1 //===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements XCOFF object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/BinaryFormat/XCOFF.h" 14 #include "llvm/MC/MCAsmBackend.h" 15 #include "llvm/MC/MCAsmLayout.h" 16 #include "llvm/MC/MCAssembler.h" 17 #include "llvm/MC/MCFixup.h" 18 #include "llvm/MC/MCFixupKindInfo.h" 19 #include "llvm/MC/MCObjectWriter.h" 20 #include "llvm/MC/MCSectionXCOFF.h" 21 #include "llvm/MC/MCSymbolXCOFF.h" 22 #include "llvm/MC/MCValue.h" 23 #include "llvm/MC/MCXCOFFObjectWriter.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Support/Casting.h" 26 #include "llvm/Support/EndianStream.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 30 #include <deque> 31 #include <map> 32 33 using namespace llvm; 34 35 // An XCOFF object file has a limited set of predefined sections. The most 36 // important ones for us (right now) are: 37 // .text --> contains program code and read-only data. 38 // .data --> contains initialized data, function descriptors, and the TOC. 39 // .bss --> contains uninitialized data. 40 // Each of these sections is composed of 'Control Sections'. A Control Section 41 // is more commonly referred to as a csect. A csect is an indivisible unit of 42 // code or data, and acts as a container for symbols. A csect is mapped 43 // into a section based on its storage-mapping class, with the exception of 44 // XMC_RW which gets mapped to either .data or .bss based on whether it's 45 // explicitly initialized or not. 46 // 47 // We don't represent the sections in the MC layer as there is nothing 48 // interesting about them at at that level: they carry information that is 49 // only relevant to the ObjectWriter, so we materialize them in this class. 50 namespace { 51 52 constexpr unsigned DefaultSectionAlign = 4; 53 constexpr int16_t MaxSectionIndex = INT16_MAX; 54 55 // Packs the csect's alignment and type into a byte. 56 uint8_t getEncodedType(const MCSectionXCOFF *); 57 58 struct XCOFFRelocation { 59 uint32_t SymbolTableIndex; 60 uint32_t FixupOffsetInCsect; 61 uint8_t SignAndSize; 62 uint8_t Type; 63 }; 64 65 // Wrapper around an MCSymbolXCOFF. 66 struct Symbol { 67 const MCSymbolXCOFF *const MCSym; 68 uint32_t SymbolTableIndex; 69 70 XCOFF::VisibilityType getVisibilityType() const { 71 return MCSym->getVisibilityType(); 72 } 73 74 XCOFF::StorageClass getStorageClass() const { 75 return MCSym->getStorageClass(); 76 } 77 StringRef getSymbolTableName() const { return MCSym->getSymbolTableName(); } 78 Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {} 79 }; 80 81 // Wrapper for an MCSectionXCOFF. 82 // It can be a Csect or debug section or DWARF section and so on. 83 struct XCOFFSection { 84 const MCSectionXCOFF *const MCSec; 85 uint32_t SymbolTableIndex; 86 uint64_t Address; 87 uint64_t Size; 88 89 SmallVector<Symbol, 1> Syms; 90 SmallVector<XCOFFRelocation, 1> Relocations; 91 StringRef getSymbolTableName() const { return MCSec->getSymbolTableName(); } 92 XCOFF::VisibilityType getVisibilityType() const { 93 return MCSec->getVisibilityType(); 94 } 95 XCOFFSection(const MCSectionXCOFF *MCSec) 96 : MCSec(MCSec), SymbolTableIndex(-1), Address(-1), Size(0) {} 97 }; 98 99 // Type to be used for a container representing a set of csects with 100 // (approximately) the same storage mapping class. For example all the csects 101 // with a storage mapping class of `xmc_pr` will get placed into the same 102 // container. 103 using CsectGroup = std::deque<XCOFFSection>; 104 using CsectGroups = std::deque<CsectGroup *>; 105 106 // The basic section entry defination. This Section represents a section entry 107 // in XCOFF section header table. 108 struct SectionEntry { 109 char Name[XCOFF::NameSize]; 110 // The physical/virtual address of the section. For an object file these 111 // values are equivalent, except for in the overflow section header, where 112 // the physical address specifies the number of relocation entries and the 113 // virtual address specifies the number of line number entries. 114 // TODO: Divide Address into PhysicalAddress and VirtualAddress when line 115 // number entries are supported. 116 uint64_t Address; 117 uint64_t Size; 118 uint64_t FileOffsetToData; 119 uint64_t FileOffsetToRelocations; 120 uint32_t RelocationCount; 121 int32_t Flags; 122 123 int16_t Index; 124 125 // XCOFF has special section numbers for symbols: 126 // -2 Specifies N_DEBUG, a special symbolic debugging symbol. 127 // -1 Specifies N_ABS, an absolute symbol. The symbol has a value but is not 128 // relocatable. 129 // 0 Specifies N_UNDEF, an undefined external symbol. 130 // Therefore, we choose -3 (N_DEBUG - 1) to represent a section index that 131 // hasn't been initialized. 132 static constexpr int16_t UninitializedIndex = 133 XCOFF::ReservedSectionNum::N_DEBUG - 1; 134 135 SectionEntry(StringRef N, int32_t Flags) 136 : Name(), Address(0), Size(0), FileOffsetToData(0), 137 FileOffsetToRelocations(0), RelocationCount(0), Flags(Flags), 138 Index(UninitializedIndex) { 139 assert(N.size() <= XCOFF::NameSize && "section name too long"); 140 memcpy(Name, N.data(), N.size()); 141 } 142 143 virtual void reset() { 144 Address = 0; 145 Size = 0; 146 FileOffsetToData = 0; 147 FileOffsetToRelocations = 0; 148 RelocationCount = 0; 149 Index = UninitializedIndex; 150 } 151 152 virtual ~SectionEntry() = default; 153 }; 154 155 // Represents the data related to a section excluding the csects that make up 156 // the raw data of the section. The csects are stored separately as not all 157 // sections contain csects, and some sections contain csects which are better 158 // stored separately, e.g. the .data section containing read-write, descriptor, 159 // TOCBase and TOC-entry csects. 160 struct CsectSectionEntry : public SectionEntry { 161 // Virtual sections do not need storage allocated in the object file. 162 const bool IsVirtual; 163 164 // This is a section containing csect groups. 165 CsectGroups Groups; 166 167 CsectSectionEntry(StringRef N, XCOFF::SectionTypeFlags Flags, bool IsVirtual, 168 CsectGroups Groups) 169 : SectionEntry(N, Flags), IsVirtual(IsVirtual), Groups(Groups) { 170 assert(N.size() <= XCOFF::NameSize && "section name too long"); 171 memcpy(Name, N.data(), N.size()); 172 } 173 174 void reset() override { 175 SectionEntry::reset(); 176 // Clear any csects we have stored. 177 for (auto *Group : Groups) 178 Group->clear(); 179 } 180 181 virtual ~CsectSectionEntry() = default; 182 }; 183 184 struct DwarfSectionEntry : public SectionEntry { 185 // For DWARF section entry. 186 std::unique_ptr<XCOFFSection> DwarfSect; 187 188 // For DWARF section, we must use real size in the section header. MemorySize 189 // is for the size the DWARF section occupies including paddings. 