1 //===- AsmParser.cpp - Parser for Assembly Files --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This class implements a parser for assembly files similar to gas syntax. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringMap.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/BinaryFormat/Dwarf.h" 25 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCCodeView.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDirectives.h" 30 #include "llvm/MC/MCDwarf.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/MC/MCInstPrinter.h" 33 #include "llvm/MC/MCInstrDesc.h" 34 #include "llvm/MC/MCInstrInfo.h" 35 #include "llvm/MC/MCParser/AsmCond.h" 36 #include "llvm/MC/MCParser/AsmLexer.h" 37 #include "llvm/MC/MCParser/MCAsmLexer.h" 38 #include "llvm/MC/MCParser/MCAsmParser.h" 39 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 40 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 41 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 42 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 43 #include "llvm/MC/MCRegisterInfo.h" 44 #include "llvm/MC/MCSection.h" 45 #include "llvm/MC/MCStreamer.h" 46 #include "llvm/MC/MCSymbol.h" 47 #include "llvm/MC/MCTargetOptions.h" 48 #include "llvm/MC/MCValue.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MD5.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/MemoryBuffer.h" 55 #include "llvm/Support/SMLoc.h" 56 #include "llvm/Support/SourceMgr.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cctype> 61 #include <climits> 62 #include <cstddef> 63 #include <cstdint> 64 #include <deque> 65 #include <memory> 66 #include <optional> 67 #include <sstream> 68 #include <string> 69 #include <tuple> 70 #include <utility> 71 #include <vector> 72 73 using namespace llvm; 74 75 MCAsmParserSemaCallback::~MCAsmParserSemaCallback() = default; 76 77 namespace { 78 79 /// Helper types for tracking macro definitions. 80 typedef std::vector<AsmToken> MCAsmMacroArgument; 81 typedef std::vector<MCAsmMacroArgument> MCAsmMacroArguments; 82 83 /// Helper class for storing information about an active macro 84 /// instantiation. 85 struct MacroInstantiation { 86 /// The location of the instantiation. 87 SMLoc InstantiationLoc; 88 89 /// The buffer where parsing should resume upon instantiation completion. 90 unsigned ExitBuffer; 91 92 /// The location where parsing should resume upon instantiation completion. 93 SMLoc ExitLoc; 94 95 /// The depth of TheCondStack at the start of the instantiation. 96 size_t CondStackDepth; 97 }; 98 99 struct ParseStatementInfo { 100 /// The parsed operands from the last parsed statement. 101 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> ParsedOperands; 102 103 /// The opcode from the last parsed instruction. 104 unsigned Opcode = ~0U; 105 106 /// Was there an error parsing the inline assembly? 107 bool ParseError = false; 108 109 SmallVectorImpl<AsmRewrite> *AsmRewrites = nullptr; 110 111 ParseStatementInfo() = delete; 112 ParseStatementInfo(SmallVectorImpl<AsmRewrite> *rewrites) 113 : AsmRewrites(rewrites) {} 114 }; 115 116 /// The concrete assembly parser instance. 117 class AsmParser : public MCAsmParser { 118 private: 119 AsmLexer Lexer; 120 MCContext &Ctx; 121 MCStreamer &Out; 122 const MCAsmInfo &MAI; 123 SourceMgr &SrcMgr; 124 SourceMgr::DiagHandlerTy SavedDiagHandler; 125 void *SavedDiagContext; 126 std::unique_ptr<MCAsmParserExtension> PlatformParser; 127 SMLoc StartTokLoc; 128 129 /// This is the current buffer index we're lexing from as managed by the 130 /// SourceMgr object. 131 unsigned CurBuffer; 132 133 AsmCond TheCondState; 134 std::vector<AsmCond> TheCondStack; 135 136 /// maps directive names to handler methods in parser 137 /// extensions. Extensions register themselves in this map by calling 138 /// addDirectiveHandler. 139 StringMap<ExtensionDirectiveHandler> ExtensionDirectiveMap; 140 141 /// Stack of active macro instantiations. 142 std::vector<MacroInstantiation*> ActiveMacros; 143 144 /// List of bodies of anonymous macros. 145 std::deque<MCAsmMacro> MacroLikeBodies; 146 147 /// Boolean tracking whether macro substitution is enabled. 148 unsigned MacrosEnabledFlag : 1; 149 150 /// Keeps track of how many .macro's have been instantiated. 151 unsigned NumOfMacroInstantiations; 152 153 /// The values from the last parsed cpp hash file line comment if any. 154 struct CppHashInfoTy { 155 StringRef Filename; 156 int64_t LineNumber; 157 SMLoc Loc; 158 unsigned Buf; 159 CppHashInfoTy() : LineNumber(0), Buf(0) {} 160 }; 161 CppHashInfoTy CppHashInfo; 162 163 /// The filename from the first cpp hash file line comment, if any. 164 StringRef FirstCppHashFilename; 165 166 /// List of forward directional labels for diagnosis at the end. 167 SmallVector<std::tuple<SMLoc, CppHashInfoTy, MCSymbol *>, 4> DirLabels; 168 169 SmallSet<StringRef, 2> LTODiscardSymbols; 170 171 /// AssemblerDialect. ~OU means unset value and use value provided by MAI. 172 unsigned AssemblerDialect = ~0U; 173 174 /// is Darwin compatibility enabled? 175 bool IsDarwin = false; 176 177 /// Are we parsing ms-style inline assembly? 178 bool ParsingMSInlineAsm = false; 179 180 /// Did we already inform the user about inconsistent MD5 usage? 181 bool ReportedInconsistentMD5 = false; 182 183 // Is alt macro mode enabled. 184 bool AltMacroMode = false; 185 186 protected: 187 virtual bool parseStatement(ParseStatementInfo &Info, 188 MCAsmParserSemaCallback *SI); 189 190 /// This routine uses the target specific ParseInstruction function to 191 /// parse an instruction into Operands, and then call the target specific 192 /// MatchAndEmit function to match and emit the instruction. 193 bool parseAndMatchAndEmitTargetInstruction(ParseStatementInfo &Info, 194 StringRef IDVal, AsmToken ID, 195 SMLoc IDLoc); 196 197 /// Should we emit DWARF describing this assembler source? (Returns false if 198 /// the source has .file directives, which means we don't want to generate 199 /// info describing the assembler source itself.) 200 bool enabledGenDwarfForAssembly(); 201 202 public: 203 AsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out, 204 const MCAsmInfo &MAI, unsigned CB); 205 AsmParser(const AsmParser &) = delete; 206 AsmParser &operator=(const AsmParser &) = delete; 207 ~AsmParser() override; 208 209 bool Run(bool NoInitialTextSection, bool NoFinalize = false) override; 210 211 void addDirectiveHandler(StringRef Directive, 212 ExtensionDirectiveHandler Handler) override { 213 ExtensionDirectiveMap[Directive] = Handler; 214 } 215 216 void addAliasForDirective(StringRef Directive, StringRef Alias) override { 217 DirectiveKindMap[Directive.lower()] = DirectiveKindMap[Alias.lower()]; 218 } 219 220 /// @name MCAsmParser Interface 221 /// { 222 223 SourceMgr &getSourceManager() override { return SrcMgr; } 224 MCAsmLexer &getLexer() override { return Lexer; } 225 MCContext &getContext() override { return Ctx; } 226 MCStreamer &getStreamer() override { return Out; } 227 228 CodeViewContext &getCVContext() { return Ctx.getCVContext(); } 229 230 unsigned getAssemblerDialect() override { 231 if (AssemblerDialect == ~0U) 232 return MAI.getAssemblerDialect(); 233 else 234 return AssemblerDialect; 235 } 236 void setAssemblerDialect(unsigned i) override { 237 AssemblerDialect = i; 238 } 239 240 void Note(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) override; 241 bool Warning(SMLoc L, const Twine &Msg, 242 SMRange Range = std::nullopt) override; 243 bool printError(SMLoc L, const Twine &Msg, 244 SMRange Range = std::nullopt) override; 245 246 const AsmToken &Lex() override; 247 248 void setParsingMSInlineAsm(bool V) override { 249 ParsingMSInlineAsm = V; 250 // When parsing MS inline asm, we must lex 0b1101 and 0ABCH as binary and 251 // hex integer literals. 252 Lexer.setLexMasmIntegers(V); 253 } 254 bool isParsingMSInlineAsm() override { return ParsingMSInlineAsm; } 255 256 bool discardLTOSymbol(StringRef Name) const override { 257 return LTODiscardSymbols.contains(Name); 258 } 259 260 bool parseMSInlineAsm(std::string &AsmString, unsigned &NumOutputs, 261 unsigned &NumInputs, 262 SmallVectorImpl<std::pair<void *, bool>> &OpDecls, 263 SmallVectorImpl<std::string> &Constraints, 264 SmallVectorImpl<std::string> &Clobbers, 265 const MCInstrInfo *MII, const MCInstPrinter *IP, 266 MCAsmParserSemaCallback &SI) override; 267 268 bool parseExpression(const MCExpr *&Res); 269 bool parseExpression(const MCExpr *&Res, SMLoc &EndLoc) override; 270 bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc, 271 AsmTypeInfo *TypeInfo) override; 272 bool parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) override; 273 bool parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res, 274 SMLoc &EndLoc) override; 275 bool parseAbsoluteExpression(int64_t &Res) override; 276 277 /// Parse a floating point expression using the float \p Semantics 278 /// and set \p Res to the value. 279 bool parseRealValue(const fltSemantics &Semantics, APInt &Res); 280 281 /// Parse an identifier or string (as a quoted identifier) 282 /// and set \p Res to the identifier contents. 283 bool parseIdentifier(StringRef &Res) override; 284 void eatToEndOfStatement() override; 285 286 bool checkForValidSection() override; 287 288 /// } 289 290 private: 291 bool parseCurlyBlockScope(SmallVectorImpl<AsmRewrite>& AsmStrRewrites); 292 bool parseCppHashLineFilenameComment(SMLoc L, bool SaveLocInfo = true); 293 294 void checkForBadMacro(SMLoc DirectiveLoc, StringRef Name, StringRef Body, 295 ArrayRef<MCAsmMacroParameter> Parameters); 296 bool expandMacro(raw_svector_ostream &OS, StringRef Body, 297 ArrayRef<MCAsmMacroParameter> Parameters, 298 ArrayRef<MCAsmMacroArgument> A, bool EnableAtPseudoVariable, 299 SMLoc L); 300 301 /// Are macros enabled in the parser? 302 bool areMacrosEnabled() {return MacrosEnabledFlag;} 303 304 /// Control a flag in the parser that enables or disables macros. 305 void setMacrosEnabled(bool Flag) {MacrosEnabledFlag = Flag;} 306 307 /// Are we inside a macro instantiation? 308 bool isInsideMacroInstantiation() {return !ActiveMacros.empty();} 309 310 /// Handle entry to macro instantiation. 311 /// 312 /// \param M The macro. 313 /// \param NameLoc Instantiation location. 314 bool handleMacroEntry(const MCAsmMacro *M, SMLoc NameLoc); 315 316 /// Handle exit from macro instantiation. 317 void handleMacroExit(); 318 319 /// Extract AsmTokens for a macro argument. 320 bool parseMacroArgument(MCAsmMacroArgument &MA, bool Vararg); 321 322 /// Parse all macro arguments for a given macro. 323 bool parseMacroArguments(const MCAsmMacro *M, MCAsmMacroArguments &A); 324 325 void printMacroInstantiations(); 326 void printMessage(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Msg, 327 SMRange Range = std::nullopt) const { 328 ArrayRef<SMRange> Ranges(Range); 329 SrcMgr.PrintMessage(Loc, Kind, Msg, Ranges); 330 } 331 static void DiagHandler(const SMDiagnostic &Diag, void *Context); 332 333 /// Enter the specified file. This returns true on failure. 334 bool enterIncludeFile(const std::string &Filename); 335 336 /// Process the specified file for the .incbin directive. 337 /// This returns true on failure. 338 bool processIncbinFile(const std::string &Filename, int64_t Skip = 0, 339 const MCExpr *Count = nullptr, SMLoc Loc = SMLoc()); 340 341 /// Reset the current lexer position to that given by \p Loc. The 342 /// current token is not set; clients should ensure Lex() is called 343 /// subsequently. 344 /// 345 /// \param InBuffer If not 0, should be the known buffer id that contains the 346 /// location. 347 void jumpToLoc(SMLoc Loc, unsigned InBuffer = 0); 348 349 /// Parse up to the end of statement and a return the contents from the 350 /// current token until the end of the statement; the current token on exit 351 /// will be either the EndOfStatement or EOF. 352 StringRef parseStringToEndOfStatement() override; 353 354 /// Parse until the end of a statement or a comma is encountered, 355 /// return the contents from the current token up to the end or comma. 356 StringRef parseStringToComma(); 357 358 enum class AssignmentKind { 359 Set, 360 Equiv, 361 Equal, 362 LTOSetConditional, 363 }; 364 365 bool parseAssignment(StringRef Name, AssignmentKind Kind); 366 367 unsigned getBinOpPrecedence(AsmToken::TokenKind K, 368 MCBinaryExpr::Opcode &Kind); 369 370 bool parseBinOpRHS(unsigned Precedence, const MCExpr *&Res, SMLoc &EndLoc); 371 bool parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc); 372 bool parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc); 373 374 bool parseRegisterOrRegisterNumber(int64_t &Register, SMLoc DirectiveLoc); 375 376 bool parseCVFunctionId(int64_t &FunctionId, StringRef DirectiveName); 377 bool parseCVFileId(int64_t &FileId, StringRef DirectiveName); 378 379 // Generic (target and platform independent) directive parsing. 380 enum DirectiveKind { 381 DK_NO_DIRECTIVE, // Placeholder 382 DK_SET, 383 DK_EQU, 384 DK_EQUIV, 385 DK_ASCII, 386 DK_ASCIZ, 387 DK_STRING, 388 DK_BYTE, 389 DK_SHORT, 390 DK_RELOC, 391 DK_VALUE, 392 DK_2BYTE, 393 DK_LONG, 394 DK_INT, 395 DK_4BYTE, 396 DK_QUAD, 397 DK_8BYTE, 398 DK_OCTA, 399 DK_DC, 400 DK_DC_A, 401 DK_DC_B, 402 DK_DC_D, 403 DK_DC_L, 404 DK_DC_S, 405 DK_DC_W, 406 DK_DC_X, 407 DK_DCB, 408 DK_DCB_B, 409 DK_DCB_D, 410 DK_DCB_L, 411 DK_DCB_S, 412 DK_DCB_W, 413 DK_DCB_X, 414 DK_DS, 415 DK_DS_B, 416 DK_DS_D, 417 DK_DS_L, 418 DK_DS_P, 419 DK_DS_S, 420 DK_DS_W, 421 DK_DS_X, 422 DK_SINGLE, 423 DK_FLOAT, 424 DK_DOUBLE, 425 DK_ALIGN, 426 DK_ALIGN32, 427 DK_BALIGN, 428 DK_BALIGNW, 429 DK_BALIGNL, 430 DK_P2ALIGN, 431 DK_P2ALIGNW, 432 DK_P2ALIGNL, 433 DK_ORG, 434 DK_FILL, 435 DK_ENDR, 436 DK_BUNDLE_ALIGN_MODE, 437 DK_BUNDLE_LOCK, 438 DK_BUNDLE_UNLOCK, 439 DK_ZERO, 440 DK_EXTERN, 441 DK_GLOBL, 442 DK_GLOBAL, 443 DK_LAZY_REFERENCE, 444 DK_NO_DEAD_STRIP, 445 DK_SYMBOL_RESOLVER, 446 DK_PRIVATE_EXTERN, 447 DK_REFERENCE, 448 DK_WEAK_DEFINITION, 449 DK_WEAK_REFERENCE, 450 DK_WEAK_DEF_CAN_BE_HIDDEN, 451 DK_COLD, 452 DK_COMM, 453 DK_COMMON, 454 DK_LCOMM, 455 DK_ABORT, 456 DK_INCLUDE, 457 DK_INCBIN, 458 DK_CODE16, 459 DK_CODE16GCC, 460 DK_REPT, 461 DK_IRP, 462 DK_IRPC, 463 DK_IF, 464 DK_IFEQ, 465 DK_IFGE, 466 DK_IFGT, 467 DK_IFLE, 468 DK_IFLT, 469 DK_IFNE, 470 DK_IFB, 471 DK_IFNB, 472 DK_IFC, 473 DK_IFEQS, 474 DK_IFNC, 475 DK_IFNES, 476 DK_IFDEF, 477 DK_IFNDEF, 478 DK_IFNOTDEF, 479 DK_ELSEIF, 480 DK_ELSE, 481 DK_ENDIF, 482 DK_SPACE, 483 DK_SKIP, 484 DK_FILE, 485 DK_LINE, 486 DK_LOC, 487 DK_STABS, 488 DK_CV_FILE, 489 DK_CV_FUNC_ID, 490 DK_CV_INLINE_SITE_ID, 491 DK_CV_LOC, 492 DK_CV_LINETABLE, 493 DK_CV_INLINE_LINETABLE, 494 DK_CV_DEF_RANGE, 495 DK_CV_STRINGTABLE, 496 DK_CV_STRING, 497 DK_CV_FILECHECKSUMS, 498 DK_CV_FILECHECKSUM_OFFSET, 499 DK_CV_FPO_DATA, 500 DK_CFI_SECTIONS, 501 DK_CFI_STARTPROC, 502 DK_CFI_ENDPROC, 503 DK_CFI_DEF_CFA, 504 DK_CFI_DEF_CFA_OFFSET, 505 DK_CFI_ADJUST_CFA_OFFSET, 506 DK_CFI_DEF_CFA_REGISTER, 507 DK_CFI_LLVM_DEF_ASPACE_CFA, 508 DK_CFI_OFFSET, 509 DK_CFI_REL_OFFSET, 510 DK_CFI_PERSONALITY, 511 DK_CFI_LSDA, 512 DK_CFI_REMEMBER_STATE, 513 DK_CFI_RESTORE_STATE, 514 DK_CFI_SAME_VALUE, 515 DK_CFI_RESTORE, 516 DK_CFI_ESCAPE, 517 DK_CFI_RETURN_COLUMN, 518 DK_CFI_SIGNAL_FRAME, 519 DK_CFI_UNDEFINED, 520 DK_CFI_REGISTER, 521 DK_CFI_WINDOW_SAVE, 522 DK_CFI_B_KEY_FRAME, 523 DK_MACROS_ON, 524 DK_MACROS_OFF, 525 DK_ALTMACRO, 526 DK_NOALTMACRO, 527 DK_MACRO, 528 DK_EXITM, 529 DK_ENDM, 530 DK_ENDMACRO, 531 DK_PURGEM, 532 DK_SLEB128, 533 DK_ULEB128, 534 DK_ERR, 535 DK_ERROR, 536 DK_WARNING, 537 DK_PRINT, 538 DK_ADDRSIG, 539 DK_ADDRSIG_SYM, 540 DK_PSEUDO_PROBE, 541 DK_LTO_DISCARD, 542 DK_LTO_SET_CONDITIONAL, 543 DK_CFI_MTE_TAGGED_FRAME, 544 DK_MEMTAG, 545 DK_END 546 }; 547 548 /// Maps directive name --> DirectiveKind enum, for 549 /// directives parsed by this class. 550 StringMap<DirectiveKind> DirectiveKindMap; 551 552 // Codeview def_range type parsing. 