1 //===- lib/MC/WasmObjectWriter.cpp - Wasm File Writer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements Wasm object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/BinaryFormat/Wasm.h" 15 #include "llvm/BinaryFormat/WasmTraits.h" 16 #include "llvm/Config/llvm-config.h" 17 #include "llvm/MC/MCAsmBackend.h" 18 #include "llvm/MC/MCAssembler.h" 19 #include "llvm/MC/MCContext.h" 20 #include "llvm/MC/MCExpr.h" 21 #include "llvm/MC/MCFixupKindInfo.h" 22 #include "llvm/MC/MCObjectWriter.h" 23 #include "llvm/MC/MCSectionWasm.h" 24 #include "llvm/MC/MCSymbolWasm.h" 25 #include "llvm/MC/MCValue.h" 26 #include "llvm/MC/MCWasmObjectWriter.h" 27 #include "llvm/Support/Casting.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/EndianStream.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/LEB128.h" 32 #include <vector> 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "mc" 37 38 namespace { 39 40 // When we create the indirect function table we start at 1, so that there is 41 // and empty slot at 0 and therefore calling a null function pointer will trap. 42 static const uint32_t InitialTableOffset = 1; 43 44 // For patching purposes, we need to remember where each section starts, both 45 // for patching up the section size field, and for patching up references to 46 // locations within the section. 47 struct SectionBookkeeping { 48 // Where the size of the section is written. 49 uint64_t SizeOffset; 50 // Where the section header ends (without custom section name). 51 uint64_t PayloadOffset; 52 // Where the contents of the section starts. 53 uint64_t ContentsOffset; 54 uint32_t Index; 55 }; 56 57 // A wasm data segment. A wasm binary contains only a single data section 58 // but that can contain many segments, each with their own virtual location 59 // in memory. Each MCSection data created by llvm is modeled as its own 60 // wasm data segment. 61 struct WasmDataSegment { 62 MCSectionWasm *Section; 63 StringRef Name; 64 uint32_t InitFlags; 65 uint64_t Offset; 66 uint32_t Alignment; 67 uint32_t LinkingFlags; 68 SmallVector<char, 4> Data; 69 }; 70 71 // A wasm function to be written into the function section. 72 struct WasmFunction { 73 uint32_t SigIndex; 74 MCSection *Section; 75 }; 76 77 // A wasm global to be written into the global section. 78 struct WasmGlobal { 79 wasm::WasmGlobalType Type; 80 uint64_t InitialValue; 81 }; 82 83 // Information about a single item which is part of a COMDAT. For each data 84 // segment or function which is in the COMDAT, there is a corresponding 85 // WasmComdatEntry. 86 struct WasmComdatEntry { 87 unsigned Kind; 88 uint32_t Index; 89 }; 90 91 // Information about a single relocation. 92 struct WasmRelocationEntry { 93 uint64_t Offset; // Where is the relocation. 94 const MCSymbolWasm *Symbol; // The symbol to relocate with. 95 int64_t Addend; // A value to add to the symbol. 96 unsigned Type; // The type of the relocation. 97 const MCSectionWasm *FixupSection; // The section the relocation is targeting. 98 99 WasmRelocationEntry(uint64_t Offset, const MCSymbolWasm *Symbol, 100 int64_t Addend, unsigned Type, 101 const MCSectionWasm *FixupSection) 102 : Offset(Offset), Symbol(Symbol), Addend(Addend), Type(Type), 103 FixupSection(FixupSection) {} 104 105 bool hasAddend() const { return wasm::relocTypeHasAddend(Type); } 106 107 void print(raw_ostream &Out) const { 108 Out << wasm::relocTypetoString(Type) << " Off=" << Offset 109 << ", Sym=" << *Symbol << ", Addend=" << Addend 110 << ", FixupSection=" << FixupSection->getName(); 111 } 112 113 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 114 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 115 #endif 116 }; 117 118 static const uint32_t InvalidIndex = -1; 119 120 struct WasmCustomSection { 121 122 StringRef Name; 123 MCSectionWasm *Section; 124 125 uint32_t OutputContentsOffset = 0; 126 uint32_t OutputIndex = InvalidIndex; 127 128 WasmCustomSection(StringRef Name, MCSectionWasm *Section) 129 : Name(Name), Section(Section) {} 130 }; 131 132 #if !defined(NDEBUG) 133 raw_ostream &operator<<(raw_ostream &OS, const WasmRelocationEntry &Rel) { 134 Rel.print(OS); 135 return OS; 136 } 137 #endif 138 139 // Write Value as an (unsigned) LEB value at offset Offset in Stream, padded 140 // to allow patching. 141 template <typename T, int W> 142 void writePatchableULEB(raw_pwrite_stream &Stream, T Value, uint64_t Offset) { 143 uint8_t Buffer[W]; 144 unsigned SizeLen = encodeULEB128(Value, Buffer, W); 145 assert(SizeLen == W); 146 Stream.pwrite((char *)Buffer, SizeLen, Offset); 147 } 148 149 // Write Value as an signed LEB value at offset Offset in Stream, padded 150 // to allow patching. 151 template <typename T, int W> 152 void writePatchableSLEB(raw_pwrite_stream &Stream, T Value, uint64_t Offset) { 153 uint8_t Buffer[W]; 154 unsigned SizeLen = encodeSLEB128(Value, Buffer, W); 155 assert(SizeLen == W); 156 Stream.pwrite((char *)Buffer, SizeLen, Offset); 157 } 158 159 static void writePatchableU32(raw_pwrite_stream &Stream, uint32_t Value, 160 uint64_t Offset) { 161 writePatchableULEB<uint32_t, 5>(Stream, Value, Offset); 162 } 163 164 static void writePatchableS32(raw_pwrite_stream &Stream, int32_t Value, 165 uint64_t Offset) { 166 writePatchableSLEB<int32_t, 5>(Stream, Value, Offset); 167 } 168 169 static void writePatchableU64(raw_pwrite_stream &Stream, uint64_t Value, 170 uint64_t Offset) { 171 writePatchableSLEB<uint64_t, 10>(Stream, Value, Offset); 172 } 173 174 static void writePatchableS64(raw_pwrite_stream &Stream, int64_t Value, 175 uint64_t Offset) { 176 writePatchableSLEB<int64_t, 10>(Stream, Value, Offset); 177 } 178 179 // Write Value as a plain integer value at offset Offset in Stream. 180 static void patchI32(raw_pwrite_stream &Stream, uint32_t Value, 181 uint64_t Offset) { 182 uint8_t Buffer[4]; 183 support::endian::write32le(Buffer, Value); 184 Stream.pwrite((char *)Buffer, sizeof(Buffer), Offset); 185 } 186 187 static void patchI64(raw_pwrite_stream &Stream, uint64_t Value, 188 uint64_t Offset) { 189 uint8_t Buffer[8]; 190 support::endian::write64le(Buffer, Value); 191 Stream.pwrite((char *)Buffer, sizeof(Buffer), Offset); 192 } 193 194 bool isDwoSection(const MCSection &Sec) { 195 return Sec.getName().ends_with(".dwo"); 196 } 197 198 class WasmObjectWriter : public MCObjectWriter { 199 support::endian::Writer *W = nullptr; 200 201 /// The target specific Wasm writer instance. 202 std::unique_ptr<MCWasmObjectTargetWriter> TargetObjectWriter; 203 204 // Relocations for fixing up references in the code section. 205 std::vector<WasmRelocationEntry> CodeRelocations; 206 // Relocations for fixing up references in the data section. 207 std::vector<WasmRelocationEntry> DataRelocations; 208 209 // Index values to use for fixing up call_indirect type indices. 210 // Maps function symbols to the index of the type of the function 211 DenseMap<const MCSymbolWasm *, uint32_t> TypeIndices; 212 // Maps function symbols to the table element index space. Used 213 // for TABLE_INDEX relocation types (i.e. address taken functions). 214 DenseMap<const MCSymbolWasm *, uint32_t> TableIndices; 215 // Maps function/global/table symbols to the 216 // function/global/table/tag/section index space. 217 DenseMap<const MCSymbolWasm *, uint32_t> WasmIndices; 218 DenseMap<const MCSymbolWasm *, uint32_t> GOTIndices; 219 // Maps data symbols to the Wasm segment and offset/size with the segment. 220 DenseMap<const MCSymbolWasm *, wasm::WasmDataReference> DataLocations; 221 222 // Stores output data (index, relocations, content offset) for custom 223 // section. 224 std::vector<WasmCustomSection> CustomSections; 225 std::unique_ptr<WasmCustomSection> ProducersSection; 226 std::unique_ptr<WasmCustomSection> TargetFeaturesSection; 227 // Relocations for fixing up references in the custom sections. 228 DenseMap<const MCSectionWasm *, std::vector<WasmRelocationEntry>> 229 CustomSectionsRelocations; 230 231 // Map from section to defining function symbol. 232 DenseMap<const MCSection *, const MCSymbol *> SectionFunctions; 233 234 DenseMap<wasm::WasmSignature, uint32_t> SignatureIndices; 235 SmallVector<wasm::WasmSignature, 4> Signatures; 236 SmallVector<WasmDataSegment, 4> DataSegments; 237 unsigned NumFunctionImports = 0; 238 unsigned NumGlobalImports = 0; 239 unsigned NumTableImports = 0; 240 unsigned NumTagImports = 0; 241 uint32_t SectionCount = 0; 242 243 enum class DwoMode { 244 AllSections, 245 NonDwoOnly, 246 DwoOnly, 247 }; 248 bool IsSplitDwarf = false; 249 raw_pwrite_stream *OS = nullptr; 250 raw_pwrite_stream *DwoOS = nullptr; 251 252 // TargetObjectWriter wranppers. 