t Value, 405 int16_t SectionNumber, uint16_t SymbolType, 406 uint8_t StorageClass, uint8_t NumberOfAuxEntries = 1); 407 void writeRelocations(); 408 void writeRelocation(XCOFFRelocation Reloc, const XCOFFSection &Section); 409 410 // Called after all the csects and symbols have been processed by 411 // `executePostLayoutBinding`, this function handles building up the majority 412 // of the structures in the object file representation. Namely: 413 // *) Calculates physical/virtual addresses, raw-pointer offsets, and section 414 // sizes. 415 // *) Assigns symbol table indices. 416 // *) Builds up the section header table by adding any non-empty sections to 417 // `Sections`. 418 void assignAddressesAndIndices(MCAssembler &Asm); 419 // Called after relocations are recorded. 420 void finalizeSectionInfo(); 421 void finalizeRelocationInfo(SectionEntry *Sec, uint64_t RelCount); 422 void calcOffsetToRelocations(SectionEntry *Sec, uint64_t &RawPointer); 423 424 bool hasExceptionSection() { 425 return !ExceptionSection.ExceptionTable.empty(); 426 } 427 unsigned getExceptionSectionSize(); 428 unsigned getExceptionOffset(const MCSymbol *Symbol); 429 430 size_t auxiliaryHeaderSize() const { 431 // 64-bit object files have no auxiliary header. 432 return HasVisibility && !is64Bit() ? XCOFF::AuxFileHeaderSizeShort : 0; 433 } 434 435 public: 436 XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, 437 raw_pwrite_stream &OS); 438 439 void writeWord(uint64_t Word) { 440 is64Bit() ? W.write<uint64_t>(Word) : W.write<uint32_t>(Word); 441 } 442 443 void addExceptionEntry(const MCSymbol *Symbol, const MCSymbol *Trap, 444 unsigned LanguageCode, unsigned ReasonCode, 445 unsigned FunctionSize, bool hasDebug); 446 void addCInfoSymEntry(StringRef Name, StringRef Metadata); 447 }; 448 449 XCOFFObjectWriter::XCOFFObjectWriter( 450 std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS) 451 : W(OS, llvm::endianness::big), TargetObjectWriter(std::move(MOTW)), 452 Strings(StringTableBuilder::XCOFF), 453 Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false, 454 CsectGroups{&ProgramCodeCsects, &ReadOnlyCsects}), 455 Data(".data", XCOFF::STYP_DATA, /* IsVirtual */ false, 456 CsectGroups{&DataCsects, &FuncDSCsects, &TOCCsects}), 457 BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true, 458 CsectGroups{&BSSCsects}), 459 TData(".tdata", XCOFF::STYP_TDATA, /* IsVirtual */ false, 460 CsectGroups{&TDataCsects}), 461 TBSS(".tbss", XCOFF::STYP_TBSS, /* IsVirtual */ true, 462 CsectGroups{&TBSSCsects}), 463 ExceptionSection(".except", XCOFF::STYP_EXCEPT), 464 CInfoSymSection(".info", XCOFF::STYP_INFO) {} 465 466 void XCOFFObjectWriter::reset() { 467 // Clear the mappings we created. 468 SymbolIndexMap.clear(); 469 SectionMap.clear(); 470 471 UndefinedCsects.clear(); 472 // Reset any sections we have written to, and empty the section header table. 473 for (auto *Sec : Sections) 474 Sec->reset(); 475 for (auto &DwarfSec : DwarfSections) 476 DwarfSec.reset(); 477 for (auto &OverflowSec : OverflowSections) 478 OverflowSec.reset(); 479 ExceptionSection.reset(); 480 CInfoSymSection.reset(); 481 482 // Reset states in XCOFFObjectWriter. 483 SymbolTableEntryCount = 0; 484 SymbolTableOffset = 0; 485 SectionCount = 0; 486 PaddingsBeforeDwarf = 0; 487 Strings.clear(); 488 489 MCObjectWriter::reset(); 490 } 491 492 CsectGroup &XCOFFObjectWriter::getCsectGroup(const MCSectionXCOFF *MCSec) { 493 switch (MCSec->getMappingClass()) { 494 case XCOFF::XMC_PR: 495 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 496 "Only an initialized csect can contain program code."); 497 return ProgramCodeCsects; 498 case XCOFF::XMC_RO: 499 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 500 "Only an initialized csect can contain read only data."); 501 return ReadOnlyCsects; 502 case XCOFF::XMC_RW: 503 if (XCOFF::XTY_CM == MCSec->getCSectType()) 504 return BSSCsects; 505 506 if (XCOFF::XTY_SD == MCSec->getCSectType()) 507 return DataCsects; 508 509 report_fatal_error("Unhandled mapping of read-write csect to section."); 510 case XCOFF::XMC_DS: 511 return FuncDSCsects; 512 case XCOFF::XMC_BS: 513 assert(XCOFF::XTY_CM == MCSec->getCSectType() && 514 "Mapping invalid csect. CSECT with bss storage class must be " 515 "common type."); 516 return BSSCsects; 517 case XCOFF::XMC_TL: 518 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 519 "Mapping invalid csect. CSECT with tdata storage class must be " 520 "an initialized csect."); 521 return TDataCsects; 522 case XCOFF::XMC_UL: 523 assert(XCOFF::XTY_CM == MCSec->getCSectType() && 524 "Mapping invalid csect. CSECT with tbss storage class must be " 525 "an uninitialized csect."); 526 return TBSSCsects; 527 case XCOFF::XMC_TC0: 528 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 529 "Only an initialized csect can contain TOC-base."); 530 assert(TOCCsects.empty() && 531 "We should have only one TOC-base, and it should be the first csect " 532 "in this CsectGroup."); 533 return TOCCsects; 534 case XCOFF::XMC_TC: 535 case XCOFF::XMC_TE: 536 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 537 "A TOC symbol must be an initialized csect."); 538 assert(!TOCCsects.empty() && 539 "We should at least have a TOC-base in this CsectGroup."); 540 return TOCCsects; 541 case XCOFF::XMC_TD: 542 assert((XCOFF::XTY_SD == MCSec->getCSectType() || 543 XCOFF::XTY_CM == MCSec->getCSectType()) && 544 "Symbol type incompatible with toc-data."); 545 assert(!TOCCsects.empty() && 546 "We should at least have a TOC-base in this CsectGroup."); 547 return TOCCsects; 548 default: 549 report_fatal_error("Unhandled mapping of csect to section."); 550 } 551 } 552 553 static MCSectionXCOFF *getContainingCsect(const MCSymbolXCOFF *XSym) { 554 if (XSym->isDefined()) 555 return cast<MCSectionXCOFF>(XSym->getFragment()->getParent()); 556 return XSym->getRepresentedCsect(); 557 } 558 559 void XCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm) { 560 for (const auto &S : Asm) { 561 const auto *MCSec = cast<const MCSectionXCOFF>(&S); 562 assert(!SectionMap.contains(MCSec) && "Cannot add a section twice."); 563 564 // If the name does not fit in the storage provided in the symbol table 565 // entry, add it to the string table. 566 if (nameShouldBeInStringTable(MCSec->getSymbolTableName())) 567 Strings.add(MCSec->getSymbolTableName()); 568 if (MCSec->isCsect()) { 569 // A new control section. Its CsectSectionEntry should already be staticly 570 // generated as Text/Data/BSS/TDATA/TBSS. Add this section to the group of 571 // the CsectSectionEntry. 