553 enum CVDefRangeType { 554 CVDR_DEFRANGE = 0, // Placeholder 555 CVDR_DEFRANGE_REGISTER, 556 CVDR_DEFRANGE_FRAMEPOINTER_REL, 557 CVDR_DEFRANGE_SUBFIELD_REGISTER, 558 CVDR_DEFRANGE_REGISTER_REL 559 }; 560 561 /// Maps Codeview def_range types --> CVDefRangeType enum, for 562 /// Codeview def_range types parsed by this class. 563 StringMap<CVDefRangeType> CVDefRangeTypeMap; 564 565 // ".ascii", ".asciz", ".string" 566 bool parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated); 567 bool parseDirectiveReloc(SMLoc DirectiveLoc); // ".reloc" 568 bool parseDirectiveValue(StringRef IDVal, 569 unsigned Size); // ".byte", ".long", ... 570 bool parseDirectiveOctaValue(StringRef IDVal); // ".octa", ... 571 bool parseDirectiveRealValue(StringRef IDVal, 572 const fltSemantics &); // ".single", ... 573 bool parseDirectiveFill(); // ".fill" 574 bool parseDirectiveZero(); // ".zero" 575 // ".set", ".equ", ".equiv", ".lto_set_conditional" 576 bool parseDirectiveSet(StringRef IDVal, AssignmentKind Kind); 577 bool parseDirectiveOrg(); // ".org" 578 // ".align{,32}", ".p2align{,w,l}" 579 bool parseDirectiveAlign(bool IsPow2, unsigned ValueSize); 580 581 // ".file", ".line", ".loc", ".stabs" 582 bool parseDirectiveFile(SMLoc DirectiveLoc); 583 bool parseDirectiveLine(); 584 bool parseDirectiveLoc(); 585 bool parseDirectiveStabs(); 586 587 // ".cv_file", ".cv_func_id", ".cv_inline_site_id", ".cv_loc", ".cv_linetable", 588 // ".cv_inline_linetable", ".cv_def_range", ".cv_string" 589 bool parseDirectiveCVFile(); 590 bool parseDirectiveCVFuncId(); 591 bool parseDirectiveCVInlineSiteId(); 592 bool parseDirectiveCVLoc(); 593 bool parseDirectiveCVLinetable(); 594 bool parseDirectiveCVInlineLinetable(); 595 bool parseDirectiveCVDefRange(); 596 bool parseDirectiveCVString(); 597 bool parseDirectiveCVStringTable(); 598 bool parseDirectiveCVFileChecksums(); 599 bool parseDirectiveCVFileChecksumOffset(); 600 bool parseDirectiveCVFPOData(); 601 602 // .cfi directives 603 bool parseDirectiveCFIRegister(SMLoc DirectiveLoc); 604 bool parseDirectiveCFIWindowSave(); 605 bool parseDirectiveCFISections(); 606 bool parseDirectiveCFIStartProc(); 607 bool parseDirectiveCFIEndProc(); 608 bool parseDirectiveCFIDefCfaOffset(); 609 bool parseDirectiveCFIDefCfa(SMLoc DirectiveLoc); 610 bool parseDirectiveCFIAdjustCfaOffset(); 611 bool parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc); 612 bool parseDirectiveCFILLVMDefAspaceCfa(SMLoc DirectiveLoc); 613 bool parseDirectiveCFIOffset(SMLoc DirectiveLoc); 614 bool parseDirectiveCFIRelOffset(SMLoc DirectiveLoc); 615 bool parseDirectiveCFIPersonalityOrLsda(bool IsPersonality); 616 bool parseDirectiveCFIRememberState(); 617 bool parseDirectiveCFIRestoreState(); 618 bool parseDirectiveCFISameValue(SMLoc DirectiveLoc); 619 bool parseDirectiveCFIRestore(SMLoc DirectiveLoc); 620 bool parseDirectiveCFIEscape(); 621 bool parseDirectiveCFIReturnColumn(SMLoc DirectiveLoc); 622 bool parseDirectiveCFISignalFrame(); 623 bool parseDirectiveCFIUndefined(SMLoc DirectiveLoc); 624 625 // macro directives 626 bool parseDirectivePurgeMacro(SMLoc DirectiveLoc); 627 bool parseDirectiveExitMacro(StringRef Directive); 628 bool parseDirectiveEndMacro(StringRef Directive); 629 bool parseDirectiveMacro(SMLoc DirectiveLoc); 630 bool parseDirectiveMacrosOnOff(StringRef Directive); 631 // alternate macro mode directives 632 bool parseDirectiveAltmacro(StringRef Directive); 633 // ".bundle_align_mode" 634 bool parseDirectiveBundleAlignMode(); 635 // ".bundle_lock" 636 bool parseDirectiveBundleLock(); 637 // ".bundle_unlock" 638 bool parseDirectiveBundleUnlock(); 639 640 // ".space", ".skip" 641 bool parseDirectiveSpace(StringRef IDVal); 642 643 // ".dcb" 644 bool parseDirectiveDCB(StringRef IDVal, unsigned Size); 645 bool parseDirectiveRealDCB(StringRef IDVal, const fltSemantics &); 646 // ".ds" 647 bool parseDirectiveDS(StringRef IDVal, unsigned Size); 648 649 // .sleb128 (Signed=true) and .uleb128 (Signed=false) 650 bool parseDirectiveLEB128(bool Signed); 651 652 /// Parse a directive like ".globl" which 653 /// accepts a single symbol (which should be a label or an external). 654 bool parseDirectiveSymbolAttribute(MCSymbolAttr Attr); 655 656 bool parseDirectiveComm(bool IsLocal); // ".comm" and ".lcomm" 657 658 bool parseDirectiveAbort(); // ".abort" 659 bool parseDirectiveInclude(); // ".include" 660 bool parseDirectiveIncbin(); // ".incbin" 661 662 // ".if", ".ifeq", ".ifge", ".ifgt" , ".ifle", ".iflt" or ".ifne" 663 bool parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind); 664 // ".ifb" or ".ifnb", depending on ExpectBlank. 665 bool parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank); 666 // ".ifc" or ".ifnc", depending on ExpectEqual. 667 bool parseDirectiveIfc(SMLoc DirectiveLoc, bool ExpectEqual); 668 // ".ifeqs" or ".ifnes", depending on ExpectEqual. 669 bool parseDirectiveIfeqs(SMLoc DirectiveLoc, bool ExpectEqual); 670 // ".ifdef" or ".ifndef", depending on expect_defined 671 bool parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined); 672 bool parseDirectiveElseIf(SMLoc DirectiveLoc); // ".elseif" 673 bool parseDirectiveElse(SMLoc DirectiveLoc); // ".else" 674 bool parseDirectiveEndIf(SMLoc DirectiveLoc); // .endif 675 bool parseEscapedString(std::string &Data) override; 676 bool parseAngleBracketString(std::string &Data) override; 677 678 const MCExpr *applyModifierToExpr(const MCExpr *E, 679 MCSymbolRefExpr::VariantKind Variant); 680 681 // Macro-like directives 682 MCAsmMacro *parseMacroLikeBody(SMLoc DirectiveLoc); 683 void instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc, 684 raw_svector_ostream &OS); 685 bool parseDirectiveRept(SMLoc DirectiveLoc, StringRef Directive); 686 bool parseDirectiveIrp(SMLoc DirectiveLoc); // ".irp" 687 bool parseDirectiveIrpc(SMLoc DirectiveLoc); // ".irpc" 688 bool parseDirectiveEndr(SMLoc DirectiveLoc); // ".endr" 689 690 // "_emit" or "__emit" 691 bool parseDirectiveMSEmit(SMLoc DirectiveLoc, ParseStatementInfo &Info, 692 size_t Len); 693 694 // "align" 695 bool parseDirectiveMSAlign(SMLoc DirectiveLoc, ParseStatementInfo &Info); 696 697 // "end" 698 bool parseDirectiveEnd(SMLoc DirectiveLoc); 699 700 // ".err" or ".error" 701 bool parseDirectiveError(SMLoc DirectiveLoc, bool WithMessage); 702 703 // ".warning" 704 bool parseDirectiveWarning(SMLoc DirectiveLoc); 705 706 // .print <double-quotes-string> 707 bool parseDirectivePrint(SMLoc DirectiveLoc); 708 709 // .pseudoprobe 710 bool parseDirectivePseudoProbe(); 711 712 // ".lto_discard" 713 bool parseDirectiveLTODiscard(); 714 715 // Directives to support address-significance tables. 716 bool parseDirectiveAddrsig(); 717 bool parseDirectiveAddrsigSym(); 718 719 void initializeDirectiveKindMap(); 720 void initializeCVDefRangeTypeMap(); 721 }; 722 723 class HLASMAsmParser final : public AsmParser { 724 private: 725 MCAsmLexer &Lexer; 726 MCStreamer &Out; 727 728 void lexLeadingSpaces() { 729 while (Lexer.is(AsmToken::Space)) 730 Lexer.Lex(); 731 } 732 733 bool parseAsHLASMLabel(ParseStatementInfo &Info, MCAsmParserSemaCallback *SI); 734 bool parseAsMachineInstruction(ParseStatementInfo &Info, 735 MCAsmParserSemaCallback *SI); 736 737 public: 738 HLASMAsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out, 739 const MCAsmInfo &MAI, unsigned CB = 0) 740 : AsmParser(SM, Ctx, Out, MAI, CB), Lexer(getLexer()), Out(Out) { 741 Lexer.setSkipSpace(false); 742 Lexer.setAllowHashInIdentifier(true); 743 Lexer.setLexHLASMIntegers(true); 744 Lexer.setLexHLASMStrings(true); 745 } 746 747 ~HLASMAsmParser() { Lexer.setSkipSpace(true); } 748 749 bool parseStatement(ParseStatementInfo &Info, 750 MCAsmParserSemaCallback *SI) override; 751 }; 752 753 } // end anonymous namespace 754 755 namespace llvm { 756 757 extern cl::opt<unsigned> AsmMacroMaxNestingDepth; 758 759 extern MCAsmParserExtension *createDarwinAsmParser(); 760 extern MCAsmParserExtension *createELFAsmParser(); 761 extern MCAsmParserExtension *createCOFFAsmParser(); 762 extern MCAsmParserExtension *createGOFFAsmParser(); 763 extern MCAsmParserExtension *createXCOFFAsmParser(); 764 extern MCAsmParserExtension *createWasmAsmParser(); 765 766 } // end namespace llvm 767 768 enum { DEFAULT_ADDRSPACE = 0 }; 769 770 AsmParser::AsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out, 771 const MCAsmInfo &MAI, unsigned CB = 0) 772 : Lexer(MAI), Ctx(Ctx), Out(Out), MAI(MAI), SrcMgr(SM), 773 CurBuffer(CB ? CB : SM.getMainFileID()), MacrosEnabledFlag(true) { 774 HadError = false; 775 // Save the old handler. 776 SavedDiagHandler = SrcMgr.getDiagHandler(); 777 SavedDiagContext = SrcMgr.getDiagContext(); 778 // Set our own handler which calls the saved handler. 779 SrcMgr.setDiagHandler(DiagHandler, this); 780 Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); 781 // Make MCStreamer aware of the StartTokLoc for locations in diagnostics. 782 Out.setStartTokLocPtr(&StartTokLoc); 783 784 // Initialize the platform / file format parser. 785 switch (Ctx.getObjectFileType()) { 786 case MCContext::IsCOFF: 787 PlatformParser.reset(createCOFFAsmParser()); 788 break; 789 case MCContext::IsMachO: 790 PlatformParser.reset(createDarwinAsmParser()); 791 IsDarwin = true; 792 break; 793 case MCContext::IsELF: 794 PlatformParser.reset(createELFAsmParser()); 795 break; 796 case MCContext::IsGOFF: 797 PlatformParser.reset(createGOFFAsmParser()); 798 break; 799 case MCContext::IsSPIRV: 800 report_fatal_error( 801 "Need to implement createSPIRVAsmParser for SPIRV format."); 802 break; 803 case MCContext::IsWasm: 804 PlatformParser.reset(createWasmAsmParser()); 805 break; 806 case MCContext::IsXCOFF: 807 PlatformParser.reset(createXCOFFAsmParser()); 808 break; 809 case MCContext::IsDXContainer: 810 llvm_unreachable("DXContainer is not supported yet"); 811 break; 812 } 813 814 PlatformParser->Initialize(*this); 815 initializeDirectiveKindMap(); 816 initializeCVDefRangeTypeMap(); 817 818 NumOfMacroInstantiations = 0; 819 } 820 821 AsmParser::~AsmParser() { 822 assert((HadError || ActiveMacros.empty()) && 823 "Unexpected active macro instantiation!"); 824 825 // Remove MCStreamer's reference to the parser SMLoc. 826 Out.setStartTokLocPtr(nullptr); 827 // Restore the saved diagnostics handler and context for use during 828 // finalization. 829 SrcMgr.setDiagHandler(SavedDiagHandler, SavedDiagContext); 830 } 831 832 void AsmParser::printMacroInstantiations() { 833 // Print the active macro instantiation stack. 834 for (std::vector<MacroInstantiation *>::const_reverse_iterator 835 it = ActiveMacros.rbegin(), 836 ie = ActiveMacros.rend(); 837 it != ie; ++it) 838 printMessage((*it)->InstantiationLoc, SourceMgr::DK_Note, 839 "while in macro instantiation"); 840 } 841 842 void AsmParser::Note(SMLoc L, const Twine &Msg, SMRange Range) { 843 printPendingErrors(); 844 printMessage(L, SourceMgr::DK_Note, Msg, Range); 845 printMacroInstantiations(); 846 } 847 848 bool AsmParser::Warning(SMLoc L, const Twine &Msg, SMRange Range) { 849 if(getTargetParser().getTargetOptions().MCNoWarn) 850 return false; 851 if (getTargetParser().getTargetOptions().MCFatalWarnings) 852 return Error(L, Msg, Range); 853 printMessage(L, SourceMgr::DK_Warning, Msg, Range); 854 printMacroInstantiations(); 855 return false; 856 } 857 858 bool AsmParser::printError(SMLoc L, const Twine &Msg, SMRange Range) { 859 HadError = true; 860 printMessage(L, SourceMgr::DK_Error, Msg, Range); 861 printMacroInstantiations(); 862 return true; 863 } 864 865 bool AsmParser::enterIncludeFile(const std::string &Filename) { 866 std::string IncludedFile; 867 unsigned NewBuf = 868 SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile); 869 if (!NewBuf) 870 return true; 871 872 CurBuffer = NewBuf; 873 Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); 874 return false; 875 } 876 877 /// Process the specified .incbin file by searching for it in the include paths 878 /// then just emitting the byte contents of the file to the streamer. This 879 /// returns true on failure. 880 bool AsmParser::processIncbinFile(const std::string &Filename, int64_t Skip, 881 const MCExpr *Count, SMLoc Loc) { 882 std::string IncludedFile; 883 unsigned NewBuf = 884 SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile); 885 if (!NewBuf) 886 return true; 887 888 // Pick up the bytes from the file and emit them. 889 StringRef Bytes = SrcMgr.getMemoryBuffer(NewBuf)->getBuffer(); 890 Bytes = Bytes.drop_front(Skip); 891 if (Count) { 892 int64_t Res; 893 if (!Count->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr())) 894 return Error(Loc, "expected absolute expression"); 895 if (Res < 0) 896 return Warning(Loc, "negative count has no effect"); 897 Bytes = Bytes.take_front(Res); 898 } 899 getStreamer().emitBytes(Bytes); 900 return false; 901 } 902 903 void AsmParser::jumpToLoc(SMLoc Loc, unsigned InBuffer) { 904 CurBuffer = InBuffer ? InBuffer : SrcMgr.FindBufferContainingLoc(Loc); 905 Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer(), 906 Loc.getPointer()); 907 } 908 909 const AsmToken &AsmParser::Lex() { 910 if (Lexer.getTok().is(AsmToken::Error)) 911 Error(Lexer.getErrLoc(), Lexer.getErr()); 912 913 // if it's a end of statement with a comment in it 914 if (getTok().is(AsmToken::EndOfStatement)) { 915 // if this is a line comment output it. 916 if (!getTok().getString().empty() && getTok().getString().front() != '\n' && 917 getTok().getString().front() != '\r' && MAI.preserveAsmComments()) 918 Out.addExplicitComment(Twine(getTok().getString())); 919 } 920 921 const AsmToken *tok = &Lexer.Lex(); 922 923 // Parse comments here to be deferred until end of next statement. 924 while (tok->is(AsmToken::Comment)) { 925 if (MAI.preserveAsmComments()) 926 Out.addExplicitComment(Twine(tok->getString())); 927 tok = &Lexer.Lex(); 928 } 929 930 if (tok->is(AsmToken::Eof)) { 931 // If this is the end of an included file, pop the parent file off the 932 // include stack. 933 SMLoc ParentIncludeLoc = SrcMgr.getParentIncludeLoc(CurBuffer); 934 if (ParentIncludeLoc != SMLoc()) { 935 jumpToLoc(ParentIncludeLoc); 936 return Lex(); 937 } 938 } 939 940 return *tok; 941 } 942 943 bool AsmParser::enabledGenDwarfForAssembly() { 944 // Check whether the user specified -g. 945 if (!getContext().getGenDwarfForAssembly()) 946 return false; 947 // If we haven't encountered any .file directives (which would imply that 948 // the assembler source was produced with debug info already) then emit one 949 // describing the assembler source file itself. 950 if (getContext().getGenDwarfFileNumber() == 0) { 951 // Use the first #line directive for this, if any. It's preprocessed, so 952 // there is no checksum, and of course no source directive. 953 if (!FirstCppHashFilename.empty()) 954 getContext().setMCLineTableRootFile( 955 /*CUID=*/0, getContext().getCompilationDir(), FirstCppHashFilename, 956 /*Cksum=*/std::nullopt, /*Source=*/std::nullopt); 957 const MCDwarfFile &RootFile = 958 getContext().getMCDwarfLineTable(/*CUID=*/0).getRootFile(); 959 getContext().setGenDwarfFileNumber(getStreamer().emitDwarfFileDirective( 960 /*CUID=*/0, getContext().getCompilationDir(), RootFile.Name, 961 RootFile.Checksum, RootFile.Source)); 962 } 963 return true; 964 } 965 966 bool AsmParser::Run(bool NoInitialTextSection, bool NoFinalize) { 967 LTODiscardSymbols.clear(); 968 969 // Create the initial section, if requested. 970 if (!NoInitialTextSection) 971 Out.initSections(false, getTargetParser().getSTI()); 972 973 // Prime the lexer. 974 Lex(); 975 976 HadError = false; 977 AsmCond StartingCondState = TheCondState; 978 SmallVector<AsmRewrite, 4> AsmStrRewrites; 979 980 // If we are generating dwarf for assembly source files save the initial text 981 // section. (Don't use enabledGenDwarfForAssembly() here, as we aren't 982 // emitting any actual debug info yet and haven't had a chance to parse any 983 // embedded .file directives.) 