190 uint32_t MemorySize; 191 192 DwarfSectionEntry(StringRef N, int32_t Flags, 193 std::unique_ptr<XCOFFSection> Sect) 194 : SectionEntry(N, Flags | XCOFF::STYP_DWARF), DwarfSect(std::move(Sect)), 195 MemorySize(0) { 196 assert(DwarfSect->MCSec->isDwarfSect() && 197 "This should be a DWARF section!"); 198 assert(N.size() <= XCOFF::NameSize && "section name too long"); 199 memcpy(Name, N.data(), N.size()); 200 } 201 202 DwarfSectionEntry(DwarfSectionEntry &&s) = default; 203 204 virtual ~DwarfSectionEntry() = default; 205 }; 206 207 struct ExceptionTableEntry { 208 const MCSymbol *Trap; 209 uint64_t TrapAddress; 210 unsigned Lang; 211 unsigned Reason; 212 213 ExceptionTableEntry(const MCSymbol *Trap, unsigned Lang, unsigned Reason) 214 : Trap(Trap), Lang(Lang), Reason(Reason) {} 215 }; 216 217 struct ExceptionInfo { 218 const MCSymbol *FunctionSymbol; 219 unsigned FunctionSize; 220 std::vector<ExceptionTableEntry> Entries; 221 }; 222 223 struct ExceptionSectionEntry : public SectionEntry { 224 std::map<const StringRef, ExceptionInfo> ExceptionTable; 225 bool isDebugEnabled = false; 226 227 ExceptionSectionEntry(StringRef N, int32_t Flags) 228 : SectionEntry(N, Flags | XCOFF::STYP_EXCEPT) { 229 assert(N.size() <= XCOFF::NameSize && "Section too long."); 230 memcpy(Name, N.data(), N.size()); 231 } 232 233 virtual ~ExceptionSectionEntry() = default; 234 }; 235 236 class XCOFFObjectWriter : public MCObjectWriter { 237 238 uint32_t SymbolTableEntryCount = 0; 239 uint64_t SymbolTableOffset = 0; 240 uint16_t SectionCount = 0; 241 uint32_t PaddingsBeforeDwarf = 0; 242 std::vector<std::pair<std::string, size_t>> FileNames; 243 bool HasVisibility = false; 244 245 support::endian::Writer W; 246 std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter; 247 StringTableBuilder Strings; 248 249 const uint64_t MaxRawDataSize = 250 TargetObjectWriter->is64Bit() ? UINT64_MAX : UINT32_MAX; 251 252 // Maps the MCSection representation to its corresponding XCOFFSection 253 // wrapper. Needed for finding the XCOFFSection to insert an MCSymbol into 254 // from its containing MCSectionXCOFF. 255 DenseMap<const MCSectionXCOFF *, XCOFFSection *> SectionMap; 256 257 // Maps the MCSymbol representation to its corrresponding symbol table index. 258 // Needed for relocation. 259 DenseMap<const MCSymbol *, uint32_t> SymbolIndexMap; 260 261 // CsectGroups. These store the csects which make up different parts of 262 // the sections. Should have one for each set of csects that get mapped into 263 // the same section and get handled in a 'similar' way. 264 CsectGroup UndefinedCsects; 265 CsectGroup ProgramCodeCsects; 266 CsectGroup ReadOnlyCsects; 267 CsectGroup DataCsects; 268 CsectGroup FuncDSCsects; 269 CsectGroup TOCCsects; 270 CsectGroup BSSCsects; 271 CsectGroup TDataCsects; 272 CsectGroup TBSSCsects; 273 274 // The Predefined sections. 275 CsectSectionEntry Text; 276 CsectSectionEntry Data; 277 CsectSectionEntry BSS; 278 CsectSectionEntry TData; 279 CsectSectionEntry TBSS; 280 281 // All the XCOFF sections, in the order they will appear in the section header 282 // table. 283 std::array<CsectSectionEntry *const, 5> Sections{ 284 {&Text, &Data, &BSS, &TData, &TBSS}}; 285 286 std::vector<DwarfSectionEntry> DwarfSections; 287 std::vector<SectionEntry> OverflowSections; 288 289 ExceptionSectionEntry ExceptionSection; 290 291 CsectGroup &getCsectGroup(const MCSectionXCOFF *MCSec); 292 293 void reset() override; 294 295 void executePostLayoutBinding(MCAssembler &, const MCAsmLayout &) override; 296 297 void recordRelocation(MCAssembler &, const MCAsmLayout &, const MCFragment *, 298 const MCFixup &, MCValue, uint64_t &) override; 299 300 uint64_t writeObject(MCAssembler &, const MCAsmLayout &) override; 301 302 bool is64Bit() const { return TargetObjectWriter->is64Bit(); } 303 bool nameShouldBeInStringTable(const StringRef &); 304 void writeSymbolName(const StringRef &); 305 306 void writeSymbolEntryForCsectMemberLabel(const Symbol &SymbolRef, 307 const XCOFFSection &CSectionRef, 308 int16_t SectionIndex, 309 uint64_t SymbolOffset); 310 void writeSymbolEntryForControlSection(const XCOFFSection &CSectionRef, 311 int16_t SectionIndex, 312 XCOFF::StorageClass StorageClass); 313 void writeSymbolEntryForDwarfSection(const XCOFFSection &DwarfSectionRef, 314 int16_t SectionIndex); 315 void writeFileHeader(); 316 void writeAuxFileHeader(); 317 void writeSectionHeader(const SectionEntry *Sec); 318 void writeSectionHeaderTable(); 319 void writeSections(const MCAssembler &Asm, const MCAsmLayout &Layout); 320 void writeSectionForControlSectionEntry(const MCAssembler &Asm, 321 const MCAsmLayout &Layout, 322 const CsectSectionEntry &CsectEntry, 323 uint64_t &CurrentAddressLocation); 324 void writeSectionForDwarfSectionEntry(const MCAssembler &Asm, 325 const MCAsmLayout &Layout, 326 const DwarfSectionEntry &DwarfEntry, 327 uint64_t &CurrentAddressLocation); 328 void writeSectionForExceptionSectionEntry( 329 const MCAssembler &Asm, const MCAsmLayout &Layout, 330 ExceptionSectionEntry &ExceptionEntry, uint64_t &CurrentAddressLocation); 331 void writeSymbolTable(const MCAsmLayout &Layout); 332 void writeSymbolAuxDwarfEntry(uint64_t LengthOfSectionPortion, 333 uint64_t NumberOfRelocEnt = 0); 334 void writeSymbolAuxCsectEntry(uint64_t SectionOrLength, 335 uint8_t SymbolAlignmentAndType, 336 uint8_t StorageMappingClass); 337 void writeSymbolAuxFunctionEntry(uint32_t EntryOffset, uint32_t FunctionSize, 338 uint64_t LineNumberPointer, 339 uint32_t EndIndex); 340 void writeSymbolAuxExceptionEntry(uint64_t EntryOffset, uint32_t FunctionSize, 341 uint32_t EndIndex); 342 void writeSymbolEntry(StringRef SymbolName, uint64_t Value, 343 int16_t SectionNumber, uint16_t SymbolType, 344 uint8_t StorageClass, uint8_t NumberOfAuxEntries = 1); 345 void writeRelocations(); 346 void writeRelocation(XCOFFRelocation Reloc, const XCOFFSection &Section); 347 348 // Called after all the csects and symbols have been processed by 349 // `executePostLayoutBinding`, this function handles building up the majority 350 // of the structures in the object file representation. Namely: 351 // *) Calculates physical/virtual addresses, raw-pointer offsets, and section 352 // sizes. 353 // *) Assigns symbol table indices. 354 // *) Builds up the section header table by adding any non-empty sections to 355 // `Sections`. 356 void assignAddressesAndIndices(const MCAsmLayout &); 357 // Called after relocations are recorded. 358 void finalizeSectionInfo(); 359 void finalizeRelocationInfo(SectionEntry *Sec, uint64_t RelCount); 360 void calcOffsetToRelocations(SectionEntry *Sec, uint64_t &RawPointer); 361 362 void addExceptionEntry(const MCSymbol *Symbol, const MCSymbol *Trap, 363 unsigned LanguageCode, unsigned ReasonCode, 364 unsigned FunctionSize, bool hasDebug) override; 365 bool hasExceptionSection() { 366 return !ExceptionSection.ExceptionTable.empty(); 367 } 368 unsigned getExceptionSectionSize(); 369 unsigned getExceptionOffset(const MCSymbol *Symbol); 370 371 size_t auxiliaryHeaderSize() const { 372 // 64-bit object files have no auxiliary header. 373 return HasVisibility && !is64Bit() ? XCOFF::AuxFileHeaderSizeShort : 0; 374 } 375 376 public: 377 XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, 378 raw_pwrite_stream &OS); 379 380 void writeWord(uint64_t Word) { 381 is64Bit() ? W.write<uint64_t>(Word) : W.write<uint32_t>(Word); 382 } 383 }; 384 385 XCOFFObjectWriter::XCOFFObjectWriter( 386 std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS) 387 : W(OS, support::big), TargetObjectWriter(std::move(MOTW)), 388 Strings(StringTableBuilder::XCOFF), 389 Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false, 390 CsectGroups{&ProgramCodeCsects, &ReadOnlyCsects}), 391 Data(".data", XCOFF::STYP_DATA, /* IsVirtual */ false, 392 CsectGroups{&DataCsects, &FuncDSCsects, &TOCCsects}), 393 BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true, 394 CsectGroups{&BSSCsects}), 395 TData(".tdata", XCOFF::STYP_TDATA, /* IsVirtual */ false, 396 CsectGroups{&TDataCsects}), 397 TBSS(".tbss", XCOFF::STYP_TBSS, /* IsVirtual */ true, 398 CsectGroups{&TBSSCsects}), 399 ExceptionSection(".except", XCOFF::STYP_EXCEPT) {} 400 401 void XCOFFObjectWriter::reset() { 402 // Clear the mappings we created. 