572 assert(XCOFF::XTY_ER != MCSec->getCSectType() && 573 "An undefined csect should not get registered."); 574 CsectGroup &Group = getCsectGroup(MCSec); 575 Group.emplace_back(MCSec); 576 SectionMap[MCSec] = &Group.back(); 577 } else if (MCSec->isDwarfSect()) { 578 // A new DwarfSectionEntry. 579 std::unique_ptr<XCOFFSection> DwarfSec = 580 std::make_unique<XCOFFSection>(MCSec); 581 SectionMap[MCSec] = DwarfSec.get(); 582 583 DwarfSectionEntry SecEntry(MCSec->getName(), 584 *MCSec->getDwarfSubtypeFlags(), 585 std::move(DwarfSec)); 586 DwarfSections.push_back(std::move(SecEntry)); 587 } else 588 llvm_unreachable("unsupport section type!"); 589 } 590 591 for (const MCSymbol &S : Asm.symbols()) { 592 // Nothing to do for temporary symbols. 593 if (S.isTemporary()) 594 continue; 595 596 const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S); 597 const MCSectionXCOFF *ContainingCsect = getContainingCsect(XSym); 598 599 if (ContainingCsect->isDwarfSect()) 600 continue; 601 602 if (XSym->getVisibilityType() != XCOFF::SYM_V_UNSPECIFIED) 603 HasVisibility = true; 604 605 if (ContainingCsect->getCSectType() == XCOFF::XTY_ER) { 606 // Handle undefined symbol. 607 UndefinedCsects.emplace_back(ContainingCsect); 608 SectionMap[ContainingCsect] = &UndefinedCsects.back(); 609 if (nameShouldBeInStringTable(ContainingCsect->getSymbolTableName())) 610 Strings.add(ContainingCsect->getSymbolTableName()); 611 continue; 612 } 613 614 // If the symbol is the csect itself, we don't need to put the symbol 615 // into csect's Syms. 616 if (XSym == ContainingCsect->getQualNameSymbol()) 617 continue; 618 619 // Only put a label into the symbol table when it is an external label. 620 if (!XSym->isExternal()) 621 continue; 622 623 assert(SectionMap.contains(ContainingCsect) && 624 "Expected containing csect to exist in map"); 625 XCOFFSection *Csect = SectionMap[ContainingCsect]; 626 // Lookup the containing csect and add the symbol to it. 627 assert(Csect->MCSec->isCsect() && "only csect is supported now!"); 628 Csect->Syms.emplace_back(XSym); 629 630 // If the name does not fit in the storage provided in the symbol table 631 // entry, add it to the string table. 632 if (nameShouldBeInStringTable(XSym->getSymbolTableName())) 633 Strings.add(XSym->getSymbolTableName()); 634 } 635 636 std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymSection.Entry; 637 if (CISI && nameShouldBeInStringTable(CISI->Name)) 638 Strings.add(CISI->Name); 639 640 // Emit ".file" as the source file name when there is no file name. 641 if (FileNames.empty()) 642 FileNames.emplace_back(".file", 0); 643 for (const std::pair<std::string, size_t> &F : FileNames) { 644 if (auxFileSymNameShouldBeInStringTable(F.first)) 645 Strings.add(F.first); 646 } 647 648 // Always add ".file" to the symbol table. The actual file name will be in 649 // the AUX_FILE auxiliary entry. 650 if (nameShouldBeInStringTable(".file")) 651 Strings.add(".file"); 652 StringRef Vers = CompilerVersion; 653 if (auxFileSymNameShouldBeInStringTable(Vers)) 654 Strings.add(Vers); 655 656 Strings.finalize(); 657 assignAddressesAndIndices(Asm); 658 } 659 660 void XCOFFObjectWriter::recordRelocation(MCAssembler &Asm, 661 const MCFragment *Fragment, 662 const MCFixup &Fixup, MCValue Target, 663 uint64_t &FixedValue) { 664 auto getIndex = [this](const MCSymbol *Sym, 665 const MCSectionXCOFF *ContainingCsect) { 666 // If we could not find the symbol directly in SymbolIndexMap, this symbol 667 // could either be a temporary symbol or an undefined symbol. In this case, 668 // we would need to have the relocation reference its csect instead. 669 return SymbolIndexMap.contains(Sym) 670 ? SymbolIndexMap[Sym] 671 : SymbolIndexMap[ContainingCsect->getQualNameSymbol()]; 672 }; 673 674 auto getVirtualAddress = 675 [this, &Asm](const MCSymbol *Sym, 676 const MCSectionXCOFF *ContainingSect) -> uint64_t { 677 // A DWARF section. 678 if (ContainingSect->isDwarfSect()) 679 return Asm.getSymbolOffset(*Sym); 680 681 // A csect. 682 if (!Sym->isDefined()) 683 return SectionMap[ContainingSect]->Address; 684 685 // A label. 686 assert(Sym->isDefined() && "not a valid object that has address!"); 687 return SectionMap[ContainingSect]->Address + Asm.getSymbolOffset(*Sym); 688 }; 689 690 const MCSymbol *const SymA = &Target.getSymA()->getSymbol(); 691 692 MCAsmBackend &Backend = Asm.getBackend(); 693 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags & 694 MCFixupKindInfo::FKF_IsPCRel; 695 696 uint8_t Type; 697 uint8_t SignAndSize; 698 std::tie(Type, SignAndSize) = 699 TargetObjectWriter->getRelocTypeAndSignSize(Target, Fixup, IsPCRel); 700 701 const MCSectionXCOFF *SymASec = getContainingCsect(cast<MCSymbolXCOFF>(SymA)); 702 assert(SectionMap.contains(SymASec) && 703 "Expected containing csect to exist in map."); 704 705 assert((Fixup.getOffset() <= 706 MaxRawDataSize - Asm.getFragmentOffset(*Fragment)) && 707 "Fragment offset + fixup offset is overflowed."); 708 uint32_t FixupOffsetInCsect = 709 Asm.getFragmentOffset(*Fragment) + Fixup.getOffset(); 710 711 const uint32_t Index = getIndex(SymA, SymASec); 712 if (Type == XCOFF::RelocationType::R_POS || 713 Type == XCOFF::RelocationType::R_TLS || 714 Type == XCOFF::RelocationType::R_TLS_LE || 715 Type == XCOFF::RelocationType::R_TLS_IE || 716 Type == XCOFF::RelocationType::R_TLS_LD) 717 // The FixedValue should be symbol's virtual address in this object file 718 // plus any constant value that we might get. 719 FixedValue = getVirtualAddress(SymA, SymASec) + Target.getConstant(); 720 else if (Type == XCOFF::RelocationType::R_TLSM) 721 // The FixedValue should always be zero since the region handle is only 722 // known at load time. 723 FixedValue = 0; 724 else if (Type == XCOFF::RelocationType::R_TOC || 725 Type == XCOFF::RelocationType::R_TOCL) { 726 // For non toc-data external symbols, R_TOC type relocation will relocate to 727 // data symbols that have XCOFF::XTY_SD type csect. For toc-data external 728 // symbols, R_TOC type relocation will relocate to data symbols that have 729 // XCOFF_ER type csect. For XCOFF_ER kind symbols, there will be no TOC 730 // entry for them, so the FixedValue should always be 0. 731 if (SymASec->getCSectType() == XCOFF::XTY_ER) { 732 FixedValue = 0; 733 } else { 734 // The FixedValue should be the TOC entry offset from the TOC-base plus 735 // any constant offset value. 