984 if (getContext().getGenDwarfForAssembly()) { 985 MCSection *Sec = getStreamer().getCurrentSectionOnly(); 986 if (!Sec->getBeginSymbol()) { 987 MCSymbol *SectionStartSym = getContext().createTempSymbol(); 988 getStreamer().emitLabel(SectionStartSym); 989 Sec->setBeginSymbol(SectionStartSym); 990 } 991 bool InsertResult = getContext().addGenDwarfSection(Sec); 992 assert(InsertResult && ".text section should not have debug info yet"); 993 (void)InsertResult; 994 } 995 996 getTargetParser().onBeginOfFile(); 997 998 // While we have input, parse each statement. 999 while (Lexer.isNot(AsmToken::Eof)) { 1000 ParseStatementInfo Info(&AsmStrRewrites); 1001 bool Parsed = parseStatement(Info, nullptr); 1002 1003 // If we have a Lexer Error we are on an Error Token. Load in Lexer Error 1004 // for printing ErrMsg via Lex() only if no (presumably better) parser error 1005 // exists. 1006 if (Parsed && !hasPendingError() && Lexer.getTok().is(AsmToken::Error)) { 1007 Lex(); 1008 } 1009 1010 // parseStatement returned true so may need to emit an error. 1011 printPendingErrors(); 1012 1013 // Skipping to the next line if needed. 1014 if (Parsed && !getLexer().isAtStartOfStatement()) 1015 eatToEndOfStatement(); 1016 } 1017 1018 getTargetParser().onEndOfFile(); 1019 printPendingErrors(); 1020 1021 // All errors should have been emitted. 1022 assert(!hasPendingError() && "unexpected error from parseStatement"); 1023 1024 getTargetParser().flushPendingInstructions(getStreamer()); 1025 1026 if (TheCondState.TheCond != StartingCondState.TheCond || 1027 TheCondState.Ignore != StartingCondState.Ignore) 1028 printError(getTok().getLoc(), "unmatched .ifs or .elses"); 1029 // Check to see there are no empty DwarfFile slots. 1030 const auto &LineTables = getContext().getMCDwarfLineTables(); 1031 if (!LineTables.empty()) { 1032 unsigned Index = 0; 1033 for (const auto &File : LineTables.begin()->second.getMCDwarfFiles()) { 1034 if (File.Name.empty() && Index != 0) 1035 printError(getTok().getLoc(), "unassigned file number: " + 1036 Twine(Index) + 1037 " for .file directives"); 1038 ++Index; 1039 } 1040 } 1041 1042 // Check to see that all assembler local symbols were actually defined. 1043 // Targets that don't do subsections via symbols may not want this, though, 1044 // so conservatively exclude them. Only do this if we're finalizing, though, 1045 // as otherwise we won't necessarilly have seen everything yet. 1046 if (!NoFinalize) { 1047 if (MAI.hasSubsectionsViaSymbols()) { 1048 for (const auto &TableEntry : getContext().getSymbols()) { 1049 MCSymbol *Sym = TableEntry.getValue(); 1050 // Variable symbols may not be marked as defined, so check those 1051 // explicitly. If we know it's a variable, we have a definition for 1052 // the purposes of this check. 1053 if (Sym->isTemporary() && !Sym->isVariable() && !Sym->isDefined()) 1054 // FIXME: We would really like to refer back to where the symbol was 1055 // first referenced for a source location. We need to add something 1056 // to track that. Currently, we just point to the end of the file. 1057 printError(getTok().getLoc(), "assembler local symbol '" + 1058 Sym->getName() + "' not defined"); 1059 } 1060 } 1061 1062 // Temporary symbols like the ones for directional jumps don't go in the 1063 // symbol table. They also need to be diagnosed in all (final) cases. 1064 for (std::tuple<SMLoc, CppHashInfoTy, MCSymbol *> &LocSym : DirLabels) { 1065 if (std::get<2>(LocSym)->isUndefined()) { 1066 // Reset the state of any "# line file" directives we've seen to the 1067 // context as it was at the diagnostic site. 1068 CppHashInfo = std::get<1>(LocSym); 1069 printError(std::get<0>(LocSym), "directional label undefined"); 1070 } 1071 } 1072 } 1073 // Finalize the output stream if there are no errors and if the client wants 1074 // us to. 1075 if (!HadError && !NoFinalize) { 1076 if (auto *TS = Out.getTargetStreamer()) 1077 TS->emitConstantPools(); 1078 1079 Out.finish(Lexer.getLoc()); 1080 } 1081 1082 return HadError || getContext().hadError(); 1083 } 1084 1085 bool AsmParser::checkForValidSection() { 1086 if (!ParsingMSInlineAsm && !getStreamer().getCurrentSectionOnly()) { 1087 Out.initSections(false, getTargetParser().getSTI()); 1088 return Error(getTok().getLoc(), 1089 "expected section directive before assembly directive"); 1090 } 1091 return false; 1092 } 1093 1094 /// Throw away the rest of the line for testing purposes. 1095 void AsmParser::eatToEndOfStatement() { 1096 while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof)) 1097 Lexer.Lex(); 1098 1099 // Eat EOL. 1100 if (Lexer.is(AsmToken::EndOfStatement)) 1101 Lexer.Lex(); 1102 } 1103 1104 StringRef AsmParser::parseStringToEndOfStatement() { 1105 const char *Start = getTok().getLoc().getPointer(); 1106 1107 while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof)) 1108 Lexer.Lex(); 1109 1110 const char *End = getTok().getLoc().getPointer(); 1111 return StringRef(Start, End - Start); 1112 } 1113 1114 StringRef AsmParser::parseStringToComma() { 1115 const char *Start = getTok().getLoc().getPointer(); 1116 1117 while (Lexer.isNot(AsmToken::EndOfStatement) && 1118 Lexer.isNot(AsmToken::Comma) && Lexer.isNot(AsmToken::Eof)) 1119 Lexer.Lex(); 1120 1121 const char *End = getTok().getLoc().getPointer(); 1122 return StringRef(Start, End - Start); 1123 } 1124 1125 /// Parse a paren expression and return it. 1126 /// NOTE: This assumes the leading '(' has already been consumed. 1127 /// 1128 /// parenexpr ::= expr) 1129 /// 1130 bool AsmParser::parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc) { 1131 if (parseExpression(Res)) 1132 return true; 1133 EndLoc = Lexer.getTok().getEndLoc(); 1134 return parseRParen(); 1135 } 1136 1137 /// Parse a bracket expression and return it. 1138 /// NOTE: This assumes the leading '[' has already been consumed. 1139 /// 1140 /// bracketexpr ::= expr] 1141 /// 1142 bool AsmParser::parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc) { 1143 if (parseExpression(Res)) 1144 return true; 1145 EndLoc = getTok().getEndLoc(); 1146 if (parseToken(AsmToken::RBrac, "expected ']' in brackets expression")) 1147 return true; 1148 return false; 1149 } 1150 1151 /// Parse a primary expression and return it. 1152 /// primaryexpr ::= (parenexpr 1153 /// primaryexpr ::= symbol 1154 /// primaryexpr ::= number 1155 /// primaryexpr ::= '.' 1156 /// primaryexpr ::= ~,+,- primaryexpr 1157 bool AsmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc, 1158 AsmTypeInfo *TypeInfo) { 1159 SMLoc FirstTokenLoc = getLexer().getLoc(); 1160 AsmToken::TokenKind FirstTokenKind = Lexer.getKind(); 1161 switch (FirstTokenKind) { 1162 default: 1163 return TokError("unknown token in expression"); 1164 // If we have an error assume that we've already handled it. 1165 case AsmToken::Error: 1166 return true; 1167 case AsmToken::Exclaim: 1168 Lex(); // Eat the operator. 1169 if (parsePrimaryExpr(Res, EndLoc, TypeInfo)) 1170 return true; 1171 Res = MCUnaryExpr::createLNot(Res, getContext(), FirstTokenLoc); 1172 return false; 1173 case AsmToken::Dollar: 1174 case AsmToken::Star: 1175 case AsmToken::At: 1176 case AsmToken::String: 1177 case AsmToken::Identifier: { 1178 StringRef Identifier; 1179 if (parseIdentifier(Identifier)) { 1180 // We may have failed but '$'|'*' may be a valid token in context of 1181 // the current PC. 1182 if (getTok().is(AsmToken::Dollar) || getTok().is(AsmToken::Star)) { 1183 bool ShouldGenerateTempSymbol = false; 1184 if ((getTok().is(AsmToken::Dollar) && MAI.getDollarIsPC()) || 1185 (getTok().is(AsmToken::Star) && MAI.getStarIsPC())) 1186 ShouldGenerateTempSymbol = true; 1187 1188 if (!ShouldGenerateTempSymbol) 1189 return Error(FirstTokenLoc, "invalid token in expression"); 1190 1191 // Eat the '$'|'*' token. 1192 Lex(); 1193 // This is either a '$'|'*' reference, which references the current PC. 1194 // Emit a temporary label to the streamer and refer to it. 1195 MCSymbol *Sym = Ctx.createTempSymbol(); 1196 Out.emitLabel(Sym); 1197 Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 1198 getContext()); 1199 EndLoc = FirstTokenLoc; 1200 return false; 1201 } 1202 } 1203 // Parse symbol variant 1204 std::pair<StringRef, StringRef> Split; 1205 if (!MAI.useParensForSymbolVariant()) { 1206 if (FirstTokenKind == AsmToken::String) { 1207 if (Lexer.is(AsmToken::At)) { 1208 Lex(); // eat @ 1209 SMLoc AtLoc = getLexer().getLoc(); 1210 StringRef VName; 1211 if (parseIdentifier(VName)) 1212 return Error(AtLoc, "expected symbol variant after '@'"); 1213 1214 Split = std::make_pair(Identifier, VName); 1215 } 1216 } else { 1217 Split = Identifier.split('@'); 1218 } 1219 } else if (Lexer.is(AsmToken::LParen)) { 1220 Lex(); // eat '('. 1221 StringRef VName; 1222 parseIdentifier(VName); 1223 if (parseRParen()) 1224 return true; 1225 Split = std::make_pair(Identifier, VName); 1226 } 1227 1228 EndLoc = SMLoc::getFromPointer(Identifier.end()); 1229 1230 // This is a symbol reference. 1231 StringRef SymbolName = Identifier; 1232 if (SymbolName.empty()) 1233 return Error(getLexer().getLoc(), "expected a symbol reference"); 1234 1235 MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; 1236 1237 // Lookup the symbol variant if used. 1238 if (!Split.second.empty()) { 1239 Variant = MCSymbolRefExpr::getVariantKindForName(Split.second); 1240 if (Variant != MCSymbolRefExpr::VK_Invalid) { 1241 SymbolName = Split.first; 1242 } else if (MAI.doesAllowAtInName() && !MAI.useParensForSymbolVariant()) { 1243 Variant = MCSymbolRefExpr::VK_None; 1244 } else { 1245 return Error(SMLoc::getFromPointer(Split.second.begin()), 1246 "invalid variant '" + Split.second + "'"); 1247 } 1248 } 1249 1250 MCSymbol *Sym = getContext().getInlineAsmLabel(SymbolName); 1251 if (!Sym) 1252 Sym = getContext().getOrCreateSymbol( 1253 MAI.shouldEmitLabelsInUpperCase() ? SymbolName.upper() : SymbolName); 1254 1255 // If this is an absolute variable reference, substitute it now to preserve 1256 // semantics in the face of reassignment. 1257 if (Sym->isVariable()) { 1258 auto V = Sym->getVariableValue(/*SetUsed*/ false); 1259 bool DoInline = isa<MCConstantExpr>(V) && !Variant; 1260 if (auto TV = dyn_cast<MCTargetExpr>(V)) 1261 DoInline = TV->inlineAssignedExpr(); 1262 if (DoInline) { 1263 if (Variant) 1264 return Error(EndLoc, "unexpected modifier on variable reference"); 1265 Res = Sym->getVariableValue(/*SetUsed*/ false); 1266 return false; 1267 } 1268 } 1269 1270 // Otherwise create a symbol ref. 1271 Res = MCSymbolRefExpr::create(Sym, Variant, getContext(), FirstTokenLoc); 1272 return false; 1273 } 1274 case AsmToken::BigNum: 1275 return TokError("literal value out of range for directive"); 1276 case AsmToken::Integer: { 1277 SMLoc Loc = getTok().getLoc(); 1278 int64_t IntVal = getTok().getIntVal(); 1279 Res = MCConstantExpr::create(IntVal, getContext()); 1280 EndLoc = Lexer.getTok().getEndLoc(); 1281 Lex(); // Eat token. 1282 // Look for 'b' or 'f' following an Integer as a directional label 1283 if (Lexer.getKind() == AsmToken::Identifier) { 1284 StringRef IDVal = getTok().getString(); 1285 // Lookup the symbol variant if used. 1286 std::pair<StringRef, StringRef> Split = IDVal.split('@'); 1287 MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; 1288 if (Split.first.size() != IDVal.size()) { 1289 Variant = MCSymbolRefExpr::getVariantKindForName(Split.second); 1290 if (Variant == MCSymbolRefExpr::VK_Invalid) 1291 return TokError("invalid variant '" + Split.second + "'"); 1292 IDVal = Split.first; 1293 } 1294 if (IDVal == "f" || IDVal == "b") { 1295 MCSymbol *Sym = 1296 Ctx.getDirectionalLocalSymbol(IntVal, IDVal == "b"); 1297 Res = MCSymbolRefExpr::create(Sym, Variant, getContext()); 1298 if (IDVal == "b" && Sym->isUndefined()) 1299 return Error(Loc, "directional label undefined"); 1300 DirLabels.push_back(std::make_tuple(Loc, CppHashInfo, Sym)); 1301 EndLoc = Lexer.getTok().getEndLoc(); 1302 Lex(); // Eat identifier. 1303 } 1304 } 1305 return false; 1306 } 1307 case AsmToken::Real: { 1308 APFloat RealVal(APFloat::IEEEdouble(), getTok().getString()); 1309 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 1310 Res = MCConstantExpr::create(IntVal, getContext()); 1311 EndLoc = Lexer.getTok().getEndLoc(); 1312 Lex(); // Eat token. 1313 return false; 1314 } 1315 case AsmToken::Dot: { 1316 if (!MAI.getDotIsPC()) 1317 return TokError("cannot use . as current PC"); 1318 1319 // This is a '.' reference, which references the current PC. Emit a 1320 // temporary label to the streamer and refer to it. 1321 MCSymbol *Sym = Ctx.createTempSymbol(); 1322 Out.emitLabel(Sym); 1323 Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext()); 1324 EndLoc = Lexer.getTok().getEndLoc(); 1325 Lex(); // Eat identifier. 1326 return false; 1327 } 1328 case AsmToken::LParen: 1329 Lex(); // Eat the '('. 1330 return parseParenExpr(Res, EndLoc); 1331 case AsmToken::LBrac: 1332 if (!PlatformParser->HasBracketExpressions()) 1333 return TokError("brackets expression not supported on this target"); 1334 Lex(); // Eat the '['. 1335 return parseBracketExpr(Res, EndLoc); 1336 case AsmToken::Minus: 1337 Lex(); // Eat the operator. 1338 if (parsePrimaryExpr(Res, EndLoc, TypeInfo)) 1339 return true; 1340 Res = MCUnaryExpr::createMinus(Res, getContext(), FirstTokenLoc); 1341 return false; 1342 case AsmToken::Plus: 1343 Lex(); // Eat the operator. 1344 if (parsePrimaryExpr(Res, EndLoc, TypeInfo)) 1345 return true; 1346 Res = MCUnaryExpr::createPlus(Res, getContext(), FirstTokenLoc); 1347 return false; 1348 case AsmToken::Tilde: 1349 Lex(); // Eat the operator. 1350 if (parsePrimaryExpr(Res, EndLoc, TypeInfo)) 1351 return true; 1352 Res = MCUnaryExpr::createNot(Res, getContext(), FirstTokenLoc); 1353 return false; 1354 // MIPS unary expression operators. The lexer won't generate these tokens if 1355 // MCAsmInfo::HasMipsExpressions is false for the target. 1356 case AsmToken::PercentCall16: 1357 case AsmToken::PercentCall_Hi: 1358 case AsmToken::PercentCall_Lo: 1359 case AsmToken::PercentDtprel_Hi: 1360 case AsmToken::PercentDtprel_Lo: 1361 case AsmToken::PercentGot: 1362 case AsmToken::PercentGot_Disp: 1363 case AsmToken::PercentGot_Hi: 1364 case AsmToken::PercentGot_Lo: 1365 case AsmToken::PercentGot_Ofst: 1366 case AsmToken::PercentGot_Page: 1367 case AsmToken::PercentGottprel: 1368 case AsmToken::PercentGp_Rel: 1369 case AsmToken::PercentHi: 1370 case AsmToken::PercentHigher: 1371 case AsmToken::PercentHighest: 1372 case AsmToken::PercentLo: 1373 case AsmToken::PercentNeg: 1374 case AsmToken::PercentPcrel_Hi: 1375 case AsmToken::PercentPcrel_Lo: 1376 case AsmToken::PercentTlsgd: 1377 case AsmToken::PercentTlsldm: 1378 case AsmToken::PercentTprel_Hi: 1379 case AsmToken::PercentTprel_Lo: 1380 Lex(); // Eat the operator. 1381 if (Lexer.isNot(AsmToken::LParen)) 1382 return TokError("expected '(' after operator"); 1383 Lex(); // Eat the operator. 1384 if (parseExpression(Res, EndLoc)) 1385 return true; 1386 if (parseRParen()) 1387 return true; 1388 Res = getTargetParser().createTargetUnaryExpr(Res, FirstTokenKind, Ctx); 1389 return !Res; 1390 } 1391 } 1392 1393 bool AsmParser::parseExpression(const MCExpr *&Res) { 1394 SMLoc EndLoc; 1395 return parseExpression(Res, EndLoc); 1396 } 1397 1398 const MCExpr * 1399 AsmParser::applyModifierToExpr(const MCExpr *E, 1400 MCSymbolRefExpr::VariantKind Variant) { 1401 // Ask the target implementation about this expression first. 1402 const MCExpr *NewE = getTargetParser().applyModifierToExpr(E, Variant, Ctx); 1403 if (NewE) 1404 return NewE; 1405 // Recurse over the given expression, rebuilding it to apply the given variant 1406 // if there is exactly one symbol. 