253 bool is64Bit() const { return TargetObjectWriter->is64Bit(); } 254 bool isEmscripten() const { return TargetObjectWriter->isEmscripten(); } 255 256 void startSection(SectionBookkeeping &Section, unsigned SectionId); 257 void startCustomSection(SectionBookkeeping &Section, StringRef Name); 258 void endSection(SectionBookkeeping &Section); 259 260 public: 261 WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 262 raw_pwrite_stream &OS_) 263 : TargetObjectWriter(std::move(MOTW)), OS(&OS_) {} 264 265 WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 266 raw_pwrite_stream &OS_, raw_pwrite_stream &DwoOS_) 267 : TargetObjectWriter(std::move(MOTW)), IsSplitDwarf(true), OS(&OS_), 268 DwoOS(&DwoOS_) {} 269 270 private: 271 void reset() override { 272 CodeRelocations.clear(); 273 DataRelocations.clear(); 274 TypeIndices.clear(); 275 WasmIndices.clear(); 276 GOTIndices.clear(); 277 TableIndices.clear(); 278 DataLocations.clear(); 279 CustomSections.clear(); 280 ProducersSection.reset(); 281 TargetFeaturesSection.reset(); 282 CustomSectionsRelocations.clear(); 283 SignatureIndices.clear(); 284 Signatures.clear(); 285 DataSegments.clear(); 286 SectionFunctions.clear(); 287 NumFunctionImports = 0; 288 NumGlobalImports = 0; 289 NumTableImports = 0; 290 MCObjectWriter::reset(); 291 } 292 293 void writeHeader(const MCAssembler &Asm); 294 295 void recordRelocation(MCAssembler &Asm, const MCFragment *Fragment, 296 const MCFixup &Fixup, MCValue Target, 297 uint64_t &FixedValue) override; 298 299 void executePostLayoutBinding(MCAssembler &Asm) override; 300 void prepareImports(SmallVectorImpl<wasm::WasmImport> &Imports, 301 MCAssembler &Asm); 302 uint64_t writeObject(MCAssembler &Asm) override; 303 304 uint64_t writeOneObject(MCAssembler &Asm, DwoMode Mode); 305 306 void writeString(const StringRef Str) { 307 encodeULEB128(Str.size(), W->OS); 308 W->OS << Str; 309 } 310 311 void writeStringWithAlignment(const StringRef Str, unsigned Alignment); 312 313 void writeI32(int32_t val) { 314 char Buffer[4]; 315 support::endian::write32le(Buffer, val); 316 W->OS.write(Buffer, sizeof(Buffer)); 317 } 318 319 void writeI64(int64_t val) { 320 char Buffer[8]; 321 support::endian::write64le(Buffer, val); 322 W->OS.write(Buffer, sizeof(Buffer)); 323 } 324 325 void writeValueType(wasm::ValType Ty) { W->OS << static_cast<char>(Ty); } 326 327 void writeTypeSection(ArrayRef<wasm::WasmSignature> Signatures); 328 void writeImportSection(ArrayRef<wasm::WasmImport> Imports, uint64_t DataSize, 329 uint32_t NumElements); 330 void writeFunctionSection(ArrayRef<WasmFunction> Functions); 331 void writeExportSection(ArrayRef<wasm::WasmExport> Exports); 332 void writeElemSection(const MCSymbolWasm *IndirectFunctionTable, 333 ArrayRef<uint32_t> TableElems); 334 void writeDataCountSection(); 335 uint32_t writeCodeSection(const MCAssembler &Asm, 336 ArrayRef<WasmFunction> Functions); 337 uint32_t writeDataSection(const MCAssembler &Asm); 338 void writeTagSection(ArrayRef<uint32_t> TagTypes); 339 void writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals); 340 void writeTableSection(ArrayRef<wasm::WasmTable> Tables); 341 void writeRelocSection(uint32_t SectionIndex, StringRef Name, 342 std::vector<WasmRelocationEntry> &Relocations); 343 void writeLinkingMetaDataSection( 344 ArrayRef<wasm::WasmSymbolInfo> SymbolInfos, 345 ArrayRef<std::pair<uint16_t, uint32_t>> InitFuncs, 346 const std::map<StringRef, std::vector<WasmComdatEntry>> &Comdats); 347 void writeCustomSection(WasmCustomSection &CustomSection, 348 const MCAssembler &Asm); 349 void writeCustomRelocSections(); 350 351 uint64_t getProvisionalValue(const MCAssembler &Asm, 352 const WasmRelocationEntry &RelEntry); 353 void applyRelocations(ArrayRef<WasmRelocationEntry> Relocations, 354 uint64_t ContentsOffset, const MCAssembler &Asm); 355 356 uint32_t getRelocationIndexValue(const WasmRelocationEntry &RelEntry); 357 uint32_t getFunctionType(const MCSymbolWasm &Symbol); 358 uint32_t getTagType(const MCSymbolWasm &Symbol); 359 void registerFunctionType(const MCSymbolWasm &Symbol); 360 void registerTagType(const MCSymbolWasm &Symbol); 361 }; 362 363 } // end anonymous namespace 364 365 // Write out a section header and a patchable section size field. 366 void WasmObjectWriter::startSection(SectionBookkeeping &Section, 367 unsigned SectionId) { 368 LLVM_DEBUG(dbgs() << "startSection " << SectionId << "\n"); 369 W->OS << char(SectionId); 370 371 Section.SizeOffset = W->OS.tell(); 372 373 // The section size. We don't know the size yet, so reserve enough space 374 // for any 32-bit value; we'll patch it later. 375 encodeULEB128(0, W->OS, 5); 376 377 // The position where the section starts, for measuring its size. 378 Section.ContentsOffset = W->OS.tell(); 379 Section.PayloadOffset = W->OS.tell(); 380 Section.Index = SectionCount++; 381 } 382 383 // Write a string with extra paddings for trailing alignment 384 // TODO: support alignment at asm and llvm level? 385 void WasmObjectWriter::writeStringWithAlignment(const StringRef Str, 386 unsigned Alignment) { 387 388 // Calculate the encoded size of str length and add pads based on it and 389 // alignment. 390 raw_null_ostream NullOS; 391 uint64_t StrSizeLength = encodeULEB128(Str.size(), NullOS); 392 uint64_t Offset = W->OS.tell() + StrSizeLength + Str.size(); 393 uint64_t Paddings = offsetToAlignment(Offset, Align(Alignment)); 394 Offset += Paddings; 395 396 // LEB128 greater than 5 bytes is invalid 397 assert((StrSizeLength + Paddings) <= 5 && "too long string to align"); 398 399 encodeSLEB128(Str.size(), W->OS, StrSizeLength + Paddings); 400 W->OS << Str; 401 402 assert(W->OS.tell() == Offset && "invalid padding"); 403 } 404 405 void WasmObjectWriter::startCustomSection(SectionBookkeeping &Section, 406 StringRef Name) { 407 LLVM_DEBUG(dbgs() << "startCustomSection " << Name << "\n"); 408 startSection(Section, wasm::WASM_SEC_CUSTOM); 409 410 // The position where the section header ends, for measuring its size. 411 Section.PayloadOffset = W->OS.tell(); 412 413 // Custom sections in wasm also have a string identifier. 414 if (Name != "__clangast") { 415 writeString(Name); 416 } else { 417 // The on-disk hashtable in clangast needs to be aligned by 4 bytes. 418 writeStringWithAlignment(Name, 4); 419 } 420 421 // The position where the custom section starts. 422 Section.ContentsOffset = W->OS.tell(); 423 } 424 425 // Now that the section is complete and we know how big it is, patch up the 426 // section size field at the start of the section. 427 void WasmObjectWriter::endSection(SectionBookkeeping &Section) { 428 uint64_t Size = W->OS.tell(); 429 // /dev/null doesn't support seek/tell and can report offset of 0. 430 // Simply skip this patching in that case. 431 if (!Size) 432 return; 433 434 Size -= Section.PayloadOffset; 435 if (uint32_t(Size) != Size) 436 report_fatal_error("section size does not fit in a uint32_t"); 437 438 LLVM_DEBUG(dbgs() << "endSection size=" << Size << "\n"); 439 440 // Write the final section size to the payload_len field, which follows 441 // the section id byte. 442 writePatchableU32(static_cast<raw_pwrite_stream &>(W->OS), Size, 443 Section.SizeOffset); 444 } 445 446 // Emit the Wasm header. 447 void WasmObjectWriter::writeHeader(const MCAssembler &Asm) { 448 W->OS.write(wasm::WasmMagic, sizeof(wasm::WasmMagic)); 449 W->write<uint32_t>(wasm::WasmVersion); 450 } 451 452 void WasmObjectWriter::executePostLayoutBinding(MCAssembler &Asm) { 453 // Some compilation units require the indirect function table to be present 454 // but don't explicitly reference it. This is the case for call_indirect 455 // without the reference-types feature, and also function bitcasts in all 456 // cases. In those cases the __indirect_function_table has the 457 // WASM_SYMBOL_NO_STRIP attribute. Here we make sure this symbol makes it to 458 // the assembler, if needed. 459 if (auto *Sym = Asm.getContext().lookupSymbol("__indirect_function_table")) { 460 const auto *WasmSym = static_cast<const MCSymbolWasm *>(Sym); 461 if (WasmSym->isNoStrip()) 462 Asm.registerSymbol(*Sym); 463 } 464 465 // Build a map of sections to the function that defines them, for use 466 // in recordRelocation. 467 for (const MCSymbol &S : Asm.symbols()) { 468 const auto &WS = static_cast<const MCSymbolWasm &>(S); 469 if (WS.isDefined() && WS.isFunction() && !WS.isVariable()) { 470 const auto &Sec = static_cast<const MCSectionWasm &>(S.getSection()); 471 auto Pair = SectionFunctions.insert(std::make_pair(&Sec, &S)); 472 if (!Pair.second) 473 report_fatal_error("section already has a defining function: " + 474 Sec.getName()); 475 } 476 } 477 } 478 479 void WasmObjectWriter::recordRelocation(MCAssembler &Asm, 480 const MCFragment *Fragment, 481 const MCFixup &Fixup, MCValue Target, 482 uint64_t &FixedValue) { 483 // The WebAssembly backend should never generate FKF_IsPCRel fixups 484 assert(!