1 //===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements XCOFF object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/BinaryFormat/XCOFF.h" 14 #include "llvm/MC/MCAsmBackend.h" 15 #include "llvm/MC/MCAsmLayout.h" 16 #include "llvm/MC/MCAssembler.h" 17 #include "llvm/MC/MCFixup.h" 18 #include "llvm/MC/MCFixupKindInfo.h" 19 #include "llvm/MC/MCObjectWriter.h" 20 #include "llvm/MC/MCSectionXCOFF.h" 21 #include "llvm/MC/MCSymbolXCOFF.h" 22 #include "llvm/MC/MCValue.h" 23 #include "llvm/MC/MCXCOFFObjectWriter.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Support/Casting.h" 26 #include "llvm/Support/EndianStream.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 30 #include <deque> 31 #include <map> 32 33 using namespace llvm; 34 35 // An XCOFF object file has a limited set of predefined sections. The most 36 // important ones for us (right now) are: 37 // .text --> contains program code and read-only data. 38 // .data --> contains initialized data, function descriptors, and the TOC. 39 // .bss --> contains uninitialized data. 40 // Each of these sections is composed of 'Control Sections'. A Control Section 41 // is more commonly referred to as a csect. A csect is an indivisible unit of 42 // code or data, and acts as a container for symbols. A csect is mapped 43 // into a section based on its storage-mapping class, with the exception of 44 // XMC_RW which gets mapped to either .data or .bss based on whether it's 45 // explicitly initialized or not. 46 // 47 // We don't represent the sections in the MC layer as there is nothing 48 // interesting about them at at that level: they carry information that is 49 // only relevant to the ObjectWriter, so we materialize them in this class. 50 namespace { 51 52 constexpr unsigned DefaultSectionAlign = 4; 53 constexpr int16_t MaxSectionIndex = INT16_MAX; 54 55 // Packs the csect's alignment and type into a byte. 56 uint8_t getEncodedType(const MCSectionXCOFF *); 57 58 struct XCOFFRelocation { 59 uint32_t SymbolTableIndex; 60 uint32_t FixupOffsetInCsect; 61 uint8_t SignAndSize; 62 uint8_t Type; 63 }; 64 65 // Wrapper around an MCSymbolXCOFF. 66 struct Symbol { 67 const MCSymbolXCOFF *const MCSym; 68 uint32_t SymbolTableIndex; 69 70 XCOFF::VisibilityType getVisibilityType() const { 71 return MCSym->getVisibilityType(); 72 } 73 74 XCOFF::StorageClass getStorageClass() const { 75 return MCSym->getStorageClass(); 76 } 77 StringRef getSymbolTableName() const { return MCSym->getSymbolTableName(); } 78 Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {} 79 }; 80 81 // Wrapper for an MCSectionXCOFF. 82 // It can be a Csect or debug section or DWARF section and so on. 83 struct XCOFFSection { 84 const MCSectionXCOFF *const MCSec; 85 uint32_t SymbolTableIndex; 86 uint64_t Address; 87 uint64_t Size; 88 89 SmallVector<Symbol, 1> Syms; 90 SmallVector<XCOFFRelocation, 1> Relocations; 91 StringRef getSymbolTableName() const { return MCSec->getSymbolTableName(); } 92 XCOFF::VisibilityType getVisibilityType() const { 93 return MCSec->getVisibilityType(); 94 } 95 XCOFFSection(const MCSectionXCOFF *MCSec) 96 : MCSec(MCSec), SymbolTableIndex(-1), Address(-1), Size(0) {} 97 }; 98 99 // Type to be used for a container representing a set of csects with 100 // (approximately) the same storage mapping class. For example all the csects 101 // with a storage mapping class of `xmc_pr` will get placed into the same 102 // container. 103 using CsectGroup = std::deque<XCOFFSection>; 104 using CsectGroups = std::deque<CsectGroup *>; 105 106 // The basic section entry defination. This Section represents a section entry 107 // in XCOFF section header table. 108 struct SectionEntry { 109 char Name[XCOFF::NameSize]; 110 // The physical/virtual address of the section. For an object file these 111 // values are equivalent, except for in the overflow section header, where 112 // the physical address specifies the number of relocation entries and the 113 // virtual address specifies the number of line number entries. 114 // TODO: Divide Address into PhysicalAddress and VirtualAddress when line 115 // number entries are supported. 116 uint64_t Address; 117 uint64_t Size; 118 uint64_t FileOffsetToData; 119 uint64_t FileOffsetToRelocations; 120 uint32_t RelocationCount; 121 int32_t Flags; 122 123 int16_t Index; 124 125 virtual uint64_t advanceFileOffset(const uint64_t MaxRawDataSize, 126 const uint64_t RawPointer) { 127 FileOffsetToData = RawPointer; 128 uint64_t NewPointer = RawPointer + Size; 129 if (NewPointer > MaxRawDataSize) 130 report_fatal_error("Section raw data overflowed this object file."); 131 return NewPointer; 132 } 133 134 // XCOFF has special section numbers for symbols: 135 // -2 Specifies N_DEBUG, a special symbolic debugging symbol. 136 // -1 Specifies N_ABS, an absolute symbol. The symbol has a value but is not 137 // relocatable. 138 // 0 Specifies N_UNDEF, an undefined external symbol. 139 // Therefore, we choose -3 (N_DEBUG - 1) to represent a section index that 140 // hasn't been initialized. 141 static constexpr int16_t UninitializedIndex = 142 XCOFF::ReservedSectionNum::N_DEBUG - 1; 143 144 SectionEntry(StringRef N, int32_t Flags) 145 : Name(), Address(0), Size(0), FileOffsetToData(0), 146 FileOffsetToRelocations(0), RelocationCount(0), Flags(Flags), 147 Index(UninitializedIndex) { 148 assert(N.size() <= XCOFF::NameSize && "section name too long"); 149 memcpy(Name, N.data(), N.size()); 150 } 151 152 virtual void reset() { 153 Address = 0; 154 Size = 0; 155 FileOffsetToData = 0; 156 FileOffsetToRelocations = 0; 157 RelocationCount = 0; 158 Index = UninitializedIndex; 159 } 160 161 virtual ~SectionEntry() = default; 162 }; 163 164 // Represents the data related to a section excluding the csects that make up 165 // the raw data of the section. The csects are stored separately as not all 166 // sections contain csects, and some sections contain csects which are better 167 // stored separately, e.g. the .data section containing read-write, descriptor, 168 // TOCBase and TOC-entry csects. 169 struct CsectSectionEntry : public SectionEntry { 170 // Virtual sections do not need storage allocated in the object file. 171 const bool IsVirtual; 172 173 // This is a section containing csect groups. 174 CsectGroups Groups; 175 176 CsectSectionEntry(StringRef N, XCOFF::SectionTypeFlags Flags, bool IsVirtual, 177 CsectGroups Groups) 178 : SectionEntry(N, Flags), IsVirtual(IsVirtual), Groups(Groups) { 179 assert(N.size() <= XCOFF::NameSize && "section name too long"); 180 memcpy(Name, N.data(), N.size()); 181 } 182 183 void reset() override { 184 SectionEntry::reset(); 185 // Clear any csects we have stored. 186 for (auto *Group : Groups) 187 Group->clear(); 188 } 189 190 virtual ~CsectSectionEntry() = default; 191 }; 192 193 struct DwarfSectionEntry : public SectionEntry { 194 // For DWARF section entry. 195 std::unique_ptr<XCOFFSection> DwarfSect; 196 197 // For DWARF section, we must use real size in the section header. MemorySize 198 // is for the size the DWARF section occupies including paddings. 199 uint32_t MemorySize; 200 201 // TODO: Remove this override. Loadable sections (e.g., .text, .data) may need 202 // to be aligned. Other sections generally don't need any alignment, but if 203 // they're aligned, the RawPointer should be adjusted before writing the 204 // section. Then a dwarf-specific function wouldn't be needed. 