1407 switch (E->getKind()) { 1408 case MCExpr::Target: 1409 case MCExpr::Constant: 1410 return nullptr; 1411 1412 case MCExpr::SymbolRef: { 1413 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1414 1415 if (SRE->getKind() != MCSymbolRefExpr::VK_None) { 1416 TokError("invalid variant on expression '" + getTok().getIdentifier() + 1417 "' (already modified)"); 1418 return E; 1419 } 1420 1421 return MCSymbolRefExpr::create(&SRE->getSymbol(), Variant, getContext()); 1422 } 1423 1424 case MCExpr::Unary: { 1425 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1426 const MCExpr *Sub = applyModifierToExpr(UE->getSubExpr(), Variant); 1427 if (!Sub) 1428 return nullptr; 1429 return MCUnaryExpr::create(UE->getOpcode(), Sub, getContext()); 1430 } 1431 1432 case MCExpr::Binary: { 1433 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1434 const MCExpr *LHS = applyModifierToExpr(BE->getLHS(), Variant); 1435 const MCExpr *RHS = applyModifierToExpr(BE->getRHS(), Variant); 1436 1437 if (!LHS && !RHS) 1438 return nullptr; 1439 1440 if (!LHS) 1441 LHS = BE->getLHS(); 1442 if (!RHS) 1443 RHS = BE->getRHS(); 1444 1445 return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, getContext()); 1446 } 1447 } 1448 1449 llvm_unreachable("Invalid expression kind!"); 1450 } 1451 1452 /// This function checks if the next token is <string> type or arithmetic. 1453 /// string that begin with character '<' must end with character '>'. 1454 /// otherwise it is arithmetics. 1455 /// If the function returns a 'true' value, 1456 /// the End argument will be filled with the last location pointed to the '>' 1457 /// character. 1458 1459 /// There is a gap between the AltMacro's documentation and the single quote 1460 /// implementation. GCC does not fully support this feature and so we will not 1461 /// support it. 1462 /// TODO: Adding single quote as a string. 1463 static bool isAngleBracketString(SMLoc &StrLoc, SMLoc &EndLoc) { 1464 assert((StrLoc.getPointer() != nullptr) && 1465 "Argument to the function cannot be a NULL value"); 1466 const char *CharPtr = StrLoc.getPointer(); 1467 while ((*CharPtr != '>') && (*CharPtr != '\n') && (*CharPtr != '\r') && 1468 (*CharPtr != '\0')) { 1469 if (*CharPtr == '!') 1470 CharPtr++; 1471 CharPtr++; 1472 } 1473 if (*CharPtr == '>') { 1474 EndLoc = StrLoc.getFromPointer(CharPtr + 1); 1475 return true; 1476 } 1477 return false; 1478 } 1479 1480 /// creating a string without the escape characters '!'. 1481 static std::string angleBracketString(StringRef AltMacroStr) { 1482 std::string Res; 1483 for (size_t Pos = 0; Pos < AltMacroStr.size(); Pos++) { 1484 if (AltMacroStr[Pos] == '!') 1485 Pos++; 1486 Res += AltMacroStr[Pos]; 1487 } 1488 return Res; 1489 } 1490 1491 /// Parse an expression and return it. 1492 /// 1493 /// expr ::= expr &&,|| expr -> lowest. 1494 /// expr ::= expr |,^,&,! expr 1495 /// expr ::= expr ==,!=,<>,<,<=,>,>= expr 1496 /// expr ::= expr <<,>> expr 1497 /// expr ::= expr +,- expr 1498 /// expr ::= expr *,/,% expr -> highest. 1499 /// expr ::= primaryexpr 1500 /// 1501 bool AsmParser::parseExpression(const MCExpr *&Res, SMLoc &EndLoc) { 1502 // Parse the expression. 1503 Res = nullptr; 1504 if (getTargetParser().parsePrimaryExpr(Res, EndLoc) || 1505 parseBinOpRHS(1, Res, EndLoc)) 1506 return true; 1507 1508 // As a special case, we support 'a op b @ modifier' by rewriting the 1509 // expression to include the modifier. This is inefficient, but in general we 1510 // expect users to use 'a@modifier op b'. 1511 if (Lexer.getKind() == AsmToken::At) { 1512 Lex(); 1513 1514 if (Lexer.isNot(AsmToken::Identifier)) 1515 return TokError("unexpected symbol modifier following '@'"); 1516 1517 MCSymbolRefExpr::VariantKind Variant = 1518 MCSymbolRefExpr::getVariantKindForName(getTok().getIdentifier()); 1519 if (Variant == MCSymbolRefExpr::VK_Invalid) 1520 return TokError("invalid variant '" + getTok().getIdentifier() + "'"); 1521 1522 const MCExpr *ModifiedRes = applyModifierToExpr(Res, Variant); 1523 if (!ModifiedRes) { 1524 return TokError("invalid modifier '" + getTok().getIdentifier() + 1525 "' (no symbols present)"); 1526 } 1527 1528 Res = ModifiedRes; 1529 Lex(); 1530 } 1531 1532 // Try to constant fold it up front, if possible. Do not exploit 1533 // assembler here. 1534 int64_t Value; 1535 if (Res->evaluateAsAbsolute(Value)) 1536 Res = MCConstantExpr::create(Value, getContext()); 1537 1538 return false; 1539 } 1540 1541 bool AsmParser::parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) { 1542 Res = nullptr; 1543 return parseParenExpr(Res, EndLoc) || parseBinOpRHS(1, Res, EndLoc); 1544 } 1545 1546 bool AsmParser::parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res, 1547 SMLoc &EndLoc) { 1548 if (parseParenExpr(Res, EndLoc)) 1549 return true; 1550 1551 for (; ParenDepth > 0; --ParenDepth) { 1552 if (parseBinOpRHS(1, Res, EndLoc)) 1553 return true; 1554 1555 // We don't Lex() the last RParen. 1556 // This is the same behavior as parseParenExpression(). 1557 if (ParenDepth - 1 > 0) { 1558 EndLoc = getTok().getEndLoc(); 1559 if (parseRParen()) 1560 return true; 1561 } 1562 } 1563 return false; 1564 } 1565 1566 bool AsmParser::parseAbsoluteExpression(int64_t &Res) { 1567 const MCExpr *Expr; 1568 1569 SMLoc StartLoc = Lexer.getLoc(); 1570 if (parseExpression(Expr)) 1571 return true; 1572 1573 if (!Expr->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr())) 1574 return Error(StartLoc, "expected absolute expression"); 1575 1576 return false; 1577 } 1578 1579 static unsigned getDarwinBinOpPrecedence(AsmToken::TokenKind K, 1580 MCBinaryExpr::Opcode &Kind, 1581 bool ShouldUseLogicalShr) { 1582 switch (K) { 1583 default: 1584 return 0; // not a binop. 1585 1586 // Lowest Precedence: &&, || 1587 case AsmToken::AmpAmp: 1588 Kind = MCBinaryExpr::LAnd; 1589 return 1; 1590 case AsmToken::PipePipe: 1591 Kind = MCBinaryExpr::LOr; 1592 return 1; 1593 1594 // Low Precedence: |, &, ^ 1595 case AsmToken::Pipe: 1596 Kind = MCBinaryExpr::Or; 1597 return 2; 1598 case AsmToken::Caret: 1599 Kind = MCBinaryExpr::Xor; 1600 return 2; 1601 case AsmToken::Amp: 1602 Kind = MCBinaryExpr::And; 1603 return 2; 1604 1605 // Low Intermediate Precedence: ==, !=, <>, <, <=, >, >= 1606 case AsmToken::EqualEqual: 1607 Kind = MCBinaryExpr::EQ; 1608 return 3; 1609 case AsmToken::ExclaimEqual: 1610 case AsmToken::LessGreater: 1611 Kind = MCBinaryExpr::NE; 1612 return 3; 1613 case AsmToken::Less: 1614 Kind = MCBinaryExpr::LT; 1615 return 3; 1616 case AsmToken::LessEqual: 1617 Kind = MCBinaryExpr::LTE; 1618 return 3; 1619 case AsmToken::Greater: 1620 Kind = MCBinaryExpr::GT; 1621 return 3; 1622 case AsmToken::GreaterEqual: 1623 Kind = MCBinaryExpr::GTE; 1624 return 3; 1625 1626 // Intermediate Precedence: <<, >> 1627 case AsmToken::LessLess: 1628 Kind = MCBinaryExpr::Shl; 1629 return 4; 1630 case AsmToken::GreaterGreater: 1631 Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr; 1632 return 4; 1633 1634 // High Intermediate Precedence: +, - 1635 case AsmToken::Plus: 1636 Kind = MCBinaryExpr::Add; 1637 return 5; 1638 case AsmToken::Minus: 1639 Kind = MCBinaryExpr::Sub; 1640 return 5; 1641 1642 // Highest Precedence: *, /, % 1643 case AsmToken::Star: 1644 Kind = MCBinaryExpr::Mul; 1645 return 6; 1646 case AsmToken::Slash: 1647 Kind = MCBinaryExpr::Div; 1648 return 6; 1649 case AsmToken::Percent: 1650 Kind = MCBinaryExpr::Mod; 1651 return 6; 1652 } 1653 } 1654 1655 static unsigned getGNUBinOpPrecedence(const MCAsmInfo &MAI, 1656 AsmToken::TokenKind K, 1657 MCBinaryExpr::Opcode &Kind, 1658 bool ShouldUseLogicalShr) { 1659 switch (K) { 1660 default: 1661 return 0; // not a binop. 1662 1663 // Lowest Precedence: &&, || 1664 case AsmToken::AmpAmp: 1665 Kind = MCBinaryExpr::LAnd; 1666 return 2; 1667 case AsmToken::PipePipe: 1668 Kind = MCBinaryExpr::LOr; 1669 return 1; 1670 1671 // Low Precedence: ==, !=, <>, <, <=, >, >= 1672 case AsmToken::EqualEqual: 1673 Kind = MCBinaryExpr::EQ; 1674 return 3; 1675 case AsmToken::ExclaimEqual: 1676 case AsmToken::LessGreater: 1677 Kind = MCBinaryExpr::NE; 1678 return 3; 1679 case AsmToken::Less: 1680 Kind = MCBinaryExpr::LT; 1681 return 3; 1682 case AsmToken::LessEqual: 1683 Kind = MCBinaryExpr::LTE; 1684 return 3; 1685 case AsmToken::Greater: 1686 Kind = MCBinaryExpr::GT; 1687 return 3; 1688 case AsmToken::GreaterEqual: 1689 Kind = MCBinaryExpr::GTE; 1690 return 3; 1691 1692 // Low Intermediate Precedence: +, - 1693 case AsmToken::Plus: 1694 Kind = MCBinaryExpr::Add; 1695 return 4; 1696 case AsmToken::Minus: 1697 Kind = MCBinaryExpr::Sub; 1698 return 4; 1699 1700 // High Intermediate Precedence: |, !, &, ^ 1701 // 1702 case AsmToken::Pipe: 1703 Kind = MCBinaryExpr::Or; 1704 return 5; 1705 case AsmToken::Exclaim: 1706 // Hack to support ARM compatible aliases (implied 'sp' operand in 'srs*' 1707 // instructions like 'srsda #31!') and not parse ! as an infix operator. 1708 if (MAI.getCommentString() == "@") 1709 return 0; 1710 Kind = MCBinaryExpr::OrNot; 1711 return 5; 1712 case AsmToken::Caret: 1713 Kind = MCBinaryExpr::Xor; 1714 return 5; 1715 case AsmToken::Amp: 1716 Kind = MCBinaryExpr::And; 1717 return 5; 1718 1719 // Highest Precedence: *, /, %, <<, >> 1720 case AsmToken::Star: 1721 Kind = MCBinaryExpr::Mul; 1722 return 6; 1723 case AsmToken::Slash: 1724 Kind = MCBinaryExpr::Div; 1725 return 6; 1726 case AsmToken::Percent: 1727 Kind = MCBinaryExpr::Mod; 1728 return 6; 1729 case AsmToken::LessLess: 1730 Kind = MCBinaryExpr::Shl; 1731 return 6; 1732 case AsmToken::GreaterGreater: 1733 Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr; 1734 return 6; 1735 } 1736 } 1737 1738 unsigned AsmParser::getBinOpPrecedence(AsmToken::TokenKind K, 1739 MCBinaryExpr::Opcode &Kind) { 1740 bool ShouldUseLogicalShr = MAI.shouldUseLogicalShr(); 1741 return IsDarwin ? getDarwinBinOpPrecedence(K, Kind, ShouldUseLogicalShr) 1742 : getGNUBinOpPrecedence(MAI, K, Kind, ShouldUseLogicalShr); 1743 } 1744 1745 /// Parse all binary operators with precedence >= 'Precedence'. 1746 /// Res contains the LHS of the expression on input. 1747 bool AsmParser::parseBinOpRHS(unsigned Precedence, const MCExpr *&Res, 1748 SMLoc &EndLoc) { 1749 SMLoc StartLoc = Lexer.getLoc(); 1750 while (true) { 1751 MCBinaryExpr::Opcode Kind = MCBinaryExpr::Add; 1752 unsigned TokPrec = getBinOpPrecedence(Lexer.getKind(), Kind); 1753 1754 // If the next token is lower precedence than we are allowed to eat, return 1755 // successfully with what we ate already. 1756 if (TokPrec < Precedence) 1757 return false; 1758 1759 Lex(); 1760 1761 // Eat the next primary expression. 1762 const MCExpr *RHS; 1763 if (getTargetParser().parsePrimaryExpr(RHS, EndLoc)) 1764 return true; 1765 1766 // If BinOp binds less tightly with RHS than the operator after RHS, let 1767 // the pending operator take RHS as its LHS. 1768 MCBinaryExpr::Opcode Dummy; 1769 unsigned NextTokPrec = getBinOpPrecedence(Lexer.getKind(), Dummy); 1770 if (TokPrec < NextTokPrec && parseBinOpRHS(TokPrec + 1, RHS, EndLoc)) 1771 return true; 1772 1773 // Merge LHS and RHS according to operator. 1774 Res = MCBinaryExpr::create(Kind, Res, RHS, getContext(), StartLoc); 1775 } 1776 } 1777 1778 /// ParseStatement: 1779 /// ::= EndOfStatement 1780 /// ::= Label* Directive ...Operands... EndOfStatement 1781 /// ::= Label* Identifier OperandList* EndOfStatement 1782 bool AsmParser::parseStatement(ParseStatementInfo &Info, 1783 MCAsmParserSemaCallback *SI) { 1784 assert(!hasPendingError() && "parseStatement started with pending error"); 1785 // Eat initial spaces and comments 1786 while (Lexer.is(AsmToken::Space)) 1787 Lex(); 1788 if (Lexer.is(AsmToken::EndOfStatement)) { 1789 // if this is a line comment we can drop it safely 1790 if (getTok().getString().empty() || getTok().getString().front() == '\r' || 1791 getTok().getString().front() == '\n') 1792 Out.addBlankLine(); 1793 Lex(); 1794 return false; 1795 } 1796 // Statements always start with an identifier. 1797 AsmToken ID = getTok(); 1798 SMLoc IDLoc = ID.getLoc(); 1799 StringRef IDVal; 1800 int64_t LocalLabelVal = -1; 1801 StartTokLoc = ID.getLoc(); 1802 if (Lexer.is(AsmToken::HashDirective)) 1803 return parseCppHashLineFilenameComment(IDLoc, 1804 !isInsideMacroInstantiation()); 1805 1806 // Allow an integer followed by a ':' as a directional local label. 1807 if (Lexer.is(AsmToken::Integer)) { 1808 LocalLabelVal = getTok().getIntVal(); 1809 if (LocalLabelVal < 0) { 1810 if (!TheCondState.Ignore) { 1811 Lex(); // always eat a token 1812 return Error(IDLoc, "unexpected token at start of statement"); 1813 } 1814 IDVal = ""; 1815 } else { 1816 IDVal = getTok().getString(); 1817 Lex(); // Consume the integer token to be used as an identifier token. 1818 if (Lexer.getKind() != AsmToken::Colon) { 1819 if (!TheCondState.Ignore) { 1820 Lex(); // always eat a token 1821 return Error(IDLoc, "unexpected token at start of statement"); 1822 } 1823 } 1824 } 1825 } else if (Lexer.is(AsmToken::Dot)) { 1826 // Treat '.' as a valid identifier in this context. 1827 Lex(); 1828 IDVal = "."; 1829 } else if (Lexer.is(AsmToken::LCurly)) { 1830 // Treat '{' as a valid identifier in this context. 1831 Lex(); 1832 IDVal = "{"; 1833 1834 } else if (Lexer.is(AsmToken::RCurly)) { 1835 // Treat '}' as a valid identifier in this context. 1836 Lex(); 1837 IDVal = "}"; 1838 } else if (Lexer.is(AsmToken::Star) && 1839 getTargetParser().starIsStartOfStatement()) { 1840 // Accept '*' as a valid start of statement. 1841 Lex(); 1842 IDVal = "*"; 1843 } else if (parseIdentifier(IDVal)) { 1844 if (!TheCondState.Ignore) { 1845 Lex(); // always eat a token 1846 return Error(IDLoc, "unexpected token at start of statement"); 1847 } 1848 IDVal = ""; 1849 } 1850 1851 // Handle conditional assembly here before checking for skipping. We 1852 // have to do this so that .endif isn't skipped in a ".if 0" block for 1853 // example. 1854 StringMap<DirectiveKind>::const_iterator DirKindIt = 1855 DirectiveKindMap.find(IDVal.lower()); 1856 DirectiveKind DirKind = (DirKindIt == DirectiveKindMap.end()) 1857 ? DK_NO_DIRECTIVE 1858 : DirKindIt->getValue(); 1859 switch (DirKind) { 1860 default: 1861 break; 1862 case DK_IF: 1863 case DK_IFEQ: 1864 case DK_IFGE: 1865 case DK_IFGT: 1866 case DK_IFLE: 1867 case DK_IFLT: 1868 case DK_IFNE: 1869 return parseDirectiveIf(IDLoc, DirKind); 1870 case DK_IFB: 1871 return parseDirectiveIfb(IDLoc, true); 1872 case DK_IFNB: 1873 return parseDirectiveIfb(IDLoc, false); 1874 case DK_IFC: 1875 return parseDirectiveIfc(IDLoc, true); 1876 case DK_IFEQS: 1877 return parseDirectiveIfeqs(IDLoc, true); 1878 case DK_IFNC: 1879 return parseDirectiveIfc(IDLoc, false); 1880 case DK_IFNES: 1881 return parseDirectiveIfeqs(IDLoc, false); 1882 case DK_IFDEF: 1883 return parseDirectiveIfdef(IDLoc, true); 1884 case DK_IFNDEF: 1885 case DK_IFNOTDEF: 1886 return parseDirectiveIfdef(IDLoc, false); 1887 case DK_ELSEIF: 1888 return parseDirectiveElseIf(IDLoc); 1889 case DK_ELSE: 1890 return parseDirectiveElse(IDLoc); 1891 case DK_ENDIF: 1892 return parseDirectiveEndIf(IDLoc); 1893 } 1894 1895 // Ignore the statement if in the middle of inactive conditional 1896 // (e.g. ".if 0"). 1897 if (TheCondState.Ignore) { 1898 eatToEndOfStatement(); 1899 return false; 1900 } 1901 1902 // FIXME: Recurse on local labels? 1903 1904 // Check for a label. 1905 // ::= identifier ':' 1906 // ::= number ':' 1907 if (Lexer.is(AsmToken::Colon) && getTargetParser().isLabel(ID)) { 1908 if (checkForValidSection()) 1909 return true; 1910 1911 Lex(); // Consume the ':'. 1912 1913 // Diagnose attempt to use '.' as a label. 1914 if (IDVal == ".") 1915 return Error(IDLoc, "invalid use of pseudo-symbol '.' as a label"); 1916 1917 // Diagnose attempt to use a variable as a label. 1918 // 1919 // FIXME: Diagnostics. Note the location of the definition as a label. 1920 // FIXME: This doesn't diagnose assignment to a symbol which has been 1921 // implicitly marked as external. 1922 MCSymbol *Sym; 1923 if (LocalLabelVal == -1) { 1924 if (ParsingMSInlineAsm && SI) { 1925 StringRef RewrittenLabel = 1926 SI->LookupInlineAsmLabel(IDVal, getSourceManager(), IDLoc, true); 1927 assert(!RewrittenLabel.empty() && 1928 "We should have an internal name here."); 1929 Info.AsmRewrites->emplace_back(AOK_Label, IDLoc, IDVal.size(), 1930 RewrittenLabel); 1931 IDVal = RewrittenLabel; 1932 } 1933 Sym = getContext().getOrCreateSymbol(IDVal); 1934 } else 1935 Sym = Ctx.createDirectionalLocalSymbol(LocalLabelVal); 1936 // End of Labels should be treated as end of line for lexing 1937 // purposes but that information is not available to the Lexer who 1938 // does not understand Labels. This may cause us to see a Hash 1939 // here instead of a preprocessor line comment. 