1 //===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements XCOFF object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/BinaryFormat/XCOFF.h" 14 #include "llvm/MC/MCAsmBackend.h" 15 #include "llvm/MC/MCAsmLayout.h" 16 #include "llvm/MC/MCAssembler.h" 17 #include "llvm/MC/MCFixup.h" 18 #include "llvm/MC/MCFixupKindInfo.h" 19 #include "llvm/MC/MCObjectWriter.h" 20 #include "llvm/MC/MCSectionXCOFF.h" 21 #include "llvm/MC/MCSymbolXCOFF.h" 22 #include "llvm/MC/MCValue.h" 23 #include "llvm/MC/MCXCOFFObjectWriter.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Support/Casting.h" 26 #include "llvm/Support/EndianStream.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 30 #include <deque> 31 #include <map> 32 33 using namespace llvm; 34 35 // An XCOFF object file has a limited set of predefined sections. The most 36 // important ones for us (right now) are: 37 // .text --> contains program code and read-only data. 38 // .data --> contains initialized data, function descriptors, and the TOC. 39 // .bss --> contains uninitialized data. 40 // Each of these sections is composed of 'Control Sections'. A Control Section 41 // is more commonly referred to as a csect. A csect is an indivisible unit of 42 // code or data, and acts as a container for symbols. A csect is mapped 43 // into a section based on its storage-mapping class, with the exception of 44 // XMC_RW which gets mapped to either .data or .bss based on whether it's 45 // explicitly initialized or not. 46 // 47 // We don't represent the sections in the MC layer as there is nothing 48 // interesting about them at at that level: they carry information that is 49 // only relevant to the ObjectWriter, so we materialize them in this class. 50 namespace { 51 52 constexpr unsigned DefaultSectionAlign = 4; 53 constexpr int16_t MaxSectionIndex = INT16_MAX; 54 55 // Packs the csect's alignment and type into a byte. 56 uint8_t getEncodedType(const MCSectionXCOFF *); 57 58 struct XCOFFRelocation { 59 uint32_t SymbolTableIndex; 60 uint32_t FixupOffsetInCsect; 61 uint8_t SignAndSize; 62 uint8_t Type; 63 }; 64 65 // Wrapper around an MCSymbolXCOFF. 66 struct Symbol { 67 const MCSymbolXCOFF *const MCSym; 68 uint32_t SymbolTableIndex; 69 70 XCOFF::VisibilityType getVisibilityType() const { 71 return MCSym->getVisibilityType(); 72 } 73 74 XCOFF::StorageClass getStorageClass() const { 75 return MCSym->getStorageClass(); 76 } 77 StringRef getSymbolTableName() const { return MCSym->getSymbolTableName(); } 78 Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {} 79 }; 80 81 // Wrapper for an MCSectionXCOFF. 82 // It can be a Csect or debug section or DWARF section and so on. 83 struct XCOFFSection { 84 const MCSectionXCOFF *const MCSec; 85 uint32_t SymbolTableIndex; 86 uint64_t Address; 87 uint64_t Size; 88 89 SmallVector<Symbol, 1> Syms; 90 SmallVector<XCOFFRelocation, 1> Relocations; 91 StringRef getSymbolTableName() const { return MCSec->getSymbolTableName(); } 92 XCOFF::VisibilityType getVisibilityType() const { 93 return MCSec->getVisibilityType(); 94 } 95 XCOFFSection(const MCSectionXCOFF *MCSec) 96 : MCSec(MCSec), SymbolTableIndex(-1), Address(-1), Size(0) {} 97 }; 98 99 // Type to be used for a container representing a set of csects with 100 // (approximately) the same storage mapping class. For example all the csects 101 // with a storage mapping class of `xmc_pr` will get placed into the same 102 // container. 103 using CsectGroup = std::deque<XCOFFSection>; 104 using CsectGroups = std::deque<CsectGroup *>; 105 106 // The basic section entry defination. This Section represents a section entry 107 // in XCOFF section header table. 108 struct SectionEntry { 109 char Name[XCOFF::NameSize]; 110 // The physical/virtual address of the section. For an object file these 111 // values are equivalent, except for in the overflow section header, where 112 // the physical address specifies the number of relocation entries and the 113 // virtual address specifies the number of line number entries. 114 // TODO: Divide Address into PhysicalAddress and VirtualAddress when line 115 // number entries are supported. 116 uint64_t Address; 117 uint64_t Size; 118 uint64_t FileOffsetToData; 119 uint64_t FileOffsetToRelocations; 120 uint32_t RelocationCount; 121 int32_t Flags; 122 123 int16_t Index; 124 125 virtual uint64_t advanceFileOffset(const uint64_t MaxRawDataSize, 126 const uint64_t RawPointer) { 127 FileOffsetToData = RawPointer; 128 uint64_t NewPointer = RawPointer + Size; 129 if (NewPointer > MaxRawDataSize) 130 report_fatal_error("Section raw data overflowed this object file."); 131 return NewPointer; 132 } 133 134 // XCOFF has special section numbers for symbols: 135 // -2 Specifies N_DEBUG, a special symbolic debugging symbol. 136 // -1 Specifies N_ABS, an absolute symbol. The symbol has a value but is not 137 // relocatable. 138 // 0 Specifies N_UNDEF, an undefined external symbol. 139 // Therefore, we choose -3 (N_DEBUG - 1) to represent a section index that 140 // hasn't been initialized. 141 static constexpr int16_t UninitializedIndex = 142 XCOFF::ReservedSectionNum::N_DEBUG - 1; 143 144 SectionEntry(StringRef N, int32_t Flags) 145 : Name(), Address(0), Size(0), FileOffsetToData(0), 146 FileOffsetToRelocations(0), RelocationCount(0), Flags(Flags), 147 Index(UninitializedIndex) { 148 assert(N.size() <= XCOFF::NameSize && "section name too long"); 149 memcpy(Name, N.data(), N.size()); 150 } 151 152 virtual void reset() { 153 Address = 0; 154 Size = 0; 155 FileOffsetToData = 0; 156 FileOffsetToRelocations = 0; 157 RelocationCount = 0; 158 Index = UninitializedIndex; 159 } 160 161 virtual ~SectionEntry() = default; 162 }; 163 164 // Represents the data related to a section excluding the csects that make up 165 // the raw data of the section. The csects are stored separately as not all 166 // sections contain csects, and some sections contain csects which are better 167 // stored separately, e.g. the .data section containing read-write, descriptor, 168 // TOCBase and TOC-entry csects. 169 struct CsectSectionEntry : public SectionEntry { 170 // Virtual sections do not need storage allocated in the object file. 171 const bool IsVirtual; 172 173 // This is a section containing csect groups. 174 CsectGroups Groups; 175 176 CsectSectionEntry(StringRef N, XCOFF::SectionTypeFlags Flags, bool IsVirtual, 177 CsectGroups Groups) 178 : SectionEntry(N, Flags), IsVirtual(IsVirtual), Groups(Groups) { 179 assert(N.size() <= XCOFF::NameSize && "section name too long"); 180 memcpy(Name, N.data(), N.size()); 181 } 182 183 void reset() override { 184 SectionEntry::reset(); 185 // Clear any csects we have stored. 186 for (auto *Group : Groups) 187 Group->clear(); 188 } 189 190 virtual ~CsectSectionEntry() = default; 191 }; 192 193 struct DwarfSectionEntry : public SectionEntry { 194 // For DWARF section entry. 195 std::unique_ptr<XCOFFSection> DwarfSect; 196 197 // For DWARF section, we must use real size in the section header. MemorySize 198 // is for the size the DWARF section occupies including paddings. 199 uint32_t MemorySize; 200 201 // TODO: Remove this override. Loadable sections (e.g., .text, .data) may need 202 // to be aligned. Other sections generally don't need any alignment, but if 203 // they're aligned, the RawPointer should be adjusted before writing the 204 // section. Then a dwarf-specific function wouldn't be needed. 