205 uint64_t advanceFileOffset(const uint64_t MaxRawDataSize, 206 const uint64_t RawPointer) override { 207 FileOffsetToData = RawPointer; 208 uint64_t NewPointer = RawPointer + MemorySize; 209 assert(NewPointer <= MaxRawDataSize && 210 "Section raw data overflowed this object file."); 211 return NewPointer; 212 } 213 214 DwarfSectionEntry(StringRef N, int32_t Flags, 215 std::unique_ptr<XCOFFSection> Sect) 216 : SectionEntry(N, Flags | XCOFF::STYP_DWARF), DwarfSect(std::move(Sect)), 217 MemorySize(0) { 218 assert(DwarfSect->MCSec->isDwarfSect() && 219 "This should be a DWARF section!"); 220 assert(N.size() <= XCOFF::NameSize && "section name too long"); 221 memcpy(Name, N.data(), N.size()); 222 } 223 224 DwarfSectionEntry(DwarfSectionEntry &&s) = default; 225 226 virtual ~DwarfSectionEntry() = default; 227 }; 228 229 struct ExceptionTableEntry { 230 const MCSymbol *Trap; 231 uint64_t TrapAddress = ~0ul; 232 unsigned Lang; 233 unsigned Reason; 234 235 ExceptionTableEntry(const MCSymbol *Trap, unsigned Lang, unsigned Reason) 236 : Trap(Trap), Lang(Lang), Reason(Reason) {} 237 }; 238 239 struct ExceptionInfo { 240 const MCSymbol *FunctionSymbol; 241 unsigned FunctionSize; 242 std::vector<ExceptionTableEntry> Entries; 243 }; 244 245 struct ExceptionSectionEntry : public SectionEntry { 246 std::map<const StringRef, ExceptionInfo> ExceptionTable; 247 bool isDebugEnabled = false; 248 249 ExceptionSectionEntry(StringRef N, int32_t Flags) 250 : SectionEntry(N, Flags | XCOFF::STYP_EXCEPT) { 251 assert(N.size() <= XCOFF::NameSize && "Section too long."); 252 memcpy(Name, N.data(), N.size()); 253 } 254 255 virtual ~ExceptionSectionEntry() = default; 256 }; 257 258 struct CInfoSymInfo { 259 // Name of the C_INFO symbol associated with the section 260 std::string Name; 261 std::string Metadata; 262 // Offset into the start of the metadata in the section 263 uint64_t Offset; 264 265 CInfoSymInfo(std::string Name, std::string Metadata) 266 : Name(Name), Metadata(Metadata) {} 267 // Metadata needs to be padded out to an even word size. 268 uint32_t paddingSize() const { 269 return alignTo(Metadata.size(), sizeof(uint32_t)) - Metadata.size(); 270 }; 271 272 // Total size of the entry, including the 4 byte length 273 uint32_t size() const { 274 return Metadata.size() + paddingSize() + sizeof(uint32_t); 275 }; 276 }; 277 278 struct CInfoSymSectionEntry : public SectionEntry { 279 std::unique_ptr<CInfoSymInfo> Entry; 280 281 CInfoSymSectionEntry(StringRef N, int32_t Flags) : SectionEntry(N, Flags) {} 282 virtual ~CInfoSymSectionEntry() = default; 283 void addEntry(std::unique_ptr<CInfoSymInfo> NewEntry) { 284 Entry = std::move(NewEntry); 285 Entry->Offset = sizeof(uint32_t); 286 Size += Entry->size(); 287 } 288 void reset() override { 289 SectionEntry::reset(); 290 Entry.reset(); 291 } 292 }; 293 294 class XCOFFObjectWriter : public MCObjectWriter { 295 296 uint32_t SymbolTableEntryCount = 0; 297 uint64_t SymbolTableOffset = 0; 298 uint16_t SectionCount = 0; 299 uint32_t PaddingsBeforeDwarf = 0; 300 std::vector<std::pair<std::string, size_t>> FileNames; 301 bool HasVisibility = false; 302 303 support::endian::Writer W; 304 std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter; 305 StringTableBuilder Strings; 306 307 const uint64_t MaxRawDataSize = 308 TargetObjectWriter->is64Bit() ? UINT64_MAX : UINT32_MAX; 309 310 // Maps the MCSection representation to its corresponding XCOFFSection 311 // wrapper. Needed for finding the XCOFFSection to insert an MCSymbol into 312 // from its containing MCSectionXCOFF. 313 DenseMap<const MCSectionXCOFF *, XCOFFSection *> SectionMap; 314 315 // Maps the MCSymbol representation to its corrresponding symbol table index. 316 // Needed for relocation. 317 DenseMap<const MCSymbol *, uint32_t> SymbolIndexMap; 318 319 // CsectGroups. These store the csects which make up different parts of 320 // the sections. Should have one for each set of csects that get mapped into 321 // the same section and get handled in a 'similar' way. 322 CsectGroup UndefinedCsects; 323 CsectGroup ProgramCodeCsects; 324 CsectGroup ReadOnlyCsects; 325 CsectGroup DataCsects; 326 CsectGroup FuncDSCsects; 327 CsectGroup TOCCsects; 328 CsectGroup BSSCsects; 329 CsectGroup TDataCsects; 330 CsectGroup TBSSCsects; 331 332 // The Predefined sections. 333 CsectSectionEntry Text; 334 CsectSectionEntry Data; 335 CsectSectionEntry BSS; 336 CsectSectionEntry TData; 337 CsectSectionEntry TBSS; 338 339 // All the XCOFF sections, in the order they will appear in the section header 340 // table. 341 std::array<CsectSectionEntry *const, 5> Sections{ 342 {&Text, &Data, &BSS, &TData, &TBSS}}; 343 344 std::vector<DwarfSectionEntry> DwarfSections; 345 std::vector<SectionEntry> OverflowSections; 346 347 ExceptionSectionEntry ExceptionSection; 348 CInfoSymSectionEntry CInfoSymSection; 349 350 CsectGroup &getCsectGroup(const MCSectionXCOFF *MCSec); 351 352 void reset() override; 353 354 void executePostLayoutBinding(MCAssembler &, const MCAsmLayout &) override; 355 356 void recordRelocation(MCAssembler &, const MCAsmLayout &, const MCFragment *, 357 const MCFixup &, MCValue, uint64_t &) override; 358 359 uint64_t writeObject(MCAssembler &, const MCAsmLayout &) override; 360 361 bool is64Bit() const { return TargetObjectWriter->is64Bit(); } 362 bool nameShouldBeInStringTable(const StringRef &); 363 void writeSymbolName(const StringRef &); 364 365 void writeSymbolEntryForCsectMemberLabel(const Symbol &SymbolRef, 366 const XCOFFSection &CSectionRef, 367 int16_t SectionIndex, 368 uint64_t SymbolOffset); 369 void writeSymbolEntryForControlSection(const XCOFFSection &CSectionRef, 370 int16_t SectionIndex, 371 XCOFF::StorageClass StorageClass); 372 void writeSymbolEntryForDwarfSection(const XCOFFSection &DwarfSectionRef, 373 int16_t SectionIndex); 374 void writeFileHeader(); 375 void writeAuxFileHeader(); 376 void writeSectionHeader(const SectionEntry *Sec); 377 void writeSectionHeaderTable(); 378 void writeSections(const MCAssembler &Asm, const MCAsmLayout &Layout); 379 void writeSectionForControlSectionEntry(const MCAssembler &Asm, 380 const MCAsmLayout &Layout, 381 const CsectSectionEntry &CsectEntry, 382 uint64_t &CurrentAddressLocation); 383 void writeSectionForDwarfSectionEntry(const MCAssembler &Asm, 384 const MCAsmLayout &Layout, 385 const DwarfSectionEntry &DwarfEntry, 386 uint64_t &CurrentAddressLocation); 387 void writeSectionForExceptionSectionEntry( 388 const MCAssembler &Asm, const MCAsmLayout &Layout, 389 ExceptionSectionEntry &ExceptionEntry, uint64_t &CurrentAddressLocation); 390 void writeSectionForCInfoSymSectionEntry(const MCAssembler &Asm, 391 const MCAsmLayout &Layout, 392 CInfoSymSectionEntry &CInfoSymEntry, 393 uint64_t &CurrentAddressLocation); 394 void writeSymbolTable(const MCAsmLayout &Layout); 395 void writeSymbolAuxDwarfEntry(uint64_t LengthOfSectionPortion, 396 uint64_t NumberOfRelocEnt = 0); 397 void writeSymbolAuxCsectEntry(uint64_t SectionOrLength, 398 uint8_t SymbolAlignmentAndType, 399 uint8_t StorageMappingClass); 400 void writeSymbolAuxFunctionEntry(uint32_t EntryOffset, uint32_t FunctionSize, 401 uint64_t LineNumberPointer, 402 uint32_t EndIndex); 403 void writeSymbolAuxExceptionEntry(uint64_t EntryOffset, uint32_t FunctionSize, 404 uint32_t EndIndex); 405 void writeSymbolEntry(StringRef SymbolName, uint64_t Value, 406 int16_t SectionNumber, uint16_t SymbolType, 407 uint8_t StorageClass, uint8_t NumberOfAuxEntries = 1); 408 void writeRelocations(); 409 void writeRelocation(XCOFFRelocation Reloc, const XCOFFSection &Section); 410 411 // Called after all the csects and symbols have been processed by 412 // `executePostLayoutBinding`, this function handles building up the majority 413 // of the structures in the object file representation. Namely: 414 // *) Calculates physical/virtual addresses, raw-pointer offsets, and section 415 // sizes. 416 // *) Assigns symbol table indices. 417 // *) Builds up the section header table by adding any non-empty sections to 418 // `Sections`. 419 void assignAddressesAndIndices(const MCAsmLayout &); 420 // Called after relocations are recorded. 421 void finalizeSectionInfo(); 422 void finalizeRelocationInfo(SectionEntry *Sec, uint64_t RelCount); 423 void calcOffsetToRelocations(SectionEntry *Sec, uint64_t &RawPointer); 424 425 void addExceptionEntry(const MCSymbol *Symbol, const MCSymbol *Trap, 426 unsigned LanguageCode, unsigned ReasonCode, 427 unsigned FunctionSize, bool hasDebug) override; 428 bool hasExceptionSection() { 429 return !ExceptionSection.ExceptionTable.empty(); 430 } 431 unsigned getExceptionSectionSize(); 432 unsigned getExceptionOffset(const MCSymbol *Symbol); 433 434 void addCInfoSymEntry(StringRef Name, StringRef Metadata) override; 435 size_t auxiliaryHeaderSize() const { 436 // 64-bit object files have no auxiliary header. 