1940 if (getTok().is(AsmToken::Hash)) { 1941 StringRef CommentStr = parseStringToEndOfStatement(); 1942 Lexer.Lex(); 1943 Lexer.UnLex(AsmToken(AsmToken::EndOfStatement, CommentStr)); 1944 } 1945 1946 // Consume any end of statement token, if present, to avoid spurious 1947 // addBlankLine calls(). 1948 if (getTok().is(AsmToken::EndOfStatement)) { 1949 Lex(); 1950 } 1951 1952 if (discardLTOSymbol(IDVal)) 1953 return false; 1954 1955 getTargetParser().doBeforeLabelEmit(Sym, IDLoc); 1956 1957 // Emit the label. 1958 if (!getTargetParser().isParsingMSInlineAsm()) 1959 Out.emitLabel(Sym, IDLoc); 1960 1961 // If we are generating dwarf for assembly source files then gather the 1962 // info to make a dwarf label entry for this label if needed. 1963 if (enabledGenDwarfForAssembly()) 1964 MCGenDwarfLabelEntry::Make(Sym, &getStreamer(), getSourceManager(), 1965 IDLoc); 1966 1967 getTargetParser().onLabelParsed(Sym); 1968 1969 return false; 1970 } 1971 1972 // Check for an assignment statement. 1973 // ::= identifier '=' 1974 if (Lexer.is(AsmToken::Equal) && getTargetParser().equalIsAsmAssignment()) { 1975 Lex(); 1976 return parseAssignment(IDVal, AssignmentKind::Equal); 1977 } 1978 1979 // If macros are enabled, check to see if this is a macro instantiation. 1980 if (areMacrosEnabled()) 1981 if (const MCAsmMacro *M = getContext().lookupMacro(IDVal)) { 1982 return handleMacroEntry(M, IDLoc); 1983 } 1984 1985 // Otherwise, we have a normal instruction or directive. 1986 1987 // Directives start with "." 1988 if (IDVal.startswith(".") && IDVal != ".") { 1989 // There are several entities interested in parsing directives: 1990 // 1991 // 1. The target-specific assembly parser. Some directives are target 1992 // specific or may potentially behave differently on certain targets. 1993 // 2. Asm parser extensions. For example, platform-specific parsers 1994 // (like the ELF parser) register themselves as extensions. 1995 // 3. The generic directive parser implemented by this class. These are 1996 // all the directives that behave in a target and platform independent 1997 // manner, or at least have a default behavior that's shared between 1998 // all targets and platforms. 1999 2000 getTargetParser().flushPendingInstructions(getStreamer()); 2001 2002 SMLoc StartTokLoc = getTok().getLoc(); 2003 bool TPDirectiveReturn = getTargetParser().ParseDirective(ID); 2004 2005 if (hasPendingError()) 2006 return true; 2007 // Currently the return value should be true if we are 2008 // uninterested but as this is at odds with the standard parsing 2009 // convention (return true = error) we have instances of a parsed 2010 // directive that fails returning true as an error. Catch these 2011 // cases as best as possible errors here. 2012 if (TPDirectiveReturn && StartTokLoc != getTok().getLoc()) 2013 return true; 2014 // Return if we did some parsing or believe we succeeded. 2015 if (!TPDirectiveReturn || StartTokLoc != getTok().getLoc()) 2016 return false; 2017 2018 // Next, check the extension directive map to see if any extension has 2019 // registered itself to parse this directive. 2020 std::pair<MCAsmParserExtension *, DirectiveHandler> Handler = 2021 ExtensionDirectiveMap.lookup(IDVal); 2022 if (Handler.first) 2023 return (*Handler.second)(Handler.first, IDVal, IDLoc); 2024 2025 // Finally, if no one else is interested in this directive, it must be 2026 // generic and familiar to this class. 2027 switch (DirKind) { 2028 default: 2029 break; 2030 case DK_SET: 2031 case DK_EQU: 2032 return parseDirectiveSet(IDVal, AssignmentKind::Set); 2033 case DK_EQUIV: 2034 return parseDirectiveSet(IDVal, AssignmentKind::Equiv); 2035 case DK_LTO_SET_CONDITIONAL: 2036 return parseDirectiveSet(IDVal, AssignmentKind::LTOSetConditional); 2037 case DK_ASCII: 2038 return parseDirectiveAscii(IDVal, false); 2039 case DK_ASCIZ: 2040 case DK_STRING: 2041 return parseDirectiveAscii(IDVal, true); 2042 case DK_BYTE: 2043 case DK_DC_B: 2044 return parseDirectiveValue(IDVal, 1); 2045 case DK_DC: 2046 case DK_DC_W: 2047 case DK_SHORT: 2048 case DK_VALUE: 2049 case DK_2BYTE: 2050 return parseDirectiveValue(IDVal, 2); 2051 case DK_LONG: 2052 case DK_INT: 2053 case DK_4BYTE: 2054 case DK_DC_L: 2055 return parseDirectiveValue(IDVal, 4); 2056 case DK_QUAD: 2057 case DK_8BYTE: 2058 return parseDirectiveValue(IDVal, 8); 2059 case DK_DC_A: 2060 return parseDirectiveValue( 2061 IDVal, getContext().getAsmInfo()->getCodePointerSize()); 2062 case DK_OCTA: 2063 return parseDirectiveOctaValue(IDVal); 2064 case DK_SINGLE: 2065 case DK_FLOAT: 2066 case DK_DC_S: 2067 return parseDirectiveRealValue(IDVal, APFloat::IEEEsingle()); 2068 case DK_DOUBLE: 2069 case DK_DC_D: 2070 return parseDirectiveRealValue(IDVal, APFloat::IEEEdouble()); 2071 case DK_ALIGN: { 2072 bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes(); 2073 return parseDirectiveAlign(IsPow2, /*ExprSize=*/1); 2074 } 2075 case DK_ALIGN32: { 2076 bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes(); 2077 return parseDirectiveAlign(IsPow2, /*ExprSize=*/4); 2078 } 2079 case DK_BALIGN: 2080 return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/1); 2081 case DK_BALIGNW: 2082 return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/2); 2083 case DK_BALIGNL: 2084 return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/4); 2085 case DK_P2ALIGN: 2086 return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/1); 2087 case DK_P2ALIGNW: 2088 return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/2); 2089 case DK_P2ALIGNL: 2090 return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/4); 2091 case DK_ORG: 2092 return parseDirectiveOrg(); 2093 case DK_FILL: 2094 return parseDirectiveFill(); 2095 case DK_ZERO: 2096 return parseDirectiveZero(); 2097 case DK_EXTERN: 2098 eatToEndOfStatement(); // .extern is the default, ignore it. 2099 return false; 2100 case DK_GLOBL: 2101 case DK_GLOBAL: 2102 return parseDirectiveSymbolAttribute(MCSA_Global); 2103 case DK_LAZY_REFERENCE: 2104 return parseDirectiveSymbolAttribute(MCSA_LazyReference); 2105 case DK_NO_DEAD_STRIP: 2106 return parseDirectiveSymbolAttribute(MCSA_NoDeadStrip); 2107 case DK_SYMBOL_RESOLVER: 2108 return parseDirectiveSymbolAttribute(MCSA_SymbolResolver); 2109 case DK_PRIVATE_EXTERN: 2110 return parseDirectiveSymbolAttribute(MCSA_PrivateExtern); 2111 case DK_REFERENCE: 2112 return parseDirectiveSymbolAttribute(MCSA_Reference); 2113 case DK_WEAK_DEFINITION: 2114 return parseDirectiveSymbolAttribute(MCSA_WeakDefinition); 2115 case DK_WEAK_REFERENCE: 2116 return parseDirectiveSymbolAttribute(MCSA_WeakReference); 2117 case DK_WEAK_DEF_CAN_BE_HIDDEN: 2118 return parseDirectiveSymbolAttribute(MCSA_WeakDefAutoPrivate); 2119 case DK_COLD: 2120 return parseDirectiveSymbolAttribute(MCSA_Cold); 2121 case DK_COMM: 2122 case DK_COMMON: 2123 return parseDirectiveComm(/*IsLocal=*/false); 2124 case DK_LCOMM: 2125 return parseDirectiveComm(/*IsLocal=*/true); 2126 case DK_ABORT: 2127 return parseDirectiveAbort(); 2128 case DK_INCLUDE: 2129 return parseDirectiveInclude(); 2130 case DK_INCBIN: 2131 return parseDirectiveIncbin(); 2132 case DK_CODE16: 2133 case DK_CODE16GCC: 2134 return TokError(Twine(IDVal) + 2135 " not currently supported for this target"); 2136 case DK_REPT: 2137 return parseDirectiveRept(IDLoc, IDVal); 2138 case DK_IRP: 2139 return parseDirectiveIrp(IDLoc); 2140 case DK_IRPC: 2141 return parseDirectiveIrpc(IDLoc); 2142 case DK_ENDR: 2143 return parseDirectiveEndr(IDLoc); 2144 case DK_BUNDLE_ALIGN_MODE: 2145 return parseDirectiveBundleAlignMode(); 2146 case DK_BUNDLE_LOCK: 2147 return parseDirectiveBundleLock(); 2148 case DK_BUNDLE_UNLOCK: 2149 return parseDirectiveBundleUnlock(); 2150 case DK_SLEB128: 2151 return parseDirectiveLEB128(true); 2152 case DK_ULEB128: 2153 return parseDirectiveLEB128(false); 2154 case DK_SPACE: 2155 case DK_SKIP: 2156 return parseDirectiveSpace(IDVal); 2157 case DK_FILE: 2158 return parseDirectiveFile(IDLoc); 2159 case DK_LINE: 2160 return parseDirectiveLine(); 2161 case DK_LOC: 2162 return parseDirectiveLoc(); 2163 case DK_STABS: 2164 return parseDirectiveStabs(); 2165 case DK_CV_FILE: 2166 return parseDirectiveCVFile(); 2167 case DK_CV_FUNC_ID: 2168 return parseDirectiveCVFuncId(); 2169 case DK_CV_INLINE_SITE_ID: 2170 return parseDirectiveCVInlineSiteId(); 2171 case DK_CV_LOC: 2172 return parseDirectiveCVLoc(); 2173 case DK_CV_LINETABLE: 2174 return parseDirectiveCVLinetable(); 2175 case DK_CV_INLINE_LINETABLE: 2176 return parseDirectiveCVInlineLinetable(); 2177 case DK_CV_DEF_RANGE: 2178 return parseDirectiveCVDefRange(); 2179 case DK_CV_STRING: 2180 return parseDirectiveCVString(); 2181 case DK_CV_STRINGTABLE: 2182 return parseDirectiveCVStringTable(); 2183 case DK_CV_FILECHECKSUMS: 2184 return parseDirectiveCVFileChecksums(); 2185 case DK_CV_FILECHECKSUM_OFFSET: 2186 return parseDirectiveCVFileChecksumOffset(); 2187 case DK_CV_FPO_DATA: 2188 return parseDirectiveCVFPOData(); 2189 case DK_CFI_SECTIONS: 2190 return parseDirectiveCFISections(); 2191 case DK_CFI_STARTPROC: 2192 return parseDirectiveCFIStartProc(); 2193 case DK_CFI_ENDPROC: 2194 return parseDirectiveCFIEndProc(); 2195 case DK_CFI_DEF_CFA: 2196 return parseDirectiveCFIDefCfa(IDLoc); 2197 case DK_CFI_DEF_CFA_OFFSET: 2198 return parseDirectiveCFIDefCfaOffset(); 2199 case DK_CFI_ADJUST_CFA_OFFSET: 2200 return parseDirectiveCFIAdjustCfaOffset(); 2201 case DK_CFI_DEF_CFA_REGISTER: 2202 return parseDirectiveCFIDefCfaRegister(IDLoc); 2203 case DK_CFI_LLVM_DEF_ASPACE_CFA: 2204 return parseDirectiveCFILLVMDefAspaceCfa(IDLoc); 2205 case DK_CFI_OFFSET: 2206 return parseDirectiveCFIOffset(IDLoc); 2207 case DK_CFI_REL_OFFSET: 2208 return parseDirectiveCFIRelOffset(IDLoc); 2209 case DK_CFI_PERSONALITY: 2210 return parseDirectiveCFIPersonalityOrLsda(true); 2211 case DK_CFI_LSDA: 2212 return parseDirectiveCFIPersonalityOrLsda(false); 2213 case DK_CFI_REMEMBER_STATE: 2214 return parseDirectiveCFIRememberState(); 2215 case DK_CFI_RESTORE_STATE: 2216 return parseDirectiveCFIRestoreState(); 2217 case DK_CFI_SAME_VALUE: 2218 return parseDirectiveCFISameValue(IDLoc); 2219 case DK_CFI_RESTORE: 2220 return parseDirectiveCFIRestore(IDLoc); 2221 case DK_CFI_ESCAPE: 2222 return parseDirectiveCFIEscape(); 2223 case DK_CFI_RETURN_COLUMN: 2224 return parseDirectiveCFIReturnColumn(IDLoc); 2225 case DK_CFI_SIGNAL_FRAME: 2226 return parseDirectiveCFISignalFrame(); 2227 case DK_CFI_UNDEFINED: 2228 return parseDirectiveCFIUndefined(IDLoc); 2229 case DK_CFI_REGISTER: 2230 return parseDirectiveCFIRegister(IDLoc); 2231 case DK_CFI_WINDOW_SAVE: 2232 return parseDirectiveCFIWindowSave(); 2233 case DK_MACROS_ON: 2234 case DK_MACROS_OFF: 2235 return parseDirectiveMacrosOnOff(IDVal); 2236 case DK_MACRO: 2237 return parseDirectiveMacro(IDLoc); 2238 case DK_ALTMACRO: 2239 case DK_NOALTMACRO: 2240 return parseDirectiveAltmacro(IDVal); 2241 case DK_EXITM: 2242 return parseDirectiveExitMacro(IDVal); 2243 case DK_ENDM: 2244 case DK_ENDMACRO: 2245 return parseDirectiveEndMacro(IDVal); 2246 case DK_PURGEM: 2247 return parseDirectivePurgeMacro(IDLoc); 2248 case DK_END: 2249 return parseDirectiveEnd(IDLoc); 2250 case DK_ERR: 2251 return parseDirectiveError(IDLoc, false); 2252 case DK_ERROR: 2253 return parseDirectiveError(IDLoc, true); 2254 case DK_WARNING: 2255 return parseDirectiveWarning(IDLoc); 2256 case DK_RELOC: 2257 return parseDirectiveReloc(IDLoc); 2258 case DK_DCB: 2259 case DK_DCB_W: 2260 return parseDirectiveDCB(IDVal, 2); 2261 case DK_DCB_B: 2262 return parseDirectiveDCB(IDVal, 1); 2263 case DK_DCB_D: 2264 return parseDirectiveRealDCB(IDVal, APFloat::IEEEdouble()); 2265 case DK_DCB_L: 2266 return parseDirectiveDCB(IDVal, 4); 2267 case DK_DCB_S: 2268 return parseDirectiveRealDCB(IDVal, APFloat::IEEEsingle()); 2269 case DK_DC_X: 2270 case DK_DCB_X: 2271 return TokError(Twine(IDVal) + 2272 " not currently supported for this target"); 2273 case DK_DS: 2274 case DK_DS_W: 2275 return parseDirectiveDS(IDVal, 2); 2276 case DK_DS_B: 2277 return parseDirectiveDS(IDVal, 1); 2278 case DK_DS_D: 2279 return parseDirectiveDS(IDVal, 8); 2280 case DK_DS_L: 2281 case DK_DS_S: 2282 return parseDirectiveDS(IDVal, 4); 2283 case DK_DS_P: 2284 case DK_DS_X: 2285 return parseDirectiveDS(IDVal, 12); 2286 case DK_PRINT: 2287 return parseDirectivePrint(IDLoc); 2288 case DK_ADDRSIG: 2289 return parseDirectiveAddrsig(); 2290 case DK_ADDRSIG_SYM: 2291 return parseDirectiveAddrsigSym(); 2292 case DK_PSEUDO_PROBE: 2293 return parseDirectivePseudoProbe(); 2294 case DK_LTO_DISCARD: 2295 return parseDirectiveLTODiscard(); 2296 case DK_MEMTAG: 2297 return parseDirectiveSymbolAttribute(MCSA_Memtag); 2298 } 2299 2300 return Error(IDLoc, "unknown directive"); 2301 } 2302 2303 // __asm _emit or __asm __emit 2304 if (ParsingMSInlineAsm && (IDVal == "_emit" || IDVal == "__emit" || 2305 IDVal == "_EMIT" || IDVal == "__EMIT")) 2306 return parseDirectiveMSEmit(IDLoc, Info, IDVal.size()); 2307 2308 // __asm align 2309 if (ParsingMSInlineAsm && (IDVal == "align" || IDVal == "ALIGN")) 2310 return parseDirectiveMSAlign(IDLoc, Info); 2311 2312 if (ParsingMSInlineAsm && (IDVal == "even" || IDVal == "EVEN")) 2313 Info.AsmRewrites->emplace_back(AOK_EVEN, IDLoc, 4); 2314 if (checkForValidSection()) 2315 return true; 2316 2317 return parseAndMatchAndEmitTargetInstruction(Info, IDVal, ID, IDLoc); 2318 } 2319 2320 bool AsmParser::parseAndMatchAndEmitTargetInstruction(ParseStatementInfo &Info, 2321 StringRef IDVal, 2322 AsmToken ID, 2323 SMLoc IDLoc) { 2324 // Canonicalize the opcode to lower case. 2325 std::string OpcodeStr = IDVal.lower(); 2326 ParseInstructionInfo IInfo(Info.AsmRewrites); 2327 bool ParseHadError = getTargetParser().ParseInstruction(IInfo, OpcodeStr, ID, 2328 Info.ParsedOperands); 2329 Info.ParseError = ParseHadError; 2330 2331 // Dump the parsed representation, if requested. 2332 if (getShowParsedOperands()) { 2333 SmallString<256> Str; 2334 raw_svector_ostream OS(Str); 2335 OS << "parsed instruction: ["; 2336 for (unsigned i = 0; i != Info.ParsedOperands.size(); ++i) { 2337 if (i != 0) 2338 OS << ", "; 2339 Info.ParsedOperands[i]->print(OS); 2340 } 2341 OS << "]"; 2342 2343 printMessage(IDLoc, SourceMgr::DK_Note, OS.str()); 2344 } 2345 2346 // Fail even if ParseInstruction erroneously returns false. 2347 if (hasPendingError() || ParseHadError) 2348 return true; 2349 2350 // If we are generating dwarf for the current section then generate a .loc 2351 // directive for the instruction. 2352 if (!ParseHadError && enabledGenDwarfForAssembly() && 2353 getContext().getGenDwarfSectionSyms().count( 2354 getStreamer().getCurrentSectionOnly())) { 2355 unsigned Line; 2356 if (ActiveMacros.empty()) 2357 Line = SrcMgr.FindLineNumber(IDLoc, CurBuffer); 2358 else 2359 Line = SrcMgr.FindLineNumber(ActiveMacros.front()->InstantiationLoc, 2360 ActiveMacros.front()->ExitBuffer); 2361 2362 // If we previously parsed a cpp hash file line comment then make sure the 2363 // current Dwarf File is for the CppHashFilename if not then emit the 2364 // Dwarf File table for it and adjust the line number for the .loc. 2365 if (!CppHashInfo.Filename.empty()) { 2366 unsigned FileNumber = getStreamer().emitDwarfFileDirective( 2367 0, StringRef(), CppHashInfo.Filename); 2368 getContext().setGenDwarfFileNumber(FileNumber); 2369 2370 unsigned CppHashLocLineNo = 2371 SrcMgr.FindLineNumber(CppHashInfo.Loc, CppHashInfo.Buf); 2372 Line = CppHashInfo.LineNumber - 1 + (Line - CppHashLocLineNo); 2373 } 2374 2375 getStreamer().emitDwarfLocDirective( 2376 getContext().getGenDwarfFileNumber(), Line, 0, 2377 DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0, 0, 0, 2378 StringRef()); 2379 } 2380 2381 // If parsing succeeded, match the instruction. 