205 uint64_t advanceFileOffset(const uint64_t MaxRawDataSize, 206 const uint64_t RawPointer) override { 207 FileOffsetToData = RawPointer; 208 uint64_t NewPointer = RawPointer + MemorySize; 209 assert(NewPointer <= MaxRawDataSize && 210 "Section raw data overflowed this object file."); 211 return NewPointer; 212 } 213 214 DwarfSectionEntry(StringRef N, int32_t Flags, 215 std::unique_ptr<XCOFFSection> Sect) 216 : SectionEntry(N, Flags | XCOFF::STYP_DWARF), DwarfSect(std::move(Sect)), 217 MemorySize(0) { 218 assert(DwarfSect->MCSec->isDwarfSect() && 219 "This should be a DWARF section!"); 220 assert(N.size() <= XCOFF::NameSize && "section name too long"); 221 memcpy(Name, N.data(), N.size()); 222 } 223 224 DwarfSectionEntry(DwarfSectionEntry &&s) = default; 225 226 virtual ~DwarfSectionEntry() = default; 227 }; 228 229 struct ExceptionTableEntry { 230 const MCSymbol *Trap; 231 uint64_t TrapAddress = ~0ul; 232 unsigned Lang; 233 unsigned Reason; 234 235 ExceptionTableEntry(const MCSymbol *Trap, unsigned Lang, unsigned Reason) 236 : Trap(Trap), Lang(Lang), Reason(Reason) {} 237 }; 238 239 struct ExceptionInfo { 240 const MCSymbol *FunctionSymbol; 241 unsigned FunctionSize; 242 std::vector<ExceptionTableEntry> Entries; 243 }; 244 245 struct ExceptionSectionEntry : public SectionEntry { 246 std::map<const StringRef, ExceptionInfo> ExceptionTable; 247 bool isDebugEnabled = false; 248 249 ExceptionSectionEntry(StringRef N, int32_t Flags) 250 : SectionEntry(N, Flags | XCOFF::STYP_EXCEPT) { 251 assert(N.size() <= XCOFF::NameSize && "Section too long."); 252 memcpy(Name, N.data(), N.size()); 253 } 254 255 virtual ~ExceptionSectionEntry() = default; 256 }; 257 258 struct CInfoSymInfo { 259 // Name of the C_INFO symbol associated with the section 260 std::string Name; 261 std::string Metadata; 262 // Offset into the start of the metadata in the section 263 uint64_t Offset; 264 265 CInfoSymInfo(std::string Name, std::string Metadata) 266 : Name(Name), Metadata(Metadata) {} 267 // Metadata needs to be padded out to an even word size. 268 uint32_t paddingSize() const { 269 return alignTo(Metadata.size(), sizeof(uint32_t)) - Metadata.size(); 270 }; 271 272 // Total size of the entry, including the 4 byte length 273 uint32_t size() const { 274 return Metadata.size() + paddingSize() + sizeof(uint32_t); 275 }; 276 }; 277 278 struct CInfoSymSectionEntry : public SectionEntry { 279 std::unique_ptr<CInfoSymInfo> Entry; 280 281 CInfoSymSectionEntry(StringRef N, int32_t Flags) : SectionEntry(N, Flags) {} 282 virtual ~CInfoSymSectionEntry() = default; 283 void addEntry(std::unique_ptr<CInfoSymInfo> NewEntry) { 284 Entry = std::move(NewEntry); 285 Entry->Offset = sizeof(uint32_t); 286 Size += Entry->size(); 287 } 288 void reset() override { 289 SectionEntry::reset(); 290 Entry.reset(); 291 } 292 }; 293 294 class XCOFFObjectWriter : public MCObjectWriter { 295 296 uint32_t SymbolTableEntryCount = 0; 297 uint64_t SymbolTableOffset = 0; 298 uint16_t SectionCount = 0; 299 uint32_t PaddingsBeforeDwarf = 0; 300 std::vector<std::pair<std::string, size_t>> FileNames; 301 bool HasVisibility = false; 302 303 support::endian::Writer W; 304 std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter; 305 StringTableBuilder Strings; 306 307 const uint64_t MaxRawDataSize = 308 TargetObjectWriter->is64Bit() ? UINT64_MAX : UINT32_MAX; 309 310 // Maps the MCSection representation to its corresponding XCOFFSection 311 // wrapper. Needed for finding the XCOFFSection to insert an MCSymbol into 312 // from its containing MCSectionXCOFF. 313 DenseMap<const MCSectionXCOFF *, XCOFFSection *> SectionMap; 314 315 // Maps the MCSymbol representation to its corrresponding symbol table index. 316 // Needed for relocation. 317 DenseMap<const MCSymbol *, uint32_t> SymbolIndexMap; 318 319 // CsectGroups. These store the csects which make up different parts of 320 // the sections. Should have one for each set of csects that get mapped into 321 // the same section and get handled in a 'similar' way. 322 CsectGroup UndefinedCsects; 323 CsectGroup ProgramCodeCsects; 324 CsectGroup ReadOnlyCsects; 325 CsectGroup DataCsects; 326 CsectGroup FuncDSCsects; 327 CsectGroup TOCCsects; 328 CsectGroup BSSCsects; 329 CsectGroup TDataCsects; 330 CsectGroup TBSSCsects; 331 332 // The Predefined sections. 333 CsectSectionEntry Text; 334 CsectSectionEntry Data; 335 CsectSectionEntry BSS; 336 CsectSectionEntry TData; 337 CsectSectionEntry TBSS; 338 339 // All the XCOFF sections, in the order they will appear in the section header 340 // table. 341 std::array<CsectSectionEntry *const, 5> Sections{ 342 {&Text, &Data, &BSS, &TData, &TBSS}}; 343 344 std::vector<DwarfSectionEntry> DwarfSections; 345 std::vector<SectionEntry> OverflowSections; 346 347 ExceptionSectionEntry ExceptionSection; 348 CInfoSymSectionEntry CInfoSymSection; 349 350 CsectGroup &getCsectGroup(const MCSectionXCOFF *MCSec); 351 352 void reset() override; 353 354 void executePostLayoutBinding(MCAssembler &, const MCAsmLayout &) override; 355 356 void recordRelocation(MCAssembler &, const MCAsmLayout &, const MCFragment *, 357 const MCFixup &, MCValue, uint64_t &) override; 358 359 uint64_t writeObject(MCAssembler &, const MCAsmLayout &) override; 360 361 bool is64Bit() const { return TargetObjectWriter->is64Bit(); } 362 bool nameShouldBeInStringTable(const StringRef &); 363 void writeSymbolName(const StringRef &); 364 365 void writeSymbolEntryForCsectMemberLabel(const Symbol &SymbolRef, 366 const XCOFFSection &CSectionRef, 367 int16_t SectionIndex, 368 uint64_t SymbolOffset); 369 void writeSymbolEntryForControlSection(const XCOFFSection &CSectionRef, 370 int16_t SectionIndex, 371 XCOFF::StorageClass StorageClass); 372 void writeSymbolEntryForDwarfSection(const XCOFFSection &DwarfSectionRef, 373 int16_t SectionIndex); 374 void writeFileHeader(); 375 void writeAuxFileHeader(); 376 void writeSectionHeader(const SectionEntry *Sec); 377 void writeSectionHeaderTable(); 378 void writeSections(const MCAssembler &Asm, const MCAsmLayout &Layout); 379 void writeSectionForControlSectionEntry(const MCAssembler &Asm, 380 const MCAsmLayout &Layout, 381 const CsectSectionEntry &CsectEntry, 382 uint64_t &CurrentAddressLocation); 383 void writeSectionForDwarfSectionEntry(const MCAssembler &Asm, 384 const MCAsmLayout &Layout, 385 const DwarfSectionEntry &DwarfEntry, 386 uint64_t &CurrentAddressLocation); 387 void writeSectionForExceptionSectionEntry( 388 const MCAssembler &Asm, const MCAsmLayout &Layout, 389 ExceptionSectionEntry &ExceptionEntry, uint64_t &CurrentAddressLocation); 390 void writeSectionForCInfoSymSectionEntry(const MCAssembler &Asm, 391 const MCAsmLayout &Layout, 392 CInfoSymSectionEntry &CInfoSymEntry, 393 uint64_t &CurrentAddressLocation); 394 void writeSymbolTable(const MCAsmLayout &Layout); 395 void writeSymbolAuxDwarfEntry(uint64_t LengthOfSectionPortion, 396 uint64_t NumberOfRelocEnt = 0); 397 void writeSymbolAuxCsectEntry(uint64_t SectionOrLength, 398 uint8_t SymbolAlignmentAndType, 399 uint8_t StorageMappingClass); 400 void writeSymbolAuxFunctionEntry(uint32_t EntryOffset, uint32_t FunctionSize, 401 uint64_t LineNumberPointer, 402 uint32_t EndIndex); 403 void writeSymbolAuxExceptionEntry(uint64_t EntryOffset, uint32_t FunctionSize, 404 uint32_t EndIndex); 405 void writeSymbolEntry(StringRef SymbolName, uint64_t Value, 406 int16_t SectionNumber, uint16_t SymbolType, 407 uint8_t StorageClass, uint8_t NumberOfAuxEntries = 1); 408 void writeRelocations(); 409 void writeRelocation(XCOFFRelocation Reloc, const XCOFFSection &Section); 410 411 // Called after all the csects and symbols have been processed by 412 // `executePostLayoutBinding`, this function handles building up the majority 413 // of the structures in the object file representation. Namely: 414 // *) Calculates physical/virtual addresses, raw-pointer offsets, and section 415 // sizes. 416 // *) Assigns symbol table indices. 417 // *) Builds up the section header table by adding any non-empty sections to 418 // `Sections`. 419 void assignAddressesAndIndices(const MCAsmLayout &); 420 // Called after relocations are recorded. 421 void finalizeSectionInfo(); 422 void finalizeRelocationInfo(SectionEntry *Sec, uint64_t RelCount); 423 void calcOffsetToRelocations(SectionEntry *Sec, uint64_t &RawPointer); 424 425 void addExceptionEntry(const MCSymbol *Symbol, const MCSymbol *Trap, 426 unsigned LanguageCode, unsigned ReasonCode, 427 unsigned FunctionSize, bool hasDebug) override; 428 bool hasExceptionSection() { 429 return !ExceptionSection.ExceptionTable.empty(); 430 } 431 unsigned getExceptionSectionSize(); 432 unsigned getExceptionOffset(const MCSymbol *Symbol); 433 434 void addCInfoSymEntry(StringRef Name, StringRef Metadata) override; 435 size_t auxiliaryHeaderSize() const { 436 // 64-bit object files have no auxiliary header. 