437 return HasVisibility && !is64Bit() ? XCOFF::AuxFileHeaderSizeShort : 0; 438 } 439 440 public: 441 XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, 442 raw_pwrite_stream &OS); 443 444 void writeWord(uint64_t Word) { 445 is64Bit() ? W.write<uint64_t>(Word) : W.write<uint32_t>(Word); 446 } 447 }; 448 449 XCOFFObjectWriter::XCOFFObjectWriter( 450 std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS) 451 : W(OS, llvm::endianness::big), TargetObjectWriter(std::move(MOTW)), 452 Strings(StringTableBuilder::XCOFF), 453 Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false, 454 CsectGroups{&ProgramCodeCsects, &ReadOnlyCsects}), 455 Data(".data", XCOFF::STYP_DATA, /* IsVirtual */ false, 456 CsectGroups{&DataCsects, &FuncDSCsects, &TOCCsects}), 457 BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true, 458 CsectGroups{&BSSCsects}), 459 TData(".tdata", XCOFF::STYP_TDATA, /* IsVirtual */ false, 460 CsectGroups{&TDataCsects}), 461 TBSS(".tbss", XCOFF::STYP_TBSS, /* IsVirtual */ true, 462 CsectGroups{&TBSSCsects}), 463 ExceptionSection(".except", XCOFF::STYP_EXCEPT), 464 CInfoSymSection(".info", XCOFF::STYP_INFO) {} 465 466 void XCOFFObjectWriter::reset() { 467 // Clear the mappings we created. 468 SymbolIndexMap.clear(); 469 SectionMap.clear(); 470 471 UndefinedCsects.clear(); 472 // Reset any sections we have written to, and empty the section header table. 473 for (auto *Sec : Sections) 474 Sec->reset(); 475 for (auto &DwarfSec : DwarfSections) 476 DwarfSec.reset(); 477 for (auto &OverflowSec : OverflowSections) 478 OverflowSec.reset(); 479 ExceptionSection.reset(); 480 CInfoSymSection.reset(); 481 482 // Reset states in XCOFFObjectWriter. 483 SymbolTableEntryCount = 0; 484 SymbolTableOffset = 0; 485 SectionCount = 0; 486 PaddingsBeforeDwarf = 0; 487 Strings.clear(); 488 489 MCObjectWriter::reset(); 490 } 491 492 CsectGroup &XCOFFObjectWriter::getCsectGroup(const MCSectionXCOFF *MCSec) { 493 switch (MCSec->getMappingClass()) { 494 case XCOFF::XMC_PR: 495 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 496 "Only an initialized csect can contain program code."); 497 return ProgramCodeCsects; 498 case XCOFF::XMC_RO: 499 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 500 "Only an initialized csect can contain read only data."); 501 return ReadOnlyCsects; 502 case XCOFF::XMC_RW: 503 if (XCOFF::XTY_CM == MCSec->getCSectType()) 504 return BSSCsects; 505 506 if (XCOFF::XTY_SD == MCSec->getCSectType()) 507 return DataCsects; 508 509 report_fatal_error("Unhandled mapping of read-write csect to section."); 510 case XCOFF::XMC_DS: 511 return FuncDSCsects; 512 case XCOFF::XMC_BS: 513 assert(XCOFF::XTY_CM == MCSec->getCSectType() && 514 "Mapping invalid csect. CSECT with bss storage class must be " 515 "common type."); 516 return BSSCsects; 517 case XCOFF::XMC_TL: 518 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 519 "Mapping invalid csect. CSECT with tdata storage class must be " 520 "an initialized csect."); 521 return TDataCsects; 522 case XCOFF::XMC_UL: 523 assert(XCOFF::XTY_CM == MCSec->getCSectType() && 524 "Mapping invalid csect. CSECT with tbss storage class must be " 525 "an uninitialized csect."); 526 return TBSSCsects; 527 case XCOFF::XMC_TC0: 528 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 529 "Only an initialized csect can contain TOC-base."); 530 assert(TOCCsects.empty() && 531 "We should have only one TOC-base, and it should be the first csect " 532 "in this CsectGroup."); 533 return TOCCsects; 534 case XCOFF::XMC_TC: 535 case XCOFF::XMC_TE: 536 case XCOFF::XMC_TD: 537 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 538 "Only an initialized csect can contain TC entry."); 539 assert(!TOCCsects.empty() && 540 "We should at least have a TOC-base in this CsectGroup."); 541 return TOCCsects; 542 default: 543 report_fatal_error("Unhandled mapping of csect to section."); 544 } 545 } 546 547 static MCSectionXCOFF *getContainingCsect(const MCSymbolXCOFF *XSym) { 548 if (XSym->isDefined()) 549 return cast<MCSectionXCOFF>(XSym->getFragment()->getParent()); 550 return XSym->getRepresentedCsect(); 551 } 552 553 void XCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 554 const MCAsmLayout &Layout) { 555 for (const auto &S : Asm) { 556 const auto *MCSec = cast<const MCSectionXCOFF>(&S); 557 assert(!SectionMap.contains(MCSec) && "Cannot add a section twice."); 558 559 // If the name does not fit in the storage provided in the symbol table 560 // entry, add it to the string table. 561 if (nameShouldBeInStringTable(MCSec->getSymbolTableName())) 562 Strings.add(MCSec->getSymbolTableName()); 563 if (MCSec->isCsect()) { 564 // A new control section. Its CsectSectionEntry should already be staticly 565 // generated as Text/Data/BSS/TDATA/TBSS. Add this section to the group of 566 // the CsectSectionEntry. 567 assert(XCOFF::XTY_ER != MCSec->getCSectType() && 568 "An undefined csect should not get registered."); 569 CsectGroup &Group = getCsectGroup(MCSec); 570 Group.emplace_back(MCSec); 571 SectionMap[MCSec] = &Group.back(); 572 } else if (MCSec->isDwarfSect()) { 573 // A new DwarfSectionEntry. 574 std::unique_ptr<XCOFFSection> DwarfSec = 575 std::make_unique<XCOFFSection>(MCSec); 576 SectionMap[MCSec] = DwarfSec.get(); 577 578 DwarfSectionEntry SecEntry(MCSec->getName(), 579 *MCSec->getDwarfSubtypeFlags(), 580 std::move(DwarfSec)); 581 DwarfSections.push_back(std::move(SecEntry)); 582 } else 583 llvm_unreachable("unsupport section type!"); 584 } 585 586 for (const MCSymbol &S : Asm.symbols()) { 587 // Nothing to do for temporary symbols. 588 if (S.isTemporary()) 589 continue; 590 591 const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S); 592 const MCSectionXCOFF *ContainingCsect = getContainingCsect(XSym); 593 594 if (XSym->getVisibilityType() != XCOFF::SYM_V_UNSPECIFIED) 595 HasVisibility = true; 596 597 if (ContainingCsect->getCSectType() == XCOFF::XTY_ER) { 598 // Handle undefined symbol. 599 UndefinedCsects.emplace_back(ContainingCsect); 600 SectionMap[ContainingCsect] = &UndefinedCsects.back(); 601 if (nameShouldBeInStringTable(ContainingCsect->getSymbolTableName())) 602 Strings.add(ContainingCsect->getSymbolTableName()); 603 continue; 604 } 605 606 // If the symbol is the csect itself, we don't need to put the symbol 607 // into csect's Syms. 608 if (XSym == ContainingCsect->getQualNameSymbol()) 609 continue; 610 611 // Only put a label into the symbol table when it is an external label. 612 if (!XSym->isExternal()) 613 continue; 614 615 assert(SectionMap.contains(ContainingCsect) && 616 "Expected containing csect to exist in map"); 617 XCOFFSection *Csect = SectionMap[ContainingCsect]; 618 // Lookup the containing csect and add the symbol to it. 619 assert(Csect->MCSec->isCsect() && "only csect is supported now!"); 620 Csect->Syms.emplace_back(XSym); 621 622 // If the name does not fit in the storage provided in the symbol table 623 // entry, add it to the string table. 624 if (nameShouldBeInStringTable(XSym->getSymbolTableName())) 625 Strings.add(XSym->getSymbolTableName()); 626 } 627 628 std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymSection.Entry; 629 if (CISI && nameShouldBeInStringTable(CISI->Name)) 630 Strings.add(CISI->Name); 631 632 FileNames = Asm.getFileNames(); 633 // Emit ".file" as the source file name when there is no file name. 634 if (FileNames.empty()) 635 FileNames.emplace_back(".file", 0); 636 for (const std::pair<std::string, size_t> &F : FileNames) { 637 if (nameShouldBeInStringTable(F.first)) 638 Strings.add(F.first); 639 } 640 641 Strings.finalize(); 642 assignAddressesAndIndices(Layout); 643 } 644 645 void XCOFFObjectWriter::recordRelocation(MCAssembler &Asm, 646 const MCAsmLayout &Layout, 647 const MCFragment *Fragment, 648 const MCFixup &Fixup, MCValue Target, 649 uint64_t &FixedValue) { 650 auto getIndex = [this](const MCSymbol *Sym, 651 const MCSectionXCOFF *ContainingCsect) { 652 // If we could not find the symbol directly in SymbolIndexMap, this symbol 653 // could either be a temporary symbol or an undefined symbol. In this case, 654 // we would need to have the relocation reference its csect instead. 