403 SymbolIndexMap.clear(); 404 SectionMap.clear(); 405 406 UndefinedCsects.clear(); 407 // Reset any sections we have written to, and empty the section header table. 408 for (auto *Sec : Sections) 409 Sec->reset(); 410 for (auto &DwarfSec : DwarfSections) 411 DwarfSec.reset(); 412 for (auto &OverflowSec : OverflowSections) 413 OverflowSec.reset(); 414 ExceptionSection.reset(); 415 416 // Reset states in XCOFFObjectWriter. 417 SymbolTableEntryCount = 0; 418 SymbolTableOffset = 0; 419 SectionCount = 0; 420 PaddingsBeforeDwarf = 0; 421 Strings.clear(); 422 423 MCObjectWriter::reset(); 424 } 425 426 CsectGroup &XCOFFObjectWriter::getCsectGroup(const MCSectionXCOFF *MCSec) { 427 switch (MCSec->getMappingClass()) { 428 case XCOFF::XMC_PR: 429 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 430 "Only an initialized csect can contain program code."); 431 return ProgramCodeCsects; 432 case XCOFF::XMC_RO: 433 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 434 "Only an initialized csect can contain read only data."); 435 return ReadOnlyCsects; 436 case XCOFF::XMC_RW: 437 if (XCOFF::XTY_CM == MCSec->getCSectType()) 438 return BSSCsects; 439 440 if (XCOFF::XTY_SD == MCSec->getCSectType()) 441 return DataCsects; 442 443 report_fatal_error("Unhandled mapping of read-write csect to section."); 444 case XCOFF::XMC_DS: 445 return FuncDSCsects; 446 case XCOFF::XMC_BS: 447 assert(XCOFF::XTY_CM == MCSec->getCSectType() && 448 "Mapping invalid csect. CSECT with bss storage class must be " 449 "common type."); 450 return BSSCsects; 451 case XCOFF::XMC_TL: 452 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 453 "Mapping invalid csect. CSECT with tdata storage class must be " 454 "an initialized csect."); 455 return TDataCsects; 456 case XCOFF::XMC_UL: 457 assert(XCOFF::XTY_CM == MCSec->getCSectType() && 458 "Mapping invalid csect. CSECT with tbss storage class must be " 459 "an uninitialized csect."); 460 return TBSSCsects; 461 case XCOFF::XMC_TC0: 462 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 463 "Only an initialized csect can contain TOC-base."); 464 assert(TOCCsects.empty() && 465 "We should have only one TOC-base, and it should be the first csect " 466 "in this CsectGroup."); 467 return TOCCsects; 468 case XCOFF::XMC_TC: 469 case XCOFF::XMC_TE: 470 case XCOFF::XMC_TD: 471 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 472 "Only an initialized csect can contain TC entry."); 473 assert(!TOCCsects.empty() && 474 "We should at least have a TOC-base in this CsectGroup."); 475 return TOCCsects; 476 default: 477 report_fatal_error("Unhandled mapping of csect to section."); 478 } 479 } 480 481 static MCSectionXCOFF *getContainingCsect(const MCSymbolXCOFF *XSym) { 482 if (XSym->isDefined()) 483 return cast<MCSectionXCOFF>(XSym->getFragment()->getParent()); 484 return XSym->getRepresentedCsect(); 485 } 486 487 void XCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 488 const MCAsmLayout &Layout) { 489 for (const auto &S : Asm) { 490 const auto *MCSec = cast<const MCSectionXCOFF>(&S); 491 assert(SectionMap.find(MCSec) == SectionMap.end() && 492 "Cannot add a section twice."); 493 494 // If the name does not fit in the storage provided in the symbol table 495 // entry, add it to the string table. 496 if (nameShouldBeInStringTable(MCSec->getSymbolTableName())) 497 Strings.add(MCSec->getSymbolTableName()); 498 if (MCSec->isCsect()) { 499 // A new control section. Its CsectSectionEntry should already be staticly 500 // generated as Text/Data/BSS/TDATA/TBSS. Add this section to the group of 501 // the CsectSectionEntry. 502 assert(XCOFF::XTY_ER != MCSec->getCSectType() && 503 "An undefined csect should not get registered."); 504 CsectGroup &Group = getCsectGroup(MCSec); 505 Group.emplace_back(MCSec); 506 SectionMap[MCSec] = &Group.back(); 507 } else if (MCSec->isDwarfSect()) { 508 // A new DwarfSectionEntry. 509 std::unique_ptr<XCOFFSection> DwarfSec = 510 std::make_unique<XCOFFSection>(MCSec); 511 SectionMap[MCSec] = DwarfSec.get(); 512 513 DwarfSectionEntry SecEntry(MCSec->getName(), 514 *MCSec->getDwarfSubtypeFlags(), 515 std::move(DwarfSec)); 516 DwarfSections.push_back(std::move(SecEntry)); 517 } else 518 llvm_unreachable("unsupport section type!"); 519 } 520 521 for (const MCSymbol &S : Asm.symbols()) { 522 // Nothing to do for temporary symbols. 523 if (S.isTemporary()) 524 continue; 525 526 const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S); 527 const MCSectionXCOFF *ContainingCsect = getContainingCsect(XSym); 528 529 if (XSym->getVisibilityType() != XCOFF::SYM_V_UNSPECIFIED) 530 HasVisibility = true; 531 532 if (ContainingCsect->getCSectType() == XCOFF::XTY_ER) { 533 // Handle undefined symbol. 534 UndefinedCsects.emplace_back(ContainingCsect); 535 SectionMap[ContainingCsect] = &UndefinedCsects.back(); 536 if (nameShouldBeInStringTable(ContainingCsect->getSymbolTableName())) 537 Strings.add(ContainingCsect->getSymbolTableName()); 538 continue; 539 } 540 541 // If the symbol is the csect itself, we don't need to put the symbol 542 // into csect's Syms. 543 if (XSym == ContainingCsect->getQualNameSymbol()) 544 continue; 545 546 // Only put a label into the symbol table when it is an external label. 547 if (!XSym->isExternal()) 548 continue; 549 550 assert(SectionMap.find(ContainingCsect) != SectionMap.end() && 551 "Expected containing csect to exist in map"); 552 XCOFFSection *Csect = SectionMap[ContainingCsect]; 553 // Lookup the containing csect and add the symbol to it. 554 assert(Csect->MCSec->isCsect() && "only csect is supported now!"); 555 Csect->Syms.emplace_back(XSym); 556 557 // If the name does not fit in the storage provided in the symbol table 558 // entry, add it to the string table. 559 if (nameShouldBeInStringTable(XSym->getSymbolTableName())) 560 Strings.add(XSym->getSymbolTableName()); 561 } 562 563 FileNames = Asm.getFileNames(); 564 // Emit ".file" as the source file name when there is no file name. 565 if (FileNames.empty()) 566 FileNames.emplace_back(".file", 0); 567 for (const std::pair<std::string, size_t> &F : FileNames) { 568 if (nameShouldBeInStringTable(F.first)) 569 Strings.add(F.first); 570 } 571 572 Strings.finalize(); 573 assignAddressesAndIndices(Layout); 574 } 575 576 void XCOFFObjectWriter::recordRelocation(MCAssembler &Asm, 577 const MCAsmLayout &Layout, 578 const MCFragment *Fragment, 579 const MCFixup &Fixup, MCValue Target, 580 uint64_t &FixedValue) { 581 auto getIndex = [this](const MCSymbol *Sym, 582 const MCSectionXCOFF *ContainingCsect) { 583 // If we could not find the symbol directly in SymbolIndexMap, this symbol 584 // could either be a temporary symbol or an undefined symbol. In this case, 585 // we would need to have the relocation reference its csect instead. 