437 return HasVisibility && !is64Bit() ? XCOFF::AuxFileHeaderSizeShort : 0; 438 } 439 440 public: 441 XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, 442 raw_pwrite_stream &OS); 443 444 void writeWord(uint64_t Word) { 445 is64Bit() ? W.write<uint64_t>(Word) : W.write<uint32_t>(Word); 446 } 447 }; 448 449 XCOFFObjectWriter::XCOFFObjectWriter( 450 std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS) 451 : W(OS, support::big), TargetObjectWriter(std::move(MOTW)), 452 Strings(StringTableBuilder::XCOFF), 453 Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false, 454 CsectGroups{&ProgramCodeCsects, &ReadOnlyCsects}), 455 Data(".data", XCOFF::STYP_DATA, /* IsVirtual */ false, 456 CsectGroups{&DataCsects, &FuncDSCsects, &TOCCsects}), 457 BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true, 458 CsectGroups{&BSSCsects}), 459 TData(".tdata", XCOFF::STYP_TDATA, /* IsVirtual */ false, 460 CsectGroups{&TDataCsects}), 461 TBSS(".tbss", XCOFF::STYP_TBSS, /* IsVirtual */ true, 462 CsectGroups{&TBSSCsects}), 463 ExceptionSection(".except", XCOFF::STYP_EXCEPT), 464 CInfoSymSection(".info", XCOFF::STYP_INFO) {} 465 466 void XCOFFObjectWriter::reset() { 467 // Clear the mappings we created. 468 SymbolIndexMap.clear(); 469 SectionMap.clear(); 470 471 UndefinedCsects.clear(); 472 // Reset any sections we have written to, and empty the section header table. 473 for (auto *Sec : Sections) 474 Sec->reset(); 475 for (auto &DwarfSec : DwarfSections) 476 DwarfSec.reset(); 477 for (auto &OverflowSec : OverflowSections) 478 OverflowSec.reset(); 479 ExceptionSection.reset(); 480 CInfoSymSection.reset(); 481 482 // Reset states in XCOFFObjectWriter. 483 SymbolTableEntryCount = 0; 484 SymbolTableOffset = 0; 485 SectionCount = 0; 486 PaddingsBeforeDwarf = 0; 487 Strings.clear(); 488 489 MCObjectWriter::reset(); 490 } 491 492 CsectGroup &XCOFFObjectWriter::getCsectGroup(const MCSectionXCOFF *MCSec) { 493 switch (MCSec->getMappingClass()) { 494 case XCOFF::XMC_PR: 495 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 496 "Only an initialized csect can contain program code."); 497 return ProgramCodeCsects; 498 case XCOFF::XMC_RO: 499 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 500 "Only an initialized csect can contain read only data."); 501 return ReadOnlyCsects; 502 case XCOFF::XMC_RW: 503 if (XCOFF::XTY_CM == MCSec->getCSectType()) 504 return BSSCsects; 505 506 if (XCOFF::XTY_SD == MCSec->getCSectType()) 507 return DataCsects; 508 509 report_fatal_error("Unhandled mapping of read-write csect to section."); 510 case XCOFF::XMC_DS: 511 return FuncDSCsects; 512 case XCOFF::XMC_BS: 513 assert(XCOFF::XTY_CM == MCSec->getCSectType() && 514 "Mapping invalid csect. CSECT with bss storage class must be " 515 "common type."); 516 return BSSCsects; 517 case XCOFF::XMC_TL: 518 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 519 "Mapping invalid csect. CSECT with tdata storage class must be " 520 "an initialized csect."); 521 return TDataCsects; 522 case XCOFF::XMC_UL: 523 assert(XCOFF::XTY_CM == MCSec->getCSectType() && 524 "Mapping invalid csect. CSECT with tbss storage class must be " 525 "an uninitialized csect."); 526 return TBSSCsects; 527 case XCOFF::XMC_TC0: 528 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 529 "Only an initialized csect can contain TOC-base."); 530 assert(TOCCsects.empty() && 531 "We should have only one TOC-base, and it should be the first csect " 532 "in this CsectGroup."); 533 return TOCCsects; 534 case XCOFF::XMC_TC: 535 case XCOFF::XMC_TE: 536 case XCOFF::XMC_TD: 537 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 538 "Only an initialized csect can contain TC entry."); 539 assert(!TOCCsects.empty() && 540 "We should at least have a TOC-base in this CsectGroup."); 541 return TOCCsects; 542 default: 543 report_fatal_error("Unhandled mapping of csect to section."); 544 } 545 } 546 547 static MCSectionXCOFF *getContainingCsect(const MCSymbolXCOFF *XSym) { 548 if (XSym->isDefined()) 549 return cast<MCSectionXCOFF>(XSym->getFragment()->getParent()); 550 return XSym->getRepresentedCsect(); 551 } 552 553 void XCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 554 const MCAsmLayout &Layout) { 555 for (const auto &S : Asm) { 556 const auto *MCSec = cast<const MCSectionXCOFF>(&S); 557 assert(!SectionMap.contains(MCSec) && "Cannot add a section twice."); 558 559 // If the name does not fit in the storage provided in the symbol table 560 // entry, add it to the string table. 561 if (nameShouldBeInStringTable(MCSec->getSymbolTableName())) 562 Strings.add(MCSec->getSymbolTableName()); 563 if (MCSec->isCsect()) { 564 // A new control section. Its CsectSectionEntry should already be staticly 565 // generated as Text/Data/BSS/TDATA/TBSS. Add this section to the group of 566 // the CsectSectionEntry. 567 assert(XCOFF::XTY_ER != MCSec->getCSectType() && 568 "An undefined csect should not get registered."); 569 CsectGroup &Group = getCsectGroup(MCSec); 570 Group.emplace_back(MCSec); 571 SectionMap[MCSec] = &Group.back(); 572 } else if (MCSec->isDwarfSect()) { 573 // A new DwarfSectionEntry. 574 std::unique_ptr<XCOFFSection> DwarfSec = 575 std::make_unique<XCOFFSection>(MCSec); 576 SectionMap[MCSec] = DwarfSec.get(); 577 578 DwarfSectionEntry SecEntry(MCSec->getName(), 579 *MCSec->getDwarfSubtypeFlags(), 580 std::move(DwarfSec)); 581 DwarfSections.push_back(std::move(SecEntry)); 582 } else 583 llvm_unreachable("unsupport section type!"); 584 } 585 586 for (const MCSymbol &S : Asm.symbols()) { 587 // Nothing to do for temporary symbols. 588 if (S.isTemporary()) 589 continue; 590 591 const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S); 592 const MCSectionXCOFF *ContainingCsect = getContainingCsect(XSym); 593 594 if (XSym->getVisibilityType() != XCOFF::SYM_V_UNSPECIFIED) 595 HasVisibility = true; 596 597 if (ContainingCsect->getCSectType() == XCOFF::XTY_ER) { 598 // Handle undefined symbol. 599 UndefinedCsects.emplace_back(ContainingCsect); 600 SectionMap[ContainingCsect] = &UndefinedCsects.back(); 601 if (nameShouldBeInStringTable(ContainingCsect->getSymbolTableName())) 602 Strings.add(ContainingCsect->getSymbolTableName()); 603 continue; 604 } 605 606 // If the symbol is the csect itself, we don't need to put the symbol 607 // into csect's Syms. 608 if (XSym == ContainingCsect->getQualNameSymbol()) 609 continue; 610 611 // Only put a label into the symbol table when it is an external label. 612 if (!XSym->isExternal()) 613 continue; 614 615 assert(SectionMap.contains(ContainingCsect) && 616 "Expected containing csect to exist in map"); 617 XCOFFSection *Csect = SectionMap[ContainingCsect]; 618 // Lookup the containing csect and add the symbol to it. 619 assert(Csect->MCSec->isCsect() && "only csect is supported now!"); 620 Csect->Syms.emplace_back(XSym); 621 622 // If the name does not fit in the storage provided in the symbol table 623 // entry, add it to the string table. 624 if (nameShouldBeInStringTable(XSym->getSymbolTableName())) 625 Strings.add(XSym->getSymbolTableName()); 626 } 627 628 std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymSection.Entry; 629 if (CISI && nameShouldBeInStringTable(CISI->Name)) 630 Strings.add(CISI->Name); 631 632 FileNames = Asm.getFileNames(); 633 // Emit ".file" as the source file name when there is no file name. 634 if (FileNames.empty()) 635 FileNames.emplace_back(".file", 0); 636 for (const std::pair<std::string, size_t> &F : FileNames) { 637 if (nameShouldBeInStringTable(F.first)) 638 Strings.add(F.first); 639 } 640 641 Strings.finalize(); 642 assignAddressesAndIndices(Layout); 643 } 644 645 void XCOFFObjectWriter::recordRelocation(MCAssembler &Asm, 646 const MCAsmLayout &Layout, 647 const MCFragment *Fragment, 648 const MCFixup &Fixup, MCValue Target, 649 uint64_t &FixedValue) { 650 auto getIndex = [this](const MCSymbol *Sym, 651 const MCSectionXCOFF *ContainingCsect) { 652 // If we could not find the symbol directly in SymbolIndexMap, this symbol 653 // could either be a temporary symbol or an undefined symbol. In this case, 654 // we would need to have the relocation reference its csect instead. 