(Asm.getBackend().getFixupKindInfo(Fixup.getKind()).Flags & 485 MCFixupKindInfo::FKF_IsPCRel)); 486 487 const auto &FixupSection = cast<MCSectionWasm>(*Fragment->getParent()); 488 uint64_t C = Target.getConstant(); 489 uint64_t FixupOffset = Asm.getFragmentOffset(*Fragment) + Fixup.getOffset(); 490 MCContext &Ctx = Asm.getContext(); 491 bool IsLocRel = false; 492 493 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 494 495 const auto &SymB = cast<MCSymbolWasm>(RefB->getSymbol()); 496 497 if (FixupSection.isText()) { 498 Ctx.reportError(Fixup.getLoc(), 499 Twine("symbol '") + SymB.getName() + 500 "' unsupported subtraction expression used in " 501 "relocation in code section."); 502 return; 503 } 504 505 if (SymB.isUndefined()) { 506 Ctx.reportError(Fixup.getLoc(), 507 Twine("symbol '") + SymB.getName() + 508 "' can not be undefined in a subtraction expression"); 509 return; 510 } 511 const MCSection &SecB = SymB.getSection(); 512 if (&SecB != &FixupSection) { 513 Ctx.reportError(Fixup.getLoc(), 514 Twine("symbol '") + SymB.getName() + 515 "' can not be placed in a different section"); 516 return; 517 } 518 IsLocRel = true; 519 C += FixupOffset - Asm.getSymbolOffset(SymB); 520 } 521 522 // We either rejected the fixup or folded B into C at this point. 523 const MCSymbolRefExpr *RefA = Target.getSymA(); 524 const auto *SymA = cast<MCSymbolWasm>(&RefA->getSymbol()); 525 526 // The .init_array isn't translated as data, so don't do relocations in it. 527 if (FixupSection.getName().starts_with(".init_array")) { 528 SymA->setUsedInInitArray(); 529 return; 530 } 531 532 if (SymA->isVariable()) { 533 const MCExpr *Expr = SymA->getVariableValue(); 534 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) 535 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) 536 llvm_unreachable("weakref used in reloc not yet implemented"); 537 } 538 539 // Put any constant offset in an addend. Offsets can be negative, and 540 // LLVM expects wrapping, in contrast to wasm's immediates which can't 541 // be negative and don't wrap. 542 FixedValue = 0; 543 544 unsigned Type = 545 TargetObjectWriter->getRelocType(Target, Fixup, FixupSection, IsLocRel); 546 547 // Absolute offset within a section or a function. 548 // Currently only supported for metadata sections. 549 // See: test/MC/WebAssembly/blockaddress.ll 550 if ((Type == wasm::R_WASM_FUNCTION_OFFSET_I32 || 551 Type == wasm::R_WASM_FUNCTION_OFFSET_I64 || 552 Type == wasm::R_WASM_SECTION_OFFSET_I32) && 553 SymA->isDefined()) { 554 // SymA can be a temp data symbol that represents a function (in which case 555 // it needs to be replaced by the section symbol), [XXX and it apparently 556 // later gets changed again to a func symbol?] or it can be a real 557 // function symbol, in which case it can be left as-is. 558 559 if (!FixupSection.isMetadata()) 560 report_fatal_error("relocations for function or section offsets are " 561 "only supported in metadata sections"); 562 563 const MCSymbol *SectionSymbol = nullptr; 564 const MCSection &SecA = SymA->getSection(); 565 if (SecA.isText()) { 566 auto SecSymIt = SectionFunctions.find(&SecA); 567 if (SecSymIt == SectionFunctions.end()) 568 report_fatal_error("section doesn\'t have defining symbol"); 569 SectionSymbol = SecSymIt->second; 570 } else { 571 SectionSymbol = SecA.getBeginSymbol(); 572 } 573 if (!SectionSymbol) 574 report_fatal_error("section symbol is required for relocation"); 575 576 C += Asm.getSymbolOffset(*SymA); 577 SymA = cast<MCSymbolWasm>(SectionSymbol); 578 } 579 580 if (Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB || 581 Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB64 || 582 Type == wasm::R_WASM_TABLE_INDEX_SLEB || 583 Type == wasm::R_WASM_TABLE_INDEX_SLEB64 || 584 Type == wasm::R_WASM_TABLE_INDEX_I32 || 585 Type == wasm::R_WASM_TABLE_INDEX_I64) { 586 // TABLE_INDEX relocs implicitly use the default indirect function table. 587 // We require the function table to have already been defined. 588 auto TableName = "__indirect_function_table"; 589 MCSymbolWasm *Sym = cast_or_null<MCSymbolWasm>(Ctx.lookupSymbol(TableName)); 590 if (!Sym) { 591 report_fatal_error("missing indirect function table symbol"); 592 } else { 593 if (!Sym->isFunctionTable()) 594 report_fatal_error("__indirect_function_table symbol has wrong type"); 595 // Ensure that __indirect_function_table reaches the output. 596 Sym->setNoStrip(); 597 Asm.registerSymbol(*Sym); 598 } 599 } 600 601 // Relocation other than R_WASM_TYPE_INDEX_LEB are required to be 602 // against a named symbol. 603 if (Type != wasm::R_WASM_TYPE_INDEX_LEB) { 604 if (SymA->getName().empty()) 605 report_fatal_error("relocations against un-named temporaries are not yet " 606 "supported by wasm"); 607 608 SymA->setUsedInReloc(); 609 } 610 611 switch (RefA->getKind()) { 612 case MCSymbolRefExpr::VK_GOT: 613 case MCSymbolRefExpr::VK_WASM_GOT_TLS: 614 SymA->setUsedInGOT(); 615 break; 616 default: 617 break; 618 } 619 620 WasmRelocationEntry Rec(FixupOffset, SymA, C, Type, &FixupSection); 621 LLVM_DEBUG(dbgs() << "WasmReloc: " << Rec << "\n"); 622 623 if (FixupSection.isWasmData()) { 624 DataRelocations.push_back(Rec); 625 } else if (FixupSection.isText()) { 626 CodeRelocations.push_back(Rec); 627 } else if (FixupSection.isMetadata()) { 628 CustomSectionsRelocations[&FixupSection].push_back(Rec); 629 } else { 630 llvm_unreachable("unexpected section type"); 631 } 632 } 633 634 // Compute a value to write into the code at the location covered 635 // by RelEntry. This value isn't used by the static linker; it just serves 636 // to make the object format more readable and more likely to be directly 637 // useable. 638 uint64_t 639 WasmObjectWriter::getProvisionalValue(const MCAssembler &Asm, 640 const WasmRelocationEntry &RelEntry) { 641 if ((RelEntry.Type == wasm::R_WASM_GLOBAL_INDEX_LEB || 642 RelEntry.Type == wasm::R_WASM_GLOBAL_INDEX_I32) && 643 !RelEntry.Symbol->isGlobal()) { 644 assert(GOTIndices.count(RelEntry.Symbol) > 0 && "symbol not found in GOT index space"); 645 return GOTIndices[RelEntry.Symbol]; 646 } 647 648 switch (RelEntry.Type) { 649 case wasm::R_WASM_TABLE_INDEX_REL_SLEB: 650 case wasm::R_WASM_TABLE_INDEX_REL_SLEB64: 651 case wasm::R_WASM_TABLE_INDEX_SLEB: 652 case wasm::R_WASM_TABLE_INDEX_SLEB64: 653 case wasm::R_WASM_TABLE_INDEX_I32: 654 case wasm::R_WASM_TABLE_INDEX_I64: { 655 // Provisional value is table address of the resolved symbol itself 656 const MCSymbolWasm *Base = 657 cast<MCSymbolWasm>(Asm.getBaseSymbol(*RelEntry.Symbol)); 658 assert(Base->isFunction()); 659 if (RelEntry.Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB || 660 RelEntry.Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB64) 661 return TableIndices[Base] - InitialTableOffset; 662 else 663 return TableIndices[Base]; 664 } 665 case wasm::R_WASM_TYPE_INDEX_LEB: 666 // Provisional value is same as the index 667 return getRelocationIndexValue(RelEntry); 668 case wasm::R_WASM_FUNCTION_INDEX_LEB: 669 case wasm::R_WASM_FUNCTION_INDEX_I32: 670 case wasm::R_WASM_GLOBAL_INDEX_LEB: 671 case wasm::R_WASM_GLOBAL_INDEX_I32: 672 case wasm::R_WASM_TAG_INDEX_LEB: 673 case wasm::R_WASM_TABLE_NUMBER_LEB: 674 // Provisional value is function/global/tag Wasm index 675 assert(WasmIndices.count(RelEntry.Symbol) > 0 && "symbol not found in wasm index space"); 676 return WasmIndices[RelEntry.Symbol]; 677 case wasm::R_WASM_FUNCTION_OFFSET_I32: 678 case wasm::R_WASM_FUNCTION_OFFSET_I64: 679 case wasm::R_WASM_SECTION_OFFSET_I32: { 680 if (!RelEntry.Symbol->isDefined()) 681 return 0; 682 const auto &Section = 683 static_cast<const MCSectionWasm &>(RelEntry.Symbol->getSection()); 684 return Section.getSectionOffset() + RelEntry.Addend; 685 } 686 case wasm::R_WASM_MEMORY_ADDR_LEB: 687 case wasm::R_WASM_MEMORY_ADDR_LEB64: 688 case wasm::R_WASM_MEMORY_ADDR_SLEB: 689 case wasm::R_WASM_MEMORY_ADDR_SLEB64: 690 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB: 691 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64: 692 case wasm::R_WASM_MEMORY_ADDR_I32: 693 case wasm::R_WASM_MEMORY_ADDR_I64: 694 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB: 695 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB64: 696 case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32: { 697 // Provisional value is address of the global plus the offset 698 // For undefined symbols, use zero 699 if (!RelEntry.Symbol->isDefined()) 700 return 0; 701 const wasm::WasmDataReference &SymRef = DataLocations[RelEntry.Symbol]; 702 const WasmDataSegment &Segment = DataSegments[SymRef.Segment]; 703 // Ignore overflow. LLVM allows address arithmetic to silently wrap. 704 return Segment.Offset + SymRef.Offset + RelEntry.Addend; 705 } 706 default: 707 llvm_unreachable("invalid relocation type"); 708 } 709 } 710 711 static void addData(SmallVectorImpl<char> &DataBytes, 712 MCSectionWasm &DataSection) { 713 LLVM_DEBUG(errs() << "addData: " << DataSection.getName() << "\n"); 714 715 DataBytes.resize(alignTo(DataBytes.size(), DataSection.getAlign())); 716 717 for (const MCFragment &Frag : DataSection) { 718 if (Frag.hasInstructions()) 719 report_fatal_error("only data supported in data sections"); 720 721 if (auto *Align = dyn_cast<MCAlignFragment>(&Frag)) { 722 if (Align->getValueSize() != 1) 723 report_fatal_error("only byte values supported for alignment"); 724 // If nops are requested, use zeros, as this is the data section. 