586 return SymbolIndexMap.find(Sym) != SymbolIndexMap.end() 587 ? SymbolIndexMap[Sym] 588 : SymbolIndexMap[ContainingCsect->getQualNameSymbol()]; 589 }; 590 591 auto getVirtualAddress = 592 [this, &Layout](const MCSymbol *Sym, 593 const MCSectionXCOFF *ContainingSect) -> uint64_t { 594 // A DWARF section. 595 if (ContainingSect->isDwarfSect()) 596 return Layout.getSymbolOffset(*Sym); 597 598 // A csect. 599 if (!Sym->isDefined()) 600 return SectionMap[ContainingSect]->Address; 601 602 // A label. 603 assert(Sym->isDefined() && "not a valid object that has address!"); 604 return SectionMap[ContainingSect]->Address + Layout.getSymbolOffset(*Sym); 605 }; 606 607 const MCSymbol *const SymA = &Target.getSymA()->getSymbol(); 608 609 MCAsmBackend &Backend = Asm.getBackend(); 610 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags & 611 MCFixupKindInfo::FKF_IsPCRel; 612 613 uint8_t Type; 614 uint8_t SignAndSize; 615 std::tie(Type, SignAndSize) = 616 TargetObjectWriter->getRelocTypeAndSignSize(Target, Fixup, IsPCRel); 617 618 const MCSectionXCOFF *SymASec = getContainingCsect(cast<MCSymbolXCOFF>(SymA)); 619 assert(SectionMap.find(SymASec) != SectionMap.end() && 620 "Expected containing csect to exist in map."); 621 622 const uint32_t Index = getIndex(SymA, SymASec); 623 if (Type == XCOFF::RelocationType::R_POS || 624 Type == XCOFF::RelocationType::R_TLS) 625 // The FixedValue should be symbol's virtual address in this object file 626 // plus any constant value that we might get. 627 FixedValue = getVirtualAddress(SymA, SymASec) + Target.getConstant(); 628 else if (Type == XCOFF::RelocationType::R_TLSM) 629 // The FixedValue should always be zero since the region handle is only 630 // known at load time. 631 FixedValue = 0; 632 else if (Type == XCOFF::RelocationType::R_TOC || 633 Type == XCOFF::RelocationType::R_TOCL) { 634 // For non toc-data external symbols, R_TOC type relocation will relocate to 635 // data symbols that have XCOFF::XTY_SD type csect. For toc-data external 636 // symbols, R_TOC type relocation will relocate to data symbols that have 637 // XCOFF_ER type csect. For XCOFF_ER kind symbols, there will be no TOC 638 // entry for them, so the FixedValue should always be 0. 639 if (SymASec->getCSectType() == XCOFF::XTY_ER) { 640 FixedValue = 0; 641 } else { 642 // The FixedValue should be the TOC entry offset from the TOC-base plus 643 // any constant offset value. 644 const int64_t TOCEntryOffset = SectionMap[SymASec]->Address - 645 TOCCsects.front().Address + 646 Target.getConstant(); 647 if (Type == XCOFF::RelocationType::R_TOC && !isInt<16>(TOCEntryOffset)) 648 report_fatal_error("TOCEntryOffset overflows in small code model mode"); 649 650 FixedValue = TOCEntryOffset; 651 } 652 } else if (Type == XCOFF::RelocationType::R_RBR) { 653 MCSectionXCOFF *ParentSec = cast<MCSectionXCOFF>(Fragment->getParent()); 654 assert((SymASec->getMappingClass() == XCOFF::XMC_PR && 655 ParentSec->getMappingClass() == XCOFF::XMC_PR) && 656 "Only XMC_PR csect may have the R_RBR relocation."); 657 658 // The address of the branch instruction should be the sum of section 659 // address, fragment offset and Fixup offset. 660 uint64_t BRInstrAddress = SectionMap[ParentSec]->Address + 661 Layout.getFragmentOffset(Fragment) + 662 Fixup.getOffset(); 663 // The FixedValue should be the difference between SymA csect address and BR 664 // instr address plus any constant value. 665 FixedValue = 666 SectionMap[SymASec]->Address - BRInstrAddress + Target.getConstant(); 667 } 668 669 assert((Fixup.getOffset() <= 670 MaxRawDataSize - Layout.getFragmentOffset(Fragment)) && 671 "Fragment offset + fixup offset is overflowed."); 672 uint32_t FixupOffsetInCsect = 673 Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 674 675 XCOFFRelocation Reloc = {Index, FixupOffsetInCsect, SignAndSize, Type}; 676 MCSectionXCOFF *RelocationSec = cast<MCSectionXCOFF>(Fragment->getParent()); 677 assert(SectionMap.find(RelocationSec) != SectionMap.end() && 678 "Expected containing csect to exist in map."); 679 SectionMap[RelocationSec]->Relocations.push_back(Reloc); 680 681 if (!Target.getSymB()) 682 return; 683 684 const MCSymbol *const SymB = &Target.getSymB()->getSymbol(); 685 if (SymA == SymB) 686 report_fatal_error("relocation for opposite term is not yet supported"); 687 688 const MCSectionXCOFF *SymBSec = getContainingCsect(cast<MCSymbolXCOFF>(SymB)); 689 assert(SectionMap.find(SymBSec) != SectionMap.end() && 690 "Expected containing csect to exist in map."); 691 if (SymASec == SymBSec) 692 report_fatal_error( 693 "relocation for paired relocatable term is not yet supported"); 694 695 assert(Type == XCOFF::RelocationType::R_POS && 696 "SymA must be R_POS here if it's not opposite term or paired " 697 "relocatable term."); 698 const uint32_t IndexB = getIndex(SymB, SymBSec); 699 // SymB must be R_NEG here, given the general form of Target(MCValue) is 700 // "SymbolA - SymbolB + imm64". 701 const uint8_t TypeB = XCOFF::RelocationType::R_NEG; 702 XCOFFRelocation RelocB = {IndexB, FixupOffsetInCsect, SignAndSize, TypeB}; 703 SectionMap[RelocationSec]->Relocations.push_back(RelocB); 704 // We already folded "SymbolA + imm64" above when Type is R_POS for SymbolA, 705 // now we just need to fold "- SymbolB" here. 706 FixedValue -= getVirtualAddress(SymB, SymBSec); 707 } 708 709 void XCOFFObjectWriter::writeSections(const MCAssembler &Asm, 710 const MCAsmLayout &Layout) { 711 uint64_t CurrentAddressLocation = 0; 712 for (const auto *Section : Sections) 713 writeSectionForControlSectionEntry(Asm, Layout, *Section, 714 CurrentAddressLocation); 715 for (const auto &DwarfSection : DwarfSections) 716 writeSectionForDwarfSectionEntry(Asm, Layout, DwarfSection, 717 CurrentAddressLocation); 718 writeSectionForExceptionSectionEntry(Asm, Layout, ExceptionSection, 719 CurrentAddressLocation); 720 } 721 722 uint64_t XCOFFObjectWriter::writeObject(MCAssembler &Asm, 723 const MCAsmLayout &Layout) { 724 // We always emit a timestamp of 0 for reproducibility, so ensure incremental 725 // linking is not enabled, in case, like with Windows COFF, such a timestamp 726 // is incompatible with incremental linking of XCOFF. 727 if (Asm.isIncrementalLinkerCompatible()) 728 report_fatal_error("Incremental linking not supported for XCOFF."); 729 730 finalizeSectionInfo(); 731 uint64_t StartOffset = W.OS.tell(); 732 733 writeFileHeader(); 734 writeAuxFileHeader(); 735 writeSectionHeaderTable(); 736 writeSections(Asm, Layout); 737 writeRelocations(); 738 writeSymbolTable(Layout); 739 // Write the string table. 740 Strings.write(W.OS); 741 742 return W.OS.tell() - StartOffset; 743 } 744 745 bool XCOFFObjectWriter::nameShouldBeInStringTable(const StringRef &SymbolName) { 746 return SymbolName.size() > XCOFF::NameSize || is64Bit(); 747 } 748 749 void XCOFFObjectWriter::writeSymbolName(const StringRef &SymbolName) { 750 // Magic, Offset or SymbolName. 