655 return SymbolIndexMap.contains(Sym) 656 ? SymbolIndexMap[Sym] 657 : SymbolIndexMap[ContainingCsect->getQualNameSymbol()]; 658 }; 659 660 auto getVirtualAddress = 661 [this, &Layout](const MCSymbol *Sym, 662 const MCSectionXCOFF *ContainingSect) -> uint64_t { 663 // A DWARF section. 664 if (ContainingSect->isDwarfSect()) 665 return Layout.getSymbolOffset(*Sym); 666 667 // A csect. 668 if (!Sym->isDefined()) 669 return SectionMap[ContainingSect]->Address; 670 671 // A label. 672 assert(Sym->isDefined() && "not a valid object that has address!"); 673 return SectionMap[ContainingSect]->Address + Layout.getSymbolOffset(*Sym); 674 }; 675 676 const MCSymbol *const SymA = &Target.getSymA()->getSymbol(); 677 678 MCAsmBackend &Backend = Asm.getBackend(); 679 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags & 680 MCFixupKindInfo::FKF_IsPCRel; 681 682 uint8_t Type; 683 uint8_t SignAndSize; 684 std::tie(Type, SignAndSize) = 685 TargetObjectWriter->getRelocTypeAndSignSize(Target, Fixup, IsPCRel); 686 687 const MCSectionXCOFF *SymASec = getContainingCsect(cast<MCSymbolXCOFF>(SymA)); 688 assert(SectionMap.contains(SymASec) && 689 "Expected containing csect to exist in map."); 690 691 assert((Fixup.getOffset() <= 692 MaxRawDataSize - Layout.getFragmentOffset(Fragment)) && 693 "Fragment offset + fixup offset is overflowed."); 694 uint32_t FixupOffsetInCsect = 695 Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 696 697 const uint32_t Index = getIndex(SymA, SymASec); 698 if (Type == XCOFF::RelocationType::R_POS || 699 Type == XCOFF::RelocationType::R_TLS || 700 Type == XCOFF::RelocationType::R_TLS_LE) 701 // The FixedValue should be symbol's virtual address in this object file 702 // plus any constant value that we might get. 703 FixedValue = getVirtualAddress(SymA, SymASec) + Target.getConstant(); 704 else if (Type == XCOFF::RelocationType::R_TLSM) 705 // The FixedValue should always be zero since the region handle is only 706 // known at load time. 707 FixedValue = 0; 708 else if (Type == XCOFF::RelocationType::R_TOC || 709 Type == XCOFF::RelocationType::R_TOCL) { 710 // For non toc-data external symbols, R_TOC type relocation will relocate to 711 // data symbols that have XCOFF::XTY_SD type csect. For toc-data external 712 // symbols, R_TOC type relocation will relocate to data symbols that have 713 // XCOFF_ER type csect. For XCOFF_ER kind symbols, there will be no TOC 714 // entry for them, so the FixedValue should always be 0. 715 if (SymASec->getCSectType() == XCOFF::XTY_ER) { 716 FixedValue = 0; 717 } else { 718 // The FixedValue should be the TOC entry offset from the TOC-base plus 719 // any constant offset value. 720 const int64_t TOCEntryOffset = SectionMap[SymASec]->Address - 721 TOCCsects.front().Address + 722 Target.getConstant(); 723 if (Type == XCOFF::RelocationType::R_TOC && !isInt<16>(TOCEntryOffset)) 724 report_fatal_error("TOCEntryOffset overflows in small code model mode"); 725 726 FixedValue = TOCEntryOffset; 727 } 728 } else if (Type == XCOFF::RelocationType::R_RBR) { 729 MCSectionXCOFF *ParentSec = cast<MCSectionXCOFF>(Fragment->getParent()); 730 assert((SymASec->getMappingClass() == XCOFF::XMC_PR && 731 ParentSec->getMappingClass() == XCOFF::XMC_PR) && 732 "Only XMC_PR csect may have the R_RBR relocation."); 733 734 // The address of the branch instruction should be the sum of section 735 // address, fragment offset and Fixup offset. 736 uint64_t BRInstrAddress = 737 SectionMap[ParentSec]->Address + FixupOffsetInCsect; 738 // The FixedValue should be the difference between symbol's virtual address 739 // and BR instr address plus any constant value. 740 FixedValue = getVirtualAddress(SymA, SymASec) - BRInstrAddress + 741 Target.getConstant(); 742 } else if (Type == XCOFF::RelocationType::R_REF) { 743 // The FixedValue and FixupOffsetInCsect should always be 0 since it 744 // specifies a nonrelocating reference. 745 FixedValue = 0; 746 FixupOffsetInCsect = 0; 747 } 748 749 XCOFFRelocation Reloc = {Index, FixupOffsetInCsect, SignAndSize, Type}; 750 MCSectionXCOFF *RelocationSec = cast<MCSectionXCOFF>(Fragment->getParent()); 751 assert(SectionMap.contains(RelocationSec) && 752 "Expected containing csect to exist in map."); 753 SectionMap[RelocationSec]->Relocations.push_back(Reloc); 754 755 if (!Target.getSymB()) 756 return; 757 758 const MCSymbol *const SymB = &Target.getSymB()->getSymbol(); 759 if (SymA == SymB) 760 report_fatal_error("relocation for opposite term is not yet supported"); 761 762 const MCSectionXCOFF *SymBSec = getContainingCsect(cast<MCSymbolXCOFF>(SymB)); 763 assert(SectionMap.contains(SymBSec) && 764 "Expected containing csect to exist in map."); 765 if (SymASec == SymBSec) 766 report_fatal_error( 767 "relocation for paired relocatable term is not yet supported"); 768 769 assert(Type == XCOFF::RelocationType::R_POS && 770 "SymA must be R_POS here if it's not opposite term or paired " 771 "relocatable term."); 772 const uint32_t IndexB = getIndex(SymB, SymBSec); 773 // SymB must be R_NEG here, given the general form of Target(MCValue) is 774 // "SymbolA - SymbolB + imm64". 775 const uint8_t TypeB = XCOFF::RelocationType::R_NEG; 776 XCOFFRelocation RelocB = {IndexB, FixupOffsetInCsect, SignAndSize, TypeB}; 777 SectionMap[RelocationSec]->Relocations.push_back(RelocB); 778 // We already folded "SymbolA + imm64" above when Type is R_POS for SymbolA, 779 // now we just need to fold "- SymbolB" here. 780 FixedValue -= getVirtualAddress(SymB, SymBSec); 781 } 782 783 void XCOFFObjectWriter::writeSections(const MCAssembler &Asm, 784 const MCAsmLayout &Layout) { 785 uint64_t CurrentAddressLocation = 0; 786 for (const auto *Section : Sections) 787 writeSectionForControlSectionEntry(Asm, Layout, *Section, 788 CurrentAddressLocation); 789 for (const auto &DwarfSection : DwarfSections) 790 writeSectionForDwarfSectionEntry(Asm, Layout, DwarfSection, 791 CurrentAddressLocation); 792 writeSectionForExceptionSectionEntry(Asm, Layout, ExceptionSection, 793 CurrentAddressLocation); 794 writeSectionForCInfoSymSectionEntry(Asm, Layout, CInfoSymSection, 795 CurrentAddressLocation); 796 } 797 798 uint64_t XCOFFObjectWriter::writeObject(MCAssembler &Asm, 799 const MCAsmLayout &Layout) { 800 // We always emit a timestamp of 0 for reproducibility, so ensure incremental 801 // linking is not enabled, in case, like with Windows COFF, such a timestamp 802 // is incompatible with incremental linking of XCOFF. 803 if (Asm.isIncrementalLinkerCompatible()) 804 report_fatal_error("Incremental linking not supported for XCOFF."); 805 806 finalizeSectionInfo(); 807 uint64_t StartOffset = W.OS.tell(); 808 809 writeFileHeader(); 810 writeAuxFileHeader(); 811 writeSectionHeaderTable(); 812 writeSections(Asm, Layout); 813 writeRelocations(); 814 writeSymbolTable(Layout); 815 // Write the string table. 816 Strings.write(W.OS); 817 818 return W.OS.tell() - StartOffset; 819 } 820 821 bool XCOFFObjectWriter::nameShouldBeInStringTable(const StringRef &SymbolName) { 822 return SymbolName.size() > XCOFF::NameSize || is64Bit(); 823 } 824 825 void XCOFFObjectWriter::writeSymbolName(const StringRef &SymbolName) { 826 // Magic, Offset or SymbolName. 