655 return SymbolIndexMap.contains(Sym) 656 ? SymbolIndexMap[Sym] 657 : SymbolIndexMap[ContainingCsect->getQualNameSymbol()]; 658 }; 659 660 auto getVirtualAddress = 661 [this, &Layout](const MCSymbol *Sym, 662 const MCSectionXCOFF *ContainingSect) -> uint64_t { 663 // A DWARF section. 664 if (ContainingSect->isDwarfSect()) 665 return Layout.getSymbolOffset(*Sym); 666 667 // A csect. 668 if (!Sym->isDefined()) 669 return SectionMap[ContainingSect]->Address; 670 671 // A label. 672 assert(Sym->isDefined() && "not a valid object that has address!"); 673 return SectionMap[ContainingSect]->Address + Layout.getSymbolOffset(*Sym); 674 }; 675 676 const MCSymbol *const SymA = &Target.getSymA()->getSymbol(); 677 678 MCAsmBackend &Backend = Asm.getBackend(); 679 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags & 680 MCFixupKindInfo::FKF_IsPCRel; 681 682 uint8_t Type; 683 uint8_t SignAndSize; 684 std::tie(Type, SignAndSize) = 685 TargetObjectWriter->getRelocTypeAndSignSize(Target, Fixup, IsPCRel); 686 687 const MCSectionXCOFF *SymASec = getContainingCsect(cast<MCSymbolXCOFF>(SymA)); 688 assert(SectionMap.contains(SymASec) && 689 "Expected containing csect to exist in map."); 690 691 assert((Fixup.getOffset() <= 692 MaxRawDataSize - Layout.getFragmentOffset(Fragment)) && 693 "Fragment offset + fixup offset is overflowed."); 694 uint32_t FixupOffsetInCsect = 695 Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 696 697 const uint32_t Index = getIndex(SymA, SymASec); 698 if (Type == XCOFF::RelocationType::R_POS || 699 Type == XCOFF::RelocationType::R_TLS || 700 Type == XCOFF::RelocationType::R_TLS_LE || 701 Type == XCOFF::RelocationType::R_TLS_IE) 702 // The FixedValue should be symbol's virtual address in this object file 703 // plus any constant value that we might get. 704 FixedValue = getVirtualAddress(SymA, SymASec) + Target.getConstant(); 705 else if (Type == XCOFF::RelocationType::R_TLSM) 706 // The FixedValue should always be zero since the region handle is only 707 // known at load time. 708 FixedValue = 0; 709 else if (Type == XCOFF::RelocationType::R_TOC || 710 Type == XCOFF::RelocationType::R_TOCL) { 711 // For non toc-data external symbols, R_TOC type relocation will relocate to 712 // data symbols that have XCOFF::XTY_SD type csect. For toc-data external 713 // symbols, R_TOC type relocation will relocate to data symbols that have 714 // XCOFF_ER type csect. For XCOFF_ER kind symbols, there will be no TOC 715 // entry for them, so the FixedValue should always be 0. 716 if (SymASec->getCSectType() == XCOFF::XTY_ER) { 717 FixedValue = 0; 718 } else { 719 // The FixedValue should be the TOC entry offset from the TOC-base plus 720 // any constant offset value. 721 const int64_t TOCEntryOffset = SectionMap[SymASec]->Address - 722 TOCCsects.front().Address + 723 Target.getConstant(); 724 if (Type == XCOFF::RelocationType::R_TOC && !isInt<16>(TOCEntryOffset)) 725 report_fatal_error("TOCEntryOffset overflows in small code model mode"); 726 727 FixedValue = TOCEntryOffset; 728 } 729 } else if (Type == XCOFF::RelocationType::R_RBR) { 730 MCSectionXCOFF *ParentSec = cast<MCSectionXCOFF>(Fragment->getParent()); 731 assert((SymASec->getMappingClass() == XCOFF::XMC_PR && 732 ParentSec->getMappingClass() == XCOFF::XMC_PR) && 733 "Only XMC_PR csect may have the R_RBR relocation."); 734 735 // The address of the branch instruction should be the sum of section 736 // address, fragment offset and Fixup offset. 737 uint64_t BRInstrAddress = 738 SectionMap[ParentSec]->Address + FixupOffsetInCsect; 739 // The FixedValue should be the difference between symbol's virtual address 740 // and BR instr address plus any constant value. 741 FixedValue = getVirtualAddress(SymA, SymASec) - BRInstrAddress + 742 Target.getConstant(); 743 } else if (Type == XCOFF::RelocationType::R_REF) { 744 // The FixedValue and FixupOffsetInCsect should always be 0 since it 745 // specifies a nonrelocating reference. 746 FixedValue = 0; 747 FixupOffsetInCsect = 0; 748 } 749 750 XCOFFRelocation Reloc = {Index, FixupOffsetInCsect, SignAndSize, Type}; 751 MCSectionXCOFF *RelocationSec = cast<MCSectionXCOFF>(Fragment->getParent()); 752 assert(SectionMap.contains(RelocationSec) && 753 "Expected containing csect to exist in map."); 754 SectionMap[RelocationSec]->Relocations.push_back(Reloc); 755 756 if (!Target.getSymB()) 757 return; 758 759 const MCSymbol *const SymB = &Target.getSymB()->getSymbol(); 760 if (SymA == SymB) 761 report_fatal_error("relocation for opposite term is not yet supported"); 762 763 const MCSectionXCOFF *SymBSec = getContainingCsect(cast<MCSymbolXCOFF>(SymB)); 764 assert(SectionMap.contains(SymBSec) && 765 "Expected containing csect to exist in map."); 766 if (SymASec == SymBSec) 767 report_fatal_error( 768 "relocation for paired relocatable term is not yet supported"); 769 770 assert(Type == XCOFF::RelocationType::R_POS && 771 "SymA must be R_POS here if it's not opposite term or paired " 772 "relocatable term."); 773 const uint32_t IndexB = getIndex(SymB, SymBSec); 774 // SymB must be R_NEG here, given the general form of Target(MCValue) is 775 // "SymbolA - SymbolB + imm64". 776 const uint8_t TypeB = XCOFF::RelocationType::R_NEG; 777 XCOFFRelocation RelocB = {IndexB, FixupOffsetInCsect, SignAndSize, TypeB}; 778 SectionMap[RelocationSec]->Relocations.push_back(RelocB); 779 // We already folded "SymbolA + imm64" above when Type is R_POS for SymbolA, 780 // now we just need to fold "- SymbolB" here. 781 FixedValue -= getVirtualAddress(SymB, SymBSec); 782 } 783 784 void XCOFFObjectWriter::writeSections(const MCAssembler &Asm, 785 const MCAsmLayout &Layout) { 786 uint64_t CurrentAddressLocation = 0; 787 for (const auto *Section : Sections) 788 writeSectionForControlSectionEntry(Asm, Layout, *Section, 789 CurrentAddressLocation); 790 for (const auto &DwarfSection : DwarfSections) 791 writeSectionForDwarfSectionEntry(Asm, Layout, DwarfSection, 792 CurrentAddressLocation); 793 writeSectionForExceptionSectionEntry(Asm, Layout, ExceptionSection, 794 CurrentAddressLocation); 795 writeSectionForCInfoSymSectionEntry(Asm, Layout, CInfoSymSection, 796 CurrentAddressLocation); 797 } 798 799 uint64_t XCOFFObjectWriter::writeObject(MCAssembler &Asm, 800 const MCAsmLayout &Layout) { 801 // We always emit a timestamp of 0 for reproducibility, so ensure incremental 802 // linking is not enabled, in case, like with Windows COFF, such a timestamp 803 // is incompatible with incremental linking of XCOFF. 804 if (Asm.isIncrementalLinkerCompatible()) 805 report_fatal_error("Incremental linking not supported for XCOFF."); 806 807 finalizeSectionInfo(); 808 uint64_t StartOffset = W.OS.tell(); 809 810 writeFileHeader(); 811 writeAuxFileHeader(); 812 writeSectionHeaderTable(); 813 writeSections(Asm, Layout); 814 writeRelocations(); 815 writeSymbolTable(Layout); 816 // Write the string table. 817 Strings.write(W.OS); 818 819 return W.OS.tell() - StartOffset; 820 } 821 822 bool XCOFFObjectWriter::nameShouldBeInStringTable(const StringRef &SymbolName) { 823 return SymbolName.size() > XCOFF::NameSize || is64Bit(); 824 } 825 826 void XCOFFObjectWriter::writeSymbolName(const StringRef &SymbolName) { 827 // Magic, Offset or SymbolName. 