751 if (nameShouldBeInStringTable(SymbolName)) { 752 W.write<int32_t>(0); 753 W.write<uint32_t>(Strings.getOffset(SymbolName)); 754 } else { 755 char Name[XCOFF::NameSize + 1]; 756 std::strncpy(Name, SymbolName.data(), XCOFF::NameSize); 757 ArrayRef<char> NameRef(Name, XCOFF::NameSize); 758 W.write(NameRef); 759 } 760 } 761 762 void XCOFFObjectWriter::writeSymbolEntry(StringRef SymbolName, uint64_t Value, 763 int16_t SectionNumber, 764 uint16_t SymbolType, 765 uint8_t StorageClass, 766 uint8_t NumberOfAuxEntries) { 767 if (is64Bit()) { 768 W.write<uint64_t>(Value); 769 W.write<uint32_t>(Strings.getOffset(SymbolName)); 770 } else { 771 writeSymbolName(SymbolName); 772 W.write<uint32_t>(Value); 773 } 774 W.write<int16_t>(SectionNumber); 775 W.write<uint16_t>(SymbolType); 776 W.write<uint8_t>(StorageClass); 777 W.write<uint8_t>(NumberOfAuxEntries); 778 } 779 780 void XCOFFObjectWriter::writeSymbolAuxCsectEntry(uint64_t SectionOrLength, 781 uint8_t SymbolAlignmentAndType, 782 uint8_t StorageMappingClass) { 783 W.write<uint32_t>(is64Bit() ? Lo_32(SectionOrLength) : SectionOrLength); 784 W.write<uint32_t>(0); // ParameterHashIndex 785 W.write<uint16_t>(0); // TypeChkSectNum 786 W.write<uint8_t>(SymbolAlignmentAndType); 787 W.write<uint8_t>(StorageMappingClass); 788 if (is64Bit()) { 789 W.write<uint32_t>(Hi_32(SectionOrLength)); 790 W.OS.write_zeros(1); // Reserved 791 W.write<uint8_t>(XCOFF::AUX_CSECT); 792 } else { 793 W.write<uint32_t>(0); // StabInfoIndex 794 W.write<uint16_t>(0); // StabSectNum 795 } 796 } 797 798 void XCOFFObjectWriter::writeSymbolAuxDwarfEntry( 799 uint64_t LengthOfSectionPortion, uint64_t NumberOfRelocEnt) { 800 writeWord(LengthOfSectionPortion); 801 if (!is64Bit()) 802 W.OS.write_zeros(4); // Reserved 803 writeWord(NumberOfRelocEnt); 804 if (is64Bit()) { 805 W.OS.write_zeros(1); // Reserved 806 W.write<uint8_t>(XCOFF::AUX_SECT); 807 } else { 808 W.OS.write_zeros(6); // Reserved 809 } 810 } 811 812 void XCOFFObjectWriter::writeSymbolEntryForCsectMemberLabel( 813 const Symbol &SymbolRef, const XCOFFSection &CSectionRef, 814 int16_t SectionIndex, uint64_t SymbolOffset) { 815 assert(SymbolOffset <= MaxRawDataSize - CSectionRef.Address && 816 "Symbol address overflowed."); 817 818 auto Entry = ExceptionSection.ExceptionTable.find(SymbolRef.MCSym->getName()); 819 if (Entry != ExceptionSection.ExceptionTable.end()) { 820 writeSymbolEntry(SymbolRef.getSymbolTableName(), 821 CSectionRef.Address + SymbolOffset, SectionIndex, 822 // In the old version of the 32-bit XCOFF interpretation, 823 // symbols may require bit 10 (0x0020) to be set if the 824 // symbol is a function, otherwise the bit should be 0. 825 is64Bit() ? SymbolRef.getVisibilityType() 826 : SymbolRef.getVisibilityType() | 0x0020, 827 SymbolRef.getStorageClass(), 828 (is64Bit() && ExceptionSection.isDebugEnabled) ? 3 : 2); 829 if (is64Bit() && ExceptionSection.isDebugEnabled) { 830 // On 64 bit with debugging enabled, we have a csect, exception, and 831 // function auxilliary entries, so we must increment symbol index by 4. 832 writeSymbolAuxExceptionEntry( 833 ExceptionSection.FileOffsetToData + 834 getExceptionOffset(Entry->second.FunctionSymbol), 835 Entry->second.FunctionSize, 836 SymbolIndexMap[Entry->second.FunctionSymbol] + 4); 837 } 838 // For exception section entries, csect and function auxilliary entries 839 // must exist. On 64-bit there is also an exception auxilliary entry. 840 writeSymbolAuxFunctionEntry( 841 ExceptionSection.FileOffsetToData + 842 getExceptionOffset(Entry->second.FunctionSymbol), 843 Entry->second.FunctionSize, 0, 844 (is64Bit() && ExceptionSection.isDebugEnabled) 845 ? SymbolIndexMap[Entry->second.FunctionSymbol] + 4 846 : SymbolIndexMap[Entry->second.FunctionSymbol] + 3); 847 } else { 848 writeSymbolEntry(SymbolRef.getSymbolTableName(), 849 CSectionRef.Address + SymbolOffset, SectionIndex, 850 SymbolRef.getVisibilityType(), 851 SymbolRef.getStorageClass()); 852 } 853 writeSymbolAuxCsectEntry(CSectionRef.SymbolTableIndex, XCOFF::XTY_LD, 854 CSectionRef.MCSec->getMappingClass()); 855 } 856 857 void XCOFFObjectWriter::writeSymbolEntryForDwarfSection( 858 const XCOFFSection &DwarfSectionRef, int16_t SectionIndex) { 859 assert(DwarfSectionRef.MCSec->isDwarfSect() && "Not a DWARF section!"); 860 861 writeSymbolEntry(DwarfSectionRef.getSymbolTableName(), /*Value=*/0, 862 SectionIndex, /*SymbolType=*/0, XCOFF::C_DWARF); 863 864 writeSymbolAuxDwarfEntry(DwarfSectionRef.Size); 865 } 866 867 void XCOFFObjectWriter::writeSymbolEntryForControlSection( 868 const XCOFFSection &CSectionRef, int16_t SectionIndex, 869 XCOFF::StorageClass StorageClass) { 870 writeSymbolEntry(CSectionRef.getSymbolTableName(), CSectionRef.Address, 871 SectionIndex, CSectionRef.getVisibilityType(), StorageClass); 872 873 writeSymbolAuxCsectEntry(CSectionRef.Size, getEncodedType(CSectionRef.MCSec), 874 CSectionRef.MCSec->getMappingClass()); 875 } 876 877 void XCOFFObjectWriter::writeSymbolAuxFunctionEntry(uint32_t EntryOffset, 878 uint32_t FunctionSize, 879 uint64_t LineNumberPointer, 880 uint32_t EndIndex) { 881 if (is64Bit()) 882 writeWord(LineNumberPointer); 883 else 884 W.write<uint32_t>(EntryOffset); 885 W.write<uint32_t>(FunctionSize); 886 if (!is64Bit()) 887 writeWord(LineNumberPointer); 888 W.write<uint32_t>(EndIndex); 889 if (is64Bit()) { 890 W.OS.write_zeros(1); 891 W.write<uint8_t>(XCOFF::AUX_FCN); 892 } else { 893 W.OS.write_zeros(2); 894 } 895 } 896 897 void XCOFFObjectWriter::writeSymbolAuxExceptionEntry(uint64_t EntryOffset, 898 uint32_t FunctionSize, 899 uint32_t EndIndex) { 900 assert(is64Bit() && "Exception auxilliary entries are 64-bit only."); 901 W.write<uint64_t>(EntryOffset); 902 W.write<uint32_t>(FunctionSize); 903 W.write<uint32_t>(EndIndex); 904 W.OS.write_zeros(1); // Pad (unused) 905 W.write<uint8_t>(XCOFF::AUX_EXCEPT); 906 } 907 908 void XCOFFObjectWriter::writeFileHeader() { 909 W.write<uint16_t>(is64Bit() ? XCOFF::XCOFF64 : XCOFF::XCOFF32); 910 W.write<uint16_t>(SectionCount); 911 W.write<int32_t>(0); // TimeStamp 912 writeWord(SymbolTableOffset); 913 if (is64Bit()) { 914 W.write<uint16_t>(auxiliaryHeaderSize()); 915 W.write<uint16_t>(0); // Flags 916 W.write<int32_t>(SymbolTableEntryCount); 917 } else { 918 W.write<int32_t>(SymbolTableEntryCount); 919 W.write<uint16_t>(auxiliaryHeaderSize()); 920 W.write<uint16_t>(0); // Flags 921 } 922 } 923 924 void XCOFFObjectWriter::writeAuxFileHeader() { 925 if (!auxiliaryHeaderSize()) 926 return; 927 W.write<uint16_t>(0); // Magic 928 W.write<uint16_t>( 929 XCOFF::NEW_XCOFF_INTERPRET); // Version. The new interpretation of the 930 // n_type field in the symbol table entry is 931 // used in XCOFF32. 932 W.write<uint32_t>(Sections[0]->Size); // TextSize 933 W.write<uint32_t>(Sections[1]->Size); // InitDataSize 934 W.write<uint32_t>(Sections[2]->Size); // BssDataSize 935 W.write<uint32_t>(0); // EntryPointAddr 936 W.write<uint32_t>(Sections[0]->Address); // TextStartAddr 937 W.write<uint32_t>(Sections[1]->Address); // DataStartAddr 938 } 939 940 void XCOFFObjectWriter::writeSectionHeader(const SectionEntry *Sec) { 941 bool IsDwarf = (Sec->Flags & XCOFF::STYP_DWARF) != 0; 942 bool IsOvrflo = (Sec->Flags & XCOFF::STYP_OVRFLO) != 0; 943 // Nothing to write for this Section. 944 if (Sec->Index == SectionEntry::UninitializedIndex) 945 return; 946 947 // Write Name. 948 ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize); 949 W.write(NameRef); 950 951 // Write the Physical Address and Virtual Address. 