725 uint8_t Value = Align->hasEmitNops() ? 0 : Align->getValue(); 726 uint64_t Size = 727 std::min<uint64_t>(alignTo(DataBytes.size(), Align->getAlignment()), 728 DataBytes.size() + Align->getMaxBytesToEmit()); 729 DataBytes.resize(Size, Value); 730 } else if (auto *Fill = dyn_cast<MCFillFragment>(&Frag)) { 731 int64_t NumValues; 732 if (!Fill->getNumValues().evaluateAsAbsolute(NumValues)) 733 llvm_unreachable("The fill should be an assembler constant"); 734 DataBytes.insert(DataBytes.end(), Fill->getValueSize() * NumValues, 735 Fill->getValue()); 736 } else if (auto *LEB = dyn_cast<MCLEBFragment>(&Frag)) { 737 const SmallVectorImpl<char> &Contents = LEB->getContents(); 738 llvm::append_range(DataBytes, Contents); 739 } else { 740 const auto &DataFrag = cast<MCDataFragment>(Frag); 741 const SmallVectorImpl<char> &Contents = DataFrag.getContents(); 742 llvm::append_range(DataBytes, Contents); 743 } 744 } 745 746 LLVM_DEBUG(dbgs() << "addData -> " << DataBytes.size() << "\n"); 747 } 748 749 uint32_t 750 WasmObjectWriter::getRelocationIndexValue(const WasmRelocationEntry &RelEntry) { 751 if (RelEntry.Type == wasm::R_WASM_TYPE_INDEX_LEB) { 752 if (!TypeIndices.count(RelEntry.Symbol)) 753 report_fatal_error("symbol not found in type index space: " + 754 RelEntry.Symbol->getName()); 755 return TypeIndices[RelEntry.Symbol]; 756 } 757 758 return RelEntry.Symbol->getIndex(); 759 } 760 761 // Apply the portions of the relocation records that we can handle ourselves 762 // directly. 763 void WasmObjectWriter::applyRelocations( 764 ArrayRef<WasmRelocationEntry> Relocations, uint64_t ContentsOffset, 765 const MCAssembler &Asm) { 766 auto &Stream = static_cast<raw_pwrite_stream &>(W->OS); 767 for (const WasmRelocationEntry &RelEntry : Relocations) { 768 uint64_t Offset = ContentsOffset + 769 RelEntry.FixupSection->getSectionOffset() + 770 RelEntry.Offset; 771 772 LLVM_DEBUG(dbgs() << "applyRelocation: " << RelEntry << "\n"); 773 uint64_t Value = getProvisionalValue(Asm, RelEntry); 774 775 switch (RelEntry.Type) { 776 case wasm::R_WASM_FUNCTION_INDEX_LEB: 777 case wasm::R_WASM_TYPE_INDEX_LEB: 778 case wasm::R_WASM_GLOBAL_INDEX_LEB: 779 case wasm::R_WASM_MEMORY_ADDR_LEB: 780 case wasm::R_WASM_TAG_INDEX_LEB: 781 case wasm::R_WASM_TABLE_NUMBER_LEB: 782 writePatchableU32(Stream, Value, Offset); 783 break; 784 case wasm::R_WASM_MEMORY_ADDR_LEB64: 785 writePatchableU64(Stream, Value, Offset); 786 break; 787 case wasm::R_WASM_TABLE_INDEX_I32: 788 case wasm::R_WASM_MEMORY_ADDR_I32: 789 case wasm::R_WASM_FUNCTION_OFFSET_I32: 790 case wasm::R_WASM_FUNCTION_INDEX_I32: 791 case wasm::R_WASM_SECTION_OFFSET_I32: 792 case wasm::R_WASM_GLOBAL_INDEX_I32: 793 case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32: 794 patchI32(Stream, Value, Offset); 795 break; 796 case wasm::R_WASM_TABLE_INDEX_I64: 797 case wasm::R_WASM_MEMORY_ADDR_I64: 798 case wasm::R_WASM_FUNCTION_OFFSET_I64: 799 patchI64(Stream, Value, Offset); 800 break; 801 case wasm::R_WASM_TABLE_INDEX_SLEB: 802 case wasm::R_WASM_TABLE_INDEX_REL_SLEB: 803 case wasm::R_WASM_MEMORY_ADDR_SLEB: 804 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB: 805 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB: 806 writePatchableS32(Stream, Value, Offset); 807 break; 808 case wasm::R_WASM_TABLE_INDEX_SLEB64: 809 case wasm::R_WASM_TABLE_INDEX_REL_SLEB64: 810 case wasm::R_WASM_MEMORY_ADDR_SLEB64: 811 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64: 812 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB64: 813 writePatchableS64(Stream, Value, Offset); 814 break; 815 default: 816 llvm_unreachable("invalid relocation type"); 817 } 818 } 819 } 820 821 void WasmObjectWriter::writeTypeSection( 822 ArrayRef<wasm::WasmSignature> Signatures) { 823 if (Signatures.empty()) 824 return; 825 826 SectionBookkeeping Section; 827 startSection(Section, wasm::WASM_SEC_TYPE); 828 829 encodeULEB128(Signatures.size(), W->OS); 830 831 for (const wasm::WasmSignature &Sig : Signatures) { 832 W->OS << char(wasm::WASM_TYPE_FUNC); 833 encodeULEB128(Sig.Params.size(), W->OS); 834 for (wasm::ValType Ty : Sig.Params) 835 writeValueType(Ty); 836 encodeULEB128(Sig.Returns.size(), W->OS); 837 for (wasm::ValType Ty : Sig.Returns) 838 writeValueType(Ty); 839 } 840 841 endSection(Section); 842 } 843 844 void WasmObjectWriter::writeImportSection(ArrayRef<wasm::WasmImport> Imports, 845 uint64_t DataSize, 846 uint32_t NumElements) { 847 if (Imports.empty()) 848 return; 849 850 uint64_t NumPages = (DataSize + wasm::WasmPageSize - 1) / wasm::WasmPageSize; 851 852 SectionBookkeeping Section; 853 startSection(Section, wasm::WASM_SEC_IMPORT); 854 855 encodeULEB128(Imports.size(), W->OS); 856 for (const wasm::WasmImport &Import : Imports) { 857 writeString(Import.Module); 858 writeString(Import.Field); 859 W->OS << char(Import.Kind); 860 861 switch (Import.Kind) { 862 case wasm::WASM_EXTERNAL_FUNCTION: 863 encodeULEB128(Import.SigIndex, W->OS); 864 break; 865 case wasm::WASM_EXTERNAL_GLOBAL: 866 W->OS << char(Import.Global.Type); 867 W->OS << char(Import.Global.Mutable ? 1 : 0); 868 break; 869 case wasm::WASM_EXTERNAL_MEMORY: 870 encodeULEB128(Import.Memory.Flags, W->OS); 871 encodeULEB128(NumPages, W->OS); // initial 872 break; 873 case wasm::WASM_EXTERNAL_TABLE: 874 W->OS << char(Import.Table.ElemType); 875 encodeULEB128(Import.Table.Limits.Flags, W->OS); 876 encodeULEB128(NumElements, W->OS); // initial 877 break; 878 case wasm::WASM_EXTERNAL_TAG: 879 W->OS << char(0); // Reserved 'attribute' field 880 encodeULEB128(Import.SigIndex, W->OS); 881 break; 882 default: 883 llvm_unreachable("unsupported import kind"); 884 } 885 } 886 887 endSection(Section); 888 } 889 890 void WasmObjectWriter::writeFunctionSection(ArrayRef<WasmFunction> Functions) { 891 if (Functions.empty()) 892 return; 893 894 SectionBookkeeping Section; 895 startSection(Section, wasm::WASM_SEC_FUNCTION); 896 897 encodeULEB128(Functions.size(), W->OS); 898 for (const WasmFunction &Func : Functions) 899 encodeULEB128(Func.SigIndex, W->OS); 900 901 endSection(Section); 902 } 903 904 void WasmObjectWriter::writeTagSection(ArrayRef<uint32_t> TagTypes) { 905 if (TagTypes.empty()) 906 return; 907 908 SectionBookkeeping Section; 909 startSection(Section, wasm::WASM_SEC_TAG); 910 911 encodeULEB128(TagTypes.size(), W->OS); 912 for (uint32_t Index : TagTypes) { 913 W->OS << char(0); // Reserved 'attribute' field 914 encodeULEB128(Index, W->OS); 915 } 916 917 endSection(Section); 918 } 919 920 void WasmObjectWriter::writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals) { 921 if (Globals.empty()) 922 return; 923 924 SectionBookkeeping Section; 925 startSection(Section, wasm::WASM_SEC_GLOBAL); 926 927 encodeULEB128(Globals.size(), W->OS); 928 for (const wasm::WasmGlobal &Global : Globals) { 929 encodeULEB128(Global.Type.Type, W->OS); 930 W->OS << char(Global.Type.Mutable); 931 if (Global.InitExpr.Extended) { 932 llvm_unreachable("extected init expressions not supported"); 933 } else { 934 W->OS << char(Global.InitExpr.Inst.Opcode); 935 switch (Global.Type.Type) { 936 case wasm::WASM_TYPE_I32: 937 encodeSLEB128(0, W->OS); 938 break; 939 case wasm::WASM_TYPE_I64: 940 encodeSLEB128(0, W->OS); 941 break; 942 case wasm::WASM_TYPE_F32: 943 writeI32(0); 944 break; 945 case wasm::WASM_TYPE_F64: 946 writeI64(0); 947 break; 948 case wasm::WASM_TYPE_EXTERNREF: 949 writeValueType(wasm::ValType::EXTERNREF); 950 break; 951 default: 952 llvm_unreachable("unexpected type"); 953 } 954 } 955 W->OS << char(wasm::WASM_OPCODE_END); 956 } 957 958 endSection(Section); 959 } 960 961 void WasmObjectWriter::writeTableSection(ArrayRef<wasm::WasmTable> Tables) { 962 if (Tables.empty()) 963 return; 964 965 SectionBookkeeping Section; 966 startSection(Section, wasm::WASM_SEC_TABLE); 967 968 encodeULEB128(Tables.size(), W->OS); 969 for (const wasm::WasmTable &Table : Tables) { 970 assert(Table.Type.ElemType != wasm::ValType::OTHERREF && 971 "Cannot encode general ref-typed tables"); 972 encodeULEB128((uint32_t)Table.Type.ElemType, W->OS); 973 encodeULEB128(Table.Type.Limits.Flags, W->OS); 974 encodeULEB128(Table.Type.Limits.Minimum, W->OS); 975 if (Table.Type.Limits.Flags & wasm::WASM_LIMITS_FLAG_HAS_MAX) 976 encodeULEB128(Table.Type.Limits.Maximum, W->OS); 977 } 978 endSection(Section); 979 } 980 981 void