828 if (nameShouldBeInStringTable(SymbolName)) { 829 W.write<int32_t>(0); 830 W.write<uint32_t>(Strings.getOffset(SymbolName)); 831 } else { 832 char Name[XCOFF::NameSize + 1]; 833 std::strncpy(Name, SymbolName.data(), XCOFF::NameSize); 834 ArrayRef<char> NameRef(Name, XCOFF::NameSize); 835 W.write(NameRef); 836 } 837 } 838 839 void XCOFFObjectWriter::writeSymbolEntry(StringRef SymbolName, uint64_t Value, 840 int16_t SectionNumber, 841 uint16_t SymbolType, 842 uint8_t StorageClass, 843 uint8_t NumberOfAuxEntries) { 844 if (is64Bit()) { 845 W.write<uint64_t>(Value); 846 W.write<uint32_t>(Strings.getOffset(SymbolName)); 847 } else { 848 writeSymbolName(SymbolName); 849 W.write<uint32_t>(Value); 850 } 851 W.write<int16_t>(SectionNumber); 852 W.write<uint16_t>(SymbolType); 853 W.write<uint8_t>(StorageClass); 854 W.write<uint8_t>(NumberOfAuxEntries); 855 } 856 857 void XCOFFObjectWriter::writeSymbolAuxCsectEntry(uint64_t SectionOrLength, 858 uint8_t SymbolAlignmentAndType, 859 uint8_t StorageMappingClass) { 860 W.write<uint32_t>(is64Bit() ? Lo_32(SectionOrLength) : SectionOrLength); 861 W.write<uint32_t>(0); // ParameterHashIndex 862 W.write<uint16_t>(0); // TypeChkSectNum 863 W.write<uint8_t>(SymbolAlignmentAndType); 864 W.write<uint8_t>(StorageMappingClass); 865 if (is64Bit()) { 866 W.write<uint32_t>(Hi_32(SectionOrLength)); 867 W.OS.write_zeros(1); // Reserved 868 W.write<uint8_t>(XCOFF::AUX_CSECT); 869 } else { 870 W.write<uint32_t>(0); // StabInfoIndex 871 W.write<uint16_t>(0); // StabSectNum 872 } 873 } 874 875 void XCOFFObjectWriter::writeSymbolAuxDwarfEntry( 876 uint64_t LengthOfSectionPortion, uint64_t NumberOfRelocEnt) { 877 writeWord(LengthOfSectionPortion); 878 if (!is64Bit()) 879 W.OS.write_zeros(4); // Reserved 880 writeWord(NumberOfRelocEnt); 881 if (is64Bit()) { 882 W.OS.write_zeros(1); // Reserved 883 W.write<uint8_t>(XCOFF::AUX_SECT); 884 } else { 885 W.OS.write_zeros(6); // Reserved 886 } 887 } 888 889 void XCOFFObjectWriter::writeSymbolEntryForCsectMemberLabel( 890 const Symbol &SymbolRef, const XCOFFSection &CSectionRef, 891 int16_t SectionIndex, uint64_t SymbolOffset) { 892 assert(SymbolOffset <= MaxRawDataSize - CSectionRef.Address && 893 "Symbol address overflowed."); 894 895 auto Entry = ExceptionSection.ExceptionTable.find(SymbolRef.MCSym->getName()); 896 if (Entry != ExceptionSection.ExceptionTable.end()) { 897 writeSymbolEntry(SymbolRef.getSymbolTableName(), 898 CSectionRef.Address + SymbolOffset, SectionIndex, 899 // In the old version of the 32-bit XCOFF interpretation, 900 // symbols may require bit 10 (0x0020) to be set if the 901 // symbol is a function, otherwise the bit should be 0. 902 is64Bit() ? SymbolRef.getVisibilityType() 903 : SymbolRef.getVisibilityType() | 0x0020, 904 SymbolRef.getStorageClass(), 905 (is64Bit() && ExceptionSection.isDebugEnabled) ? 3 : 2); 906 if (is64Bit() && ExceptionSection.isDebugEnabled) { 907 // On 64 bit with debugging enabled, we have a csect, exception, and 908 // function auxilliary entries, so we must increment symbol index by 4. 909 writeSymbolAuxExceptionEntry( 910 ExceptionSection.FileOffsetToData + 911 getExceptionOffset(Entry->second.FunctionSymbol), 912 Entry->second.FunctionSize, 913 SymbolIndexMap[Entry->second.FunctionSymbol] + 4); 914 } 915 // For exception section entries, csect and function auxilliary entries 916 // must exist. On 64-bit there is also an exception auxilliary entry. 917 writeSymbolAuxFunctionEntry( 918 ExceptionSection.FileOffsetToData + 919 getExceptionOffset(Entry->second.FunctionSymbol), 920 Entry->second.FunctionSize, 0, 921 (is64Bit() && ExceptionSection.isDebugEnabled) 922 ? SymbolIndexMap[Entry->second.FunctionSymbol] + 4 923 : SymbolIndexMap[Entry->second.FunctionSymbol] + 3); 924 } else { 925 writeSymbolEntry(SymbolRef.getSymbolTableName(), 926 CSectionRef.Address + SymbolOffset, SectionIndex, 927 SymbolRef.getVisibilityType(), 928 SymbolRef.getStorageClass()); 929 } 930 writeSymbolAuxCsectEntry(CSectionRef.SymbolTableIndex, XCOFF::XTY_LD, 931 CSectionRef.MCSec->getMappingClass()); 932 } 933 934 void XCOFFObjectWriter::writeSymbolEntryForDwarfSection( 935 const XCOFFSection &DwarfSectionRef, int16_t SectionIndex) { 936 assert(DwarfSectionRef.MCSec->isDwarfSect() && "Not a DWARF section!"); 937 938 writeSymbolEntry(DwarfSectionRef.getSymbolTableName(), /*Value=*/0, 939 SectionIndex, /*SymbolType=*/0, XCOFF::C_DWARF); 940 941 writeSymbolAuxDwarfEntry(DwarfSectionRef.Size); 942 } 943 944 void XCOFFObjectWriter::writeSymbolEntryForControlSection( 945 const XCOFFSection &CSectionRef, int16_t SectionIndex, 946 XCOFF::StorageClass StorageClass) { 947 writeSymbolEntry(CSectionRef.getSymbolTableName(), CSectionRef.Address, 948 SectionIndex, CSectionRef.getVisibilityType(), StorageClass); 949 950 writeSymbolAuxCsectEntry(CSectionRef.Size, getEncodedType(CSectionRef.MCSec), 951 CSectionRef.MCSec->getMappingClass()); 952 } 953 954 void XCOFFObjectWriter::writeSymbolAuxFunctionEntry(uint32_t EntryOffset, 955 uint32_t FunctionSize, 956 uint64_t LineNumberPointer, 957 uint32_t EndIndex) { 958 if (is64Bit()) 959 writeWord(LineNumberPointer); 960 else 961 W.write<uint32_t>(EntryOffset); 962 W.write<uint32_t>(FunctionSize); 963 if (!is64Bit()) 964 writeWord(LineNumberPointer); 965 W.write<uint32_t>(EndIndex); 966 if (is64Bit()) { 967 W.OS.write_zeros(1); 968 W.write<uint8_t>(XCOFF::AUX_FCN); 969 } else { 970 W.OS.write_zeros(2); 971 } 972 } 973 974 void XCOFFObjectWriter::writeSymbolAuxExceptionEntry(uint64_t EntryOffset, 975 uint32_t FunctionSize, 976 uint32_t EndIndex) { 977 assert(is64Bit() && "Exception auxilliary entries are 64-bit only."); 978 W.write<uint64_t>(EntryOffset); 979 W.write<uint32_t>(FunctionSize); 980 W.write<uint32_t>(EndIndex); 981 W.OS.write_zeros(1); // Pad (unused) 982 W.write<uint8_t>(XCOFF::AUX_EXCEPT); 983 } 984 985 void XCOFFObjectWriter::writeFileHeader() { 986 W.write<uint16_t>(is64Bit() ? XCOFF::XCOFF64 : XCOFF::XCOFF32); 987 W.write<uint16_t>(SectionCount); 988 W.write<int32_t>(0); // TimeStamp 989 writeWord(SymbolTableOffset); 990 if (is64Bit()) { 991 W.write<uint16_t>(auxiliaryHeaderSize()); 992 W.write<uint16_t>(0); // Flags 993 W.write<int32_t>(SymbolTableEntryCount); 994 } else { 995 W.write<int32_t>(SymbolTableEntryCount); 996 W.write<uint16_t>(auxiliaryHeaderSize()); 997 W.write<uint16_t>(0); // Flags 998 } 999 } 1000 1001 void XCOFFObjectWriter::writeAuxFileHeader() { 1002 if (!auxiliaryHeaderSize()) 1003 return; 1004 W.write<uint16_t>(0); // Magic 1005 W.write<uint16_t>( 1006 XCOFF::NEW_XCOFF_INTERPRET); // Version. The new interpretation of the 1007 // n_type field in the symbol table entry is 1008 // used in XCOFF32. 1009 W.write<uint32_t>(Sections[0]->Size); // TextSize 1010 W.write<uint32_t>(Sections[1]->Size); // InitDataSize 1011 W.write<uint32_t>(Sections[2]->Size); // BssDataSize 1012 W.write<uint32_t>(0); // EntryPointAddr 1013 W.write<uint32_t>(Sections[0]->Address); // TextStartAddr 1014 W.write<uint32_t>(Sections[1]->Address); // DataStartAddr 1015 } 1016 1017 void XCOFFObjectWriter::writeSectionHeader(const SectionEntry *Sec) { 1018 bool IsDwarf = (Sec->Flags & XCOFF::STYP_DWARF) != 0; 1019 bool IsOvrflo = (Sec->Flags & XCOFF::STYP_OVRFLO) != 0; 1020 // Nothing to write for this Section. 1021 if (Sec->Index == SectionEntry::UninitializedIndex) 1022 return; 1023 1024 // Write Name. 1025 ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize); 1026 W.write(NameRef); 1027 1028 // Write the Physical Address and Virtual Address. 1029 // We use 0 for DWARF sections' Physical and Virtual Addresses. 1030 writeWord(IsDwarf ? 0 : Sec->Address); 1031 // Since line number is not supported, we set it to 0 for overflow sections. 1032 writeWord((IsDwarf || IsOvrflo) ? 0 : Sec->Address); 1033 1034 writeWord(Sec->Size); 1035 writeWord(Sec->FileOffsetToData); 1036 writeWord(Sec->FileOffsetToRelocations); 1037 writeWord(0); // FileOffsetToLineNumberInfo. Not supported yet. 1038 1039 if (is64Bit()) { 1040 W.write<uint32_t>(Sec->RelocationCount); 1041 W.write<uint32_t>(0); // NumberOfLineNumbers. Not supported yet. 1042 W.write<int32_t>(Sec->Flags); 1043 W.OS.write_zeros(4); 1044 } else { 1045 // For the overflow section header, s_nreloc provides a reference to the 1046 // primary section header and s_nlnno must have the same value. 