952 // We use 0 for DWARF sections' Physical and Virtual Addresses. 953 writeWord(IsDwarf ? 0 : Sec->Address); 954 // Since line number is not supported, we set it to 0 for overflow sections. 955 writeWord((IsDwarf || IsOvrflo) ? 0 : Sec->Address); 956 957 writeWord(Sec->Size); 958 writeWord(Sec->FileOffsetToData); 959 writeWord(Sec->FileOffsetToRelocations); 960 writeWord(0); // FileOffsetToLineNumberInfo. Not supported yet. 961 962 if (is64Bit()) { 963 W.write<uint32_t>(Sec->RelocationCount); 964 W.write<uint32_t>(0); // NumberOfLineNumbers. Not supported yet. 965 W.write<int32_t>(Sec->Flags); 966 W.OS.write_zeros(4); 967 } else { 968 // For the overflow section header, s_nreloc provides a reference to the 969 // primary section header and s_nlnno must have the same value. 970 // For common section headers, if either of s_nreloc or s_nlnno are set to 971 // 65535, the other one must also be set to 65535. 972 W.write<uint16_t>(Sec->RelocationCount); 973 W.write<uint16_t>((IsOvrflo || Sec->RelocationCount == XCOFF::RelocOverflow) 974 ? Sec->RelocationCount 975 : 0); // NumberOfLineNumbers. Not supported yet. 976 W.write<int32_t>(Sec->Flags); 977 } 978 } 979 980 void XCOFFObjectWriter::writeSectionHeaderTable() { 981 for (const auto *CsectSec : Sections) 982 writeSectionHeader(CsectSec); 983 for (const auto &DwarfSec : DwarfSections) 984 writeSectionHeader(&DwarfSec); 985 for (const auto &OverflowSec : OverflowSections) 986 writeSectionHeader(&OverflowSec); 987 if (hasExceptionSection()) 988 writeSectionHeader(&ExceptionSection); 989 } 990 991 void XCOFFObjectWriter::writeRelocation(XCOFFRelocation Reloc, 992 const XCOFFSection &Section) { 993 if (Section.MCSec->isCsect()) 994 writeWord(Section.Address + Reloc.FixupOffsetInCsect); 995 else { 996 // DWARF sections' address is set to 0. 997 assert(Section.MCSec->isDwarfSect() && "unsupport section type!"); 998 writeWord(Reloc.FixupOffsetInCsect); 999 } 1000 W.write<uint32_t>(Reloc.SymbolTableIndex); 1001 W.write<uint8_t>(Reloc.SignAndSize); 1002 W.write<uint8_t>(Reloc.Type); 1003 } 1004 1005 void XCOFFObjectWriter::writeRelocations() { 1006 for (const auto *Section : Sections) { 1007 if (Section->Index == SectionEntry::UninitializedIndex) 1008 // Nothing to write for this Section. 1009 continue; 1010 1011 for (const auto *Group : Section->Groups) { 1012 if (Group->empty()) 1013 continue; 1014 1015 for (const auto &Csect : *Group) { 1016 for (const auto Reloc : Csect.Relocations) 1017 writeRelocation(Reloc, Csect); 1018 } 1019 } 1020 } 1021 1022 for (const auto &DwarfSection : DwarfSections) 1023 for (const auto &Reloc : DwarfSection.DwarfSect->Relocations) 1024 writeRelocation(Reloc, *DwarfSection.DwarfSect); 1025 } 1026 1027 void XCOFFObjectWriter::writeSymbolTable(const MCAsmLayout &Layout) { 1028 // Write C_FILE symbols. 1029 // The n_name of a C_FILE symbol is the source file's name when no auxiliary 1030 // entries are present. 1031 for (const std::pair<std::string, size_t> &F : FileNames) { 1032 writeSymbolEntry(F.first, /*Value=*/0, XCOFF::ReservedSectionNum::N_DEBUG, 1033 /*SymbolType=*/0, XCOFF::C_FILE, 1034 /*NumberOfAuxEntries=*/0); 1035 } 1036 1037 for (const auto &Csect : UndefinedCsects) { 1038 writeSymbolEntryForControlSection(Csect, XCOFF::ReservedSectionNum::N_UNDEF, 1039 Csect.MCSec->getStorageClass()); 1040 } 1041 1042 for (const auto *Section : Sections) { 1043 if (Section->Index == SectionEntry::UninitializedIndex) 1044 // Nothing to write for this Section. 1045 continue; 1046 1047 for (const auto *Group : Section->Groups) { 1048 if (Group->empty()) 1049 continue; 1050 1051 const int16_t SectionIndex = Section->Index; 1052 for (const auto &Csect : *Group) { 1053 // Write out the control section first and then each symbol in it. 1054 writeSymbolEntryForControlSection(Csect, SectionIndex, 1055 Csect.MCSec->getStorageClass()); 1056 1057 for (const auto &Sym : Csect.Syms) 1058 writeSymbolEntryForCsectMemberLabel( 1059 Sym, Csect, SectionIndex, Layout.getSymbolOffset(*(Sym.MCSym))); 1060 } 1061 } 1062 } 1063 1064 for (const auto &DwarfSection : DwarfSections) 1065 writeSymbolEntryForDwarfSection(*DwarfSection.DwarfSect, 1066 DwarfSection.Index); 1067 } 1068 1069 void XCOFFObjectWriter::finalizeRelocationInfo(SectionEntry *Sec, 1070 uint64_t RelCount) { 1071 // Handles relocation field overflows in an XCOFF32 file. An XCOFF64 file 1072 // may not contain an overflow section header. 1073 if (!is64Bit() && (RelCount >= static_cast<uint32_t>(XCOFF::RelocOverflow))) { 1074 // Generate an overflow section header. 1075 SectionEntry SecEntry(".ovrflo", XCOFF::STYP_OVRFLO); 1076 1077 // This field specifies the file section number of the section header that 1078 // overflowed. 1079 SecEntry.RelocationCount = Sec->Index; 1080 1081 // This field specifies the number of relocation entries actually 1082 // required. 1083 SecEntry.Address = RelCount; 1084 SecEntry.Index = ++SectionCount; 1085 OverflowSections.push_back(std::move(SecEntry)); 1086 1087 // The field in the primary section header is always 65535 1088 // (XCOFF::RelocOverflow). 1089 Sec->RelocationCount = XCOFF::RelocOverflow; 1090 } else { 1091 Sec->RelocationCount = RelCount; 1092 } 1093 } 1094 1095 void XCOFFObjectWriter::calcOffsetToRelocations(SectionEntry *Sec, 1096 uint64_t &RawPointer) { 1097 if (!Sec->RelocationCount) 1098 return; 1099 1100 Sec->FileOffsetToRelocations = RawPointer; 1101 uint64_t RelocationSizeInSec = 0; 1102 if (!is64Bit() && 1103 Sec->RelocationCount == static_cast<uint32_t>(XCOFF::RelocOverflow)) { 1104 // Find its corresponding overflow section. 1105 for (auto &OverflowSec : OverflowSections) { 1106 if (OverflowSec.RelocationCount == static_cast<uint32_t>(Sec->Index)) { 1107 RelocationSizeInSec = 1108 OverflowSec.Address * XCOFF::RelocationSerializationSize32; 1109 1110 // This field must have the same values as in the corresponding 1111 // primary section header. 1112 OverflowSec.FileOffsetToRelocations = Sec->FileOffsetToRelocations; 1113 } 1114 } 1115 assert(RelocationSizeInSec && "Overflow section header doesn't exist."); 1116 } else { 1117 RelocationSizeInSec = Sec->RelocationCount * 1118 (is64Bit() ? XCOFF::RelocationSerializationSize64 1119 : XCOFF::RelocationSerializationSize32); 1120 } 1121 1122 RawPointer += RelocationSizeInSec; 1123 if (RawPointer > MaxRawDataSize) 1124 report_fatal_error("Relocation data overflowed this object file."); 1125 } 1126 1127 void XCOFFObjectWriter::finalizeSectionInfo() { 1128 for (auto *Section : Sections) { 1129 if (Section->Index == SectionEntry::UninitializedIndex) 1130 // Nothing to record for this Section. 1131 continue; 1132 1133 uint64_t RelCount = 0; 1134 for (const auto *Group : Section->Groups) { 1135 if (Group->empty()) 1136 continue; 1137 1138 for (auto &Csect : *Group) 1139 RelCount += Csect.Relocations.size(); 1140 } 1141 finalizeRelocationInfo(Section, RelCount); 1142 } 1143 1144 for (auto &DwarfSection : DwarfSections) 1145 finalizeRelocationInfo(&DwarfSection, 1146 DwarfSection.DwarfSect->Relocations.size()); 1147 1148 // Calculate the RawPointer value for all headers. 