WasmObjectWriter::writeExportSection(ArrayRef<wasm::WasmExport> Exports) { 982 if (Exports.empty()) 983 return; 984 985 SectionBookkeeping Section; 986 startSection(Section, wasm::WASM_SEC_EXPORT); 987 988 encodeULEB128(Exports.size(), W->OS); 989 for (const wasm::WasmExport &Export : Exports) { 990 writeString(Export.Name); 991 W->OS << char(Export.Kind); 992 encodeULEB128(Export.Index, W->OS); 993 } 994 995 endSection(Section); 996 } 997 998 void WasmObjectWriter::writeElemSection( 999 const MCSymbolWasm *IndirectFunctionTable, ArrayRef<uint32_t> TableElems) { 1000 if (TableElems.empty()) 1001 return; 1002 1003 assert(IndirectFunctionTable); 1004 1005 SectionBookkeeping Section; 1006 startSection(Section, wasm::WASM_SEC_ELEM); 1007 1008 encodeULEB128(1, W->OS); // number of "segments" 1009 1010 assert(WasmIndices.count(IndirectFunctionTable)); 1011 uint32_t TableNumber = WasmIndices.find(IndirectFunctionTable)->second; 1012 uint32_t Flags = 0; 1013 if (TableNumber) 1014 Flags |= wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER; 1015 encodeULEB128(Flags, W->OS); 1016 if (Flags & wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER) 1017 encodeULEB128(TableNumber, W->OS); // the table number 1018 1019 // init expr for starting offset 1020 W->OS << char(is64Bit() ? wasm::WASM_OPCODE_I64_CONST 1021 : wasm::WASM_OPCODE_I32_CONST); 1022 encodeSLEB128(InitialTableOffset, W->OS); 1023 W->OS << char(wasm::WASM_OPCODE_END); 1024 1025 if (Flags & wasm::WASM_ELEM_SEGMENT_MASK_HAS_ELEM_KIND) { 1026 // We only write active function table initializers, for which the elem kind 1027 // is specified to be written as 0x00 and interpreted to mean "funcref". 1028 const uint8_t ElemKind = 0; 1029 W->OS << ElemKind; 1030 } 1031 1032 encodeULEB128(TableElems.size(), W->OS); 1033 for (uint32_t Elem : TableElems) 1034 encodeULEB128(Elem, W->OS); 1035 1036 endSection(Section); 1037 } 1038 1039 void WasmObjectWriter::writeDataCountSection() { 1040 if (DataSegments.empty()) 1041 return; 1042 1043 SectionBookkeeping Section; 1044 startSection(Section, wasm::WASM_SEC_DATACOUNT); 1045 encodeULEB128(DataSegments.size(), W->OS); 1046 endSection(Section); 1047 } 1048 1049 uint32_t WasmObjectWriter::writeCodeSection(const MCAssembler &Asm, 1050 ArrayRef<WasmFunction> Functions) { 1051 if (Functions.empty()) 1052 return 0; 1053 1054 SectionBookkeeping Section; 1055 startSection(Section, wasm::WASM_SEC_CODE); 1056 1057 encodeULEB128(Functions.size(), W->OS); 1058 1059 for (const WasmFunction &Func : Functions) { 1060 auto *FuncSection = static_cast<MCSectionWasm *>(Func.Section); 1061 1062 int64_t Size = Asm.getSectionAddressSize(*FuncSection); 1063 encodeULEB128(Size, W->OS); 1064 FuncSection->setSectionOffset(W->OS.tell() - Section.ContentsOffset); 1065 Asm.writeSectionData(W->OS, FuncSection); 1066 } 1067 1068 // Apply fixups. 1069 applyRelocations(CodeRelocations, Section.ContentsOffset, Asm); 1070 1071 endSection(Section); 1072 return Section.Index; 1073 } 1074 1075 uint32_t WasmObjectWriter::writeDataSection(const MCAssembler &Asm) { 1076 if (DataSegments.empty()) 1077 return 0; 1078 1079 SectionBookkeeping Section; 1080 startSection(Section, wasm::WASM_SEC_DATA); 1081 1082 encodeULEB128(DataSegments.size(), W->OS); // count 1083 1084 for (const WasmDataSegment &Segment : DataSegments) { 1085 encodeULEB128(Segment.InitFlags, W->OS); // flags 1086 if (Segment.InitFlags & wasm::WASM_DATA_SEGMENT_HAS_MEMINDEX) 1087 encodeULEB128(0, W->OS); // memory index 1088 if ((Segment.InitFlags & wasm::WASM_DATA_SEGMENT_IS_PASSIVE) == 0) { 1089 W->OS << char(is64Bit() ? wasm::WASM_OPCODE_I64_CONST 1090 : wasm::WASM_OPCODE_I32_CONST); 1091 encodeSLEB128(Segment.Offset, W->OS); // offset 1092 W->OS << char(wasm::WASM_OPCODE_END); 1093 } 1094 encodeULEB128(Segment.Data.size(), W->OS); // size 1095 Segment.Section->setSectionOffset(W->OS.tell() - Section.ContentsOffset); 1096 W->OS << Segment.Data; // data 1097 } 1098 1099 // Apply fixups. 1100 applyRelocations(DataRelocations, Section.ContentsOffset, Asm); 1101 1102 endSection(Section); 1103 return Section.Index; 1104 } 1105 1106 void WasmObjectWriter::writeRelocSection( 1107 uint32_t SectionIndex, StringRef Name, 1108 std::vector<WasmRelocationEntry> &Relocs) { 1109 // See: https://github.com/WebAssembly/tool-conventions/blob/main/Linking.md 1110 // for descriptions of the reloc sections. 1111 1112 if (Relocs.empty()) 1113 return; 1114 1115 // First, ensure the relocations are sorted in offset order. In general they 1116 // should already be sorted since `recordRelocation` is called in offset 1117 // order, but for the code section we combine many MC sections into single 1118 // wasm section, and this order is determined by the order of Asm.Symbols() 1119 // not the sections order. 1120 llvm::stable_sort( 1121 Relocs, [](const WasmRelocationEntry &A, const WasmRelocationEntry &B) { 1122 return (A.Offset + A.FixupSection->getSectionOffset()) < 1123 (B.Offset + B.FixupSection->getSectionOffset()); 1124 }); 1125 1126 SectionBookkeeping Section; 1127 startCustomSection(Section, std::string("reloc.") + Name.str()); 1128 1129 encodeULEB128(SectionIndex, W->OS); 1130 encodeULEB128(Relocs.size(), W->OS); 1131 for (const WasmRelocationEntry &RelEntry : Relocs) { 1132 uint64_t Offset = 1133 RelEntry.Offset + RelEntry.FixupSection->getSectionOffset(); 1134 uint32_t Index = getRelocationIndexValue(RelEntry); 1135 1136 W->OS << char(RelEntry.Type); 1137 encodeULEB128(Offset, W->OS); 1138 encodeULEB128(Index, W->OS); 1139 if (RelEntry.hasAddend()) 1140 encodeSLEB128(RelEntry.Addend, W->OS); 1141 } 1142 1143 endSection(Section); 1144 } 1145 1146 void WasmObjectWriter::writeCustomRelocSections() { 1147 for (const auto &Sec : CustomSections) { 1148 auto &Relocations = CustomSectionsRelocations[Sec.Section]; 1149 writeRelocSection(Sec.OutputIndex, Sec.Name, Relocations); 1150 } 1151 } 1152 1153 void WasmObjectWriter::writeLinkingMetaDataSection( 1154 ArrayRef<wasm::WasmSymbolInfo> SymbolInfos, 1155 ArrayRef<std::pair<uint16_t, uint32_t>> InitFuncs, 1156 const std::map<StringRef, std::vector<WasmComdatEntry>> &Comdats) { 1157 SectionBookkeeping Section; 1158 startCustomSection(Section, "linking"); 1159 encodeULEB128(wasm::WasmMetadataVersion, W->OS); 1160 1161 SectionBookkeeping SubSection; 1162 if (SymbolInfos.size() != 0) { 1163 startSection(SubSection, wasm::WASM_SYMBOL_TABLE); 1164 encodeULEB128(SymbolInfos.size(), W->OS); 1165 for (const wasm::WasmSymbolInfo &Sym : SymbolInfos) { 1166 encodeULEB128(Sym.Kind, W->OS); 1167 encodeULEB128(Sym.Flags, W->OS); 1168 switch (Sym.Kind) { 1169 case wasm::WASM_SYMBOL_TYPE_FUNCTION: 1170 case wasm::WASM_SYMBOL_TYPE_GLOBAL: 1171 case wasm::WASM_SYMBOL_TYPE_TAG: 1172 case wasm::WASM_SYMBOL_TYPE_TABLE: 1173 encodeULEB128(Sym.ElementIndex, W->OS); 1174 if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0 || 1175 (Sym.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0) 1176 writeString(Sym.Name); 1177 break; 1178 case wasm::WASM_SYMBOL_TYPE_DATA: 1179 writeString(Sym.Name); 1180 if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0) { 1181 encodeULEB128(Sym.DataRef.Segment, W->OS); 1182 encodeULEB128(Sym.DataRef.Offset, W->OS); 1183 encodeULEB128(Sym.DataRef.Size, W->OS); 1184 } 1185 break; 1186 case wasm::WASM_SYMBOL_TYPE_SECTION: { 1187 const uint32_t SectionIndex = 1188 CustomSections[Sym.ElementIndex].OutputIndex; 1189 encodeULEB128(SectionIndex, W->OS); 1190 break; 1191 } 1192 default: 1193 llvm_unreachable("unexpected kind"); 1194 } 1195 } 1196 endSection(SubSection); 1197 } 1198 1199 if (DataSegments.size()) { 1200 startSection(SubSection, wasm::WASM_SEGMENT_INFO); 1201 encodeULEB128(DataSegments.size(), W->OS); 1202 for (const WasmDataSegment &Segment : DataSegments) { 1203 writeString(Segment.Name); 1204 encodeULEB128(Segment.Alignment, W->OS); 1205 encodeULEB128(Segment.LinkingFlags, W->OS); 1206 } 1207 endSection(SubSection); 1208 } 1209 1210 if (!InitFuncs.empty()) { 1211 startSection(SubSection, wasm::WASM_INIT_FUNCS); 1212 encodeULEB128(InitFuncs.size(), W->OS); 1213 for (auto &StartFunc : InitFuncs) { 1214 encodeULEB128(StartFunc.first, W->OS); // priority 1215 encodeULEB128(StartFunc.second, W->OS); // function index 1216 } 1217 endSection(SubSection); 1218 } 1219 1220 if (Comdats.size()) { 1221 startSection(SubSection, wasm::WASM_COMDAT_INFO); 1222 encodeULEB128(Comdats.size(), W->OS); 1223 for (const auto &C : Comdats) { 1224 writeString(C.first); 1225 encodeULEB128(0, W->OS); // flags for future use 1226 encodeULEB128(C.second.size(), W->OS); 1227 for (const WasmComdatEntry &Entry : C.second) { 1228 encodeULEB128(Entry.Kind, W->OS); 1229 encodeULEB128(Entry.Index, W->OS); 1230 } 1231 } 1232 endSection(SubSection); 1233 } 1234 1235 endSection(Section); 1236 } 1237 1238 void WasmObjectWriter::writeCustomSection(WasmCustomSection &CustomSection, 1239 const MCAssembler &Asm) { 1240 SectionBookkeeping Section; 1241 auto *Sec = CustomSection.Section; 1242 startCustomSection(Section, CustomSection.Name); 1243 1244 Sec->setSectionOffset(W->OS.tell() - Section.ContentsOffset); 1245 Asm.writeSectionData(W->OS, Sec); 1246 1247 CustomSection.OutputContentsOffset = Section.ContentsOffset; 1248 CustomSection.OutputIndex = Section.Index; 1249 1250 endSection(Section); 1251 1252 // Apply fixups. 