1047 // For common section headers, if either of s_nreloc or s_nlnno are set to 1048 // 65535, the other one must also be set to 65535. 1049 W.write<uint16_t>(Sec->RelocationCount); 1050 W.write<uint16_t>((IsOvrflo || Sec->RelocationCount == XCOFF::RelocOverflow) 1051 ? Sec->RelocationCount 1052 : 0); // NumberOfLineNumbers. Not supported yet. 1053 W.write<int32_t>(Sec->Flags); 1054 } 1055 } 1056 1057 void XCOFFObjectWriter::writeSectionHeaderTable() { 1058 for (const auto *CsectSec : Sections) 1059 writeSectionHeader(CsectSec); 1060 for (const auto &DwarfSec : DwarfSections) 1061 writeSectionHeader(&DwarfSec); 1062 for (const auto &OverflowSec : OverflowSections) 1063 writeSectionHeader(&OverflowSec); 1064 if (hasExceptionSection()) 1065 writeSectionHeader(&ExceptionSection); 1066 if (CInfoSymSection.Entry) 1067 writeSectionHeader(&CInfoSymSection); 1068 } 1069 1070 void XCOFFObjectWriter::writeRelocation(XCOFFRelocation Reloc, 1071 const XCOFFSection &Section) { 1072 if (Section.MCSec->isCsect()) 1073 writeWord(Section.Address + Reloc.FixupOffsetInCsect); 1074 else { 1075 // DWARF sections' address is set to 0. 1076 assert(Section.MCSec->isDwarfSect() && "unsupport section type!"); 1077 writeWord(Reloc.FixupOffsetInCsect); 1078 } 1079 W.write<uint32_t>(Reloc.SymbolTableIndex); 1080 W.write<uint8_t>(Reloc.SignAndSize); 1081 W.write<uint8_t>(Reloc.Type); 1082 } 1083 1084 void XCOFFObjectWriter::writeRelocations() { 1085 for (const auto *Section : Sections) { 1086 if (Section->Index == SectionEntry::UninitializedIndex) 1087 // Nothing to write for this Section. 1088 continue; 1089 1090 for (const auto *Group : Section->Groups) { 1091 if (Group->empty()) 1092 continue; 1093 1094 for (const auto &Csect : *Group) { 1095 for (const auto Reloc : Csect.Relocations) 1096 writeRelocation(Reloc, Csect); 1097 } 1098 } 1099 } 1100 1101 for (const auto &DwarfSection : DwarfSections) 1102 for (const auto &Reloc : DwarfSection.DwarfSect->Relocations) 1103 writeRelocation(Reloc, *DwarfSection.DwarfSect); 1104 } 1105 1106 void XCOFFObjectWriter::writeSymbolTable(const MCAsmLayout &Layout) { 1107 // Write C_FILE symbols. 1108 for (const std::pair<std::string, size_t> &F : FileNames) { 1109 // The n_name of a C_FILE symbol is the source file's name when no auxiliary 1110 // entries are present. 1111 StringRef FileName = F.first; 1112 1113 // For C_FILE symbols, the Source Language ID overlays the high-order byte 1114 // of the SymbolType field, and the CPU Version ID is defined as the 1115 // low-order byte. 1116 // AIX's system assembler determines the source language ID based on the 1117 // source file's name suffix, and the behavior here is consistent with it. 1118 uint8_t LangID; 1119 if (FileName.ends_with(".c")) 1120 LangID = XCOFF::TB_C; 1121 else if (FileName.ends_with_insensitive(".f") || 1122 FileName.ends_with_insensitive(".f77") || 1123 FileName.ends_with_insensitive(".f90") || 1124 FileName.ends_with_insensitive(".f95") || 1125 FileName.ends_with_insensitive(".f03") || 1126 FileName.ends_with_insensitive(".f08")) 1127 LangID = XCOFF::TB_Fortran; 1128 else 1129 LangID = XCOFF::TB_CPLUSPLUS; 1130 uint8_t CpuID; 1131 if (is64Bit()) 1132 CpuID = XCOFF::TCPU_PPC64; 1133 else 1134 CpuID = XCOFF::TCPU_COM; 1135 1136 writeSymbolEntry(FileName, /*Value=*/0, XCOFF::ReservedSectionNum::N_DEBUG, 1137 /*SymbolType=*/(LangID << 8) | CpuID, XCOFF::C_FILE, 1138 /*NumberOfAuxEntries=*/0); 1139 } 1140 1141 if (CInfoSymSection.Entry) 1142 writeSymbolEntry(CInfoSymSection.Entry->Name, CInfoSymSection.Entry->Offset, 1143 CInfoSymSection.Index, 1144 /*SymbolType=*/0, XCOFF::C_INFO, 1145 /*NumberOfAuxEntries=*/0); 1146 1147 for (const auto &Csect : UndefinedCsects) { 1148 writeSymbolEntryForControlSection(Csect, XCOFF::ReservedSectionNum::N_UNDEF, 1149 Csect.MCSec->getStorageClass()); 1150 } 1151 1152 for (const auto *Section : Sections) { 1153 if (Section->Index == SectionEntry::UninitializedIndex) 1154 // Nothing to write for this Section. 1155 continue; 1156 1157 for (const auto *Group : Section->Groups) { 1158 if (Group->empty()) 1159 continue; 1160 1161 const int16_t SectionIndex = Section->Index; 1162 for (const auto &Csect : *Group) { 1163 // Write out the control section first and then each symbol in it. 1164 writeSymbolEntryForControlSection(Csect, SectionIndex, 1165 Csect.MCSec->getStorageClass()); 1166 1167 for (const auto &Sym : Csect.Syms) 1168 writeSymbolEntryForCsectMemberLabel( 1169 Sym, Csect, SectionIndex, Layout.getSymbolOffset(*(Sym.MCSym))); 1170 } 1171 } 1172 } 1173 1174 for (const auto &DwarfSection : DwarfSections) 1175 writeSymbolEntryForDwarfSection(*DwarfSection.DwarfSect, 1176 DwarfSection.Index); 1177 } 1178 1179 void XCOFFObjectWriter::finalizeRelocationInfo(SectionEntry *Sec, 1180 uint64_t RelCount) { 1181 // Handles relocation field overflows in an XCOFF32 file. An XCOFF64 file 1182 // may not contain an overflow section header. 1183 if (!is64Bit() && (RelCount >= static_cast<uint32_t>(XCOFF::RelocOverflow))) { 1184 // Generate an overflow section header. 1185 SectionEntry SecEntry(".ovrflo", XCOFF::STYP_OVRFLO); 1186 1187 // This field specifies the file section number of the section header that 1188 // overflowed. 1189 SecEntry.RelocationCount = Sec->Index; 1190 1191 // This field specifies the number of relocation entries actually 1192 // required. 1193 SecEntry.Address = RelCount; 1194 SecEntry.Index = ++SectionCount; 1195 OverflowSections.push_back(std::move(SecEntry)); 1196 1197 // The field in the primary section header is always 65535 1198 // (XCOFF::RelocOverflow). 1199 Sec->RelocationCount = XCOFF::RelocOverflow; 1200 } else { 1201 Sec->RelocationCount = RelCount; 1202 } 1203 } 1204 1205 void XCOFFObjectWriter::calcOffsetToRelocations(SectionEntry *Sec, 1206 uint64_t &RawPointer) { 1207 if (!Sec->RelocationCount) 1208 return; 1209 1210 Sec->FileOffsetToRelocations = RawPointer; 1211 uint64_t RelocationSizeInSec = 0; 1212 if (!is64Bit() && 1213 Sec->RelocationCount == static_cast<uint32_t>(XCOFF::RelocOverflow)) { 1214 // Find its corresponding overflow section. 1215 for (auto &OverflowSec : OverflowSections) { 1216 if (OverflowSec.RelocationCount == static_cast<uint32_t>(Sec->Index)) { 1217 RelocationSizeInSec = 1218 OverflowSec.Address * XCOFF::RelocationSerializationSize32; 1219 1220 // This field must have the same values as in the corresponding 1221 // primary section header. 1222 OverflowSec.FileOffsetToRelocations = Sec->FileOffsetToRelocations; 1223 } 1224 } 1225 assert(RelocationSizeInSec && "Overflow section header doesn't exist."); 1226 } else { 1227 RelocationSizeInSec = Sec->RelocationCount * 1228 (is64Bit() ? XCOFF::RelocationSerializationSize64 1229 : XCOFF::RelocationSerializationSize32); 1230 } 1231 1232 RawPointer += RelocationSizeInSec; 1233 if (RawPointer > MaxRawDataSize) 1234 report_fatal_error("Relocation data overflowed this object file."); 1235 } 1236 1237 void XCOFFObjectWriter::finalizeSectionInfo() { 1238 for (auto *Section : Sections) { 1239 if (Section->Index == SectionEntry::UninitializedIndex) 1240 // Nothing to record for this Section. 1241 continue; 1242 1243 uint64_t RelCount = 0; 1244 for (const auto *Group : Section->Groups) { 1245 if (Group->empty()) 1246 continue; 1247 1248 for (auto &Csect : *Group) 1249 RelCount += Csect.Relocations.size(); 1250 } 1251 finalizeRelocationInfo(Section, RelCount); 1252 } 1253 1254 for (auto &DwarfSection : DwarfSections) 1255 finalizeRelocationInfo(&DwarfSection, 1256 DwarfSection.DwarfSect->Relocations.size()); 1257 1258 // Calculate the RawPointer value for all headers. 