1149 uint64_t RawPointer = 1150 (is64Bit() ? (XCOFF::FileHeaderSize64 + 1151 SectionCount * XCOFF::SectionHeaderSize64) 1152 : (XCOFF::FileHeaderSize32 + 1153 SectionCount * XCOFF::SectionHeaderSize32)) + 1154 auxiliaryHeaderSize(); 1155 1156 // Calculate the file offset to the section data. 1157 for (auto *Sec : Sections) { 1158 if (Sec->Index == SectionEntry::UninitializedIndex || Sec->IsVirtual) 1159 continue; 1160 1161 Sec->FileOffsetToData = RawPointer; 1162 RawPointer += Sec->Size; 1163 if (RawPointer > MaxRawDataSize) 1164 report_fatal_error("Section raw data overflowed this object file."); 1165 } 1166 1167 if (!DwarfSections.empty()) { 1168 RawPointer += PaddingsBeforeDwarf; 1169 for (auto &DwarfSection : DwarfSections) { 1170 DwarfSection.FileOffsetToData = RawPointer; 1171 RawPointer += DwarfSection.MemorySize; 1172 if (RawPointer > MaxRawDataSize) 1173 report_fatal_error("Section raw data overflowed this object file."); 1174 } 1175 } 1176 1177 if (hasExceptionSection()) { 1178 ExceptionSection.FileOffsetToData = RawPointer; 1179 RawPointer += ExceptionSection.Size; 1180 1181 assert(RawPointer <= MaxRawDataSize && 1182 "Section raw data overflowed this object file."); 1183 } 1184 1185 for (auto *Sec : Sections) { 1186 if (Sec->Index != SectionEntry::UninitializedIndex) 1187 calcOffsetToRelocations(Sec, RawPointer); 1188 } 1189 1190 for (auto &DwarfSec : DwarfSections) 1191 calcOffsetToRelocations(&DwarfSec, RawPointer); 1192 1193 // TODO Error check that the number of symbol table entries fits in 32-bits 1194 // signed ... 1195 if (SymbolTableEntryCount) 1196 SymbolTableOffset = RawPointer; 1197 } 1198 1199 void XCOFFObjectWriter::addExceptionEntry( 1200 const MCSymbol *Symbol, const MCSymbol *Trap, unsigned LanguageCode, 1201 unsigned ReasonCode, unsigned FunctionSize, bool hasDebug) { 1202 // If a module had debug info, debugging is enabled and XCOFF emits the 1203 // exception auxilliary entry. 1204 if (hasDebug) 1205 ExceptionSection.isDebugEnabled = true; 1206 auto Entry = ExceptionSection.ExceptionTable.find(Symbol->getName()); 1207 if (Entry != ExceptionSection.ExceptionTable.end()) { 1208 Entry->second.Entries.push_back( 1209 ExceptionTableEntry(Trap, LanguageCode, ReasonCode)); 1210 return; 1211 } 1212 ExceptionInfo NewEntry; 1213 NewEntry.FunctionSymbol = Symbol; 1214 NewEntry.FunctionSize = FunctionSize; 1215 NewEntry.Entries.push_back( 1216 ExceptionTableEntry(Trap, LanguageCode, ReasonCode)); 1217 ExceptionSection.ExceptionTable.insert( 1218 std::pair<const StringRef, ExceptionInfo>(Symbol->getName(), NewEntry)); 1219 } 1220 1221 unsigned XCOFFObjectWriter::getExceptionSectionSize() { 1222 unsigned EntryNum = 0; 1223 1224 for (auto it = ExceptionSection.ExceptionTable.begin(); 1225 it != ExceptionSection.ExceptionTable.end(); ++it) 1226 // The size() gets +1 to account for the initial entry containing the 1227 // symbol table index. 1228 EntryNum += it->second.Entries.size() + 1; 1229 1230 return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64 1231 : XCOFF::ExceptionSectionEntrySize32); 1232 } 1233 1234 unsigned XCOFFObjectWriter::getExceptionOffset(const MCSymbol *Symbol) { 1235 unsigned EntryNum = 0; 1236 for (auto it = ExceptionSection.ExceptionTable.begin(); 1237 it != ExceptionSection.ExceptionTable.end(); ++it) { 1238 if (Symbol == it->second.FunctionSymbol) 1239 break; 1240 EntryNum += it->second.Entries.size() + 1; 1241 } 1242 return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64 1243 : XCOFF::ExceptionSectionEntrySize32); 1244 } 1245 1246 void XCOFFObjectWriter::assignAddressesAndIndices(const MCAsmLayout &Layout) { 1247 // The symbol table starts with all the C_FILE symbols. 1248 uint32_t SymbolTableIndex = FileNames.size(); 1249 1250 // Calculate indices for undefined symbols. 1251 for (auto &Csect : UndefinedCsects) { 1252 Csect.Size = 0; 1253 Csect.Address = 0; 1254 Csect.SymbolTableIndex = SymbolTableIndex; 1255 SymbolIndexMap[Csect.MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex; 1256 // 1 main and 1 auxiliary symbol table entry for each contained symbol. 1257 SymbolTableIndex += 2; 1258 } 1259 1260 // The address corrresponds to the address of sections and symbols in the 1261 // object file. We place the shared address 0 immediately after the 1262 // section header table. 1263 uint64_t Address = 0; 1264 // Section indices are 1-based in XCOFF. 1265 int32_t SectionIndex = 1; 1266 bool HasTDataSection = false; 1267 1268 for (auto *Section : Sections) { 1269 const bool IsEmpty = 1270 llvm::all_of(Section->Groups, 1271 [](const CsectGroup *Group) { return Group->empty(); }); 1272 if (IsEmpty) 1273 continue; 1274 1275 if (SectionIndex > MaxSectionIndex) 1276 report_fatal_error("Section index overflow!"); 1277 Section->Index = SectionIndex++; 1278 SectionCount++; 1279 1280 bool SectionAddressSet = false; 1281 // Reset the starting address to 0 for TData section. 1282 if (Section->Flags == XCOFF::STYP_TDATA) { 1283 Address = 0; 1284 HasTDataSection = true; 1285 } 1286 // Reset the starting address to 0 for TBSS section if the object file does 1287 // not contain TData Section. 1288 if ((Section->Flags == XCOFF::STYP_TBSS) && !HasTDataSection) 1289 Address = 0; 1290 1291 for (auto *Group : Section->Groups) { 1292 if (Group->empty()) 1293 continue; 1294 1295 for (auto &Csect : *Group) { 1296 const MCSectionXCOFF *MCSec = Csect.MCSec; 1297 Csect.Address = alignTo(Address, MCSec->getAlign()); 1298 Csect.Size = Layout.getSectionAddressSize(MCSec); 1299 Address = Csect.Address + Csect.Size; 1300 Csect.SymbolTableIndex = SymbolTableIndex; 1301 SymbolIndexMap[MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex; 1302 // 1 main and 1 auxiliary symbol table entry for the csect. 1303 SymbolTableIndex += 2; 1304 1305 for (auto &Sym : Csect.Syms) { 1306 bool hasExceptEntry = false; 1307 auto Entry = 1308 ExceptionSection.ExceptionTable.find(Sym.MCSym->getName()); 1309 if (Entry != ExceptionSection.ExceptionTable.end()) { 1310 hasExceptEntry = true; 1311 for (auto &TrapEntry : Entry->second.Entries) { 1312 TrapEntry.TrapAddress = Layout.getSymbolOffset(*(Sym.MCSym)) + 1313 TrapEntry.Trap->getOffset(); 1314 } 1315 } 1316 Sym.SymbolTableIndex = SymbolTableIndex; 1317 SymbolIndexMap[Sym.MCSym] = Sym.SymbolTableIndex; 1318 // 1 main and 1 auxiliary symbol table entry for each contained 1319 // symbol. For symbols with exception section entries, a function 1320 // auxilliary entry is needed, and on 64-bit XCOFF with debugging 1321 // enabled, an additional exception auxilliary entry is needed. 1322 SymbolTableIndex += 2; 1323 if (hasExceptionSection() && hasExceptEntry) { 1324 if (is64Bit() && ExceptionSection.isDebugEnabled) 1325 SymbolTableIndex += 2; 1326 else 1327 SymbolTableIndex += 1; 1328 } 1329 } 1330 } 1331 1332 if (!SectionAddressSet) { 1333 Section->Address = Group->front().Address; 1334 SectionAddressSet = true; 1335 } 1336 } 1337 1338 // Make sure the address of the next section aligned to 1339 // DefaultSectionAlign. 1340 Address = alignTo(Address, DefaultSectionAlign); 1341 Section->Size = Address - Section->Address; 1342 } 1343 1344 // Start to generate DWARF sections. Sections other than DWARF section use 1345 // DefaultSectionAlign as the default alignment, while DWARF sections have 1346 // their own alignments. If these two alignments are not the same, we need 1347 // some paddings here and record the paddings bytes for FileOffsetToData 1348 // calculation. 