827 if (nameShouldBeInStringTable(SymbolName)) { 828 W.write<int32_t>(0); 829 W.write<uint32_t>(Strings.getOffset(SymbolName)); 830 } else { 831 char Name[XCOFF::NameSize + 1]; 832 std::strncpy(Name, SymbolName.data(), XCOFF::NameSize); 833 ArrayRef<char> NameRef(Name, XCOFF::NameSize); 834 W.write(NameRef); 835 } 836 } 837 838 void XCOFFObjectWriter::writeSymbolEntry(StringRef SymbolName, uint64_t Value, 839 int16_t SectionNumber, 840 uint16_t SymbolType, 841 uint8_t StorageClass, 842 uint8_t NumberOfAuxEntries) { 843 if (is64Bit()) { 844 W.write<uint64_t>(Value); 845 W.write<uint32_t>(Strings.getOffset(SymbolName)); 846 } else { 847 writeSymbolName(SymbolName); 848 W.write<uint32_t>(Value); 849 } 850 W.write<int16_t>(SectionNumber); 851 W.write<uint16_t>(SymbolType); 852 W.write<uint8_t>(StorageClass); 853 W.write<uint8_t>(NumberOfAuxEntries); 854 } 855 856 void XCOFFObjectWriter::writeSymbolAuxCsectEntry(uint64_t SectionOrLength, 857 uint8_t SymbolAlignmentAndType, 858 uint8_t StorageMappingClass) { 859 W.write<uint32_t>(is64Bit() ? Lo_32(SectionOrLength) : SectionOrLength); 860 W.write<uint32_t>(0); // ParameterHashIndex 861 W.write<uint16_t>(0); // TypeChkSectNum 862 W.write<uint8_t>(SymbolAlignmentAndType); 863 W.write<uint8_t>(StorageMappingClass); 864 if (is64Bit()) { 865 W.write<uint32_t>(Hi_32(SectionOrLength)); 866 W.OS.write_zeros(1); // Reserved 867 W.write<uint8_t>(XCOFF::AUX_CSECT); 868 } else { 869 W.write<uint32_t>(0); // StabInfoIndex 870 W.write<uint16_t>(0); // StabSectNum 871 } 872 } 873 874 void XCOFFObjectWriter::writeSymbolAuxDwarfEntry( 875 uint64_t LengthOfSectionPortion, uint64_t NumberOfRelocEnt) { 876 writeWord(LengthOfSectionPortion); 877 if (!is64Bit()) 878 W.OS.write_zeros(4); // Reserved 879 writeWord(NumberOfRelocEnt); 880 if (is64Bit()) { 881 W.OS.write_zeros(1); // Reserved 882 W.write<uint8_t>(XCOFF::AUX_SECT); 883 } else { 884 W.OS.write_zeros(6); // Reserved 885 } 886 } 887 888 void XCOFFObjectWriter::writeSymbolEntryForCsectMemberLabel( 889 const Symbol &SymbolRef, const XCOFFSection &CSectionRef, 890 int16_t SectionIndex, uint64_t SymbolOffset) { 891 assert(SymbolOffset <= MaxRawDataSize - CSectionRef.Address && 892 "Symbol address overflowed."); 893 894 auto Entry = ExceptionSection.ExceptionTable.find(SymbolRef.MCSym->getName()); 895 if (Entry != ExceptionSection.ExceptionTable.end()) { 896 writeSymbolEntry(SymbolRef.getSymbolTableName(), 897 CSectionRef.Address + SymbolOffset, SectionIndex, 898 // In the old version of the 32-bit XCOFF interpretation, 899 // symbols may require bit 10 (0x0020) to be set if the 900 // symbol is a function, otherwise the bit should be 0. 901 is64Bit() ? SymbolRef.getVisibilityType() 902 : SymbolRef.getVisibilityType() | 0x0020, 903 SymbolRef.getStorageClass(), 904 (is64Bit() && ExceptionSection.isDebugEnabled) ? 3 : 2); 905 if (is64Bit() && ExceptionSection.isDebugEnabled) { 906 // On 64 bit with debugging enabled, we have a csect, exception, and 907 // function auxilliary entries, so we must increment symbol index by 4. 908 writeSymbolAuxExceptionEntry( 909 ExceptionSection.FileOffsetToData + 910 getExceptionOffset(Entry->second.FunctionSymbol), 911 Entry->second.FunctionSize, 912 SymbolIndexMap[Entry->second.FunctionSymbol] + 4); 913 } 914 // For exception section entries, csect and function auxilliary entries 915 // must exist. On 64-bit there is also an exception auxilliary entry. 916 writeSymbolAuxFunctionEntry( 917 ExceptionSection.FileOffsetToData + 918 getExceptionOffset(Entry->second.FunctionSymbol), 919 Entry->second.FunctionSize, 0, 920 (is64Bit() && ExceptionSection.isDebugEnabled) 921 ? SymbolIndexMap[Entry->second.FunctionSymbol] + 4 922 : SymbolIndexMap[Entry->second.FunctionSymbol] + 3); 923 } else { 924 writeSymbolEntry(SymbolRef.getSymbolTableName(), 925 CSectionRef.Address + SymbolOffset, SectionIndex, 926 SymbolRef.getVisibilityType(), 927 SymbolRef.getStorageClass()); 928 } 929 writeSymbolAuxCsectEntry(CSectionRef.SymbolTableIndex, XCOFF::XTY_LD, 930 CSectionRef.MCSec->getMappingClass()); 931 } 932 933 void XCOFFObjectWriter::writeSymbolEntryForDwarfSection( 934 const XCOFFSection &DwarfSectionRef, int16_t SectionIndex) { 935 assert(DwarfSectionRef.MCSec->isDwarfSect() && "Not a DWARF section!"); 936 937 writeSymbolEntry(DwarfSectionRef.getSymbolTableName(), /*Value=*/0, 938 SectionIndex, /*SymbolType=*/0, XCOFF::C_DWARF); 939 940 writeSymbolAuxDwarfEntry(DwarfSectionRef.Size); 941 } 942 943 void XCOFFObjectWriter::writeSymbolEntryForControlSection( 944 const XCOFFSection &CSectionRef, int16_t SectionIndex, 945 XCOFF::StorageClass StorageClass) { 946 writeSymbolEntry(CSectionRef.getSymbolTableName(), CSectionRef.Address, 947 SectionIndex, CSectionRef.getVisibilityType(), StorageClass); 948 949 writeSymbolAuxCsectEntry(CSectionRef.Size, getEncodedType(CSectionRef.MCSec), 950 CSectionRef.MCSec->getMappingClass()); 951 } 952 953 void XCOFFObjectWriter::writeSymbolAuxFunctionEntry(uint32_t EntryOffset, 954 uint32_t FunctionSize, 955 uint64_t LineNumberPointer, 956 uint32_t EndIndex) { 957 if (is64Bit()) 958 writeWord(LineNumberPointer); 959 else 960 W.write<uint32_t>(EntryOffset); 961 W.write<uint32_t>(FunctionSize); 962 if (!is64Bit()) 963 writeWord(LineNumberPointer); 964 W.write<uint32_t>(EndIndex); 965 if (is64Bit()) { 966 W.OS.write_zeros(1); 967 W.write<uint8_t>(XCOFF::AUX_FCN); 968 } else { 969 W.OS.write_zeros(2); 970 } 971 } 972 973 void XCOFFObjectWriter::writeSymbolAuxExceptionEntry(uint64_t EntryOffset, 974 uint32_t FunctionSize, 975 uint32_t EndIndex) { 976 assert(is64Bit() && "Exception auxilliary entries are 64-bit only."); 977 W.write<uint64_t>(EntryOffset); 978 W.write<uint32_t>(FunctionSize); 979 W.write<uint32_t>(EndIndex); 980 W.OS.write_zeros(1); // Pad (unused) 981 W.write<uint8_t>(XCOFF::AUX_EXCEPT); 982 } 983 984 void XCOFFObjectWriter::writeFileHeader() { 985 W.write<uint16_t>(is64Bit() ? XCOFF::XCOFF64 : XCOFF::XCOFF32); 986 W.write<uint16_t>(SectionCount); 987 W.write<int32_t>(0); // TimeStamp 988 writeWord(SymbolTableOffset); 989 if (is64Bit()) { 990 W.write<uint16_t>(auxiliaryHeaderSize()); 991 W.write<uint16_t>(0); // Flags 992 W.write<int32_t>(SymbolTableEntryCount); 993 } else { 994 W.write<int32_t>(SymbolTableEntryCount); 995 W.write<uint16_t>(auxiliaryHeaderSize()); 996 W.write<uint16_t>(0); // Flags 997 } 998 } 999 1000 void XCOFFObjectWriter::writeAuxFileHeader() { 1001 if (!auxiliaryHeaderSize()) 1002 return; 1003 W.write<uint16_t>(0); // Magic 1004 W.write<uint16_t>( 1005 XCOFF::NEW_XCOFF_INTERPRET); // Version. The new interpretation of the 1006 // n_type field in the symbol table entry is 1007 // used in XCOFF32. 1008 W.write<uint32_t>(Sections[0]->Size); // TextSize 1009 W.write<uint32_t>(Sections[1]->Size); // InitDataSize 1010 W.write<uint32_t>(Sections[2]->Size); // BssDataSize 1011 W.write<uint32_t>(0); // EntryPointAddr 1012 W.write<uint32_t>(Sections[0]->Address); // TextStartAddr 1013 W.write<uint32_t>(Sections[1]->Address); // DataStartAddr 1014 } 1015 1016 void XCOFFObjectWriter::writeSectionHeader(const SectionEntry *Sec) { 1017 bool IsDwarf = (Sec->Flags & XCOFF::STYP_DWARF) != 0; 1018 bool IsOvrflo = (Sec->Flags & XCOFF::STYP_OVRFLO) != 0; 1019 // Nothing to write for this Section. 1020 if (Sec->Index == SectionEntry::UninitializedIndex) 1021 return; 1022 1023 // Write Name. 1024 ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize); 1025 W.write(NameRef); 1026 1027 // Write the Physical Address and Virtual Address. 1028 // We use 0 for DWARF sections' Physical and Virtual Addresses. 1029 writeWord(IsDwarf ? 0 : Sec->Address); 1030 // Since line number is not supported, we set it to 0 for overflow sections. 1031 writeWord((IsDwarf || IsOvrflo) ? 0 : Sec->Address); 1032 1033 writeWord(Sec->Size); 1034 writeWord(Sec->FileOffsetToData); 1035 writeWord(Sec->FileOffsetToRelocations); 1036 writeWord(0); // FileOffsetToLineNumberInfo. Not supported yet. 1037 1038 if (is64Bit()) { 1039 W.write<uint32_t>(Sec->RelocationCount); 1040 W.write<uint32_t>(0); // NumberOfLineNumbers. Not supported yet. 1041 W.write<int32_t>(Sec->Flags); 1042 W.OS.write_zeros(4); 1043 } else { 1044 // For the overflow section header, s_nreloc provides a reference to the 1045 // primary section header and s_nlnno must have the same value. 