2382 if (!ParseHadError) { 2383 uint64_t ErrorInfo; 2384 if (getTargetParser().MatchAndEmitInstruction( 2385 IDLoc, Info.Opcode, Info.ParsedOperands, Out, ErrorInfo, 2386 getTargetParser().isParsingMSInlineAsm())) 2387 return true; 2388 } 2389 return false; 2390 } 2391 2392 // Parse and erase curly braces marking block start/end 2393 bool 2394 AsmParser::parseCurlyBlockScope(SmallVectorImpl<AsmRewrite> &AsmStrRewrites) { 2395 // Identify curly brace marking block start/end 2396 if (Lexer.isNot(AsmToken::LCurly) && Lexer.isNot(AsmToken::RCurly)) 2397 return false; 2398 2399 SMLoc StartLoc = Lexer.getLoc(); 2400 Lex(); // Eat the brace 2401 if (Lexer.is(AsmToken::EndOfStatement)) 2402 Lex(); // Eat EndOfStatement following the brace 2403 2404 // Erase the block start/end brace from the output asm string 2405 AsmStrRewrites.emplace_back(AOK_Skip, StartLoc, Lexer.getLoc().getPointer() - 2406 StartLoc.getPointer()); 2407 return true; 2408 } 2409 2410 /// parseCppHashLineFilenameComment as this: 2411 /// ::= # number "filename" 2412 bool AsmParser::parseCppHashLineFilenameComment(SMLoc L, bool SaveLocInfo) { 2413 Lex(); // Eat the hash token. 2414 // Lexer only ever emits HashDirective if it fully formed if it's 2415 // done the checking already so this is an internal error. 2416 assert(getTok().is(AsmToken::Integer) && 2417 "Lexing Cpp line comment: Expected Integer"); 2418 int64_t LineNumber = getTok().getIntVal(); 2419 Lex(); 2420 assert(getTok().is(AsmToken::String) && 2421 "Lexing Cpp line comment: Expected String"); 2422 StringRef Filename = getTok().getString(); 2423 Lex(); 2424 2425 if (!SaveLocInfo) 2426 return false; 2427 2428 // Get rid of the enclosing quotes. 2429 Filename = Filename.substr(1, Filename.size() - 2); 2430 2431 // Save the SMLoc, Filename and LineNumber for later use by diagnostics 2432 // and possibly DWARF file info. 2433 CppHashInfo.Loc = L; 2434 CppHashInfo.Filename = Filename; 2435 CppHashInfo.LineNumber = LineNumber; 2436 CppHashInfo.Buf = CurBuffer; 2437 if (FirstCppHashFilename.empty()) 2438 FirstCppHashFilename = Filename; 2439 return false; 2440 } 2441 2442 /// will use the last parsed cpp hash line filename comment 2443 /// for the Filename and LineNo if any in the diagnostic. 2444 void AsmParser::DiagHandler(const SMDiagnostic &Diag, void *Context) { 2445 auto *Parser = static_cast<AsmParser *>(Context); 2446 raw_ostream &OS = errs(); 2447 2448 const SourceMgr &DiagSrcMgr = *Diag.getSourceMgr(); 2449 SMLoc DiagLoc = Diag.getLoc(); 2450 unsigned DiagBuf = DiagSrcMgr.FindBufferContainingLoc(DiagLoc); 2451 unsigned CppHashBuf = 2452 Parser->SrcMgr.FindBufferContainingLoc(Parser->CppHashInfo.Loc); 2453 2454 // Like SourceMgr::printMessage() we need to print the include stack if any 2455 // before printing the message. 2456 unsigned DiagCurBuffer = DiagSrcMgr.FindBufferContainingLoc(DiagLoc); 2457 if (!Parser->SavedDiagHandler && DiagCurBuffer && 2458 DiagCurBuffer != DiagSrcMgr.getMainFileID()) { 2459 SMLoc ParentIncludeLoc = DiagSrcMgr.getParentIncludeLoc(DiagCurBuffer); 2460 DiagSrcMgr.PrintIncludeStack(ParentIncludeLoc, OS); 2461 } 2462 2463 // If we have not parsed a cpp hash line filename comment or the source 2464 // manager changed or buffer changed (like in a nested include) then just 2465 // print the normal diagnostic using its Filename and LineNo. 2466 if (!Parser->CppHashInfo.LineNumber || DiagBuf != CppHashBuf) { 2467 if (Parser->SavedDiagHandler) 2468 Parser->SavedDiagHandler(Diag, Parser->SavedDiagContext); 2469 else 2470 Parser->getContext().diagnose(Diag); 2471 return; 2472 } 2473 2474 // Use the CppHashFilename and calculate a line number based on the 2475 // CppHashInfo.Loc and CppHashInfo.LineNumber relative to this Diag's SMLoc 2476 // for the diagnostic. 2477 const std::string &Filename = std::string(Parser->CppHashInfo.Filename); 2478 2479 int DiagLocLineNo = DiagSrcMgr.FindLineNumber(DiagLoc, DiagBuf); 2480 int CppHashLocLineNo = 2481 Parser->SrcMgr.FindLineNumber(Parser->CppHashInfo.Loc, CppHashBuf); 2482 int LineNo = 2483 Parser->CppHashInfo.LineNumber - 1 + (DiagLocLineNo - CppHashLocLineNo); 2484 2485 SMDiagnostic NewDiag(*Diag.getSourceMgr(), Diag.getLoc(), Filename, LineNo, 2486 Diag.getColumnNo(), Diag.getKind(), Diag.getMessage(), 2487 Diag.getLineContents(), Diag.getRanges()); 2488 2489 if (Parser->SavedDiagHandler) 2490 Parser->SavedDiagHandler(Diag, Parser->SavedDiagContext); 2491 else 2492 Parser->getContext().diagnose(NewDiag); 2493 } 2494 2495 // FIXME: This is mostly duplicated from the function in AsmLexer.cpp. The 2496 // difference being that that function accepts '@' as part of identifiers and 2497 // we can't do that. AsmLexer.cpp should probably be changed to handle 2498 // '@' as a special case when needed. 2499 static bool isIdentifierChar(char c) { 2500 return isalnum(static_cast<unsigned char>(c)) || c == '_' || c == '$' || 2501 c == '.'; 2502 } 2503 2504 bool AsmParser::expandMacro(raw_svector_ostream &OS, StringRef Body, 2505 ArrayRef<MCAsmMacroParameter> Parameters, 2506 ArrayRef<MCAsmMacroArgument> A, 2507 bool EnableAtPseudoVariable, SMLoc L) { 2508 unsigned NParameters = Parameters.size(); 2509 bool HasVararg = NParameters ? Parameters.back().Vararg : false; 2510 if ((!IsDarwin || NParameters != 0) && NParameters != A.size()) 2511 return Error(L, "Wrong number of arguments"); 2512 2513 // A macro without parameters is handled differently on Darwin: 2514 // gas accepts no arguments and does no substitutions 2515 while (!Body.empty()) { 2516 // Scan for the next substitution. 2517 std::size_t End = Body.size(), Pos = 0; 2518 for (; Pos != End; ++Pos) { 2519 // Check for a substitution or escape. 2520 if (IsDarwin && !NParameters) { 2521 // This macro has no parameters, look for $0, $1, etc. 2522 if (Body[Pos] != '$' || Pos + 1 == End) 2523 continue; 2524 2525 char Next = Body[Pos + 1]; 2526 if (Next == '$' || Next == 'n' || 2527 isdigit(static_cast<unsigned char>(Next))) 2528 break; 2529 } else { 2530 // This macro has parameters, look for \foo, \bar, etc. 2531 if (Body[Pos] == '\\' && Pos + 1 != End) 2532 break; 2533 } 2534 } 2535 2536 // Add the prefix. 2537 OS << Body.slice(0, Pos); 2538 2539 // Check if we reached the end. 2540 if (Pos == End) 2541 break; 2542 2543 if (IsDarwin && !NParameters) { 2544 switch (Body[Pos + 1]) { 2545 // $$ => $ 2546 case '$': 2547 OS << '$'; 2548 break; 2549 2550 // $n => number of arguments 2551 case 'n': 2552 OS << A.size(); 2553 break; 2554 2555 // $[0-9] => argument 2556 default: { 2557 // Missing arguments are ignored. 2558 unsigned Index = Body[Pos + 1] - '0'; 2559 if (Index >= A.size()) 2560 break; 2561 2562 // Otherwise substitute with the token values, with spaces eliminated. 2563 for (const AsmToken &Token : A[Index]) 2564 OS << Token.getString(); 2565 break; 2566 } 2567 } 2568 Pos += 2; 2569 } else { 2570 unsigned I = Pos + 1; 2571 2572 // Check for the \@ pseudo-variable. 2573 if (EnableAtPseudoVariable && Body[I] == '@' && I + 1 != End) 2574 ++I; 2575 else 2576 while (isIdentifierChar(Body[I]) && I + 1 != End) 2577 ++I; 2578 2579 const char *Begin = Body.data() + Pos + 1; 2580 StringRef Argument(Begin, I - (Pos + 1)); 2581 unsigned Index = 0; 2582 2583 if (Argument == "@") { 2584 OS << NumOfMacroInstantiations; 2585 Pos += 2; 2586 } else { 2587 for (; Index < NParameters; ++Index) 2588 if (Parameters[Index].Name == Argument) 2589 break; 2590 2591 if (Index == NParameters) { 2592 if (Body[Pos + 1] == '(' && Body[Pos + 2] == ')') 2593 Pos += 3; 2594 else { 2595 OS << '\\' << Argument; 2596 Pos = I; 2597 } 2598 } else { 2599 bool VarargParameter = HasVararg && Index == (NParameters - 1); 2600 for (const AsmToken &Token : A[Index]) 2601 // For altmacro mode, you can write '%expr'. 2602 // The prefix '%' evaluates the expression 'expr' 2603 // and uses the result as a string (e.g. replace %(1+2) with the 2604 // string "3"). 2605 // Here, we identify the integer token which is the result of the 2606 // absolute expression evaluation and replace it with its string 2607 // representation. 2608 if (AltMacroMode && Token.getString().front() == '%' && 2609 Token.is(AsmToken::Integer)) 2610 // Emit an integer value to the buffer. 2611 OS << Token.getIntVal(); 2612 // Only Token that was validated as a string and begins with '<' 2613 // is considered altMacroString!!! 2614 else if (AltMacroMode && Token.getString().front() == '<' && 2615 Token.is(AsmToken::String)) { 2616 OS << angleBracketString(Token.getStringContents()); 2617 } 2618 // We expect no quotes around the string's contents when 2619 // parsing for varargs. 2620 else if (Token.isNot(AsmToken::String) || VarargParameter) 2621 OS << Token.getString(); 2622 else 2623 OS << Token.getStringContents(); 2624 2625 Pos += 1 + Argument.size(); 2626 } 2627 } 2628 } 2629 // Update the scan point. 2630 Body = Body.substr(Pos); 2631 } 2632 2633 return false; 2634 } 2635 2636 static bool isOperator(AsmToken::TokenKind kind) { 2637 switch (kind) { 2638 default: 2639 return false; 2640 case AsmToken::Plus: 2641 case AsmToken::Minus: 2642 case AsmToken::Tilde: 2643 case AsmToken::Slash: 2644 case AsmToken::Star: 2645 case AsmToken::Dot: 2646 case AsmToken::Equal: 2647 case AsmToken::EqualEqual: 2648 case AsmToken::Pipe: 2649 case AsmToken::PipePipe: 2650 case AsmToken::Caret: 2651 case AsmToken::Amp: 2652 case AsmToken::AmpAmp: 2653 case AsmToken::Exclaim: 2654 case AsmToken::ExclaimEqual: 2655 case AsmToken::Less: 2656 case AsmToken::LessEqual: 2657 case AsmToken::LessLess: 2658 case AsmToken::LessGreater: 2659 case AsmToken::Greater: 2660 case AsmToken::GreaterEqual: 2661 case AsmToken::GreaterGreater: 2662 return true; 2663 } 2664 } 2665 2666 namespace { 2667 2668 class AsmLexerSkipSpaceRAII { 2669 public: 2670 AsmLexerSkipSpaceRAII(AsmLexer &Lexer, bool SkipSpace) : Lexer(Lexer) { 2671 Lexer.setSkipSpace(SkipSpace); 2672 } 2673 2674 ~AsmLexerSkipSpaceRAII() { 2675 Lexer.setSkipSpace(true); 2676 } 2677 2678 private: 2679 AsmLexer &Lexer; 2680 }; 2681 2682 } // end anonymous namespace 2683 2684 bool AsmParser::parseMacroArgument(MCAsmMacroArgument &MA, bool Vararg) { 2685 2686 if (Vararg) { 2687 if (Lexer.isNot(AsmToken::EndOfStatement)) { 2688 StringRef Str = parseStringToEndOfStatement(); 2689 MA.emplace_back(AsmToken::String, Str); 2690 } 2691 return false; 2692 } 2693 2694 unsigned ParenLevel = 0; 2695 2696 // Darwin doesn't use spaces to delmit arguments. 2697 AsmLexerSkipSpaceRAII ScopedSkipSpace(Lexer, IsDarwin); 2698 2699 bool SpaceEaten; 2700 2701 while (true) { 2702 SpaceEaten = false; 2703 if (Lexer.is(AsmToken::Eof) || Lexer.is(AsmToken::Equal)) 2704 return TokError("unexpected token in macro instantiation"); 2705 2706 if (ParenLevel == 0) { 2707 2708 if (Lexer.is(AsmToken::Comma)) 2709 break; 2710 2711 if (Lexer.is(AsmToken::Space)) { 2712 SpaceEaten = true; 2713 Lexer.Lex(); // Eat spaces 2714 } 2715 2716 // Spaces can delimit parameters, but could also be part an expression. 2717 // If the token after a space is an operator, add the token and the next 2718 // one into this argument 2719 if (!IsDarwin) { 2720 if (isOperator(Lexer.getKind())) { 2721 MA.push_back(getTok()); 2722 Lexer.Lex(); 2723 2724 // Whitespace after an operator can be ignored. 2725 if (Lexer.is(AsmToken::Space)) 2726 Lexer.Lex(); 2727 2728 continue; 2729 } 2730 } 2731 if (SpaceEaten) 2732 break; 2733 } 2734 2735 // handleMacroEntry relies on not advancing the lexer here 2736 // to be able to fill in the remaining default parameter values 2737 if (Lexer.is(AsmToken::EndOfStatement)) 2738 break; 2739 2740 // Adjust the current parentheses level. 2741 if (Lexer.is(AsmToken::LParen)) 2742 ++ParenLevel; 2743 else if (Lexer.is(AsmToken::RParen) && ParenLevel) 2744 --ParenLevel; 2745 2746 // Append the token to the current argument list. 2747 MA.push_back(getTok()); 2748 Lexer.Lex(); 2749 } 2750 2751 if (ParenLevel != 0) 2752 return TokError("unbalanced parentheses in macro argument"); 2753 return false; 2754 } 2755 2756 // Parse the macro instantiation arguments. 2757 bool AsmParser::parseMacroArguments(const MCAsmMacro *M, 2758 MCAsmMacroArguments &A) { 2759 const unsigned NParameters = M ? M->Parameters.size() : 0; 2760 bool NamedParametersFound = false; 2761 SmallVector<SMLoc, 4> FALocs; 2762 2763 A.resize(NParameters); 2764 FALocs.resize(NParameters); 2765 2766 // Parse two kinds of macro invocations: 2767 // - macros defined without any parameters accept an arbitrary number of them 2768 // - macros defined with parameters accept at most that many of them 2769 bool HasVararg = NParameters ? M->Parameters.back().Vararg : false; 2770 for (unsigned Parameter = 0; !NParameters || Parameter < NParameters; 2771 ++Parameter) { 2772 SMLoc IDLoc = Lexer.getLoc(); 2773 MCAsmMacroParameter FA; 2774 2775 if (Lexer.is(AsmToken::Identifier) && Lexer.peekTok().is(AsmToken::Equal)) { 2776 if (parseIdentifier(FA.Name)) 2777 return Error(IDLoc, "invalid argument identifier for formal argument"); 2778 2779 if (Lexer.isNot(AsmToken::Equal)) 2780 return TokError("expected '=' after formal parameter identifier"); 2781 2782 Lex(); 2783 2784 NamedParametersFound = true; 2785 } 2786 bool Vararg = HasVararg && Parameter == (NParameters - 1); 2787 2788 if (NamedParametersFound && FA.Name.empty()) 2789 return Error(IDLoc, "cannot mix positional and keyword arguments"); 2790 2791 SMLoc StrLoc = Lexer.getLoc(); 2792 SMLoc EndLoc; 2793 if (AltMacroMode && Lexer.is(AsmToken::Percent)) { 2794 const MCExpr *AbsoluteExp; 2795 int64_t Value; 2796 /// Eat '%' 2797 Lex(); 2798 if (parseExpression(AbsoluteExp, EndLoc)) 2799 return false; 2800 if (!AbsoluteExp->evaluateAsAbsolute(Value, 2801 getStreamer().getAssemblerPtr())) 2802 return Error(StrLoc, "expected absolute expression"); 2803 const char *StrChar = StrLoc.getPointer(); 2804 const char *EndChar = EndLoc.getPointer(); 2805 AsmToken newToken(AsmToken::Integer, 2806 StringRef(StrChar, EndChar - StrChar), Value); 2807 FA.Value.push_back(newToken); 2808 } else if (AltMacroMode && Lexer.is(AsmToken::Less) && 2809 isAngleBracketString(StrLoc, EndLoc)) { 2810 const char *StrChar = StrLoc.getPointer(); 2811 const char *EndChar = EndLoc.getPointer(); 2812 jumpToLoc(EndLoc, CurBuffer); 2813 /// Eat from '<' to '>' 2814 Lex(); 2815 AsmToken newToken(AsmToken::String, 2816 StringRef(StrChar, EndChar - StrChar)); 2817 FA.Value.push_back(newToken); 2818 } else if(parseMacroArgument(FA.Value, Vararg)) 2819 return true; 2820 2821 unsigned PI = Parameter; 2822 if (!FA.Name.empty()) { 2823 unsigned FAI = 0; 2824 for (FAI = 0; FAI < NParameters; ++FAI) 2825 if (M->Parameters[FAI].Name == FA.Name) 2826 break; 2827 2828 if (FAI >= NParameters) { 2829 assert(M && "expected macro to be defined"); 2830 return Error(IDLoc, "parameter named '" + FA.Name + 2831 "' does not exist for macro '" + M->Name + "'"); 2832 } 2833 PI = FAI; 2834 } 2835 2836 if (!FA.Value.empty()) { 2837 if (A.size() <= PI) 2838 A.resize(PI + 1); 2839 A[PI] = FA.Value; 2840 2841 if (FALocs.size() <= PI) 2842 FALocs.resize(PI + 1); 2843 2844 FALocs[PI] = Lexer.getLoc(); 2845 } 2846 2847 // At the end of the statement, fill in remaining arguments that have 2848 // default values. If there aren't any, then the next argument is 2849 // required but missing 2850 if (Lexer.is(AsmToken::EndOfStatement)) { 2851 bool Failure = false; 2852 for (unsigned FAI = 0; FAI < NParameters; ++FAI) { 2853 if (A[FAI].empty()) { 2854 if (M->Parameters[FAI].Required) { 2855 Error(FALocs[FAI].isValid() ? FALocs[FAI] : Lexer.getLoc(), 2856 "missing value for required parameter " 2857 "'" + M->Parameters[FAI].Name + "' in macro '" + M->Name + "'"); 2858 Failure = true; 2859 } 2860 2861 if (!M->Parameters[FAI].Value.empty()) 2862 A[FAI] = M->Parameters[FAI].Value; 2863 } 2864 } 2865 return Failure; 2866 } 2867 2868 if (Lexer.is(AsmToken::Comma)) 2869 Lex(); 2870 } 2871 2872 return TokError("too many positional arguments"); 2873 } 2874 2875 bool AsmParser::handleMacroEntry(const MCAsmMacro *M, SMLoc NameLoc) { 2876 // Arbitrarily limit macro nesting depth (default matches 'as'). We can 2877 // eliminate this, although we should protect against infinite loops. 