1259 uint64_t RawPointer = 1260 (is64Bit() ? (XCOFF::FileHeaderSize64 + 1261 SectionCount * XCOFF::SectionHeaderSize64) 1262 : (XCOFF::FileHeaderSize32 + 1263 SectionCount * XCOFF::SectionHeaderSize32)) + 1264 auxiliaryHeaderSize(); 1265 1266 // Calculate the file offset to the section data. 1267 for (auto *Sec : Sections) { 1268 if (Sec->Index == SectionEntry::UninitializedIndex || Sec->IsVirtual) 1269 continue; 1270 1271 RawPointer = Sec->advanceFileOffset(MaxRawDataSize, RawPointer); 1272 } 1273 1274 if (!DwarfSections.empty()) { 1275 RawPointer += PaddingsBeforeDwarf; 1276 for (auto &DwarfSection : DwarfSections) { 1277 RawPointer = DwarfSection.advanceFileOffset(MaxRawDataSize, RawPointer); 1278 } 1279 } 1280 1281 if (hasExceptionSection()) 1282 RawPointer = ExceptionSection.advanceFileOffset(MaxRawDataSize, RawPointer); 1283 1284 if (CInfoSymSection.Entry) 1285 RawPointer = CInfoSymSection.advanceFileOffset(MaxRawDataSize, RawPointer); 1286 1287 for (auto *Sec : Sections) { 1288 if (Sec->Index != SectionEntry::UninitializedIndex) 1289 calcOffsetToRelocations(Sec, RawPointer); 1290 } 1291 1292 for (auto &DwarfSec : DwarfSections) 1293 calcOffsetToRelocations(&DwarfSec, RawPointer); 1294 1295 // TODO Error check that the number of symbol table entries fits in 32-bits 1296 // signed ... 1297 if (SymbolTableEntryCount) 1298 SymbolTableOffset = RawPointer; 1299 } 1300 1301 void XCOFFObjectWriter::addExceptionEntry( 1302 const MCSymbol *Symbol, const MCSymbol *Trap, unsigned LanguageCode, 1303 unsigned ReasonCode, unsigned FunctionSize, bool hasDebug) { 1304 // If a module had debug info, debugging is enabled and XCOFF emits the 1305 // exception auxilliary entry. 1306 if (hasDebug) 1307 ExceptionSection.isDebugEnabled = true; 1308 auto Entry = ExceptionSection.ExceptionTable.find(Symbol->getName()); 1309 if (Entry != ExceptionSection.ExceptionTable.end()) { 1310 Entry->second.Entries.push_back( 1311 ExceptionTableEntry(Trap, LanguageCode, ReasonCode)); 1312 return; 1313 } 1314 ExceptionInfo NewEntry; 1315 NewEntry.FunctionSymbol = Symbol; 1316 NewEntry.FunctionSize = FunctionSize; 1317 NewEntry.Entries.push_back( 1318 ExceptionTableEntry(Trap, LanguageCode, ReasonCode)); 1319 ExceptionSection.ExceptionTable.insert( 1320 std::pair<const StringRef, ExceptionInfo>(Symbol->getName(), NewEntry)); 1321 } 1322 1323 unsigned XCOFFObjectWriter::getExceptionSectionSize() { 1324 unsigned EntryNum = 0; 1325 1326 for (auto it = ExceptionSection.ExceptionTable.begin(); 1327 it != ExceptionSection.ExceptionTable.end(); ++it) 1328 // The size() gets +1 to account for the initial entry containing the 1329 // symbol table index. 1330 EntryNum += it->second.Entries.size() + 1; 1331 1332 return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64 1333 : XCOFF::ExceptionSectionEntrySize32); 1334 } 1335 1336 unsigned XCOFFObjectWriter::getExceptionOffset(const MCSymbol *Symbol) { 1337 unsigned EntryNum = 0; 1338 for (auto it = ExceptionSection.ExceptionTable.begin(); 1339 it != ExceptionSection.ExceptionTable.end(); ++it) { 1340 if (Symbol == it->second.FunctionSymbol) 1341 break; 1342 EntryNum += it->second.Entries.size() + 1; 1343 } 1344 return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64 1345 : XCOFF::ExceptionSectionEntrySize32); 1346 } 1347 1348 void XCOFFObjectWriter::addCInfoSymEntry(StringRef Name, StringRef Metadata) { 1349 assert(!CInfoSymSection.Entry && "Multiple entries are not supported"); 1350 CInfoSymSection.addEntry( 1351 std::make_unique<CInfoSymInfo>(Name.str(), Metadata.str())); 1352 } 1353 1354 void XCOFFObjectWriter::assignAddressesAndIndices(const MCAsmLayout &Layout) { 1355 // The symbol table starts with all the C_FILE symbols. 1356 uint32_t SymbolTableIndex = FileNames.size(); 1357 1358 if (CInfoSymSection.Entry) 1359 SymbolTableIndex++; 1360 1361 // Calculate indices for undefined symbols. 1362 for (auto &Csect : UndefinedCsects) { 1363 Csect.Size = 0; 1364 Csect.Address = 0; 1365 Csect.SymbolTableIndex = SymbolTableIndex; 1366 SymbolIndexMap[Csect.MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex; 1367 // 1 main and 1 auxiliary symbol table entry for each contained symbol. 1368 SymbolTableIndex += 2; 1369 } 1370 1371 // The address corrresponds to the address of sections and symbols in the 1372 // object file. We place the shared address 0 immediately after the 1373 // section header table. 1374 uint64_t Address = 0; 1375 // Section indices are 1-based in XCOFF. 1376 int32_t SectionIndex = 1; 1377 bool HasTDataSection = false; 1378 1379 for (auto *Section : Sections) { 1380 const bool IsEmpty = 1381 llvm::all_of(Section->Groups, 1382 [](const CsectGroup *Group) { return Group->empty(); }); 1383 if (IsEmpty) 1384 continue; 1385 1386 if (SectionIndex > MaxSectionIndex) 1387 report_fatal_error("Section index overflow!"); 1388 Section->Index = SectionIndex++; 1389 SectionCount++; 1390 1391 bool SectionAddressSet = false; 1392 // Reset the starting address to 0 for TData section. 1393 if (Section->Flags == XCOFF::STYP_TDATA) { 1394 Address = 0; 1395 HasTDataSection = true; 1396 } 1397 // Reset the starting address to 0 for TBSS section if the object file does 1398 // not contain TData Section. 1399 if ((Section->Flags == XCOFF::STYP_TBSS) && !HasTDataSection) 1400 Address = 0; 1401 1402 for (auto *Group : Section->Groups) { 1403 if (Group->empty()) 1404 continue; 1405 1406 for (auto &Csect : *Group) { 1407 const MCSectionXCOFF *MCSec = Csect.MCSec; 1408 Csect.Address = alignTo(Address, MCSec->getAlign()); 1409 Csect.Size = Layout.getSectionAddressSize(MCSec); 1410 Address = Csect.Address + Csect.Size; 1411 Csect.SymbolTableIndex = SymbolTableIndex; 1412 SymbolIndexMap[MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex; 1413 // 1 main and 1 auxiliary symbol table entry for the csect. 1414 SymbolTableIndex += 2; 1415 1416 for (auto &Sym : Csect.Syms) { 1417 bool hasExceptEntry = false; 1418 auto Entry = 1419 ExceptionSection.ExceptionTable.find(Sym.MCSym->getName()); 1420 if (Entry != ExceptionSection.ExceptionTable.end()) { 1421 hasExceptEntry = true; 1422 for (auto &TrapEntry : Entry->second.Entries) { 1423 TrapEntry.TrapAddress = Layout.getSymbolOffset(*(Sym.MCSym)) + 1424 TrapEntry.Trap->getOffset(); 1425 } 1426 } 1427 Sym.SymbolTableIndex = SymbolTableIndex; 1428 SymbolIndexMap[Sym.MCSym] = Sym.SymbolTableIndex; 1429 // 1 main and 1 auxiliary symbol table entry for each contained 1430 // symbol. For symbols with exception section entries, a function 1431 // auxilliary entry is needed, and on 64-bit XCOFF with debugging 1432 // enabled, an additional exception auxilliary entry is needed. 1433 SymbolTableIndex += 2; 1434 if (hasExceptionSection() && hasExceptEntry) { 1435 if (is64Bit() && ExceptionSection.isDebugEnabled) 1436 SymbolTableIndex += 2; 1437 else 1438 SymbolTableIndex += 1; 1439 } 1440 } 1441 } 1442 1443 if (!SectionAddressSet) { 1444 Section->Address = Group->front().Address; 1445 SectionAddressSet = true; 1446 } 1447 } 1448 1449 // Make sure the address of the next section aligned to 1450 // DefaultSectionAlign. 1451 Address = alignTo(Address, DefaultSectionAlign); 1452 Section->Size = Address - Section->Address; 1453 } 1454 1455 // Start to generate DWARF sections. Sections other than DWARF section use 1456 // DefaultSectionAlign as the default alignment, while DWARF sections have 1457 // their own alignments. If these two alignments are not the same, we need 1458 // some paddings here and record the paddings bytes for FileOffsetToData 1459 // calculation. 1460 if (!DwarfSections.empty()) 1461 PaddingsBeforeDwarf = 1462 alignTo(Address, 1463 (*DwarfSections.begin()).DwarfSect->MCSec->getAlign()) - 1464 Address; 1465 1466 DwarfSectionEntry *LastDwarfSection = nullptr; 1467 for (auto &DwarfSection : DwarfSections) { 1468 assert((SectionIndex <= MaxSectionIndex) && "Section index overflow!"); 1469 1470 XCOFFSection &DwarfSect = *DwarfSection.DwarfSect; 1471 const MCSectionXCOFF *MCSec = DwarfSect.MCSec; 1472 1473 // Section index. 1474 DwarfSection.Index = SectionIndex++; 1475 SectionCount++; 1476 1477 // Symbol index. 