736 int64_t TOCEntryOffset = SectionMap[SymASec]->Address - 737 TOCCsects.front().Address + Target.getConstant(); 738 // For small code model, if the TOCEntryOffset overflows the 16-bit value, 739 // we truncate it back down to 16 bits. The linker will be able to insert 740 // fix-up code when needed. 741 // For non toc-data symbols, we already did the truncation in 742 // PPCAsmPrinter.cpp through setting Target.getConstant() in the 743 // expression above by calling getTOCEntryLoadingExprForXCOFF for the 744 // various TOC PseudoOps. 745 // For toc-data symbols, we were not able to calculate the offset from 746 // the TOC in PPCAsmPrinter.cpp since the TOC has not been finalized at 747 // that point, so we are adjusting it here though 748 // llvm::SignExtend64<16>(TOCEntryOffset); 749 // TODO: Since the time that the handling for offsets over 16-bits was 750 // added in PPCAsmPrinter.cpp using getTOCEntryLoadingExprForXCOFF, the 751 // system assembler and linker have been updated to be able to handle the 752 // overflowing offsets, so we no longer need to keep 753 // getTOCEntryLoadingExprForXCOFF. 754 if (Type == XCOFF::RelocationType::R_TOC && !isInt<16>(TOCEntryOffset)) 755 TOCEntryOffset = llvm::SignExtend64<16>(TOCEntryOffset); 756 757 FixedValue = TOCEntryOffset; 758 } 759 } else if (Type == XCOFF::RelocationType::R_RBR) { 760 MCSectionXCOFF *ParentSec = cast<MCSectionXCOFF>(Fragment->getParent()); 761 assert((SymASec->getMappingClass() == XCOFF::XMC_PR && 762 ParentSec->getMappingClass() == XCOFF::XMC_PR) && 763 "Only XMC_PR csect may have the R_RBR relocation."); 764 765 // The address of the branch instruction should be the sum of section 766 // address, fragment offset and Fixup offset. 767 uint64_t BRInstrAddress = 768 SectionMap[ParentSec]->Address + FixupOffsetInCsect; 769 // The FixedValue should be the difference between symbol's virtual address 770 // and BR instr address plus any constant value. 771 FixedValue = getVirtualAddress(SymA, SymASec) - BRInstrAddress + 772 Target.getConstant(); 773 } else if (Type == XCOFF::RelocationType::R_REF) { 774 // The FixedValue and FixupOffsetInCsect should always be 0 since it 775 // specifies a nonrelocating reference. 776 FixedValue = 0; 777 FixupOffsetInCsect = 0; 778 } 779 780 XCOFFRelocation Reloc = {Index, FixupOffsetInCsect, SignAndSize, Type}; 781 MCSectionXCOFF *RelocationSec = cast<MCSectionXCOFF>(Fragment->getParent()); 782 assert(SectionMap.contains(RelocationSec) && 783 "Expected containing csect to exist in map."); 784 SectionMap[RelocationSec]->Relocations.push_back(Reloc); 785 786 if (!Target.getSymB()) 787 return; 788 789 const MCSymbol *const SymB = &Target.getSymB()->getSymbol(); 790 if (SymA == SymB) 791 report_fatal_error("relocation for opposite term is not yet supported"); 792 793 const MCSectionXCOFF *SymBSec = getContainingCsect(cast<MCSymbolXCOFF>(SymB)); 794 assert(SectionMap.contains(SymBSec) && 795 "Expected containing csect to exist in map."); 796 if (SymASec == SymBSec) 797 report_fatal_error( 798 "relocation for paired relocatable term is not yet supported"); 799 800 assert(Type == XCOFF::RelocationType::R_POS && 801 "SymA must be R_POS here if it's not opposite term or paired " 802 "relocatable term."); 803 const uint32_t IndexB = getIndex(SymB, SymBSec); 804 // SymB must be R_NEG here, given the general form of Target(MCValue) is 805 // "SymbolA - SymbolB + imm64". 806 const uint8_t TypeB = XCOFF::RelocationType::R_NEG; 807 XCOFFRelocation RelocB = {IndexB, FixupOffsetInCsect, SignAndSize, TypeB}; 808 SectionMap[RelocationSec]->Relocations.push_back(RelocB); 809 // We already folded "SymbolA + imm64" above when Type is R_POS for SymbolA, 810 // now we just need to fold "- SymbolB" here. 811 FixedValue -= getVirtualAddress(SymB, SymBSec); 812 } 813 814 void XCOFFObjectWriter::writeSections(const MCAssembler &Asm) { 815 uint64_t CurrentAddressLocation = 0; 816 for (const auto *Section : Sections) 817 writeSectionForControlSectionEntry(Asm, *Section, CurrentAddressLocation); 818 for (const auto &DwarfSection : DwarfSections) 819 writeSectionForDwarfSectionEntry(Asm, DwarfSection, CurrentAddressLocation); 820 writeSectionForExceptionSectionEntry(Asm, ExceptionSection, 821 CurrentAddressLocation); 822 writeSectionForCInfoSymSectionEntry(Asm, CInfoSymSection, 823 CurrentAddressLocation); 824 } 825 826 uint64_t XCOFFObjectWriter::writeObject(MCAssembler &Asm) { 827 // We always emit a timestamp of 0 for reproducibility, so ensure incremental 828 // linking is not enabled, in case, like with Windows COFF, such a timestamp 829 // is incompatible with incremental linking of XCOFF. 830 831 finalizeSectionInfo(); 832 uint64_t StartOffset = W.OS.tell(); 833 834 writeFileHeader(); 835 writeAuxFileHeader(); 836 writeSectionHeaderTable(); 837 writeSections(Asm); 838 writeRelocations(); 839 writeSymbolTable(Asm); 840 // Write the string table. 841 Strings.write(W.OS); 842 843 return W.OS.tell() - StartOffset; 844 } 845 846 bool XCOFFObjectWriter::nameShouldBeInStringTable(const StringRef &SymbolName) { 847 return SymbolName.size() > XCOFF::NameSize || is64Bit(); 848 } 849 850 void XCOFFObjectWriter::writeSymbolName(const StringRef &SymbolName) { 851 // Magic, Offset or SymbolName. 852 if (nameShouldBeInStringTable(SymbolName)) { 853 W.write<int32_t>(0); 854 W.write<uint32_t>(Strings.getOffset(SymbolName)); 855 } else { 856 char Name[XCOFF::NameSize + 1]; 857 std::strncpy(Name, SymbolName.data(), XCOFF::NameSize); 858 ArrayRef<char> NameRef(Name, XCOFF::NameSize); 859 W.write(NameRef); 860 } 861 } 862 863 void XCOFFObjectWriter::writeSymbolEntry(StringRef SymbolName, uint64_t Value, 864 int16_t SectionNumber, 865 uint16_t SymbolType, 866 uint8_t StorageClass, 867 uint8_t NumberOfAuxEntries) { 868 if (is64Bit()) { 869 W.write<uint64_t>(Value); 870 W.write<uint32_t>(Strings.getOffset(SymbolName)); 871 } else { 872 writeSymbolName(SymbolName); 873 W.write<uint32_t>(Value); 874 } 875 W.write<int16_t>(SectionNumber); 876 W.write<uint16_t>(SymbolType); 877 W.write<uint8_t>(StorageClass); 878 W.write<uint8_t>(NumberOfAuxEntries); 879 } 880 881 void XCOFFObjectWriter::writeSymbolAuxCsectEntry(uint64_t SectionOrLength, 882 uint8_t SymbolAlignmentAndType, 883 uint8_t StorageMappingClass) { 884 W.write<uint32_t>(is64Bit() ? Lo_32(SectionOrLength) : SectionOrLength); 885 W.write<uint32_t>(0); // ParameterHashIndex 886 W.write<uint16_t>(0); // TypeChkSectNum 887 W.write<uint8_t>(SymbolAlignmentAndType); 888 W.write<uint8_t>(StorageMappingClass); 889 if (is64Bit()) { 890 W.write<uint32_t>(Hi_32(SectionOrLength)); 891 W.OS.write_zeros(1); // Reserved 892 W.write<uint8_t>(XCOFF::AUX_CSECT); 893 } else { 894 W.write<uint32_t>(0); // StabInfoIndex 895 W.write<uint16_t>(0); // StabSectNum 896 } 897 } 898 899 bool XCOFFObjectWriter::auxFileSymNameShouldBeInStringTable( 900 const StringRef &SymbolName) { 901 return SymbolName.size() > XCOFF::AuxFileEntNameSize; 902 } 903 904 void XCOFFObjectWriter::writeAuxFileSymName(const StringRef &SymbolName) { 905 // Magic, Offset or SymbolName. 