2878 unsigned MaxNestingDepth = AsmMacroMaxNestingDepth; 2879 if (ActiveMacros.size() == MaxNestingDepth) { 2880 std::ostringstream MaxNestingDepthError; 2881 MaxNestingDepthError << "macros cannot be nested more than " 2882 << MaxNestingDepth << " levels deep." 2883 << " Use -asm-macro-max-nesting-depth to increase " 2884 "this limit."; 2885 return TokError(MaxNestingDepthError.str()); 2886 } 2887 2888 MCAsmMacroArguments A; 2889 if (parseMacroArguments(M, A)) 2890 return true; 2891 2892 // Macro instantiation is lexical, unfortunately. We construct a new buffer 2893 // to hold the macro body with substitutions. 2894 SmallString<256> Buf; 2895 StringRef Body = M->Body; 2896 raw_svector_ostream OS(Buf); 2897 2898 if (expandMacro(OS, Body, M->Parameters, A, true, getTok().getLoc())) 2899 return true; 2900 2901 // We include the .endmacro in the buffer as our cue to exit the macro 2902 // instantiation. 2903 OS << ".endmacro\n"; 2904 2905 std::unique_ptr<MemoryBuffer> Instantiation = 2906 MemoryBuffer::getMemBufferCopy(OS.str(), "<instantiation>"); 2907 2908 // Create the macro instantiation object and add to the current macro 2909 // instantiation stack. 2910 MacroInstantiation *MI = new MacroInstantiation{ 2911 NameLoc, CurBuffer, getTok().getLoc(), TheCondStack.size()}; 2912 ActiveMacros.push_back(MI); 2913 2914 ++NumOfMacroInstantiations; 2915 2916 // Jump to the macro instantiation and prime the lexer. 2917 CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc()); 2918 Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); 2919 Lex(); 2920 2921 return false; 2922 } 2923 2924 void AsmParser::handleMacroExit() { 2925 // Jump to the EndOfStatement we should return to, and consume it. 2926 jumpToLoc(ActiveMacros.back()->ExitLoc, ActiveMacros.back()->ExitBuffer); 2927 Lex(); 2928 2929 // Pop the instantiation entry. 2930 delete ActiveMacros.back(); 2931 ActiveMacros.pop_back(); 2932 } 2933 2934 bool AsmParser::parseAssignment(StringRef Name, AssignmentKind Kind) { 2935 MCSymbol *Sym; 2936 const MCExpr *Value; 2937 SMLoc ExprLoc = getTok().getLoc(); 2938 bool AllowRedef = 2939 Kind == AssignmentKind::Set || Kind == AssignmentKind::Equal; 2940 if (MCParserUtils::parseAssignmentExpression(Name, AllowRedef, *this, Sym, 2941 Value)) 2942 return true; 2943 2944 if (!Sym) { 2945 // In the case where we parse an expression starting with a '.', we will 2946 // not generate an error, nor will we create a symbol. In this case we 2947 // should just return out. 2948 return false; 2949 } 2950 2951 if (discardLTOSymbol(Name)) 2952 return false; 2953 2954 // Do the assignment. 2955 switch (Kind) { 2956 case AssignmentKind::Equal: 2957 Out.emitAssignment(Sym, Value); 2958 break; 2959 case AssignmentKind::Set: 2960 case AssignmentKind::Equiv: 2961 Out.emitAssignment(Sym, Value); 2962 Out.emitSymbolAttribute(Sym, MCSA_NoDeadStrip); 2963 break; 2964 case AssignmentKind::LTOSetConditional: 2965 if (Value->getKind() != MCExpr::SymbolRef) 2966 return Error(ExprLoc, "expected identifier"); 2967 2968 Out.emitConditionalAssignment(Sym, Value); 2969 break; 2970 } 2971 2972 return false; 2973 } 2974 2975 /// parseIdentifier: 2976 /// ::= identifier 2977 /// ::= string 2978 bool AsmParser::parseIdentifier(StringRef &Res) { 2979 // The assembler has relaxed rules for accepting identifiers, in particular we 2980 // allow things like '.globl $foo' and '.def @feat.00', which would normally be 2981 // separate tokens. At this level, we have already lexed so we cannot (currently) 2982 // handle this as a context dependent token, instead we detect adjacent tokens 2983 // and return the combined identifier. 2984 if (Lexer.is(AsmToken::Dollar) || Lexer.is(AsmToken::At)) { 2985 SMLoc PrefixLoc = getLexer().getLoc(); 2986 2987 // Consume the prefix character, and check for a following identifier. 2988 2989 AsmToken Buf[1]; 2990 Lexer.peekTokens(Buf, false); 2991 2992 if (Buf[0].isNot(AsmToken::Identifier) && Buf[0].isNot(AsmToken::Integer)) 2993 return true; 2994 2995 // We have a '$' or '@' followed by an identifier or integer token, make 2996 // sure they are adjacent. 2997 if (PrefixLoc.getPointer() + 1 != Buf[0].getLoc().getPointer()) 2998 return true; 2999 3000 // eat $ or @ 3001 Lexer.Lex(); // Lexer's Lex guarantees consecutive token. 3002 // Construct the joined identifier and consume the token. 3003 Res = StringRef(PrefixLoc.getPointer(), getTok().getString().size() + 1); 3004 Lex(); // Parser Lex to maintain invariants. 3005 return false; 3006 } 3007 3008 if (Lexer.isNot(AsmToken::Identifier) && Lexer.isNot(AsmToken::String)) 3009 return true; 3010 3011 Res = getTok().getIdentifier(); 3012 3013 Lex(); // Consume the identifier token. 3014 3015 return false; 3016 } 3017 3018 /// parseDirectiveSet: 3019 /// ::= .equ identifier ',' expression 3020 /// ::= .equiv identifier ',' expression 3021 /// ::= .set identifier ',' expression 3022 /// ::= .lto_set_conditional identifier ',' expression 3023 bool AsmParser::parseDirectiveSet(StringRef IDVal, AssignmentKind Kind) { 3024 StringRef Name; 3025 if (check(parseIdentifier(Name), "expected identifier") || parseComma() || 3026 parseAssignment(Name, Kind)) 3027 return true; 3028 return false; 3029 } 3030 3031 bool AsmParser::parseEscapedString(std::string &Data) { 3032 if (check(getTok().isNot(AsmToken::String), "expected string")) 3033 return true; 3034 3035 Data = ""; 3036 StringRef Str = getTok().getStringContents(); 3037 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 3038 if (Str[i] != '\\') { 3039 Data += Str[i]; 3040 continue; 3041 } 3042 3043 // Recognize escaped characters. Note that this escape semantics currently 3044 // loosely follows Darwin 'as'. 3045 ++i; 3046 if (i == e) 3047 return TokError("unexpected backslash at end of string"); 3048 3049 // Recognize hex sequences similarly to GNU 'as'. 3050 if (Str[i] == 'x' || Str[i] == 'X') { 3051 size_t length = Str.size(); 3052 if (i + 1 >= length || !isHexDigit(Str[i + 1])) 3053 return TokError("invalid hexadecimal escape sequence"); 3054 3055 // Consume hex characters. GNU 'as' reads all hexadecimal characters and 3056 // then truncates to the lower 16 bits. Seems reasonable. 3057 unsigned Value = 0; 3058 while (i + 1 < length && isHexDigit(Str[i + 1])) 3059 Value = Value * 16 + hexDigitValue(Str[++i]); 3060 3061 Data += (unsigned char)(Value & 0xFF); 3062 continue; 3063 } 3064 3065 // Recognize octal sequences. 3066 if ((unsigned)(Str[i] - '0') <= 7) { 3067 // Consume up to three octal characters. 3068 unsigned Value = Str[i] - '0'; 3069 3070 if (i + 1 != e && ((unsigned)(Str[i + 1] - '0')) <= 7) { 3071 ++i; 3072 Value = Value * 8 + (Str[i] - '0'); 3073 3074 if (i + 1 != e && ((unsigned)(Str[i + 1] - '0')) <= 7) { 3075 ++i; 3076 Value = Value * 8 + (Str[i] - '0'); 3077 } 3078 } 3079 3080 if (Value > 255) 3081 return TokError("invalid octal escape sequence (out of range)"); 3082 3083 Data += (unsigned char)Value; 3084 continue; 3085 } 3086 3087 // Otherwise recognize individual escapes. 3088 switch (Str[i]) { 3089 default: 3090 // Just reject invalid escape sequences for now. 3091 return TokError("invalid escape sequence (unrecognized character)"); 3092 3093 case 'b': Data += '\b'; break; 3094 case 'f': Data += '\f'; break; 3095 case 'n': Data += '\n'; break; 3096 case 'r': Data += '\r'; break; 3097 case 't': Data += '\t'; break; 3098 case '"': Data += '"'; break; 3099 case '\\': Data += '\\'; break; 3100 } 3101 } 3102 3103 Lex(); 3104 return false; 3105 } 3106 3107 bool AsmParser::parseAngleBracketString(std::string &Data) { 3108 SMLoc EndLoc, StartLoc = getTok().getLoc(); 3109 if (isAngleBracketString(StartLoc, EndLoc)) { 3110 const char *StartChar = StartLoc.getPointer() + 1; 3111 const char *EndChar = EndLoc.getPointer() - 1; 3112 jumpToLoc(EndLoc, CurBuffer); 3113 /// Eat from '<' to '>' 3114 Lex(); 3115 3116 Data = angleBracketString(StringRef(StartChar, EndChar - StartChar)); 3117 return false; 3118 } 3119 return true; 3120 } 3121 3122 /// parseDirectiveAscii: 3123 // ::= .ascii [ "string"+ ( , "string"+ )* ] 3124 /// ::= ( .asciz | .string ) [ "string" ( , "string" )* ] 3125 bool AsmParser::parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated) { 3126 auto parseOp = [&]() -> bool { 3127 std::string Data; 3128 if (checkForValidSection()) 3129 return true; 3130 // Only support spaces as separators for .ascii directive for now. See the 3131 // discusssion at https://reviews.llvm.org/D91460 for more details. 3132 do { 3133 if (parseEscapedString(Data)) 3134 return true; 3135 getStreamer().emitBytes(Data); 3136 } while (!ZeroTerminated && getTok().is(AsmToken::String)); 3137 if (ZeroTerminated) 3138 getStreamer().emitBytes(StringRef("\0", 1)); 3139 return false; 3140 }; 3141 3142 return parseMany(parseOp); 3143 } 3144 3145 /// parseDirectiveReloc 3146 /// ::= .reloc expression , identifier [ , expression ] 3147 bool AsmParser::parseDirectiveReloc(SMLoc DirectiveLoc) { 3148 const MCExpr *Offset; 3149 const MCExpr *Expr = nullptr; 3150 SMLoc OffsetLoc = Lexer.getTok().getLoc(); 3151 3152 if (parseExpression(Offset)) 3153 return true; 3154 if (parseComma() || 3155 check(getTok().isNot(AsmToken::Identifier), "expected relocation name")) 3156 return true; 3157 3158 SMLoc NameLoc = Lexer.getTok().getLoc(); 3159 StringRef Name = Lexer.getTok().getIdentifier(); 3160 Lex(); 3161 3162 if (Lexer.is(AsmToken::Comma)) { 3163 Lex(); 3164 SMLoc ExprLoc = Lexer.getLoc(); 3165 if (parseExpression(Expr)) 3166 return true; 3167 3168 MCValue Value; 3169 if (!Expr->evaluateAsRelocatable(Value, nullptr, nullptr)) 3170 return Error(ExprLoc, "expression must be relocatable"); 3171 } 3172 3173 if (parseEOL()) 3174 return true; 3175 3176 const MCTargetAsmParser &MCT = getTargetParser(); 3177 const MCSubtargetInfo &STI = MCT.getSTI(); 3178 if (std::optional<std::pair<bool, std::string>> Err = 3179 getStreamer().emitRelocDirective(*Offset, Name, Expr, DirectiveLoc, 3180 STI)) 3181 return Error(Err->first ? NameLoc : OffsetLoc, Err->second); 3182 3183 return false; 3184 } 3185 3186 /// parseDirectiveValue 3187 /// ::= (.byte | .short | ... ) [ expression (, expression)* ] 3188 bool AsmParser::parseDirectiveValue(StringRef IDVal, unsigned Size) { 3189 auto parseOp = [&]() -> bool { 3190 const MCExpr *Value; 3191 SMLoc ExprLoc = getLexer().getLoc(); 3192 if (checkForValidSection() || parseExpression(Value)) 3193 return true; 3194 // Special case constant expressions to match code generator. 3195 if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) { 3196 assert(Size <= 8 && "Invalid size"); 3197 uint64_t IntValue = MCE->getValue(); 3198 if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue)) 3199 return Error(ExprLoc, "out of range literal value"); 3200 getStreamer().emitIntValue(IntValue, Size); 3201 } else 3202 getStreamer().emitValue(Value, Size, ExprLoc); 3203 return false; 3204 }; 3205 3206 return parseMany(parseOp); 3207 } 3208 3209 static bool parseHexOcta(AsmParser &Asm, uint64_t &hi, uint64_t &lo) { 3210 if (Asm.getTok().isNot(AsmToken::Integer) && 3211 Asm.getTok().isNot(AsmToken::BigNum)) 3212 return Asm.TokError("unknown token in expression"); 3213 SMLoc ExprLoc = Asm.getTok().getLoc(); 3214 APInt IntValue = Asm.getTok().getAPIntVal(); 3215 Asm.Lex(); 3216 if (!IntValue.isIntN(128)) 3217 return Asm.Error(ExprLoc, "out of range literal value"); 3218 if (!IntValue.isIntN(64)) { 3219 hi = IntValue.getHiBits(IntValue.getBitWidth() - 64).getZExtValue(); 3220 lo = IntValue.getLoBits(64).getZExtValue(); 3221 } else { 3222 hi = 0; 3223 lo = IntValue.getZExtValue(); 3224 } 3225 return false; 3226 } 3227 3228 /// ParseDirectiveOctaValue 3229 /// ::= .octa [ hexconstant (, hexconstant)* ] 3230 3231 bool AsmParser::parseDirectiveOctaValue(StringRef IDVal) { 3232 auto parseOp = [&]() -> bool { 3233 if (checkForValidSection()) 3234 return true; 3235 uint64_t hi, lo; 3236 if (parseHexOcta(*this, hi, lo)) 3237 return true; 3238 if (MAI.isLittleEndian()) { 3239 getStreamer().emitInt64(lo); 3240 getStreamer().emitInt64(hi); 3241 } else { 3242 getStreamer().emitInt64(hi); 3243 getStreamer().emitInt64(lo); 3244 } 3245 return false; 3246 }; 3247 3248 return parseMany(parseOp); 3249 } 3250 3251 bool AsmParser::parseRealValue(const fltSemantics &Semantics, APInt &Res) { 3252 // We don't truly support arithmetic on floating point expressions, so we 3253 // have to manually parse unary prefixes. 3254 bool IsNeg = false; 3255 if (getLexer().is(AsmToken::Minus)) { 3256 Lexer.Lex(); 3257 IsNeg = true; 3258 } else if (getLexer().is(AsmToken::Plus)) 3259 Lexer.Lex(); 3260 3261 if (Lexer.is(AsmToken::Error)) 3262 return TokError(Lexer.getErr()); 3263 if (Lexer.isNot(AsmToken::Integer) && Lexer.isNot(AsmToken::Real) && 3264 Lexer.isNot(AsmToken::Identifier)) 3265 return TokError("unexpected token in directive"); 3266 3267 // Convert to an APFloat. 3268 APFloat Value(Semantics); 3269 StringRef IDVal = getTok().getString(); 3270 if (getLexer().is(AsmToken::Identifier)) { 3271 if (!IDVal.compare_insensitive("infinity") || 3272 !IDVal.compare_insensitive("inf")) 3273 Value = APFloat::getInf(Semantics); 3274 else if (!IDVal.compare_insensitive("nan")) 3275 Value = APFloat::getNaN(Semantics, false, ~0); 3276 else 3277 return TokError("invalid floating point literal"); 3278 } else if (errorToBool( 3279 Value.convertFromString(IDVal, APFloat::rmNearestTiesToEven) 3280 .takeError())) 3281 return TokError("invalid floating point literal"); 3282 if (IsNeg) 3283 Value.changeSign(); 3284 3285 // Consume the numeric token. 3286 Lex(); 3287 3288 Res = Value.bitcastToAPInt(); 3289 3290 return false; 3291 } 3292 3293 /// parseDirectiveRealValue 3294 /// ::= (.single | .double) [ expression (, expression)* ] 3295 bool AsmParser::parseDirectiveRealValue(StringRef IDVal, 3296 const fltSemantics &Semantics) { 3297 auto parseOp = [&]() -> bool { 3298 APInt AsInt; 3299 if (checkForValidSection() || parseRealValue(Semantics, AsInt)) 3300 return true; 3301 getStreamer().emitIntValue(AsInt.getLimitedValue(), 3302 AsInt.getBitWidth() / 8); 3303 return false; 3304 }; 3305 3306 return parseMany(parseOp); 3307 } 3308 3309 /// parseDirectiveZero 3310 /// ::= .zero expression 3311 bool AsmParser::parseDirectiveZero() { 3312 SMLoc NumBytesLoc = Lexer.getLoc(); 3313 const MCExpr *NumBytes; 3314 if (checkForValidSection() || parseExpression(NumBytes)) 3315 return true; 3316 3317 int64_t Val = 0; 3318 if (getLexer().is(AsmToken::Comma)) { 3319 Lex(); 3320 if (parseAbsoluteExpression(Val)) 3321 return true; 3322 } 3323 3324 if (parseEOL()) 3325 return true; 3326 getStreamer().emitFill(*NumBytes, Val, NumBytesLoc); 3327 3328 return false; 3329 } 3330 3331 /// parseDirectiveFill 3332 /// ::= .fill expression [ , expression [ , expression ] ] 3333 bool AsmParser::parseDirectiveFill() { 3334 SMLoc NumValuesLoc = Lexer.getLoc(); 3335 const MCExpr *NumValues; 3336 if (checkForValidSection() || parseExpression(NumValues)) 3337 return true; 3338 3339 int64_t FillSize = 1; 3340 int64_t FillExpr = 0; 3341 3342 SMLoc SizeLoc, ExprLoc; 3343 3344 if (parseOptionalToken(AsmToken::Comma)) { 3345 SizeLoc = getTok().getLoc(); 3346 if (parseAbsoluteExpression(FillSize)) 3347 return true; 3348 if (parseOptionalToken(AsmToken::Comma)) { 3349 ExprLoc = getTok().getLoc(); 3350 if (parseAbsoluteExpression(FillExpr)) 3351 return true; 3352 } 3353 } 3354 if (parseEOL()) 3355 return true; 3356 3357 if (FillSize < 0) { 3358 Warning(SizeLoc, "'.fill' directive with negative size has no effect"); 3359 return false; 3360 } 3361 if (FillSize > 8) { 3362 Warning(SizeLoc, "'.fill' directive with size greater than 8 has been truncated to 8"); 3363 FillSize = 8; 3364 } 3365 3366 if (!isUInt<32>(FillExpr) && FillSize > 4) 3367 Warning(ExprLoc, "'.fill' directive pattern has been truncated to 32-bits"); 3368 3369 getStreamer().emitFill(*NumValues, FillSize, FillExpr, NumValuesLoc); 3370 3371 return false; 3372 } 3373 3374 /// parseDirectiveOrg 3375 /// ::= .org expression [ , expression ] 3376 bool AsmParser::parseDirectiveOrg() { 3377 const MCExpr *Offset; 3378 SMLoc OffsetLoc = Lexer.getLoc(); 3379 if (checkForValidSection() || parseExpression(Offset)) 3380 return true; 3381 3382 // Parse optional fill expression. 