1046 // For common section headers, if either of s_nreloc or s_nlnno are set to 1047 // 65535, the other one must also be set to 65535. 1048 W.write<uint16_t>(Sec->RelocationCount); 1049 W.write<uint16_t>((IsOvrflo || Sec->RelocationCount == XCOFF::RelocOverflow) 1050 ? Sec->RelocationCount 1051 : 0); // NumberOfLineNumbers. Not supported yet. 1052 W.write<int32_t>(Sec->Flags); 1053 } 1054 } 1055 1056 void XCOFFObjectWriter::writeSectionHeaderTable() { 1057 for (const auto *CsectSec : Sections) 1058 writeSectionHeader(CsectSec); 1059 for (const auto &DwarfSec : DwarfSections) 1060 writeSectionHeader(&DwarfSec); 1061 for (const auto &OverflowSec : OverflowSections) 1062 writeSectionHeader(&OverflowSec); 1063 if (hasExceptionSection()) 1064 writeSectionHeader(&ExceptionSection); 1065 if (CInfoSymSection.Entry) 1066 writeSectionHeader(&CInfoSymSection); 1067 } 1068 1069 void XCOFFObjectWriter::writeRelocation(XCOFFRelocation Reloc, 1070 const XCOFFSection &Section) { 1071 if (Section.MCSec->isCsect()) 1072 writeWord(Section.Address + Reloc.FixupOffsetInCsect); 1073 else { 1074 // DWARF sections' address is set to 0. 1075 assert(Section.MCSec->isDwarfSect() && "unsupport section type!"); 1076 writeWord(Reloc.FixupOffsetInCsect); 1077 } 1078 W.write<uint32_t>(Reloc.SymbolTableIndex); 1079 W.write<uint8_t>(Reloc.SignAndSize); 1080 W.write<uint8_t>(Reloc.Type); 1081 } 1082 1083 void XCOFFObjectWriter::writeRelocations() { 1084 for (const auto *Section : Sections) { 1085 if (Section->Index == SectionEntry::UninitializedIndex) 1086 // Nothing to write for this Section. 1087 continue; 1088 1089 for (const auto *Group : Section->Groups) { 1090 if (Group->empty()) 1091 continue; 1092 1093 for (const auto &Csect : *Group) { 1094 for (const auto Reloc : Csect.Relocations) 1095 writeRelocation(Reloc, Csect); 1096 } 1097 } 1098 } 1099 1100 for (const auto &DwarfSection : DwarfSections) 1101 for (const auto &Reloc : DwarfSection.DwarfSect->Relocations) 1102 writeRelocation(Reloc, *DwarfSection.DwarfSect); 1103 } 1104 1105 void XCOFFObjectWriter::writeSymbolTable(const MCAsmLayout &Layout) { 1106 // Write C_FILE symbols. 1107 for (const std::pair<std::string, size_t> &F : FileNames) { 1108 // The n_name of a C_FILE symbol is the source file's name when no auxiliary 1109 // entries are present. 1110 StringRef FileName = F.first; 1111 1112 // For C_FILE symbols, the Source Language ID overlays the high-order byte 1113 // of the SymbolType field, and the CPU Version ID is defined as the 1114 // low-order byte. 1115 // AIX's system assembler determines the source language ID based on the 1116 // source file's name suffix, and the behavior here is consistent with it. 1117 uint8_t LangID; 1118 if (FileName.ends_with(".c")) 1119 LangID = XCOFF::TB_C; 1120 else if (FileName.ends_with_insensitive(".f") || 1121 FileName.ends_with_insensitive(".f77") || 1122 FileName.ends_with_insensitive(".f90") || 1123 FileName.ends_with_insensitive(".f95") || 1124 FileName.ends_with_insensitive(".f03") || 1125 FileName.ends_with_insensitive(".f08")) 1126 LangID = XCOFF::TB_Fortran; 1127 else 1128 LangID = XCOFF::TB_CPLUSPLUS; 1129 uint8_t CpuID; 1130 if (is64Bit()) 1131 CpuID = XCOFF::TCPU_PPC64; 1132 else 1133 CpuID = XCOFF::TCPU_COM; 1134 1135 writeSymbolEntry(FileName, /*Value=*/0, XCOFF::ReservedSectionNum::N_DEBUG, 1136 /*SymbolType=*/(LangID << 8) | CpuID, XCOFF::C_FILE, 1137 /*NumberOfAuxEntries=*/0); 1138 } 1139 1140 if (CInfoSymSection.Entry) 1141 writeSymbolEntry(CInfoSymSection.Entry->Name, CInfoSymSection.Entry->Offset, 1142 CInfoSymSection.Index, 1143 /*SymbolType=*/0, XCOFF::C_INFO, 1144 /*NumberOfAuxEntries=*/0); 1145 1146 for (const auto &Csect : UndefinedCsects) { 1147 writeSymbolEntryForControlSection(Csect, XCOFF::ReservedSectionNum::N_UNDEF, 1148 Csect.MCSec->getStorageClass()); 1149 } 1150 1151 for (const auto *Section : Sections) { 1152 if (Section->Index == SectionEntry::UninitializedIndex) 1153 // Nothing to write for this Section. 1154 continue; 1155 1156 for (const auto *Group : Section->Groups) { 1157 if (Group->empty()) 1158 continue; 1159 1160 const int16_t SectionIndex = Section->Index; 1161 for (const auto &Csect : *Group) { 1162 // Write out the control section first and then each symbol in it. 1163 writeSymbolEntryForControlSection(Csect, SectionIndex, 1164 Csect.MCSec->getStorageClass()); 1165 1166 for (const auto &Sym : Csect.Syms) 1167 writeSymbolEntryForCsectMemberLabel( 1168 Sym, Csect, SectionIndex, Layout.getSymbolOffset(*(Sym.MCSym))); 1169 } 1170 } 1171 } 1172 1173 for (const auto &DwarfSection : DwarfSections) 1174 writeSymbolEntryForDwarfSection(*DwarfSection.DwarfSect, 1175 DwarfSection.Index); 1176 } 1177 1178 void XCOFFObjectWriter::finalizeRelocationInfo(SectionEntry *Sec, 1179 uint64_t RelCount) { 1180 // Handles relocation field overflows in an XCOFF32 file. An XCOFF64 file 1181 // may not contain an overflow section header. 1182 if (!is64Bit() && (RelCount >= static_cast<uint32_t>(XCOFF::RelocOverflow))) { 1183 // Generate an overflow section header. 1184 SectionEntry SecEntry(".ovrflo", XCOFF::STYP_OVRFLO); 1185 1186 // This field specifies the file section number of the section header that 1187 // overflowed. 1188 SecEntry.RelocationCount = Sec->Index; 1189 1190 // This field specifies the number of relocation entries actually 1191 // required. 1192 SecEntry.Address = RelCount; 1193 SecEntry.Index = ++SectionCount; 1194 OverflowSections.push_back(std::move(SecEntry)); 1195 1196 // The field in the primary section header is always 65535 1197 // (XCOFF::RelocOverflow). 1198 Sec->RelocationCount = XCOFF::RelocOverflow; 1199 } else { 1200 Sec->RelocationCount = RelCount; 1201 } 1202 } 1203 1204 void XCOFFObjectWriter::calcOffsetToRelocations(SectionEntry *Sec, 1205 uint64_t &RawPointer) { 1206 if (!Sec->RelocationCount) 1207 return; 1208 1209 Sec->FileOffsetToRelocations = RawPointer; 1210 uint64_t RelocationSizeInSec = 0; 1211 if (!is64Bit() && 1212 Sec->RelocationCount == static_cast<uint32_t>(XCOFF::RelocOverflow)) { 1213 // Find its corresponding overflow section. 1214 for (auto &OverflowSec : OverflowSections) { 1215 if (OverflowSec.RelocationCount == static_cast<uint32_t>(Sec->Index)) { 1216 RelocationSizeInSec = 1217 OverflowSec.Address * XCOFF::RelocationSerializationSize32; 1218 1219 // This field must have the same values as in the corresponding 1220 // primary section header. 1221 OverflowSec.FileOffsetToRelocations = Sec->FileOffsetToRelocations; 1222 } 1223 } 1224 assert(RelocationSizeInSec && "Overflow section header doesn't exist."); 1225 } else { 1226 RelocationSizeInSec = Sec->RelocationCount * 1227 (is64Bit() ? XCOFF::RelocationSerializationSize64 1228 : XCOFF::RelocationSerializationSize32); 1229 } 1230 1231 RawPointer += RelocationSizeInSec; 1232 if (RawPointer > MaxRawDataSize) 1233 report_fatal_error("Relocation data overflowed this object file."); 1234 } 1235 1236 void XCOFFObjectWriter::finalizeSectionInfo() { 1237 for (auto *Section : Sections) { 1238 if (Section->Index == SectionEntry::UninitializedIndex) 1239 // Nothing to record for this Section. 1240 continue; 1241 1242 uint64_t RelCount = 0; 1243 for (const auto *Group : Section->Groups) { 1244 if (Group->empty()) 1245 continue; 1246 1247 for (auto &Csect : *Group) 1248 RelCount += Csect.Relocations.size(); 1249 } 1250 finalizeRelocationInfo(Section, RelCount); 1251 } 1252 1253 for (auto &DwarfSection : DwarfSections) 1254 finalizeRelocationInfo(&DwarfSection, 1255 DwarfSection.DwarfSect->Relocations.size()); 1256 1257 // Calculate the RawPointer value for all headers. 