906 if (auxFileSymNameShouldBeInStringTable(SymbolName)) { 907 W.write<int32_t>(0); 908 W.write<uint32_t>(Strings.getOffset(SymbolName)); 909 W.OS.write_zeros(XCOFF::FileNamePadSize); 910 } else { 911 char Name[XCOFF::AuxFileEntNameSize + 1]; 912 std::strncpy(Name, SymbolName.data(), XCOFF::AuxFileEntNameSize); 913 ArrayRef<char> NameRef(Name, XCOFF::AuxFileEntNameSize); 914 W.write(NameRef); 915 } 916 } 917 918 void XCOFFObjectWriter::writeSymbolAuxFileEntry(StringRef &Name, 919 uint8_t ftype) { 920 writeAuxFileSymName(Name); 921 W.write<uint8_t>(ftype); 922 W.OS.write_zeros(2); 923 if (is64Bit()) 924 W.write<uint8_t>(XCOFF::AUX_FILE); 925 else 926 W.OS.write_zeros(1); 927 } 928 929 void XCOFFObjectWriter::writeSymbolAuxDwarfEntry( 930 uint64_t LengthOfSectionPortion, uint64_t NumberOfRelocEnt) { 931 writeWord(LengthOfSectionPortion); 932 if (!is64Bit()) 933 W.OS.write_zeros(4); // Reserved 934 writeWord(NumberOfRelocEnt); 935 if (is64Bit()) { 936 W.OS.write_zeros(1); // Reserved 937 W.write<uint8_t>(XCOFF::AUX_SECT); 938 } else { 939 W.OS.write_zeros(6); // Reserved 940 } 941 } 942 943 void XCOFFObjectWriter::writeSymbolEntryForCsectMemberLabel( 944 const Symbol &SymbolRef, const XCOFFSection &CSectionRef, 945 int16_t SectionIndex, uint64_t SymbolOffset) { 946 assert(SymbolOffset <= MaxRawDataSize - CSectionRef.Address && 947 "Symbol address overflowed."); 948 949 auto Entry = ExceptionSection.ExceptionTable.find(SymbolRef.MCSym->getName()); 950 if (Entry != ExceptionSection.ExceptionTable.end()) { 951 writeSymbolEntry(SymbolRef.getSymbolTableName(), 952 CSectionRef.Address + SymbolOffset, SectionIndex, 953 // In the old version of the 32-bit XCOFF interpretation, 954 // symbols may require bit 10 (0x0020) to be set if the 955 // symbol is a function, otherwise the bit should be 0. 956 is64Bit() ? SymbolRef.getVisibilityType() 957 : SymbolRef.getVisibilityType() | 0x0020, 958 SymbolRef.getStorageClass(), 959 (is64Bit() && ExceptionSection.isDebugEnabled) ? 3 : 2); 960 if (is64Bit() && ExceptionSection.isDebugEnabled) { 961 // On 64 bit with debugging enabled, we have a csect, exception, and 962 // function auxilliary entries, so we must increment symbol index by 4. 963 writeSymbolAuxExceptionEntry( 964 ExceptionSection.FileOffsetToData + 965 getExceptionOffset(Entry->second.FunctionSymbol), 966 Entry->second.FunctionSize, 967 SymbolIndexMap[Entry->second.FunctionSymbol] + 4); 968 } 969 // For exception section entries, csect and function auxilliary entries 970 // must exist. On 64-bit there is also an exception auxilliary entry. 971 writeSymbolAuxFunctionEntry( 972 ExceptionSection.FileOffsetToData + 973 getExceptionOffset(Entry->second.FunctionSymbol), 974 Entry->second.FunctionSize, 0, 975 (is64Bit() && ExceptionSection.isDebugEnabled) 976 ? SymbolIndexMap[Entry->second.FunctionSymbol] + 4 977 : SymbolIndexMap[Entry->second.FunctionSymbol] + 3); 978 } else { 979 writeSymbolEntry(SymbolRef.getSymbolTableName(), 980 CSectionRef.Address + SymbolOffset, SectionIndex, 981 SymbolRef.getVisibilityType(), 982 SymbolRef.getStorageClass()); 983 } 984 writeSymbolAuxCsectEntry(CSectionRef.SymbolTableIndex, XCOFF::XTY_LD, 985 CSectionRef.MCSec->getMappingClass()); 986 } 987 988 void XCOFFObjectWriter::writeSymbolEntryForDwarfSection( 989 const XCOFFSection &DwarfSectionRef, int16_t SectionIndex) { 990 assert(DwarfSectionRef.MCSec->isDwarfSect() && "Not a DWARF section!"); 991 992 writeSymbolEntry(DwarfSectionRef.getSymbolTableName(), /*Value=*/0, 993 SectionIndex, /*SymbolType=*/0, XCOFF::C_DWARF); 994 995 writeSymbolAuxDwarfEntry(DwarfSectionRef.Size); 996 } 997 998 void XCOFFObjectWriter::writeSymbolEntryForControlSection( 999 const XCOFFSection &CSectionRef, int16_t SectionIndex, 1000 XCOFF::StorageClass StorageClass) { 1001 writeSymbolEntry(CSectionRef.getSymbolTableName(), CSectionRef.Address, 1002 SectionIndex, CSectionRef.getVisibilityType(), StorageClass); 1003 1004 writeSymbolAuxCsectEntry(CSectionRef.Size, getEncodedType(CSectionRef.MCSec), 1005 CSectionRef.MCSec->getMappingClass()); 1006 } 1007 1008 void XCOFFObjectWriter::writeSymbolAuxFunctionEntry(uint32_t EntryOffset, 1009 uint32_t FunctionSize, 1010 uint64_t LineNumberPointer, 1011 uint32_t EndIndex) { 1012 if (is64Bit()) 1013 writeWord(LineNumberPointer); 1014 else 1015 W.write<uint32_t>(EntryOffset); 1016 W.write<uint32_t>(FunctionSize); 1017 if (!is64Bit()) 1018 writeWord(LineNumberPointer); 1019 W.write<uint32_t>(EndIndex); 1020 if (is64Bit()) { 1021 W.OS.write_zeros(1); 1022 W.write<uint8_t>(XCOFF::AUX_FCN); 1023 } else { 1024 W.OS.write_zeros(2); 1025 } 1026 } 1027 1028 void XCOFFObjectWriter::writeSymbolAuxExceptionEntry(uint64_t EntryOffset, 1029 uint32_t FunctionSize, 1030 uint32_t EndIndex) { 1031 assert(is64Bit() && "Exception auxilliary entries are 64-bit only."); 1032 W.write<uint64_t>(EntryOffset); 1033 W.write<uint32_t>(FunctionSize); 1034 W.write<uint32_t>(EndIndex); 1035 W.OS.write_zeros(1); // Pad (unused) 1036 W.write<uint8_t>(XCOFF::AUX_EXCEPT); 1037 } 1038 1039 void XCOFFObjectWriter::writeFileHeader() { 1040 W.write<uint16_t>(is64Bit() ? XCOFF::XCOFF64 : XCOFF::XCOFF32); 1041 W.write<uint16_t>(SectionCount); 1042 W.write<int32_t>(0); // TimeStamp 1043 writeWord(SymbolTableOffset); 1044 if (is64Bit()) { 1045 W.write<uint16_t>(auxiliaryHeaderSize()); 1046 W.write<uint16_t>(0); // Flags 1047 W.write<int32_t>(SymbolTableEntryCount); 1048 } else { 1049 W.write<int32_t>(SymbolTableEntryCount); 1050 W.write<uint16_t>(auxiliaryHeaderSize()); 1051 W.write<uint16_t>(0); // Flags 1052 } 1053 } 1054 1055 void XCOFFObjectWriter::writeAuxFileHeader() { 1056 if (!auxiliaryHeaderSize()) 1057 return; 1058 W.write<uint16_t>(0); // Magic 1059 W.write<uint16_t>( 1060 XCOFF::NEW_XCOFF_INTERPRET); // Version. The new interpretation of the 1061 // n_type field in the symbol table entry is 1062 // used in XCOFF32. 