1253 auto &Relocations = CustomSectionsRelocations[CustomSection.Section]; 1254 applyRelocations(Relocations, CustomSection.OutputContentsOffset, Asm); 1255 } 1256 1257 uint32_t WasmObjectWriter::getFunctionType(const MCSymbolWasm &Symbol) { 1258 assert(Symbol.isFunction()); 1259 assert(TypeIndices.count(&Symbol)); 1260 return TypeIndices[&Symbol]; 1261 } 1262 1263 uint32_t WasmObjectWriter::getTagType(const MCSymbolWasm &Symbol) { 1264 assert(Symbol.isTag()); 1265 assert(TypeIndices.count(&Symbol)); 1266 return TypeIndices[&Symbol]; 1267 } 1268 1269 void WasmObjectWriter::registerFunctionType(const MCSymbolWasm &Symbol) { 1270 assert(Symbol.isFunction()); 1271 1272 wasm::WasmSignature S; 1273 1274 if (auto *Sig = Symbol.getSignature()) { 1275 S.Returns = Sig->Returns; 1276 S.Params = Sig->Params; 1277 } 1278 1279 auto Pair = SignatureIndices.insert(std::make_pair(S, Signatures.size())); 1280 if (Pair.second) 1281 Signatures.push_back(S); 1282 TypeIndices[&Symbol] = Pair.first->second; 1283 1284 LLVM_DEBUG(dbgs() << "registerFunctionType: " << Symbol 1285 << " new:" << Pair.second << "\n"); 1286 LLVM_DEBUG(dbgs() << " -> type index: " << Pair.first->second << "\n"); 1287 } 1288 1289 void WasmObjectWriter::registerTagType(const MCSymbolWasm &Symbol) { 1290 assert(Symbol.isTag()); 1291 1292 // TODO Currently we don't generate imported exceptions, but if we do, we 1293 // should have a way of infering types of imported exceptions. 1294 wasm::WasmSignature S; 1295 if (auto *Sig = Symbol.getSignature()) { 1296 S.Returns = Sig->Returns; 1297 S.Params = Sig->Params; 1298 } 1299 1300 auto Pair = SignatureIndices.insert(std::make_pair(S, Signatures.size())); 1301 if (Pair.second) 1302 Signatures.push_back(S); 1303 TypeIndices[&Symbol] = Pair.first->second; 1304 1305 LLVM_DEBUG(dbgs() << "registerTagType: " << Symbol << " new:" << Pair.second 1306 << "\n"); 1307 LLVM_DEBUG(dbgs() << " -> type index: " << Pair.first->second << "\n"); 1308 } 1309 1310 static bool isInSymtab(const MCSymbolWasm &Sym) { 1311 if (Sym.isUsedInReloc() || Sym.isUsedInInitArray()) 1312 return true; 1313 1314 if (Sym.isComdat() && !Sym.isDefined()) 1315 return false; 1316 1317 if (Sym.isTemporary()) 1318 return false; 1319 1320 if (Sym.isSection()) 1321 return false; 1322 1323 if (Sym.omitFromLinkingSection()) 1324 return false; 1325 1326 return true; 1327 } 1328 1329 void WasmObjectWriter::prepareImports( 1330 SmallVectorImpl<wasm::WasmImport> &Imports, MCAssembler &Asm) { 1331 // For now, always emit the memory import, since loads and stores are not 1332 // valid without it. In the future, we could perhaps be more clever and omit 1333 // it if there are no loads or stores. 1334 wasm::WasmImport MemImport; 1335 MemImport.Module = "env"; 1336 MemImport.Field = "__linear_memory"; 1337 MemImport.Kind = wasm::WASM_EXTERNAL_MEMORY; 1338 MemImport.Memory.Flags = is64Bit() ? wasm::WASM_LIMITS_FLAG_IS_64 1339 : wasm::WASM_LIMITS_FLAG_NONE; 1340 Imports.push_back(MemImport); 1341 1342 // Populate SignatureIndices, and Imports and WasmIndices for undefined 1343 // symbols. This must be done before populating WasmIndices for defined 1344 // symbols. 1345 for (const MCSymbol &S : Asm.symbols()) { 1346 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1347 1348 // Register types for all functions, including those with private linkage 1349 // (because wasm always needs a type signature). 1350 if (WS.isFunction()) { 1351 const auto *BS = Asm.getBaseSymbol(S); 1352 if (!BS) 1353 report_fatal_error(Twine(S.getName()) + 1354 ": absolute addressing not supported!"); 1355 registerFunctionType(*cast<MCSymbolWasm>(BS)); 1356 } 1357 1358 if (WS.isTag()) 1359 registerTagType(WS); 1360 1361 if (WS.isTemporary()) 1362 continue; 1363 1364 // If the symbol is not defined in this translation unit, import it. 1365 if (!WS.isDefined() && !WS.isComdat()) { 1366 if (WS.isFunction()) { 1367 wasm::WasmImport Import; 1368 Import.Module = WS.getImportModule(); 1369 Import.Field = WS.getImportName(); 1370 Import.Kind = wasm::WASM_EXTERNAL_FUNCTION; 1371 Import.SigIndex = getFunctionType(WS); 1372 Imports.push_back(Import); 1373 assert(WasmIndices.count(&WS) == 0); 1374 WasmIndices[&WS] = NumFunctionImports++; 1375 } else if (WS.isGlobal()) { 1376 if (WS.isWeak()) 1377 report_fatal_error("undefined global symbol cannot be weak"); 1378 1379 wasm::WasmImport Import; 1380 Import.Field = WS.getImportName(); 1381 Import.Kind = wasm::WASM_EXTERNAL_GLOBAL; 1382 Import.Module = WS.getImportModule(); 1383 Import.Global = WS.getGlobalType(); 1384 Imports.push_back(Import); 1385 assert(WasmIndices.count(&WS) == 0); 1386 WasmIndices[&WS] = NumGlobalImports++; 1387 } else if (WS.isTag()) { 1388 if (WS.isWeak()) 1389 report_fatal_error("undefined tag symbol cannot be weak"); 1390 1391 wasm::WasmImport Import; 1392 Import.Module = WS.getImportModule(); 1393 Import.Field = WS.getImportName(); 1394 Import.Kind = wasm::WASM_EXTERNAL_TAG; 1395 Import.SigIndex = getTagType(WS); 1396 Imports.push_back(Import); 1397 assert(WasmIndices.count(&WS) == 0); 1398 WasmIndices[&WS] = NumTagImports++; 1399 } else if (WS.isTable()) { 1400 if (WS.isWeak()) 1401 report_fatal_error("undefined table symbol cannot be weak"); 1402 1403 wasm::WasmImport Import; 1404 Import.Module = WS.getImportModule(); 1405 Import.Field = WS.getImportName(); 1406 Import.Kind = wasm::WASM_EXTERNAL_TABLE; 1407 Import.Table = WS.getTableType(); 1408 Imports.push_back(Import); 1409 assert(WasmIndices.count(&WS) == 0); 1410 WasmIndices[&WS] = NumTableImports++; 1411 } 1412 } 1413 } 1414 1415 // Add imports for GOT globals 1416 for (const MCSymbol &S : Asm.symbols()) { 1417 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1418 if (WS.isUsedInGOT()) { 1419 wasm::WasmImport Import; 1420 if (WS.isFunction()) 1421 Import.Module = "GOT.func"; 1422 else 1423 Import.Module = "GOT.mem"; 1424 Import.Field = WS.getName(); 1425 Import.Kind = wasm::WASM_EXTERNAL_GLOBAL; 1426 Import.Global = {wasm::WASM_TYPE_I32, true}; 1427 Imports.push_back(Import); 1428 assert(GOTIndices.count(&WS) == 0); 1429 GOTIndices[&WS] = NumGlobalImports++; 1430 } 1431 } 1432 } 1433 1434 uint64_t WasmObjectWriter::writeObject(MCAssembler &Asm) { 1435 support::endian::Writer MainWriter(*OS, llvm::endianness::little); 1436 W = &MainWriter; 1437 if (IsSplitDwarf) { 1438 uint64_t TotalSize = writeOneObject(Asm, DwoMode::NonDwoOnly); 1439 assert(DwoOS); 1440 support::endian::Writer DwoWriter(*DwoOS, llvm::endianness::little); 1441 W = &DwoWriter; 1442 return TotalSize + writeOneObject(Asm, DwoMode::DwoOnly); 1443 } else { 1444 return writeOneObject(Asm, DwoMode::AllSections); 1445 } 1446 } 1447 1448 uint64_t WasmObjectWriter::writeOneObject(MCAssembler &Asm, 1449 DwoMode Mode) { 1450 uint64_t StartOffset = W->OS.tell(); 1451 SectionCount = 0; 1452 CustomSections.clear(); 1453 1454 LLVM_DEBUG(dbgs() << "WasmObjectWriter::writeObject\n"); 1455 1456 // Collect information from the available symbols. 1457 SmallVector<WasmFunction, 4> Functions; 1458 SmallVector<uint32_t, 4> TableElems; 1459 SmallVector<wasm::WasmImport, 4> Imports; 1460 SmallVector<wasm::WasmExport, 4> Exports; 1461 SmallVector<uint32_t, 2> TagTypes; 1462 SmallVector<wasm::WasmGlobal, 1> Globals; 1463 SmallVector<wasm::WasmTable, 1> Tables; 1464 SmallVector<wasm::WasmSymbolInfo, 4> SymbolInfos; 1465 SmallVector<std::pair<uint16_t, uint32_t>, 2> InitFuncs; 1466 std::map<StringRef, std::vector<WasmComdatEntry>> Comdats; 1467 uint64_t DataSize = 0; 1468 if (Mode != DwoMode::DwoOnly) 1469 prepareImports(Imports, Asm); 1470 1471 // Populate DataSegments and CustomSections, which must be done before 1472 // populating DataLocations. 1473 for (MCSection &Sec : Asm) { 1474 auto &Section = static_cast<MCSectionWasm &>(Sec); 1475 StringRef SectionName = Section.getName(); 1476 1477 if (Mode == DwoMode::NonDwoOnly && isDwoSection(Sec)) 1478 continue; 1479 if (Mode == DwoMode::DwoOnly && !isDwoSection(Sec)) 1480 continue; 1481 1482 LLVM_DEBUG(dbgs() << "Processing Section " << SectionName << " group " 1483 << Section.getGroup() << "\n";); 1484 1485 // .init_array sections are handled specially elsewhere. 