1349 if (!DwarfSections.empty()) 1350 PaddingsBeforeDwarf = 1351 alignTo(Address, 1352 (*DwarfSections.begin()).DwarfSect->MCSec->getAlign()) - 1353 Address; 1354 1355 DwarfSectionEntry *LastDwarfSection = nullptr; 1356 for (auto &DwarfSection : DwarfSections) { 1357 assert((SectionIndex <= MaxSectionIndex) && "Section index overflow!"); 1358 1359 XCOFFSection &DwarfSect = *DwarfSection.DwarfSect; 1360 const MCSectionXCOFF *MCSec = DwarfSect.MCSec; 1361 1362 // Section index. 1363 DwarfSection.Index = SectionIndex++; 1364 SectionCount++; 1365 1366 // Symbol index. 1367 DwarfSect.SymbolTableIndex = SymbolTableIndex; 1368 SymbolIndexMap[MCSec->getQualNameSymbol()] = DwarfSect.SymbolTableIndex; 1369 // 1 main and 1 auxiliary symbol table entry for the csect. 1370 SymbolTableIndex += 2; 1371 1372 // Section address. Make it align to section alignment. 1373 // We use address 0 for DWARF sections' Physical and Virtual Addresses. 1374 // This address is used to tell where is the section in the final object. 1375 // See writeSectionForDwarfSectionEntry(). 1376 DwarfSection.Address = DwarfSect.Address = 1377 alignTo(Address, MCSec->getAlign()); 1378 1379 // Section size. 1380 // For DWARF section, we must use the real size which may be not aligned. 1381 DwarfSection.Size = DwarfSect.Size = Layout.getSectionAddressSize(MCSec); 1382 1383 Address = DwarfSection.Address + DwarfSection.Size; 1384 1385 if (LastDwarfSection) 1386 LastDwarfSection->MemorySize = 1387 DwarfSection.Address - LastDwarfSection->Address; 1388 LastDwarfSection = &DwarfSection; 1389 } 1390 if (LastDwarfSection) { 1391 // Make the final DWARF section address align to the default section 1392 // alignment for follow contents. 1393 Address = alignTo(LastDwarfSection->Address + LastDwarfSection->Size, 1394 DefaultSectionAlign); 1395 LastDwarfSection->MemorySize = Address - LastDwarfSection->Address; 1396 } 1397 if (hasExceptionSection()) { 1398 ExceptionSection.Index = SectionIndex++; 1399 SectionCount++; 1400 ExceptionSection.Address = 0; 1401 ExceptionSection.Size = getExceptionSectionSize(); 1402 Address += ExceptionSection.Size; 1403 Address = alignTo(Address, DefaultSectionAlign); 1404 } 1405 1406 SymbolTableEntryCount = SymbolTableIndex; 1407 } 1408 1409 void XCOFFObjectWriter::writeSectionForControlSectionEntry( 1410 const MCAssembler &Asm, const MCAsmLayout &Layout, 1411 const CsectSectionEntry &CsectEntry, uint64_t &CurrentAddressLocation) { 1412 // Nothing to write for this Section. 1413 if (CsectEntry.Index == SectionEntry::UninitializedIndex) 1414 return; 1415 1416 // There could be a gap (without corresponding zero padding) between 1417 // sections. 1418 // There could be a gap (without corresponding zero padding) between 1419 // sections. 1420 assert(((CurrentAddressLocation <= CsectEntry.Address) || 1421 (CsectEntry.Flags == XCOFF::STYP_TDATA) || 1422 (CsectEntry.Flags == XCOFF::STYP_TBSS)) && 1423 "CurrentAddressLocation should be less than or equal to section " 1424 "address if the section is not TData or TBSS."); 1425 1426 CurrentAddressLocation = CsectEntry.Address; 1427 1428 // For virtual sections, nothing to write. But need to increase 1429 // CurrentAddressLocation for later sections like DWARF section has a correct 1430 // writing location. 1431 if (CsectEntry.IsVirtual) { 1432 CurrentAddressLocation += CsectEntry.Size; 1433 return; 1434 } 1435 1436 for (const auto &Group : CsectEntry.Groups) { 1437 for (const auto &Csect : *Group) { 1438 if (uint32_t PaddingSize = Csect.Address - CurrentAddressLocation) 1439 W.OS.write_zeros(PaddingSize); 1440 if (Csect.Size) 1441 Asm.writeSectionData(W.OS, Csect.MCSec, Layout); 1442 CurrentAddressLocation = Csect.Address + Csect.Size; 1443 } 1444 } 1445 1446 // The size of the tail padding in a section is the end virtual address of 1447 // the current section minus the the end virtual address of the last csect 1448 // in that section. 1449 if (uint64_t PaddingSize = 1450 CsectEntry.Address + CsectEntry.Size - CurrentAddressLocation) { 1451 W.OS.write_zeros(PaddingSize); 1452 CurrentAddressLocation += PaddingSize; 1453 } 1454 } 1455 1456 void XCOFFObjectWriter::writeSectionForDwarfSectionEntry( 1457 const MCAssembler &Asm, const MCAsmLayout &Layout, 1458 const DwarfSectionEntry &DwarfEntry, uint64_t &CurrentAddressLocation) { 1459 // There could be a gap (without corresponding zero padding) between 1460 // sections. For example DWARF section alignment is bigger than 1461 // DefaultSectionAlign. 1462 assert(CurrentAddressLocation <= DwarfEntry.Address && 1463 "CurrentAddressLocation should be less than or equal to section " 1464 "address."); 1465 1466 if (uint64_t PaddingSize = DwarfEntry.Address - CurrentAddressLocation) 1467 W.OS.write_zeros(PaddingSize); 1468 1469 if (DwarfEntry.Size) 1470 Asm.writeSectionData(W.OS, DwarfEntry.DwarfSect->MCSec, Layout); 1471 1472 CurrentAddressLocation = DwarfEntry.Address + DwarfEntry.Size; 1473 1474 // DWARF section size is not aligned to DefaultSectionAlign. 1475 // Make sure CurrentAddressLocation is aligned to DefaultSectionAlign. 1476 uint32_t Mod = CurrentAddressLocation % DefaultSectionAlign; 1477 uint32_t TailPaddingSize = Mod ? DefaultSectionAlign - Mod : 0; 1478 if (TailPaddingSize) 1479 W.OS.write_zeros(TailPaddingSize); 1480 1481 CurrentAddressLocation += TailPaddingSize; 1482 } 1483 1484 void XCOFFObjectWriter::writeSectionForExceptionSectionEntry( 1485 const MCAssembler &Asm, const MCAsmLayout &Layout, 1486 ExceptionSectionEntry &ExceptionEntry, uint64_t &CurrentAddressLocation) { 1487 for (auto it = ExceptionEntry.ExceptionTable.begin(); 1488 it != ExceptionEntry.ExceptionTable.end(); it++) { 1489 // For every symbol that has exception entries, you must start the entries 1490 // with an initial symbol table index entry 1491 W.write<uint32_t>(SymbolIndexMap[it->second.FunctionSymbol]); 1492 if (is64Bit()) { 1493 // 4-byte padding on 64-bit. 1494 W.OS.write_zeros(4); 1495 } 1496 W.OS.write_zeros(2); 1497 for (auto &TrapEntry : it->second.Entries) { 1498 writeWord(TrapEntry.TrapAddress); 1499 W.write<uint8_t>(TrapEntry.Lang); 1500 W.write<uint8_t>(TrapEntry.Reason); 1501 } 1502 } 1503 1504 CurrentAddressLocation += getExceptionSectionSize(); 1505 } 1506 1507 // Takes the log base 2 of the alignment and shifts the result into the 5 most 1508 // significant bits of a byte, then or's in the csect type into the least 1509 // significant 3 bits. 1510 uint8_t getEncodedType(const MCSectionXCOFF *Sec) { 1511 unsigned Log2Align = Log2(Sec->getAlign()); 1512 // Result is a number in the range [0, 31] which fits in the 5 least 1513 // significant bits. Shift this value into the 5 most significant bits, and 1514 // bitwise-or in the csect type. 1515 uint8_t EncodedAlign = Log2Align << 3; 1516 return EncodedAlign | Sec->getCSectType(); 1517 } 1518 1519 } // end anonymous namespace 1520 1521 std::unique_ptr<MCObjectWriter> 1522 llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, 1523 raw_pwrite_stream &OS) { 1524 return std::make_unique<XCOFFObjectWriter>(std::move(MOTW), OS); 1525 } 1526