1063 W.write<uint32_t>(Sections[0]->Size); // TextSize 1064 W.write<uint32_t>(Sections[1]->Size); // InitDataSize 1065 W.write<uint32_t>(Sections[2]->Size); // BssDataSize 1066 W.write<uint32_t>(0); // EntryPointAddr 1067 W.write<uint32_t>(Sections[0]->Address); // TextStartAddr 1068 W.write<uint32_t>(Sections[1]->Address); // DataStartAddr 1069 } 1070 1071 void XCOFFObjectWriter::writeSectionHeader(const SectionEntry *Sec) { 1072 bool IsDwarf = (Sec->Flags & XCOFF::STYP_DWARF) != 0; 1073 bool IsOvrflo = (Sec->Flags & XCOFF::STYP_OVRFLO) != 0; 1074 // Nothing to write for this Section. 1075 if (Sec->Index == SectionEntry::UninitializedIndex) 1076 return; 1077 1078 // Write Name. 1079 ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize); 1080 W.write(NameRef); 1081 1082 // Write the Physical Address and Virtual Address. 1083 // We use 0 for DWARF sections' Physical and Virtual Addresses. 1084 writeWord(IsDwarf ? 0 : Sec->Address); 1085 // Since line number is not supported, we set it to 0 for overflow sections. 1086 writeWord((IsDwarf || IsOvrflo) ? 0 : Sec->Address); 1087 1088 writeWord(Sec->Size); 1089 writeWord(Sec->FileOffsetToData); 1090 writeWord(Sec->FileOffsetToRelocations); 1091 writeWord(0); // FileOffsetToLineNumberInfo. Not supported yet. 1092 1093 if (is64Bit()) { 1094 W.write<uint32_t>(Sec->RelocationCount); 1095 W.write<uint32_t>(0); // NumberOfLineNumbers. Not supported yet. 1096 W.write<int32_t>(Sec->Flags); 1097 W.OS.write_zeros(4); 1098 } else { 1099 // For the overflow section header, s_nreloc provides a reference to the 1100 // primary section header and s_nlnno must have the same value. 1101 // For common section headers, if either of s_nreloc or s_nlnno are set to 1102 // 65535, the other one must also be set to 65535. 1103 W.write<uint16_t>(Sec->RelocationCount); 1104 W.write<uint16_t>((IsOvrflo || Sec->RelocationCount == XCOFF::RelocOverflow) 1105 ? Sec->RelocationCount 1106 : 0); // NumberOfLineNumbers. Not supported yet. 1107 W.write<int32_t>(Sec->Flags); 1108 } 1109 } 1110 1111 void XCOFFObjectWriter::writeSectionHeaderTable() { 1112 for (const auto *CsectSec : Sections) 1113 writeSectionHeader(CsectSec); 1114 for (const auto &DwarfSec : DwarfSections) 1115 writeSectionHeader(&DwarfSec); 1116 for (const auto &OverflowSec : OverflowSections) 1117 writeSectionHeader(&OverflowSec); 1118 if (hasExceptionSection()) 1119 writeSectionHeader(&ExceptionSection); 1120 if (CInfoSymSection.Entry) 1121 writeSectionHeader(&CInfoSymSection); 1122 } 1123 1124 void XCOFFObjectWriter::writeRelocation(XCOFFRelocation Reloc, 1125 const XCOFFSection &Section) { 1126 if (Section.MCSec->isCsect()) 1127 writeWord(Section.Address + Reloc.FixupOffsetInCsect); 1128 else { 1129 // DWARF sections' address is set to 0. 1130 assert(Section.MCSec->isDwarfSect() && "unsupport section type!"); 1131 writeWord(Reloc.FixupOffsetInCsect); 1132 } 1133 W.write<uint32_t>(Reloc.SymbolTableIndex); 1134 W.write<uint8_t>(Reloc.SignAndSize); 1135 W.write<uint8_t>(Reloc.Type); 1136 } 1137 1138 void XCOFFObjectWriter::writeRelocations() { 1139 for (const auto *Section : Sections) { 1140 if (Section->Index == SectionEntry::UninitializedIndex) 1141 // Nothing to write for this Section. 1142 continue; 1143 1144 for (const auto *Group : Section->Groups) { 1145 if (Group->empty()) 1146 continue; 1147 1148 for (const auto &Csect : *Group) { 1149 for (const auto Reloc : Csect.Relocations) 1150 writeRelocation(Reloc, Csect); 1151 } 1152 } 1153 } 1154 1155 for (const auto &DwarfSection : DwarfSections) 1156 for (const auto &Reloc : DwarfSection.DwarfSect->Relocations) 1157 writeRelocation(Reloc, *DwarfSection.DwarfSect); 1158 } 1159 1160 void XCOFFObjectWriter::writeSymbolTable(MCAssembler &Asm) { 1161 // Write C_FILE symbols. 1162 StringRef Vers = CompilerVersion; 1163 1164 for (const std::pair<std::string, size_t> &F : FileNames) { 1165 // The n_name of a C_FILE symbol is the source file's name when no auxiliary 1166 // entries are present. 1167 StringRef FileName = F.first; 1168 1169 // For C_FILE symbols, the Source Language ID overlays the high-order byte 1170 // of the SymbolType field, and the CPU Version ID is defined as the 1171 // low-order byte. 1172 // AIX's system assembler determines the source language ID based on the 1173 // source file's name suffix, and the behavior here is consistent with it. 1174 uint8_t LangID; 1175 if (FileName.ends_with(".c")) 1176 LangID = XCOFF::TB_C; 1177 else if (FileName.ends_with_insensitive(".f") || 1178 FileName.ends_with_insensitive(".f77") || 1179 FileName.ends_with_insensitive(".f90") || 1180 FileName.ends_with_insensitive(".f95") || 1181 FileName.ends_with_insensitive(".f03") || 1182 FileName.ends_with_insensitive(".f08")) 1183 LangID = XCOFF::TB_Fortran; 1184 else 1185 LangID = XCOFF::TB_CPLUSPLUS; 1186 uint8_t CpuID; 1187 if (is64Bit()) 1188 CpuID = XCOFF::TCPU_PPC64; 1189 else 1190 CpuID = XCOFF::TCPU_COM; 1191 1192 int NumberOfFileAuxEntries = 1; 1193 if (!Vers.empty()) 1194 ++NumberOfFileAuxEntries; 1195 writeSymbolEntry(".file", /*Value=*/0, XCOFF::ReservedSectionNum::N_DEBUG, 1196 /*SymbolType=*/(LangID << 8) | CpuID, XCOFF::C_FILE, 1197 NumberOfFileAuxEntries); 1198 writeSymbolAuxFileEntry(FileName, XCOFF::XFT_FN); 1199 if (!Vers.empty()) 1200 writeSymbolAuxFileEntry(Vers, XCOFF::XFT_CV); 1201 } 1202 1203 if (CInfoSymSection.Entry) 1204 writeSymbolEntry(CInfoSymSection.Entry->Name, CInfoSymSection.Entry->Offset, 1205 CInfoSymSection.Index, 1206 /*SymbolType=*/0, XCOFF::C_INFO, 1207 /*NumberOfAuxEntries=*/0); 1208 1209 for (const auto &Csect : UndefinedCsects) { 1210 writeSymbolEntryForControlSection(Csect, XCOFF::ReservedSectionNum::N_UNDEF, 1211 Csect.MCSec->getStorageClass()); 1212 } 1213 1214 for (const auto *Section : Sections) { 1215 if (Section->Index == SectionEntry::UninitializedIndex) 1216 // Nothing to write for this Section. 1217 continue; 1218 1219 for (const auto *Group : Section->Groups) { 1220 if (Group->empty()) 1221 continue; 1222 1223 const int16_t SectionIndex = Section->Index; 1224 for (const auto &Csect : *Group) { 1225 // Write out the control section first and then each symbol in it. 1226 writeSymbolEntryForControlSection(Csect, SectionIndex, 1227 Csect.MCSec->getStorageClass()); 1228 1229 for (const auto &Sym : Csect.Syms) 1230 writeSymbolEntryForCsectMemberLabel( 1231 Sym, Csect, SectionIndex, Asm.getSymbolOffset(*(Sym.MCSym))); 1232 } 1233 } 1234 } 1235 1236 for (const auto &DwarfSection : DwarfSections) 1237 writeSymbolEntryForDwarfSection(*DwarfSection.DwarfSect, 1238 DwarfSection.Index); 1239 } 1240 1241 void XCOFFObjectWriter::finalizeRelocationInfo(SectionEntry *Sec, 1242 uint64_t RelCount) { 1243 // Handles relocation field overflows in an XCOFF32 file. An XCOFF64 file 1244 // may not contain an overflow section header. 