1478 DwarfSect.SymbolTableIndex = SymbolTableIndex; 1479 SymbolIndexMap[MCSec->getQualNameSymbol()] = DwarfSect.SymbolTableIndex; 1480 // 1 main and 1 auxiliary symbol table entry for the csect. 1481 SymbolTableIndex += 2; 1482 1483 // Section address. Make it align to section alignment. 1484 // We use address 0 for DWARF sections' Physical and Virtual Addresses. 1485 // This address is used to tell where is the section in the final object. 1486 // See writeSectionForDwarfSectionEntry(). 1487 DwarfSection.Address = DwarfSect.Address = 1488 alignTo(Address, MCSec->getAlign()); 1489 1490 // Section size. 1491 // For DWARF section, we must use the real size which may be not aligned. 1492 DwarfSection.Size = DwarfSect.Size = Layout.getSectionAddressSize(MCSec); 1493 1494 Address = DwarfSection.Address + DwarfSection.Size; 1495 1496 if (LastDwarfSection) 1497 LastDwarfSection->MemorySize = 1498 DwarfSection.Address - LastDwarfSection->Address; 1499 LastDwarfSection = &DwarfSection; 1500 } 1501 if (LastDwarfSection) { 1502 // Make the final DWARF section address align to the default section 1503 // alignment for follow contents. 1504 Address = alignTo(LastDwarfSection->Address + LastDwarfSection->Size, 1505 DefaultSectionAlign); 1506 LastDwarfSection->MemorySize = Address - LastDwarfSection->Address; 1507 } 1508 if (hasExceptionSection()) { 1509 ExceptionSection.Index = SectionIndex++; 1510 SectionCount++; 1511 ExceptionSection.Address = 0; 1512 ExceptionSection.Size = getExceptionSectionSize(); 1513 Address += ExceptionSection.Size; 1514 Address = alignTo(Address, DefaultSectionAlign); 1515 } 1516 1517 if (CInfoSymSection.Entry) { 1518 CInfoSymSection.Index = SectionIndex++; 1519 SectionCount++; 1520 CInfoSymSection.Address = 0; 1521 Address += CInfoSymSection.Size; 1522 Address = alignTo(Address, DefaultSectionAlign); 1523 } 1524 1525 SymbolTableEntryCount = SymbolTableIndex; 1526 } 1527 1528 void XCOFFObjectWriter::writeSectionForControlSectionEntry( 1529 const MCAssembler &Asm, const MCAsmLayout &Layout, 1530 const CsectSectionEntry &CsectEntry, uint64_t &CurrentAddressLocation) { 1531 // Nothing to write for this Section. 1532 if (CsectEntry.Index == SectionEntry::UninitializedIndex) 1533 return; 1534 1535 // There could be a gap (without corresponding zero padding) between 1536 // sections. 1537 // There could be a gap (without corresponding zero padding) between 1538 // sections. 1539 assert(((CurrentAddressLocation <= CsectEntry.Address) || 1540 (CsectEntry.Flags == XCOFF::STYP_TDATA) || 1541 (CsectEntry.Flags == XCOFF::STYP_TBSS)) && 1542 "CurrentAddressLocation should be less than or equal to section " 1543 "address if the section is not TData or TBSS."); 1544 1545 CurrentAddressLocation = CsectEntry.Address; 1546 1547 // For virtual sections, nothing to write. But need to increase 1548 // CurrentAddressLocation for later sections like DWARF section has a correct 1549 // writing location. 1550 if (CsectEntry.IsVirtual) { 1551 CurrentAddressLocation += CsectEntry.Size; 1552 return; 1553 } 1554 1555 for (const auto &Group : CsectEntry.Groups) { 1556 for (const auto &Csect : *Group) { 1557 if (uint32_t PaddingSize = Csect.Address - CurrentAddressLocation) 1558 W.OS.write_zeros(PaddingSize); 1559 if (Csect.Size) 1560 Asm.writeSectionData(W.OS, Csect.MCSec, Layout); 1561 CurrentAddressLocation = Csect.Address + Csect.Size; 1562 } 1563 } 1564 1565 // The size of the tail padding in a section is the end virtual address of 1566 // the current section minus the end virtual address of the last csect 1567 // in that section. 1568 if (uint64_t PaddingSize = 1569 CsectEntry.Address + CsectEntry.Size - CurrentAddressLocation) { 1570 W.OS.write_zeros(PaddingSize); 1571 CurrentAddressLocation += PaddingSize; 1572 } 1573 } 1574 1575 void XCOFFObjectWriter::writeSectionForDwarfSectionEntry( 1576 const MCAssembler &Asm, const MCAsmLayout &Layout, 1577 const DwarfSectionEntry &DwarfEntry, uint64_t &CurrentAddressLocation) { 1578 // There could be a gap (without corresponding zero padding) between 1579 // sections. For example DWARF section alignment is bigger than 1580 // DefaultSectionAlign. 1581 assert(CurrentAddressLocation <= DwarfEntry.Address && 1582 "CurrentAddressLocation should be less than or equal to section " 1583 "address."); 1584 1585 if (uint64_t PaddingSize = DwarfEntry.Address - CurrentAddressLocation) 1586 W.OS.write_zeros(PaddingSize); 1587 1588 if (DwarfEntry.Size) 1589 Asm.writeSectionData(W.OS, DwarfEntry.DwarfSect->MCSec, Layout); 1590 1591 CurrentAddressLocation = DwarfEntry.Address + DwarfEntry.Size; 1592 1593 // DWARF section size is not aligned to DefaultSectionAlign. 1594 // Make sure CurrentAddressLocation is aligned to DefaultSectionAlign. 1595 uint32_t Mod = CurrentAddressLocation % DefaultSectionAlign; 1596 uint32_t TailPaddingSize = Mod ? DefaultSectionAlign - Mod : 0; 1597 if (TailPaddingSize) 1598 W.OS.write_zeros(TailPaddingSize); 1599 1600 CurrentAddressLocation += TailPaddingSize; 1601 } 1602 1603 void XCOFFObjectWriter::writeSectionForExceptionSectionEntry( 1604 const MCAssembler &Asm, const MCAsmLayout &Layout, 1605 ExceptionSectionEntry &ExceptionEntry, uint64_t &CurrentAddressLocation) { 1606 for (auto it = ExceptionEntry.ExceptionTable.begin(); 1607 it != ExceptionEntry.ExceptionTable.end(); it++) { 1608 // For every symbol that has exception entries, you must start the entries 1609 // with an initial symbol table index entry 1610 W.write<uint32_t>(SymbolIndexMap[it->second.FunctionSymbol]); 1611 if (is64Bit()) { 1612 // 4-byte padding on 64-bit. 1613 W.OS.write_zeros(4); 1614 } 1615 W.OS.write_zeros(2); 1616 for (auto &TrapEntry : it->second.Entries) { 1617 writeWord(TrapEntry.TrapAddress); 1618 W.write<uint8_t>(TrapEntry.Lang); 1619 W.write<uint8_t>(TrapEntry.Reason); 1620 } 1621 } 1622 1623 CurrentAddressLocation += getExceptionSectionSize(); 1624 } 1625 1626 void XCOFFObjectWriter::writeSectionForCInfoSymSectionEntry( 1627 const MCAssembler &Asm, const MCAsmLayout &Layout, 1628 CInfoSymSectionEntry &CInfoSymEntry, uint64_t &CurrentAddressLocation) { 1629 if (!CInfoSymSection.Entry) 1630 return; 1631 1632 constexpr int WordSize = sizeof(uint32_t); 1633 std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymEntry.Entry; 1634 const std::string &Metadata = CISI->Metadata; 1635 1636 // Emit the 4-byte length of the metadata. 1637 W.write<uint32_t>(Metadata.size()); 1638 1639 if (Metadata.size() == 0) 1640 return; 1641 1642 // Write out the payload one word at a time. 1643 size_t Index = 0; 1644 while (Index + WordSize <= Metadata.size()) { 1645 uint32_t NextWord = 1646 llvm::support::endian::read32be(Metadata.data() + Index); 1647 W.write<uint32_t>(NextWord); 1648 Index += WordSize; 1649 } 1650 1651 // If there is padding, we have at least one byte of payload left to emit. 1652 if (CISI->paddingSize()) { 1653 std::array<uint8_t, WordSize> LastWord = {0}; 1654 ::memcpy(LastWord.data(), Metadata.data() + Index, Metadata.size() - Index); 1655 W.write<uint32_t>(llvm::support::endian::read32be(LastWord.data())); 1656 } 1657 1658 CurrentAddressLocation += CISI->size(); 1659 } 1660 1661 // Takes the log base 2 of the alignment and shifts the result into the 5 most 1662 // significant bits of a byte, then or's in the csect type into the least 1663 // significant 3 bits. 1664 uint8_t getEncodedType(const MCSectionXCOFF *Sec) { 1665 unsigned Log2Align = Log2(Sec->getAlign()); 1666 // Result is a number in the range [0, 31] which fits in the 5 least 1667 // significant bits. Shift this value into the 5 most significant bits, and 1668 // bitwise-or in the csect type. 1669 uint8_t EncodedAlign = Log2Align << 3; 1670 return EncodedAlign | Sec->getCSectType(); 1671 } 1672 1673 } // end anonymous namespace 1674 1675 std::unique_ptr<MCObjectWriter> 1676 llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, 1677 raw_pwrite_stream &OS) { 1678 return std::make_unique<XCOFFObjectWriter>(std::move(MOTW), OS); 1679 } 1680