1258 uint64_t RawPointer = 1259 (is64Bit() ? (XCOFF::FileHeaderSize64 + 1260 SectionCount * XCOFF::SectionHeaderSize64) 1261 : (XCOFF::FileHeaderSize32 + 1262 SectionCount * XCOFF::SectionHeaderSize32)) + 1263 auxiliaryHeaderSize(); 1264 1265 // Calculate the file offset to the section data. 1266 for (auto *Sec : Sections) { 1267 if (Sec->Index == SectionEntry::UninitializedIndex || Sec->IsVirtual) 1268 continue; 1269 1270 RawPointer = Sec->advanceFileOffset(MaxRawDataSize, RawPointer); 1271 } 1272 1273 if (!DwarfSections.empty()) { 1274 RawPointer += PaddingsBeforeDwarf; 1275 for (auto &DwarfSection : DwarfSections) { 1276 RawPointer = DwarfSection.advanceFileOffset(MaxRawDataSize, RawPointer); 1277 } 1278 } 1279 1280 if (hasExceptionSection()) 1281 RawPointer = ExceptionSection.advanceFileOffset(MaxRawDataSize, RawPointer); 1282 1283 if (CInfoSymSection.Entry) 1284 RawPointer = CInfoSymSection.advanceFileOffset(MaxRawDataSize, RawPointer); 1285 1286 for (auto *Sec : Sections) { 1287 if (Sec->Index != SectionEntry::UninitializedIndex) 1288 calcOffsetToRelocations(Sec, RawPointer); 1289 } 1290 1291 for (auto &DwarfSec : DwarfSections) 1292 calcOffsetToRelocations(&DwarfSec, RawPointer); 1293 1294 // TODO Error check that the number of symbol table entries fits in 32-bits 1295 // signed ... 1296 if (SymbolTableEntryCount) 1297 SymbolTableOffset = RawPointer; 1298 } 1299 1300 void XCOFFObjectWriter::addExceptionEntry( 1301 const MCSymbol *Symbol, const MCSymbol *Trap, unsigned LanguageCode, 1302 unsigned ReasonCode, unsigned FunctionSize, bool hasDebug) { 1303 // If a module had debug info, debugging is enabled and XCOFF emits the 1304 // exception auxilliary entry. 1305 if (hasDebug) 1306 ExceptionSection.isDebugEnabled = true; 1307 auto Entry = ExceptionSection.ExceptionTable.find(Symbol->getName()); 1308 if (Entry != ExceptionSection.ExceptionTable.end()) { 1309 Entry->second.Entries.push_back( 1310 ExceptionTableEntry(Trap, LanguageCode, ReasonCode)); 1311 return; 1312 } 1313 ExceptionInfo NewEntry; 1314 NewEntry.FunctionSymbol = Symbol; 1315 NewEntry.FunctionSize = FunctionSize; 1316 NewEntry.Entries.push_back( 1317 ExceptionTableEntry(Trap, LanguageCode, ReasonCode)); 1318 ExceptionSection.ExceptionTable.insert( 1319 std::pair<const StringRef, ExceptionInfo>(Symbol->getName(), NewEntry)); 1320 } 1321 1322 unsigned XCOFFObjectWriter::getExceptionSectionSize() { 1323 unsigned EntryNum = 0; 1324 1325 for (auto it = ExceptionSection.ExceptionTable.begin(); 1326 it != ExceptionSection.ExceptionTable.end(); ++it) 1327 // The size() gets +1 to account for the initial entry containing the 1328 // symbol table index. 1329 EntryNum += it->second.Entries.size() + 1; 1330 1331 return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64 1332 : XCOFF::ExceptionSectionEntrySize32); 1333 } 1334 1335 unsigned XCOFFObjectWriter::getExceptionOffset(const MCSymbol *Symbol) { 1336 unsigned EntryNum = 0; 1337 for (auto it = ExceptionSection.ExceptionTable.begin(); 1338 it != ExceptionSection.ExceptionTable.end(); ++it) { 1339 if (Symbol == it->second.FunctionSymbol) 1340 break; 1341 EntryNum += it->second.Entries.size() + 1; 1342 } 1343 return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64 1344 : XCOFF::ExceptionSectionEntrySize32); 1345 } 1346 1347 void XCOFFObjectWriter::addCInfoSymEntry(StringRef Name, StringRef Metadata) { 1348 assert(!CInfoSymSection.Entry && "Multiple entries are not supported"); 1349 CInfoSymSection.addEntry( 1350 std::make_unique<CInfoSymInfo>(Name.str(), Metadata.str())); 1351 } 1352 1353 void XCOFFObjectWriter::assignAddressesAndIndices(const MCAsmLayout &Layout) { 1354 // The symbol table starts with all the C_FILE symbols. 1355 uint32_t SymbolTableIndex = FileNames.size(); 1356 1357 if (CInfoSymSection.Entry) 1358 SymbolTableIndex++; 1359 1360 // Calculate indices for undefined symbols. 1361 for (auto &Csect : UndefinedCsects) { 1362 Csect.Size = 0; 1363 Csect.Address = 0; 1364 Csect.SymbolTableIndex = SymbolTableIndex; 1365 SymbolIndexMap[Csect.MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex; 1366 // 1 main and 1 auxiliary symbol table entry for each contained symbol. 1367 SymbolTableIndex += 2; 1368 } 1369 1370 // The address corrresponds to the address of sections and symbols in the 1371 // object file. We place the shared address 0 immediately after the 1372 // section header table. 1373 uint64_t Address = 0; 1374 // Section indices are 1-based in XCOFF. 1375 int32_t SectionIndex = 1; 1376 bool HasTDataSection = false; 1377 1378 for (auto *Section : Sections) { 1379 const bool IsEmpty = 1380 llvm::all_of(Section->Groups, 1381 [](const CsectGroup *Group) { return Group->empty(); }); 1382 if (IsEmpty) 1383 continue; 1384 1385 if (SectionIndex > MaxSectionIndex) 1386 report_fatal_error("Section index overflow!"); 1387 Section->Index = SectionIndex++; 1388 SectionCount++; 1389 1390 bool SectionAddressSet = false; 1391 // Reset the starting address to 0 for TData section. 1392 if (Section->Flags == XCOFF::STYP_TDATA) { 1393 Address = 0; 1394 HasTDataSection = true; 1395 } 1396 // Reset the starting address to 0 for TBSS section if the object file does 1397 // not contain TData Section. 1398 if ((Section->Flags == XCOFF::STYP_TBSS) && !HasTDataSection) 1399 Address = 0; 1400 1401 for (auto *Group : Section->Groups) { 1402 if (Group->empty()) 1403 continue; 1404 1405 for (auto &Csect : *Group) { 1406 const MCSectionXCOFF *MCSec = Csect.MCSec; 1407 Csect.Address = alignTo(Address, MCSec->getAlign()); 1408 Csect.Size = Layout.getSectionAddressSize(MCSec); 1409 Address = Csect.Address + Csect.Size; 1410 Csect.SymbolTableIndex = SymbolTableIndex; 1411 SymbolIndexMap[MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex; 1412 // 1 main and 1 auxiliary symbol table entry for the csect. 1413 SymbolTableIndex += 2; 1414 1415 for (auto &Sym : Csect.Syms) { 1416 bool hasExceptEntry = false; 1417 auto Entry = 1418 ExceptionSection.ExceptionTable.find(Sym.MCSym->getName()); 1419 if (Entry != ExceptionSection.ExceptionTable.end()) { 1420 hasExceptEntry = true; 1421 for (auto &TrapEntry : Entry->second.Entries) { 1422 TrapEntry.TrapAddress = Layout.getSymbolOffset(*(Sym.MCSym)) + 1423 TrapEntry.Trap->getOffset(); 1424 } 1425 } 1426 Sym.SymbolTableIndex = SymbolTableIndex; 1427 SymbolIndexMap[Sym.MCSym] = Sym.SymbolTableIndex; 1428 // 1 main and 1 auxiliary symbol table entry for each contained 1429 // symbol. For symbols with exception section entries, a function 1430 // auxilliary entry is needed, and on 64-bit XCOFF with debugging 1431 // enabled, an additional exception auxilliary entry is needed. 1432 SymbolTableIndex += 2; 1433 if (hasExceptionSection() && hasExceptEntry) { 1434 if (is64Bit() && ExceptionSection.isDebugEnabled) 1435 SymbolTableIndex += 2; 1436 else 1437 SymbolTableIndex += 1; 1438 } 1439 } 1440 } 1441 1442 if (!SectionAddressSet) { 1443 Section->Address = Group->front().Address; 1444 SectionAddressSet = true; 1445 } 1446 } 1447 1448 // Make sure the address of the next section aligned to 1449 // DefaultSectionAlign. 1450 Address = alignTo(Address, DefaultSectionAlign); 1451 Section->Size = Address - Section->Address; 1452 } 1453 1454 // Start to generate DWARF sections. Sections other than DWARF section use 1455 // DefaultSectionAlign as the default alignment, while DWARF sections have 1456 // their own alignments. If these two alignments are not the same, we need 1457 // some paddings here and record the paddings bytes for FileOffsetToData 1458 // calculation. 1459 if (!DwarfSections.empty()) 1460 PaddingsBeforeDwarf = 1461 alignTo(Address, 1462 (*DwarfSections.begin()).DwarfSect->MCSec->getAlign()) - 1463 Address; 1464 1465 DwarfSectionEntry *LastDwarfSection = nullptr; 1466 for (auto &DwarfSection : DwarfSections) { 1467 assert((SectionIndex <= MaxSectionIndex) && "Section index overflow!"); 1468 1469 XCOFFSection &DwarfSect = *DwarfSection.DwarfSect; 1470 const MCSectionXCOFF *MCSec = DwarfSect.MCSec; 1471 1472 // Section index. 1473 DwarfSection.Index = SectionIndex++; 1474 SectionCount++; 1475 1476 // Symbol index. 