1245 if (!is64Bit() && (RelCount >= static_cast<uint32_t>(XCOFF::RelocOverflow))) { 1246 // Generate an overflow section header. 1247 SectionEntry SecEntry(".ovrflo", XCOFF::STYP_OVRFLO); 1248 1249 // This field specifies the file section number of the section header that 1250 // overflowed. 1251 SecEntry.RelocationCount = Sec->Index; 1252 1253 // This field specifies the number of relocation entries actually 1254 // required. 1255 SecEntry.Address = RelCount; 1256 SecEntry.Index = ++SectionCount; 1257 OverflowSections.push_back(std::move(SecEntry)); 1258 1259 // The field in the primary section header is always 65535 1260 // (XCOFF::RelocOverflow). 1261 Sec->RelocationCount = XCOFF::RelocOverflow; 1262 } else { 1263 Sec->RelocationCount = RelCount; 1264 } 1265 } 1266 1267 void XCOFFObjectWriter::calcOffsetToRelocations(SectionEntry *Sec, 1268 uint64_t &RawPointer) { 1269 if (!Sec->RelocationCount) 1270 return; 1271 1272 Sec->FileOffsetToRelocations = RawPointer; 1273 uint64_t RelocationSizeInSec = 0; 1274 if (!is64Bit() && 1275 Sec->RelocationCount == static_cast<uint32_t>(XCOFF::RelocOverflow)) { 1276 // Find its corresponding overflow section. 1277 for (auto &OverflowSec : OverflowSections) { 1278 if (OverflowSec.RelocationCount == static_cast<uint32_t>(Sec->Index)) { 1279 RelocationSizeInSec = 1280 OverflowSec.Address * XCOFF::RelocationSerializationSize32; 1281 1282 // This field must have the same values as in the corresponding 1283 // primary section header. 1284 OverflowSec.FileOffsetToRelocations = Sec->FileOffsetToRelocations; 1285 } 1286 } 1287 assert(RelocationSizeInSec && "Overflow section header doesn't exist."); 1288 } else { 1289 RelocationSizeInSec = Sec->RelocationCount * 1290 (is64Bit() ? XCOFF::RelocationSerializationSize64 1291 : XCOFF::RelocationSerializationSize32); 1292 } 1293 1294 RawPointer += RelocationSizeInSec; 1295 if (RawPointer > MaxRawDataSize) 1296 report_fatal_error("Relocation data overflowed this object file."); 1297 } 1298 1299 void XCOFFObjectWriter::finalizeSectionInfo() { 1300 for (auto *Section : Sections) { 1301 if (Section->Index == SectionEntry::UninitializedIndex) 1302 // Nothing to record for this Section. 1303 continue; 1304 1305 uint64_t RelCount = 0; 1306 for (const auto *Group : Section->Groups) { 1307 if (Group->empty()) 1308 continue; 1309 1310 for (auto &Csect : *Group) 1311 RelCount += Csect.Relocations.size(); 1312 } 1313 finalizeRelocationInfo(Section, RelCount); 1314 } 1315 1316 for (auto &DwarfSection : DwarfSections) 1317 finalizeRelocationInfo(&DwarfSection, 1318 DwarfSection.DwarfSect->Relocations.size()); 1319 1320 // Calculate the RawPointer value for all headers. 1321 uint64_t RawPointer = 1322 (is64Bit() ? (XCOFF::FileHeaderSize64 + 1323 SectionCount * XCOFF::SectionHeaderSize64) 1324 : (XCOFF::FileHeaderSize32 + 1325 SectionCount * XCOFF::SectionHeaderSize32)) + 1326 auxiliaryHeaderSize(); 1327 1328 // Calculate the file offset to the section data. 1329 for (auto *Sec : Sections) { 1330 if (Sec->Index == SectionEntry::UninitializedIndex || Sec->IsVirtual) 1331 continue; 1332 1333 RawPointer = Sec->advanceFileOffset(MaxRawDataSize, RawPointer); 1334 } 1335 1336 if (!DwarfSections.empty()) { 1337 RawPointer += PaddingsBeforeDwarf; 1338 for (auto &DwarfSection : DwarfSections) { 1339 RawPointer = DwarfSection.advanceFileOffset(MaxRawDataSize, RawPointer); 1340 } 1341 } 1342 1343 if (hasExceptionSection()) 1344 RawPointer = ExceptionSection.advanceFileOffset(MaxRawDataSize, RawPointer); 1345 1346 if (CInfoSymSection.Entry) 1347 RawPointer = CInfoSymSection.advanceFileOffset(MaxRawDataSize, RawPointer); 1348 1349 for (auto *Sec : Sections) { 1350 if (Sec->Index != SectionEntry::UninitializedIndex) 1351 calcOffsetToRelocations(Sec, RawPointer); 1352 } 1353 1354 for (auto &DwarfSec : DwarfSections) 1355 calcOffsetToRelocations(&DwarfSec, RawPointer); 1356 1357 // TODO Error check that the number of symbol table entries fits in 32-bits 1358 // signed ... 1359 if (SymbolTableEntryCount) 1360 SymbolTableOffset = RawPointer; 1361 } 1362 1363 void XCOFFObjectWriter::addExceptionEntry( 1364 const MCSymbol *Symbol, const MCSymbol *Trap, unsigned LanguageCode, 1365 unsigned ReasonCode, unsigned FunctionSize, bool hasDebug) { 1366 // If a module had debug info, debugging is enabled and XCOFF emits the 1367 // exception auxilliary entry. 1368 if (hasDebug) 1369 ExceptionSection.isDebugEnabled = true; 1370 auto Entry = ExceptionSection.ExceptionTable.find(Symbol->getName()); 1371 if (Entry != ExceptionSection.ExceptionTable.end()) { 1372 Entry->second.Entries.push_back( 1373 ExceptionTableEntry(Trap, LanguageCode, ReasonCode)); 1374 return; 1375 } 1376 ExceptionInfo NewEntry; 1377 NewEntry.FunctionSymbol = Symbol; 1378 NewEntry.FunctionSize = FunctionSize; 1379 NewEntry.Entries.push_back( 1380 ExceptionTableEntry(Trap, LanguageCode, ReasonCode)); 1381 ExceptionSection.ExceptionTable.insert( 1382 std::pair<const StringRef, ExceptionInfo>(Symbol->getName(), NewEntry)); 1383 } 1384 1385 unsigned XCOFFObjectWriter::getExceptionSectionSize() { 1386 unsigned EntryNum = 0; 1387 1388 for (const auto &TableEntry : ExceptionSection.ExceptionTable) 1389 // The size() gets +1 to account for the initial entry containing the 1390 // symbol table index. 1391 EntryNum += TableEntry.second.Entries.size() + 1; 1392 1393 return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64 1394 : XCOFF::ExceptionSectionEntrySize32); 1395 } 1396 1397 unsigned XCOFFObjectWriter::getExceptionOffset(const MCSymbol *Symbol) { 1398 unsigned EntryNum = 0; 1399 for (const auto &TableEntry : ExceptionSection.ExceptionTable) { 1400 if (Symbol == TableEntry.second.FunctionSymbol) 1401 break; 1402 EntryNum += TableEntry.second.Entries.size() + 1; 1403 } 1404 return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64 1405 : XCOFF::ExceptionSectionEntrySize32); 1406 } 1407 1408 void XCOFFObjectWriter::addCInfoSymEntry(StringRef Name, StringRef Metadata) { 1409 assert(!CInfoSymSection.Entry && "Multiple entries are not supported"); 1410 CInfoSymSection.addEntry( 1411 std::make_unique<CInfoSymInfo>(Name.str(), Metadata.str())); 1412 } 1413 1414 void XCOFFObjectWriter::assignAddressesAndIndices(MCAssembler &Asm) { 1415 // The symbol table starts with all the C_FILE symbols. Each C_FILE symbol 1416 // requires 1 or 2 auxiliary entries. 