1486 if (SectionName.starts_with(".init_array")) 1487 continue; 1488 1489 // Code is handled separately 1490 if (Section.isText()) 1491 continue; 1492 1493 if (Section.isWasmData()) { 1494 uint32_t SegmentIndex = DataSegments.size(); 1495 DataSize = alignTo(DataSize, Section.getAlign()); 1496 DataSegments.emplace_back(); 1497 WasmDataSegment &Segment = DataSegments.back(); 1498 Segment.Name = SectionName; 1499 Segment.InitFlags = Section.getPassive() 1500 ? (uint32_t)wasm::WASM_DATA_SEGMENT_IS_PASSIVE 1501 : 0; 1502 Segment.Offset = DataSize; 1503 Segment.Section = &Section; 1504 addData(Segment.Data, Section); 1505 Segment.Alignment = Log2(Section.getAlign()); 1506 Segment.LinkingFlags = Section.getSegmentFlags(); 1507 DataSize += Segment.Data.size(); 1508 Section.setSegmentIndex(SegmentIndex); 1509 1510 if (const MCSymbolWasm *C = Section.getGroup()) { 1511 Comdats[C->getName()].emplace_back( 1512 WasmComdatEntry{wasm::WASM_COMDAT_DATA, SegmentIndex}); 1513 } 1514 } else { 1515 // Create custom sections 1516 assert(Section.isMetadata()); 1517 1518 StringRef Name = SectionName; 1519 1520 // For user-defined custom sections, strip the prefix 1521 Name.consume_front(".custom_section."); 1522 1523 MCSymbol *Begin = Sec.getBeginSymbol(); 1524 if (Begin) { 1525 assert(WasmIndices.count(cast<MCSymbolWasm>(Begin)) == 0); 1526 WasmIndices[cast<MCSymbolWasm>(Begin)] = CustomSections.size(); 1527 } 1528 1529 // Separate out the producers and target features sections 1530 if (Name == "producers") { 1531 ProducersSection = std::make_unique<WasmCustomSection>(Name, &Section); 1532 continue; 1533 } 1534 if (Name == "target_features") { 1535 TargetFeaturesSection = 1536 std::make_unique<WasmCustomSection>(Name, &Section); 1537 continue; 1538 } 1539 1540 // Custom sections can also belong to COMDAT groups. In this case the 1541 // decriptor's "index" field is the section index (in the final object 1542 // file), but that is not known until after layout, so it must be fixed up 1543 // later 1544 if (const MCSymbolWasm *C = Section.getGroup()) { 1545 Comdats[C->getName()].emplace_back( 1546 WasmComdatEntry{wasm::WASM_COMDAT_SECTION, 1547 static_cast<uint32_t>(CustomSections.size())}); 1548 } 1549 1550 CustomSections.emplace_back(Name, &Section); 1551 } 1552 } 1553 1554 if (Mode != DwoMode::DwoOnly) { 1555 // Populate WasmIndices and DataLocations for defined symbols. 1556 for (const MCSymbol &S : Asm.symbols()) { 1557 // Ignore unnamed temporary symbols, which aren't ever exported, imported, 1558 // or used in relocations. 1559 if (S.isTemporary() && S.getName().empty()) 1560 continue; 1561 1562 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1563 LLVM_DEBUG( 1564 dbgs() << "MCSymbol: " 1565 << toString(WS.getType().value_or(wasm::WASM_SYMBOL_TYPE_DATA)) 1566 << " '" << S << "'" 1567 << " isDefined=" << S.isDefined() << " isExternal=" 1568 << S.isExternal() << " isTemporary=" << S.isTemporary() 1569 << " isWeak=" << WS.isWeak() << " isHidden=" << WS.isHidden() 1570 << " isVariable=" << WS.isVariable() << "\n"); 1571 1572 if (WS.isVariable()) 1573 continue; 1574 if (WS.isComdat() && !WS.isDefined()) 1575 continue; 1576 1577 if (WS.isFunction()) { 1578 unsigned Index; 1579 if (WS.isDefined()) { 1580 if (WS.getOffset() != 0) 1581 report_fatal_error( 1582 "function sections must contain one function each"); 1583 1584 // A definition. Write out the function body. 1585 Index = NumFunctionImports + Functions.size(); 1586 WasmFunction Func; 1587 Func.SigIndex = getFunctionType(WS); 1588 Func.Section = &WS.getSection(); 1589 assert(WasmIndices.count(&WS) == 0); 1590 WasmIndices[&WS] = Index; 1591 Functions.push_back(Func); 1592 1593 auto &Section = static_cast<MCSectionWasm &>(WS.getSection()); 1594 if (const MCSymbolWasm *C = Section.getGroup()) { 1595 Comdats[C->getName()].emplace_back( 1596 WasmComdatEntry{wasm::WASM_COMDAT_FUNCTION, Index}); 1597 } 1598 1599 if (WS.hasExportName()) { 1600 wasm::WasmExport Export; 1601 Export.Name = WS.getExportName(); 1602 Export.Kind = wasm::WASM_EXTERNAL_FUNCTION; 1603 Export.Index = Index; 1604 Exports.push_back(Export); 1605 } 1606 } else { 1607 // An import; the index was assigned above. 1608 Index = WasmIndices.find(&WS)->second; 1609 } 1610 1611 LLVM_DEBUG(dbgs() << " -> function index: " << Index << "\n"); 1612 1613 } else if (WS.isData()) { 1614 if (!isInSymtab(WS)) 1615 continue; 1616 1617 if (!WS.isDefined()) { 1618 LLVM_DEBUG(dbgs() << " -> segment index: -1" 1619 << "\n"); 1620 continue; 1621 } 1622 1623 if (!WS.getSize()) 1624 report_fatal_error("data symbols must have a size set with .size: " + 1625 WS.getName()); 1626 1627 int64_t Size = 0; 1628 if (!WS.getSize()->evaluateAsAbsolute(Size, Asm)) 1629 report_fatal_error(".size expression must be evaluatable"); 1630 1631 auto &DataSection = static_cast<MCSectionWasm &>(WS.getSection()); 1632 if (!DataSection.isWasmData()) 1633 report_fatal_error("data symbols must live in a data section: " + 1634 WS.getName()); 1635 1636 // For each data symbol, export it in the symtab as a reference to the 1637 // corresponding Wasm data segment. 1638 wasm::WasmDataReference Ref = wasm::WasmDataReference{ 1639 DataSection.getSegmentIndex(), Asm.getSymbolOffset(WS), 1640 static_cast<uint64_t>(Size)}; 1641 assert(DataLocations.count(&WS) == 0); 1642 DataLocations[&WS] = Ref; 1643 LLVM_DEBUG(dbgs() << " -> segment index: " << Ref.Segment << "\n"); 1644 1645 } else if (WS.isGlobal()) { 1646 // A "true" Wasm global (currently just __stack_pointer) 1647 if (WS.isDefined()) { 1648 wasm::WasmGlobal Global; 1649 Global.Type = WS.getGlobalType(); 1650 Global.Index = NumGlobalImports + Globals.size(); 1651 Global.InitExpr.Extended = false; 1652 switch (Global.Type.Type) { 1653 case wasm::WASM_TYPE_I32: 1654 Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_I32_CONST; 1655 break; 1656 case wasm::WASM_TYPE_I64: 1657 Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_I64_CONST; 1658 break; 1659 case wasm::WASM_TYPE_F32: 1660 Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_F32_CONST; 1661 break; 1662 case wasm::WASM_TYPE_F64: 1663 Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_F64_CONST; 1664 break; 1665 case wasm::WASM_TYPE_EXTERNREF: 1666 Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_REF_NULL; 1667 break; 1668 default: 1669 llvm_unreachable("unexpected type"); 1670 } 1671 assert(WasmIndices.count(&WS) == 0); 1672 WasmIndices[&WS] = Global.Index; 1673 Globals.push_back(Global); 1674 } else { 1675 // An import; the index was assigned above 1676 LLVM_DEBUG(dbgs() << " -> global index: " 1677 << WasmIndices.find(&WS)->second << "\n"); 1678 } 1679 } else if (WS.isTable()) { 1680 if (WS.isDefined()) { 1681 wasm::WasmTable Table; 1682 Table.Index = NumTableImports + Tables.size(); 1683 Table.Type = WS.getTableType(); 1684 assert(WasmIndices.count(&WS) == 0); 1685 WasmIndices[&WS] = Table.Index; 1686 Tables.push_back(Table); 1687 } 1688 LLVM_DEBUG(dbgs() << " -> table index: " 1689 << WasmIndices.find(&WS)->second << "\n"); 1690 } else if (WS.isTag()) { 1691 // C++ exception symbol (__cpp_exception) or longjmp symbol 1692 // (__c_longjmp) 1693 unsigned Index; 1694 if (WS.isDefined()) { 1695 Index = NumTagImports + TagTypes.size(); 1696 uint32_t SigIndex = getTagType(WS); 1697 assert(WasmIndices.count(&WS) == 0); 1698 WasmIndices[&WS] = Index; 1699 TagTypes.push_back(SigIndex); 1700 } else { 1701 // An import; the index was assigned above. 1702 assert(WasmIndices.count(&WS) > 0); 1703 } 1704 LLVM_DEBUG(dbgs() << " -> tag index: " << WasmIndices.find(&WS)->second 1705 << "\n"); 1706 1707 } else { 1708 assert(WS.isSection()); 1709 } 1710 } 1711 1712 // Populate WasmIndices and DataLocations for aliased symbols. We need to 1713 // process these in a separate pass because we need to have processed the 1714 // target of the alias before the alias itself and the symbols are not 1715 // necessarily ordered in this way. 1716 for (const MCSymbol &S : Asm.symbols()) { 1717 if (!S.isVariable()) 1718 continue; 1719 1720 assert(S.isDefined()); 1721 1722 const auto *BS = Asm.getBaseSymbol(S); 1723 if (!BS) 1724 report_fatal_error(Twine(S.getName()) + 1725 ": absolute addressing not supported!"); 1726 const MCSymbolWasm *Base = cast<MCSymbolWasm>(BS); 1727 1728 // Find the target symbol of this weak alias and export that index 1729 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1730 LLVM_DEBUG(dbgs() << WS.getName() << ": weak alias of '" << *Base 1731 << "'\n"); 1732 1733 if (Base->isFunction()) { 1734 assert(WasmIndices.count(Base) > 0); 1735 uint32_t WasmIndex = WasmIndices.find(Base)->second; 1736 assert(WasmIndices.count(&WS) == 0); 1737 WasmIndices[&WS] = WasmIndex; 1738 LLVM_DEBUG(dbgs() << " -> index:" << WasmIndex << "\n"); 1739 } else if (Base->isData()) { 1740 auto &DataSection = static_cast<MCSectionWasm &>(WS.getSection()); 1741 uint64_t Offset = Asm.getSymbolOffset(S); 1742 int64_t Size = 0; 1743 // For data symbol alias we use the size of the base symbol as the 1744 // size of the alias. When an offset from the base is involved this 1745 // can result in a offset + size goes past the end of the data section 1746 // which out object format doesn't support. So we must clamp it. 1747 if (!Base->getSize()->evaluateAsAbsolute(Size, Asm)) 1748 report_fatal_error(".size expression must be evaluatable"); 1749 const WasmDataSegment &Segment = 1750 DataSegments[DataSection.getSegmentIndex()]; 1751 Size = 1752 std::min(static_cast<uint64_t>(Size), Segment.Data.size() - Offset); 1753 wasm::WasmDataReference Ref = wasm::WasmDataReference{ 1754 DataSection.getSegmentIndex(), 1755 static_cast<uint32_t>(Asm.getSymbolOffset(S)), 1756 static_cast<uint32_t>(Size)}; 1757 DataLocations[&WS] = Ref; 1758 LLVM_DEBUG(dbgs() << " -> index:" << Ref.Segment << "\n"); 1759 } else { 1760 report_fatal_error("don't yet support global/tag aliases"); 1761 } 1762 } 1763 } 1764 1765 // Finally, populate the symbol table itself, in its "natural" order. 