1477 DwarfSect.SymbolTableIndex = SymbolTableIndex; 1478 SymbolIndexMap[MCSec->getQualNameSymbol()] = DwarfSect.SymbolTableIndex; 1479 // 1 main and 1 auxiliary symbol table entry for the csect. 1480 SymbolTableIndex += 2; 1481 1482 // Section address. Make it align to section alignment. 1483 // We use address 0 for DWARF sections' Physical and Virtual Addresses. 1484 // This address is used to tell where is the section in the final object. 1485 // See writeSectionForDwarfSectionEntry(). 1486 DwarfSection.Address = DwarfSect.Address = 1487 alignTo(Address, MCSec->getAlign()); 1488 1489 // Section size. 1490 // For DWARF section, we must use the real size which may be not aligned. 1491 DwarfSection.Size = DwarfSect.Size = Layout.getSectionAddressSize(MCSec); 1492 1493 Address = DwarfSection.Address + DwarfSection.Size; 1494 1495 if (LastDwarfSection) 1496 LastDwarfSection->MemorySize = 1497 DwarfSection.Address - LastDwarfSection->Address; 1498 LastDwarfSection = &DwarfSection; 1499 } 1500 if (LastDwarfSection) { 1501 // Make the final DWARF section address align to the default section 1502 // alignment for follow contents. 1503 Address = alignTo(LastDwarfSection->Address + LastDwarfSection->Size, 1504 DefaultSectionAlign); 1505 LastDwarfSection->MemorySize = Address - LastDwarfSection->Address; 1506 } 1507 if (hasExceptionSection()) { 1508 ExceptionSection.Index = SectionIndex++; 1509 SectionCount++; 1510 ExceptionSection.Address = 0; 1511 ExceptionSection.Size = getExceptionSectionSize(); 1512 Address += ExceptionSection.Size; 1513 Address = alignTo(Address, DefaultSectionAlign); 1514 } 1515 1516 if (CInfoSymSection.Entry) { 1517 CInfoSymSection.Index = SectionIndex++; 1518 SectionCount++; 1519 CInfoSymSection.Address = 0; 1520 Address += CInfoSymSection.Size; 1521 Address = alignTo(Address, DefaultSectionAlign); 1522 } 1523 1524 SymbolTableEntryCount = SymbolTableIndex; 1525 } 1526 1527 void XCOFFObjectWriter::writeSectionForControlSectionEntry( 1528 const MCAssembler &Asm, const MCAsmLayout &Layout, 1529 const CsectSectionEntry &CsectEntry, uint64_t &CurrentAddressLocation) { 1530 // Nothing to write for this Section. 1531 if (CsectEntry.Index == SectionEntry::UninitializedIndex) 1532 return; 1533 1534 // There could be a gap (without corresponding zero padding) between 1535 // sections. 1536 // There could be a gap (without corresponding zero padding) between 1537 // sections. 1538 assert(((CurrentAddressLocation <= CsectEntry.Address) || 1539 (CsectEntry.Flags == XCOFF::STYP_TDATA) || 1540 (CsectEntry.Flags == XCOFF::STYP_TBSS)) && 1541 "CurrentAddressLocation should be less than or equal to section " 1542 "address if the section is not TData or TBSS."); 1543 1544 CurrentAddressLocation = CsectEntry.Address; 1545 1546 // For virtual sections, nothing to write. But need to increase 1547 // CurrentAddressLocation for later sections like DWARF section has a correct 1548 // writing location. 1549 if (CsectEntry.IsVirtual) { 1550 CurrentAddressLocation += CsectEntry.Size; 1551 return; 1552 } 1553 1554 for (const auto &Group : CsectEntry.Groups) { 1555 for (const auto &Csect : *Group) { 1556 if (uint32_t PaddingSize = Csect.Address - CurrentAddressLocation) 1557 W.OS.write_zeros(PaddingSize); 1558 if (Csect.Size) 1559 Asm.writeSectionData(W.OS, Csect.MCSec, Layout); 1560 CurrentAddressLocation = Csect.Address + Csect.Size; 1561 } 1562 } 1563 1564 // The size of the tail padding in a section is the end virtual address of 1565 // the current section minus the the end virtual address of the last csect 1566 // in that section. 1567 if (uint64_t PaddingSize = 1568 CsectEntry.Address + CsectEntry.Size - CurrentAddressLocation) { 1569 W.OS.write_zeros(PaddingSize); 1570 CurrentAddressLocation += PaddingSize; 1571 } 1572 } 1573 1574 void XCOFFObjectWriter::writeSectionForDwarfSectionEntry( 1575 const MCAssembler &Asm, const MCAsmLayout &Layout, 1576 const DwarfSectionEntry &DwarfEntry, uint64_t &CurrentAddressLocation) { 1577 // There could be a gap (without corresponding zero padding) between 1578 // sections. For example DWARF section alignment is bigger than 1579 // DefaultSectionAlign. 1580 assert(CurrentAddressLocation <= DwarfEntry.Address && 1581 "CurrentAddressLocation should be less than or equal to section " 1582 "address."); 1583 1584 if (uint64_t PaddingSize = DwarfEntry.Address - CurrentAddressLocation) 1585 W.OS.write_zeros(PaddingSize); 1586 1587 if (DwarfEntry.Size) 1588 Asm.writeSectionData(W.OS, DwarfEntry.DwarfSect->MCSec, Layout); 1589 1590 CurrentAddressLocation = DwarfEntry.Address + DwarfEntry.Size; 1591 1592 // DWARF section size is not aligned to DefaultSectionAlign. 1593 // Make sure CurrentAddressLocation is aligned to DefaultSectionAlign. 1594 uint32_t Mod = CurrentAddressLocation % DefaultSectionAlign; 1595 uint32_t TailPaddingSize = Mod ? DefaultSectionAlign - Mod : 0; 1596 if (TailPaddingSize) 1597 W.OS.write_zeros(TailPaddingSize); 1598 1599 CurrentAddressLocation += TailPaddingSize; 1600 } 1601 1602 void XCOFFObjectWriter::writeSectionForExceptionSectionEntry( 1603 const MCAssembler &Asm, const MCAsmLayout &Layout, 1604 ExceptionSectionEntry &ExceptionEntry, uint64_t &CurrentAddressLocation) { 1605 for (auto it = ExceptionEntry.ExceptionTable.begin(); 1606 it != ExceptionEntry.ExceptionTable.end(); it++) { 1607 // For every symbol that has exception entries, you must start the entries 1608 // with an initial symbol table index entry 1609 W.write<uint32_t>(SymbolIndexMap[it->second.FunctionSymbol]); 1610 if (is64Bit()) { 1611 // 4-byte padding on 64-bit. 1612 W.OS.write_zeros(4); 1613 } 1614 W.OS.write_zeros(2); 1615 for (auto &TrapEntry : it->second.Entries) { 1616 writeWord(TrapEntry.TrapAddress); 1617 W.write<uint8_t>(TrapEntry.Lang); 1618 W.write<uint8_t>(TrapEntry.Reason); 1619 } 1620 } 1621 1622 CurrentAddressLocation += getExceptionSectionSize(); 1623 } 1624 1625 void XCOFFObjectWriter::writeSectionForCInfoSymSectionEntry( 1626 const MCAssembler &Asm, const MCAsmLayout &Layout, 1627 CInfoSymSectionEntry &CInfoSymEntry, uint64_t &CurrentAddressLocation) { 1628 if (!CInfoSymSection.Entry) 1629 return; 1630 1631 constexpr int WordSize = sizeof(uint32_t); 1632 std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymEntry.Entry; 1633 const std::string &Metadata = CISI->Metadata; 1634 1635 // Emit the 4-byte length of the metadata. 1636 W.write<uint32_t>(Metadata.size()); 1637 1638 if (Metadata.size() == 0) 1639 return; 1640 1641 // Write out the payload one word at a time. 1642 size_t Index = 0; 1643 while (Index + WordSize <= Metadata.size()) { 1644 uint32_t NextWord = 1645 llvm::support::endian::read32be(Metadata.data() + Index); 1646 W.write<uint32_t>(NextWord); 1647 Index += WordSize; 1648 } 1649 1650 // If there is padding, we have at least one byte of payload left to emit. 1651 if (CISI->paddingSize()) { 1652 std::array<uint8_t, WordSize> LastWord = {0}; 1653 ::memcpy(LastWord.data(), Metadata.data() + Index, Metadata.size() - Index); 1654 W.write<uint32_t>(llvm::support::endian::read32be(LastWord.data())); 1655 } 1656 1657 CurrentAddressLocation += CISI->size(); 1658 } 1659 1660 // Takes the log base 2 of the alignment and shifts the result into the 5 most 1661 // significant bits of a byte, then or's in the csect type into the least 1662 // significant 3 bits. 1663 uint8_t getEncodedType(const MCSectionXCOFF *Sec) { 1664 unsigned Log2Align = Log2(Sec->getAlign()); 1665 // Result is a number in the range [0, 31] which fits in the 5 least 1666 // significant bits. Shift this value into the 5 most significant bits, and 1667 // bitwise-or in the csect type. 1668 uint8_t EncodedAlign = Log2Align << 3; 1669 return EncodedAlign | Sec->getCSectType(); 1670 } 1671 1672 } // end anonymous namespace 1673 1674 std::unique_ptr<MCObjectWriter> 1675 llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, 1676 raw_pwrite_stream &OS) { 1677 return std::make_unique<XCOFFObjectWriter>(std::move(MOTW), OS); 1678 } 1679