1417 uint32_t SymbolTableIndex = 1418 (2 + (CompilerVersion.empty() ? 0 : 1)) * FileNames.size(); 1419 1420 if (CInfoSymSection.Entry) 1421 SymbolTableIndex++; 1422 1423 // Calculate indices for undefined symbols. 1424 for (auto &Csect : UndefinedCsects) { 1425 Csect.Size = 0; 1426 Csect.Address = 0; 1427 Csect.SymbolTableIndex = SymbolTableIndex; 1428 SymbolIndexMap[Csect.MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex; 1429 // 1 main and 1 auxiliary symbol table entry for each contained symbol. 1430 SymbolTableIndex += 2; 1431 } 1432 1433 // The address corrresponds to the address of sections and symbols in the 1434 // object file. We place the shared address 0 immediately after the 1435 // section header table. 1436 uint64_t Address = 0; 1437 // Section indices are 1-based in XCOFF. 1438 int32_t SectionIndex = 1; 1439 bool HasTDataSection = false; 1440 1441 for (auto *Section : Sections) { 1442 const bool IsEmpty = 1443 llvm::all_of(Section->Groups, 1444 [](const CsectGroup *Group) { return Group->empty(); }); 1445 if (IsEmpty) 1446 continue; 1447 1448 if (SectionIndex > MaxSectionIndex) 1449 report_fatal_error("Section index overflow!"); 1450 Section->Index = SectionIndex++; 1451 SectionCount++; 1452 1453 bool SectionAddressSet = false; 1454 // Reset the starting address to 0 for TData section. 1455 if (Section->Flags == XCOFF::STYP_TDATA) { 1456 Address = 0; 1457 HasTDataSection = true; 1458 } 1459 // Reset the starting address to 0 for TBSS section if the object file does 1460 // not contain TData Section. 1461 if ((Section->Flags == XCOFF::STYP_TBSS) && !HasTDataSection) 1462 Address = 0; 1463 1464 for (auto *Group : Section->Groups) { 1465 if (Group->empty()) 1466 continue; 1467 1468 for (auto &Csect : *Group) { 1469 const MCSectionXCOFF *MCSec = Csect.MCSec; 1470 Csect.Address = alignTo(Address, MCSec->getAlign()); 1471 Csect.Size = Asm.getSectionAddressSize(*MCSec); 1472 Address = Csect.Address + Csect.Size; 1473 Csect.SymbolTableIndex = SymbolTableIndex; 1474 SymbolIndexMap[MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex; 1475 // 1 main and 1 auxiliary symbol table entry for the csect. 1476 SymbolTableIndex += 2; 1477 1478 for (auto &Sym : Csect.Syms) { 1479 bool hasExceptEntry = false; 1480 auto Entry = 1481 ExceptionSection.ExceptionTable.find(Sym.MCSym->getName()); 1482 if (Entry != ExceptionSection.ExceptionTable.end()) { 1483 hasExceptEntry = true; 1484 for (auto &TrapEntry : Entry->second.Entries) { 1485 TrapEntry.TrapAddress = Asm.getSymbolOffset(*(Sym.MCSym)) + 1486 TrapEntry.Trap->getOffset(); 1487 } 1488 } 1489 Sym.SymbolTableIndex = SymbolTableIndex; 1490 SymbolIndexMap[Sym.MCSym] = Sym.SymbolTableIndex; 1491 // 1 main and 1 auxiliary symbol table entry for each contained 1492 // symbol. For symbols with exception section entries, a function 1493 // auxilliary entry is needed, and on 64-bit XCOFF with debugging 1494 // enabled, an additional exception auxilliary entry is needed. 1495 SymbolTableIndex += 2; 1496 if (hasExceptionSection() && hasExceptEntry) { 1497 if (is64Bit() && ExceptionSection.isDebugEnabled) 1498 SymbolTableIndex += 2; 1499 else 1500 SymbolTableIndex += 1; 1501 } 1502 } 1503 } 1504 1505 if (!SectionAddressSet) { 1506 Section->Address = Group->front().Address; 1507 SectionAddressSet = true; 1508 } 1509 } 1510 1511 // Make sure the address of the next section aligned to 1512 // DefaultSectionAlign. 1513 Address = alignTo(Address, DefaultSectionAlign); 1514 Section->Size = Address - Section->Address; 1515 } 1516 1517 // Start to generate DWARF sections. Sections other than DWARF section use 1518 // DefaultSectionAlign as the default alignment, while DWARF sections have 1519 // their own alignments. If these two alignments are not the same, we need 1520 // some paddings here and record the paddings bytes for FileOffsetToData 1521 // calculation. 1522 if (!DwarfSections.empty()) 1523 PaddingsBeforeDwarf = 1524 alignTo(Address, 1525 (*DwarfSections.begin()).DwarfSect->MCSec->getAlign()) - 1526 Address; 1527 1528 DwarfSectionEntry *LastDwarfSection = nullptr; 1529 for (auto &DwarfSection : DwarfSections) { 1530 assert((SectionIndex <= MaxSectionIndex) && "Section index overflow!"); 1531 1532 XCOFFSection &DwarfSect = *DwarfSection.DwarfSect; 1533 const MCSectionXCOFF *MCSec = DwarfSect.MCSec; 1534 1535 // Section index. 1536 DwarfSection.Index = SectionIndex++; 1537 SectionCount++; 1538 1539 // Symbol index. 1540 DwarfSect.SymbolTableIndex = SymbolTableIndex; 1541 SymbolIndexMap[MCSec->getQualNameSymbol()] = DwarfSect.SymbolTableIndex; 1542 // 1 main and 1 auxiliary symbol table entry for the csect. 1543 SymbolTableIndex += 2; 1544 1545 // Section address. Make it align to section alignment. 1546 // We use address 0 for DWARF sections' Physical and Virtual Addresses. 1547 // This address is used to tell where is the section in the final object. 1548 // See writeSectionForDwarfSectionEntry(). 1549 DwarfSection.Address = DwarfSect.Address = 1550 alignTo(Address, MCSec->getAlign()); 1551 1552 // Section size. 1553 // For DWARF section, we must use the real size which may be not aligned. 1554 DwarfSection.Size = DwarfSect.Size = Asm.getSectionAddressSize(*MCSec); 1555 1556 Address = DwarfSection.Address + DwarfSection.Size; 1557 1558 if (LastDwarfSection) 1559 LastDwarfSection->MemorySize = 1560 DwarfSection.Address - LastDwarfSection->Address; 1561 LastDwarfSection = &DwarfSection; 1562 } 1563 if (LastDwarfSection) { 1564 // Make the final DWARF section address align to the default section 1565 // alignment for follow contents. 1566 Address = alignTo(LastDwarfSection->Address + LastDwarfSection->Size, 1567 DefaultSectionAlign); 1568 LastDwarfSection->MemorySize = Address - LastDwarfSection->Address; 1569 } 1570 if (hasExceptionSection()) { 1571 ExceptionSection.Index = SectionIndex++; 1572 SectionCount++; 1573 ExceptionSection.Address = 0; 1574 ExceptionSection.Size = getExceptionSectionSize(); 1575 Address += ExceptionSection.Size; 1576 Address = alignTo(Address, DefaultSectionAlign); 1577 } 1578 1579 if (CInfoSymSection.Entry) { 1580 CInfoSymSection.Index = SectionIndex++; 1581 SectionCount++; 1582 CInfoSymSection.Address = 0; 1583 Address += CInfoSymSection.Size; 1584 Address = alignTo(Address, DefaultSectionAlign); 1585 } 1586 1587 SymbolTableEntryCount = SymbolTableIndex; 1588 } 1589 1590 void XCOFFObjectWriter::writeSectionForControlSectionEntry( 1591 const MCAssembler &Asm, const CsectSectionEntry &CsectEntry, 1592 uint64_t &CurrentAddressLocation) { 1593 // Nothing to write for this Section. 