1766 for (const MCSymbol &S : Asm.symbols()) { 1767 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1768 if (!isInSymtab(WS)) { 1769 WS.setIndex(InvalidIndex); 1770 continue; 1771 } 1772 LLVM_DEBUG(dbgs() << "adding to symtab: " << WS << "\n"); 1773 1774 uint32_t Flags = 0; 1775 if (WS.isWeak()) 1776 Flags |= wasm::WASM_SYMBOL_BINDING_WEAK; 1777 if (WS.isHidden()) 1778 Flags |= wasm::WASM_SYMBOL_VISIBILITY_HIDDEN; 1779 if (!WS.isExternal() && WS.isDefined()) 1780 Flags |= wasm::WASM_SYMBOL_BINDING_LOCAL; 1781 if (WS.isUndefined()) 1782 Flags |= wasm::WASM_SYMBOL_UNDEFINED; 1783 if (WS.isNoStrip()) { 1784 Flags |= wasm::WASM_SYMBOL_NO_STRIP; 1785 if (isEmscripten()) { 1786 Flags |= wasm::WASM_SYMBOL_EXPORTED; 1787 } 1788 } 1789 if (WS.hasImportName()) 1790 Flags |= wasm::WASM_SYMBOL_EXPLICIT_NAME; 1791 if (WS.hasExportName()) 1792 Flags |= wasm::WASM_SYMBOL_EXPORTED; 1793 if (WS.isTLS()) 1794 Flags |= wasm::WASM_SYMBOL_TLS; 1795 1796 wasm::WasmSymbolInfo Info; 1797 Info.Name = WS.getName(); 1798 Info.Kind = WS.getType().value_or(wasm::WASM_SYMBOL_TYPE_DATA); 1799 Info.Flags = Flags; 1800 if (!WS.isData()) { 1801 assert(WasmIndices.count(&WS) > 0); 1802 Info.ElementIndex = WasmIndices.find(&WS)->second; 1803 } else if (WS.isDefined()) { 1804 assert(DataLocations.count(&WS) > 0); 1805 Info.DataRef = DataLocations.find(&WS)->second; 1806 } 1807 WS.setIndex(SymbolInfos.size()); 1808 SymbolInfos.emplace_back(Info); 1809 } 1810 1811 { 1812 auto HandleReloc = [&](const WasmRelocationEntry &Rel) { 1813 // Functions referenced by a relocation need to put in the table. This is 1814 // purely to make the object file's provisional values readable, and is 1815 // ignored by the linker, which re-calculates the relocations itself. 1816 if (Rel.Type != wasm::R_WASM_TABLE_INDEX_I32 && 1817 Rel.Type != wasm::R_WASM_TABLE_INDEX_I64 && 1818 Rel.Type != wasm::R_WASM_TABLE_INDEX_SLEB && 1819 Rel.Type != wasm::R_WASM_TABLE_INDEX_SLEB64 && 1820 Rel.Type != wasm::R_WASM_TABLE_INDEX_REL_SLEB && 1821 Rel.Type != wasm::R_WASM_TABLE_INDEX_REL_SLEB64) 1822 return; 1823 assert(Rel.Symbol->isFunction()); 1824 const MCSymbolWasm *Base = 1825 cast<MCSymbolWasm>(Asm.getBaseSymbol(*Rel.Symbol)); 1826 uint32_t FunctionIndex = WasmIndices.find(Base)->second; 1827 uint32_t TableIndex = TableElems.size() + InitialTableOffset; 1828 if (TableIndices.try_emplace(Base, TableIndex).second) { 1829 LLVM_DEBUG(dbgs() << " -> adding " << Base->getName() 1830 << " to table: " << TableIndex << "\n"); 1831 TableElems.push_back(FunctionIndex); 1832 registerFunctionType(*Base); 1833 } 1834 }; 1835 1836 for (const WasmRelocationEntry &RelEntry : CodeRelocations) 1837 HandleReloc(RelEntry); 1838 for (const WasmRelocationEntry &RelEntry : DataRelocations) 1839 HandleReloc(RelEntry); 1840 } 1841 1842 // Translate .init_array section contents into start functions. 1843 for (const MCSection &S : Asm) { 1844 const auto &WS = static_cast<const MCSectionWasm &>(S); 1845 if (WS.getName().starts_with(".fini_array")) 1846 report_fatal_error(".fini_array sections are unsupported"); 1847 if (!WS.getName().starts_with(".init_array")) 1848 continue; 1849 auto IT = WS.begin(); 1850 if (IT == WS.end()) 1851 continue; 1852 const MCFragment &EmptyFrag = *IT; 1853 if (EmptyFrag.getKind() != MCFragment::FT_Data) 1854 report_fatal_error(".init_array section should be aligned"); 1855 1856 const MCFragment &AlignFrag = *EmptyFrag.getNext(); 1857 if (AlignFrag.getKind() != MCFragment::FT_Align) 1858 report_fatal_error(".init_array section should be aligned"); 1859 if (cast<MCAlignFragment>(AlignFrag).getAlignment() != 1860 Align(is64Bit() ? 8 : 4)) 1861 report_fatal_error(".init_array section should be aligned for pointers"); 1862 1863 const MCFragment &Frag = *AlignFrag.getNext(); 1864 if (Frag.hasInstructions() || Frag.getKind() != MCFragment::FT_Data) 1865 report_fatal_error("only data supported in .init_array section"); 1866 1867 uint16_t Priority = UINT16_MAX; 1868 unsigned PrefixLength = strlen(".init_array"); 1869 if (WS.getName().size() > PrefixLength) { 1870 if (WS.getName()[PrefixLength] != '.') 1871 report_fatal_error( 1872 ".init_array section priority should start with '.'"); 1873 if (WS.getName().substr(PrefixLength + 1).getAsInteger(10, Priority)) 1874 report_fatal_error("invalid .init_array section priority"); 1875 } 1876 const auto &DataFrag = cast<MCDataFragment>(Frag); 1877 const SmallVectorImpl<char> &Contents = DataFrag.getContents(); 1878 for (const uint8_t * 1879 P = (const uint8_t *)Contents.data(), 1880 *End = (const uint8_t *)Contents.data() + Contents.size(); 1881 P != End; ++P) { 1882 if (*P != 0) 1883 report_fatal_error("non-symbolic data in .init_array section"); 1884 } 1885 for (const MCFixup &Fixup : DataFrag.getFixups()) { 1886 assert(Fixup.getKind() == 1887 MCFixup::getKindForSize(is64Bit() ? 8 : 4, false)); 1888 const MCExpr *Expr = Fixup.getValue(); 1889 auto *SymRef = dyn_cast<MCSymbolRefExpr>(Expr); 1890 if (!SymRef) 1891 report_fatal_error("fixups in .init_array should be symbol references"); 1892 const auto &TargetSym = cast<const MCSymbolWasm>(SymRef->getSymbol()); 1893 if (TargetSym.getIndex() == InvalidIndex) 1894 report_fatal_error("symbols in .init_array should exist in symtab"); 1895 if (!TargetSym.isFunction()) 1896 report_fatal_error("symbols in .init_array should be for functions"); 1897 InitFuncs.push_back( 1898 std::make_pair(Priority, TargetSym.getIndex())); 1899 } 1900 } 1901 1902 // Write out the Wasm header. 1903 writeHeader(Asm); 1904 1905 uint32_t CodeSectionIndex, DataSectionIndex; 1906 if (Mode != DwoMode::DwoOnly) { 1907 writeTypeSection(Signatures); 1908 writeImportSection(Imports, DataSize, TableElems.size()); 1909 writeFunctionSection(Functions); 1910 writeTableSection(Tables); 1911 // Skip the "memory" section; we import the memory instead. 1912 writeTagSection(TagTypes); 1913 writeGlobalSection(Globals); 1914 writeExportSection(Exports); 1915 const MCSymbol *IndirectFunctionTable = 1916 Asm.getContext().lookupSymbol("__indirect_function_table"); 1917 writeElemSection(cast_or_null<const MCSymbolWasm>(IndirectFunctionTable), 1918 TableElems); 1919 writeDataCountSection(); 1920 1921 CodeSectionIndex = writeCodeSection(Asm, Functions); 1922 DataSectionIndex = writeDataSection(Asm); 1923 } 1924 1925 // The Sections in the COMDAT list have placeholder indices (their index among 1926 // custom sections, rather than among all sections). Fix them up here. 1927 for (auto &Group : Comdats) { 1928 for (auto &Entry : Group.second) { 1929 if (Entry.Kind == wasm::WASM_COMDAT_SECTION) { 1930 Entry.Index += SectionCount; 1931 } 1932 } 1933 } 1934 for (auto &CustomSection : CustomSections) 1935 writeCustomSection(CustomSection, Asm); 1936 1937 if (Mode != DwoMode::DwoOnly) { 1938 writeLinkingMetaDataSection(SymbolInfos, InitFuncs, Comdats); 1939 1940 writeRelocSection(CodeSectionIndex, "CODE", CodeRelocations); 1941 writeRelocSection(DataSectionIndex, "DATA", DataRelocations); 1942 } 1943 writeCustomRelocSections(); 1944 if (ProducersSection) 1945 writeCustomSection(*ProducersSection, Asm); 1946 if (TargetFeaturesSection) 1947 writeCustomSection(*TargetFeaturesSection, Asm); 1948 1949 // TODO: Translate the .comment section to the output. 1950 return W->OS.tell() - StartOffset; 1951 } 1952 1953 std::unique_ptr<MCObjectWriter> 1954 llvm::createWasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 1955 raw_pwrite_stream &OS) { 1956 return std::make_unique<WasmObjectWriter>(std::move(MOTW), OS); 1957 } 1958 1959 std::unique_ptr<MCObjectWriter> 1960 llvm::createWasmDwoObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 1961 raw_pwrite_stream &OS, 1962 raw_pwrite_stream &DwoOS) { 1963 return std::make_unique<WasmObjectWriter>(std::move(MOTW), OS, DwoOS); 1964 } 1965