1594 if (CsectEntry.Index == SectionEntry::UninitializedIndex) 1595 return; 1596 1597 // There could be a gap (without corresponding zero padding) between 1598 // sections. 1599 // There could be a gap (without corresponding zero padding) between 1600 // sections. 1601 assert(((CurrentAddressLocation <= CsectEntry.Address) || 1602 (CsectEntry.Flags == XCOFF::STYP_TDATA) || 1603 (CsectEntry.Flags == XCOFF::STYP_TBSS)) && 1604 "CurrentAddressLocation should be less than or equal to section " 1605 "address if the section is not TData or TBSS."); 1606 1607 CurrentAddressLocation = CsectEntry.Address; 1608 1609 // For virtual sections, nothing to write. But need to increase 1610 // CurrentAddressLocation for later sections like DWARF section has a correct 1611 // writing location. 1612 if (CsectEntry.IsVirtual) { 1613 CurrentAddressLocation += CsectEntry.Size; 1614 return; 1615 } 1616 1617 for (const auto &Group : CsectEntry.Groups) { 1618 for (const auto &Csect : *Group) { 1619 if (uint32_t PaddingSize = Csect.Address - CurrentAddressLocation) 1620 W.OS.write_zeros(PaddingSize); 1621 if (Csect.Size) 1622 Asm.writeSectionData(W.OS, Csect.MCSec); 1623 CurrentAddressLocation = Csect.Address + Csect.Size; 1624 } 1625 } 1626 1627 // The size of the tail padding in a section is the end virtual address of 1628 // the current section minus the end virtual address of the last csect 1629 // in that section. 1630 if (uint64_t PaddingSize = 1631 CsectEntry.Address + CsectEntry.Size - CurrentAddressLocation) { 1632 W.OS.write_zeros(PaddingSize); 1633 CurrentAddressLocation += PaddingSize; 1634 } 1635 } 1636 1637 void XCOFFObjectWriter::writeSectionForDwarfSectionEntry( 1638 const MCAssembler &Asm, const DwarfSectionEntry &DwarfEntry, 1639 uint64_t &CurrentAddressLocation) { 1640 // There could be a gap (without corresponding zero padding) between 1641 // sections. For example DWARF section alignment is bigger than 1642 // DefaultSectionAlign. 1643 assert(CurrentAddressLocation <= DwarfEntry.Address && 1644 "CurrentAddressLocation should be less than or equal to section " 1645 "address."); 1646 1647 if (uint64_t PaddingSize = DwarfEntry.Address - CurrentAddressLocation) 1648 W.OS.write_zeros(PaddingSize); 1649 1650 if (DwarfEntry.Size) 1651 Asm.writeSectionData(W.OS, DwarfEntry.DwarfSect->MCSec); 1652 1653 CurrentAddressLocation = DwarfEntry.Address + DwarfEntry.Size; 1654 1655 // DWARF section size is not aligned to DefaultSectionAlign. 1656 // Make sure CurrentAddressLocation is aligned to DefaultSectionAlign. 1657 uint32_t Mod = CurrentAddressLocation % DefaultSectionAlign; 1658 uint32_t TailPaddingSize = Mod ? DefaultSectionAlign - Mod : 0; 1659 if (TailPaddingSize) 1660 W.OS.write_zeros(TailPaddingSize); 1661 1662 CurrentAddressLocation += TailPaddingSize; 1663 } 1664 1665 void XCOFFObjectWriter::writeSectionForExceptionSectionEntry( 1666 const MCAssembler &Asm, ExceptionSectionEntry &ExceptionEntry, 1667 uint64_t &CurrentAddressLocation) { 1668 for (const auto &TableEntry : ExceptionEntry.ExceptionTable) { 1669 // For every symbol that has exception entries, you must start the entries 1670 // with an initial symbol table index entry 1671 W.write<uint32_t>(SymbolIndexMap[TableEntry.second.FunctionSymbol]); 1672 if (is64Bit()) { 1673 // 4-byte padding on 64-bit. 1674 W.OS.write_zeros(4); 1675 } 1676 W.OS.write_zeros(2); 1677 for (auto &TrapEntry : TableEntry.second.Entries) { 1678 writeWord(TrapEntry.TrapAddress); 1679 W.write<uint8_t>(TrapEntry.Lang); 1680 W.write<uint8_t>(TrapEntry.Reason); 1681 } 1682 } 1683 1684 CurrentAddressLocation += getExceptionSectionSize(); 1685 } 1686 1687 void XCOFFObjectWriter::writeSectionForCInfoSymSectionEntry( 1688 const MCAssembler &Asm, CInfoSymSectionEntry &CInfoSymEntry, 1689 uint64_t &CurrentAddressLocation) { 1690 if (!CInfoSymSection.Entry) 1691 return; 1692 1693 constexpr int WordSize = sizeof(uint32_t); 1694 std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymEntry.Entry; 1695 const std::string &Metadata = CISI->Metadata; 1696 1697 // Emit the 4-byte length of the metadata. 1698 W.write<uint32_t>(Metadata.size()); 1699 1700 if (Metadata.size() == 0) 1701 return; 1702 1703 // Write out the payload one word at a time. 1704 size_t Index = 0; 1705 while (Index + WordSize <= Metadata.size()) { 1706 uint32_t NextWord = 1707 llvm::support::endian::read32be(Metadata.data() + Index); 1708 W.write<uint32_t>(NextWord); 1709 Index += WordSize; 1710 } 1711 1712 // If there is padding, we have at least one byte of payload left to emit. 1713 if (CISI->paddingSize()) { 1714 std::array<uint8_t, WordSize> LastWord = {0}; 1715 ::memcpy(LastWord.data(), Metadata.data() + Index, Metadata.size() - Index); 1716 W.write<uint32_t>(llvm::support::endian::read32be(LastWord.data())); 1717 } 1718 1719 CurrentAddressLocation += CISI->size(); 1720 } 1721 1722 // Takes the log base 2 of the alignment and shifts the result into the 5 most 1723 // significant bits of a byte, then or's in the csect type into the least 1724 // significant 3 bits. 1725 uint8_t getEncodedType(const MCSectionXCOFF *Sec) { 1726 unsigned Log2Align = Log2(Sec->getAlign()); 1727 // Result is a number in the range [0, 31] which fits in the 5 least 1728 // significant bits. Shift this value into the 5 most significant bits, and 1729 // bitwise-or in the csect type. 1730 uint8_t EncodedAlign = Log2Align << 3; 1731 return EncodedAlign | Sec->getCSectType(); 1732 } 1733 1734 } // end anonymous namespace 1735 1736 std::unique_ptr<MCObjectWriter> 1737 llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, 1738 raw_pwrite_stream &OS) { 1739 return std::make_unique<XCOFFObjectWriter>(std::move(MOTW), OS); 1740 } 1741 1742 // TODO: Export XCOFFObjectWriter to llvm/MC/MCXCOFFObjectWriter.h and remove 1743 // the forwarders. 1744 void XCOFF::addExceptionEntry(MCObjectWriter &Writer, const MCSymbol *Symbol, 1745 const MCSymbol *Trap, unsigned LanguageCode, 1746 unsigned ReasonCode, unsigned FunctionSize, 1747 bool hasDebug) { 1748 static_cast<XCOFFObjectWriter &>(Writer).addExceptionEntry( 1749 Symbol, Trap, LanguageCode, ReasonCode, FunctionSize, hasDebug); 1750 } 1751 1752 void XCOFF::addCInfoSymEntry(MCObjectWriter &Writer, StringRef Name, 1753 StringRef Metadata) { 1754 static_cast<XCOFFObjectWriter &>(Writer).addCInfoSymEntry(Name, Metadata); 1755 } 1756