3383 int64_t FillExpr = 0; 3384 if (parseOptionalToken(AsmToken::Comma)) 3385 if (parseAbsoluteExpression(FillExpr)) 3386 return true; 3387 if (parseEOL()) 3388 return true; 3389 3390 getStreamer().emitValueToOffset(Offset, FillExpr, OffsetLoc); 3391 return false; 3392 } 3393 3394 /// parseDirectiveAlign 3395 /// ::= {.align, ...} expression [ , expression [ , expression ]] 3396 bool AsmParser::parseDirectiveAlign(bool IsPow2, unsigned ValueSize) { 3397 SMLoc AlignmentLoc = getLexer().getLoc(); 3398 int64_t Alignment; 3399 SMLoc MaxBytesLoc; 3400 bool HasFillExpr = false; 3401 int64_t FillExpr = 0; 3402 int64_t MaxBytesToFill = 0; 3403 3404 auto parseAlign = [&]() -> bool { 3405 if (parseAbsoluteExpression(Alignment)) 3406 return true; 3407 if (parseOptionalToken(AsmToken::Comma)) { 3408 // The fill expression can be omitted while specifying a maximum number of 3409 // alignment bytes, e.g: 3410 // .align 3,,4 3411 if (getTok().isNot(AsmToken::Comma)) { 3412 HasFillExpr = true; 3413 if (parseAbsoluteExpression(FillExpr)) 3414 return true; 3415 } 3416 if (parseOptionalToken(AsmToken::Comma)) 3417 if (parseTokenLoc(MaxBytesLoc) || 3418 parseAbsoluteExpression(MaxBytesToFill)) 3419 return true; 3420 } 3421 return parseEOL(); 3422 }; 3423 3424 if (checkForValidSection()) 3425 return true; 3426 // Ignore empty '.p2align' directives for GNU-as compatibility 3427 if (IsPow2 && (ValueSize == 1) && getTok().is(AsmToken::EndOfStatement)) { 3428 Warning(AlignmentLoc, "p2align directive with no operand(s) is ignored"); 3429 return parseEOL(); 3430 } 3431 if (parseAlign()) 3432 return true; 3433 3434 // Always emit an alignment here even if we thrown an error. 3435 bool ReturnVal = false; 3436 3437 // Compute alignment in bytes. 3438 if (IsPow2) { 3439 // FIXME: Diagnose overflow. 3440 if (Alignment >= 32) { 3441 ReturnVal |= Error(AlignmentLoc, "invalid alignment value"); 3442 Alignment = 31; 3443 } 3444 3445 Alignment = 1ULL << Alignment; 3446 } else { 3447 // Reject alignments that aren't either a power of two or zero, 3448 // for gas compatibility. Alignment of zero is silently rounded 3449 // up to one. 3450 if (Alignment == 0) 3451 Alignment = 1; 3452 else if (!isPowerOf2_64(Alignment)) { 3453 ReturnVal |= Error(AlignmentLoc, "alignment must be a power of 2"); 3454 Alignment = PowerOf2Floor(Alignment); 3455 } 3456 if (!isUInt<32>(Alignment)) { 3457 ReturnVal |= Error(AlignmentLoc, "alignment must be smaller than 2**32"); 3458 Alignment = 1u << 31; 3459 } 3460 } 3461 3462 // Diagnose non-sensical max bytes to align. 3463 if (MaxBytesLoc.isValid()) { 3464 if (MaxBytesToFill < 1) { 3465 ReturnVal |= Error(MaxBytesLoc, 3466 "alignment directive can never be satisfied in this " 3467 "many bytes, ignoring maximum bytes expression"); 3468 MaxBytesToFill = 0; 3469 } 3470 3471 if (MaxBytesToFill >= Alignment) { 3472 Warning(MaxBytesLoc, "maximum bytes expression exceeds alignment and " 3473 "has no effect"); 3474 MaxBytesToFill = 0; 3475 } 3476 } 3477 3478 // Check whether we should use optimal code alignment for this .align 3479 // directive. 3480 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 3481 assert(Section && "must have section to emit alignment"); 3482 bool useCodeAlign = Section->useCodeAlign(); 3483 if ((!HasFillExpr || Lexer.getMAI().getTextAlignFillValue() == FillExpr) && 3484 ValueSize == 1 && useCodeAlign) { 3485 getStreamer().emitCodeAlignment( 3486 Align(Alignment), &getTargetParser().getSTI(), MaxBytesToFill); 3487 } else { 3488 // FIXME: Target specific behavior about how the "extra" bytes are filled. 3489 getStreamer().emitValueToAlignment(Align(Alignment), FillExpr, ValueSize, 3490 MaxBytesToFill); 3491 } 3492 3493 return ReturnVal; 3494 } 3495 3496 /// parseDirectiveFile 3497 /// ::= .file filename 3498 /// ::= .file number [directory] filename [md5 checksum] [source source-text] 3499 bool AsmParser::parseDirectiveFile(SMLoc DirectiveLoc) { 3500 // FIXME: I'm not sure what this is. 3501 int64_t FileNumber = -1; 3502 if (getLexer().is(AsmToken::Integer)) { 3503 FileNumber = getTok().getIntVal(); 3504 Lex(); 3505 3506 if (FileNumber < 0) 3507 return TokError("negative file number"); 3508 } 3509 3510 std::string Path; 3511 3512 // Usually the directory and filename together, otherwise just the directory. 3513 // Allow the strings to have escaped octal character sequence. 3514 if (parseEscapedString(Path)) 3515 return true; 3516 3517 StringRef Directory; 3518 StringRef Filename; 3519 std::string FilenameData; 3520 if (getLexer().is(AsmToken::String)) { 3521 if (check(FileNumber == -1, 3522 "explicit path specified, but no file number") || 3523 parseEscapedString(FilenameData)) 3524 return true; 3525 Filename = FilenameData; 3526 Directory = Path; 3527 } else { 3528 Filename = Path; 3529 } 3530 3531 uint64_t MD5Hi, MD5Lo; 3532 bool HasMD5 = false; 3533 3534 std::optional<StringRef> Source; 3535 bool HasSource = false; 3536 std::string SourceString; 3537 3538 while (!parseOptionalToken(AsmToken::EndOfStatement)) { 3539 StringRef Keyword; 3540 if (check(getTok().isNot(AsmToken::Identifier), 3541 "unexpected token in '.file' directive") || 3542 parseIdentifier(Keyword)) 3543 return true; 3544 if (Keyword == "md5") { 3545 HasMD5 = true; 3546 if (check(FileNumber == -1, 3547 "MD5 checksum specified, but no file number") || 3548 parseHexOcta(*this, MD5Hi, MD5Lo)) 3549 return true; 3550 } else if (Keyword == "source") { 3551 HasSource = true; 3552 if (check(FileNumber == -1, 3553 "source specified, but no file number") || 3554 check(getTok().isNot(AsmToken::String), 3555 "unexpected token in '.file' directive") || 3556 parseEscapedString(SourceString)) 3557 return true; 3558 } else { 3559 return TokError("unexpected token in '.file' directive"); 3560 } 3561 } 3562 3563 if (FileNumber == -1) { 3564 // Ignore the directive if there is no number and the target doesn't support 3565 // numberless .file directives. This allows some portability of assembler 3566 // between different object file formats. 3567 if (getContext().getAsmInfo()->hasSingleParameterDotFile()) 3568 getStreamer().emitFileDirective(Filename); 3569 } else { 3570 // In case there is a -g option as well as debug info from directive .file, 3571 // we turn off the -g option, directly use the existing debug info instead. 3572 // Throw away any implicit file table for the assembler source. 3573 if (Ctx.getGenDwarfForAssembly()) { 3574 Ctx.getMCDwarfLineTable(0).resetFileTable(); 3575 Ctx.setGenDwarfForAssembly(false); 3576 } 3577 3578 std::optional<MD5::MD5Result> CKMem; 3579 if (HasMD5) { 3580 MD5::MD5Result Sum; 3581 for (unsigned i = 0; i != 8; ++i) { 3582 Sum[i] = uint8_t(MD5Hi >> ((7 - i) * 8)); 3583 Sum[i + 8] = uint8_t(MD5Lo >> ((7 - i) * 8)); 3584 } 3585 CKMem = Sum; 3586 } 3587 if (HasSource) { 3588 char *SourceBuf = static_cast<char *>(Ctx.allocate(SourceString.size())); 3589 memcpy(SourceBuf, SourceString.data(), SourceString.size()); 3590 Source = StringRef(SourceBuf, SourceString.size()); 3591 } 3592 if (FileNumber == 0) { 3593 // Upgrade to Version 5 for assembly actions like clang -c a.s. 3594 if (Ctx.getDwarfVersion() < 5) 3595 Ctx.setDwarfVersion(5); 3596 getStreamer().emitDwarfFile0Directive(Directory, Filename, CKMem, Source); 3597 } else { 3598 Expected<unsigned> FileNumOrErr = getStreamer().tryEmitDwarfFileDirective( 3599 FileNumber, Directory, Filename, CKMem, Source); 3600 if (!FileNumOrErr) 3601 return Error(DirectiveLoc, toString(FileNumOrErr.takeError())); 3602 } 3603 // Alert the user if there are some .file directives with MD5 and some not. 3604 // But only do that once. 3605 if (!ReportedInconsistentMD5 && !Ctx.isDwarfMD5UsageConsistent(0)) { 3606 ReportedInconsistentMD5 = true; 3607 return Warning(DirectiveLoc, "inconsistent use of MD5 checksums"); 3608 } 3609 } 3610 3611 return false; 3612 } 3613 3614 /// parseDirectiveLine 3615 /// ::= .line [number] 3616 bool AsmParser::parseDirectiveLine() { 3617 int64_t LineNumber; 3618 if (getLexer().is(AsmToken::Integer)) { 3619 if (parseIntToken(LineNumber, "unexpected token in '.line' directive")) 3620 return true; 3621 (void)LineNumber; 3622 // FIXME: Do something with the .line. 3623 } 3624 return parseEOL(); 3625 } 3626 3627 /// parseDirectiveLoc 3628 /// ::= .loc FileNumber [LineNumber] [ColumnPos] [basic_block] [prologue_end] 3629 /// [epilogue_begin] [is_stmt VALUE] [isa VALUE] 3630 /// The first number is a file number, must have been previously assigned with 3631 /// a .file directive, the second number is the line number and optionally the 3632 /// third number is a column position (zero if not specified). The remaining 3633 /// optional items are .loc sub-directives. 3634 bool AsmParser::parseDirectiveLoc() { 3635 int64_t FileNumber = 0, LineNumber = 0; 3636 SMLoc Loc = getTok().getLoc(); 3637 if (parseIntToken(FileNumber, "unexpected token in '.loc' directive") || 3638 check(FileNumber < 1 && Ctx.getDwarfVersion() < 5, Loc, 3639 "file number less than one in '.loc' directive") || 3640 check(!getContext().isValidDwarfFileNumber(FileNumber), Loc, 3641 "unassigned file number in '.loc' directive")) 3642 return true; 3643 3644 // optional 3645 if (getLexer().is(AsmToken::Integer)) { 3646 LineNumber = getTok().getIntVal(); 3647 if (LineNumber < 0) 3648 return TokError("line number less than zero in '.loc' directive"); 3649 Lex(); 3650 } 3651 3652 int64_t ColumnPos = 0; 3653 if (getLexer().is(AsmToken::Integer)) { 3654 ColumnPos = getTok().getIntVal(); 3655 if (ColumnPos < 0) 3656 return TokError("column position less than zero in '.loc' directive"); 3657 Lex(); 3658 } 3659 3660 auto PrevFlags = getContext().getCurrentDwarfLoc().getFlags(); 3661 unsigned Flags = PrevFlags & DWARF2_FLAG_IS_STMT; 3662 unsigned Isa = 0; 3663 int64_t Discriminator = 0; 3664 3665 auto parseLocOp = [&]() -> bool { 3666 StringRef Name; 3667 SMLoc Loc = getTok().getLoc(); 3668 if (parseIdentifier(Name)) 3669 return TokError("unexpected token in '.loc' directive"); 3670 3671 if (Name == "basic_block") 3672 Flags |= DWARF2_FLAG_BASIC_BLOCK; 3673 else if (Name == "prologue_end") 3674 Flags |= DWARF2_FLAG_PROLOGUE_END; 3675 else if (Name == "epilogue_begin") 3676 Flags |= DWARF2_FLAG_EPILOGUE_BEGIN; 3677 else if (Name == "is_stmt") { 3678 Loc = getTok().getLoc(); 3679 const MCExpr *Value; 3680 if (parseExpression(Value)) 3681 return true; 3682 // The expression must be the constant 0 or 1. 3683 if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) { 3684 int Value = MCE->getValue(); 3685 if (Value == 0) 3686 Flags &= ~DWARF2_FLAG_IS_STMT; 3687 else if (Value == 1) 3688 Flags |= DWARF2_FLAG_IS_STMT; 3689 else 3690 return Error(Loc, "is_stmt value not 0 or 1"); 3691 } else { 3692 return Error(Loc, "is_stmt value not the constant value of 0 or 1"); 3693 } 3694 } else if (Name == "isa") { 3695 Loc = getTok().getLoc(); 3696 const MCExpr *Value; 3697 if (parseExpression(Value)) 3698 return true; 3699 // The expression must be a constant greater or equal to 0. 3700 if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) { 3701 int Value = MCE->getValue(); 3702 if (Value < 0) 3703 return Error(Loc, "isa number less than zero"); 3704 Isa = Value; 3705 } else { 3706 return Error(Loc, "isa number not a constant value"); 3707 } 3708 } else if (Name == "discriminator") { 3709 if (parseAbsoluteExpression(Discriminator)) 3710 return true; 3711 } else { 3712 return Error(Loc, "unknown sub-directive in '.loc' directive"); 3713 } 3714 return false; 3715 }; 3716 3717 if (parseMany(parseLocOp, false /*hasComma*/)) 3718 return true; 3719 3720 getStreamer().emitDwarfLocDirective(FileNumber, LineNumber, ColumnPos, Flags, 3721 Isa, Discriminator, StringRef()); 3722 3723 return false; 3724 } 3725 3726 /// parseDirectiveStabs 3727 /// ::= .stabs string, number, number, number 3728 bool AsmParser::parseDirectiveStabs() { 3729 return TokError("unsupported directive '.stabs'"); 3730 } 3731 3732 /// parseDirectiveCVFile 3733 /// ::= .cv_file number filename [checksum] [checksumkind] 3734 bool AsmParser::parseDirectiveCVFile() { 3735 SMLoc FileNumberLoc = getTok().getLoc(); 3736 int64_t FileNumber; 3737 std::string Filename; 3738 std::string Checksum; 3739 int64_t ChecksumKind = 0; 3740 3741 if (parseIntToken(FileNumber, 3742 "expected file number in '.cv_file' directive") || 3743 check(FileNumber < 1, FileNumberLoc, "file number less than one") || 3744 check(getTok().isNot(AsmToken::String), 3745 "unexpected token in '.cv_file' directive") || 3746 parseEscapedString(Filename)) 3747 return true; 3748 if (!parseOptionalToken(AsmToken::EndOfStatement)) { 3749 if (check(getTok().isNot(AsmToken::String), 3750 "unexpected token in '.cv_file' directive") || 3751 parseEscapedString(Checksum) || 3752 parseIntToken(ChecksumKind, 3753 "expected checksum kind in '.cv_file' directive") || 3754 parseEOL()) 3755 return true; 3756 } 3757 3758 Checksum = fromHex(Checksum); 3759 void *CKMem = Ctx.allocate(Checksum.size(), 1); 3760 memcpy(CKMem, Checksum.data(), Checksum.size()); 3761 ArrayRef<uint8_t> ChecksumAsBytes(reinterpret_cast<const uint8_t *>(CKMem), 3762 Checksum.size()); 3763 3764 if (!getStreamer().emitCVFileDirective(FileNumber, Filename, ChecksumAsBytes, 3765 static_cast<uint8_t>(ChecksumKind))) 3766 return Error(FileNumberLoc, "file number already allocated"); 3767 3768 return false; 3769 } 3770 3771 bool AsmParser::parseCVFunctionId(int64_t &FunctionId, 3772 StringRef DirectiveName) { 3773 SMLoc Loc; 3774 return parseTokenLoc(Loc) || 3775 parseIntToken(FunctionId, "expected function id in '" + DirectiveName + 3776 "' directive") || 3777 check(FunctionId < 0 || FunctionId >= UINT_MAX, Loc, 3778 "expected function id within range [0, UINT_MAX)"); 3779 } 3780 3781 bool AsmParser::parseCVFileId(int64_t &FileNumber, StringRef DirectiveName) { 3782 SMLoc Loc; 3783 return parseTokenLoc(Loc) || 3784 parseIntToken(FileNumber, "expected integer in '" + DirectiveName + 3785 "' directive") || 3786 check(FileNumber < 1, Loc, "file number less than one in '" + 3787 DirectiveName + "' directive") || 3788 check(!getCVContext().isValidFileNumber(FileNumber), Loc, 3789 "unassigned file number in '" + DirectiveName + "' directive"); 3790 } 3791 3792 /// parseDirectiveCVFuncId 3793 /// ::= .cv_func_id FunctionId 3794 /// 3795 /// Introduces a function ID that can be used with .cv_loc. 3796 bool AsmParser::parseDirectiveCVFuncId() { 3797 SMLoc FunctionIdLoc = getTok().getLoc(); 3798 int64_t FunctionId; 3799 3800 if (parseCVFunctionId(FunctionId, ".cv_func_id") || parseEOL()) 3801 return true; 3802 3803 if (!getStreamer().emitCVFuncIdDirective(FunctionId)) 3804 return Error(FunctionIdLoc, "function id already allocated"); 3805 3806 return false; 3807 } 3808 3809 /// parseDirectiveCVInlineSiteId 3810 /// ::= .cv_inline_site_id FunctionId 3811 /// "within" IAFunc 3812 /// "inlined_at" IAFile IALine [IACol] 3813 /// 3814 /// Introduces a function ID that can be used with .cv_loc. Includes "inlined 3815 /// at" source location information for use in the line table of the caller, 3816 /// whether the caller is a real function or another inlined call site. 3817 bool AsmParser::parseDirectiveCVInlineSiteId() { 3818 SMLoc FunctionIdLoc = getTok().getLoc(); 3819 int64_t FunctionId; 3820 int64_t IAFunc; 3821 int64_t IAFile; 3822 int64_t IALine; 3823 int64_t IACol = 0; 3824 3825 // FunctionId 3826 if (parseCVFunctionId(FunctionId, ".cv_inline_site_id")) 3827 return true; 3828 3829 // "within" 3830 if (check((getLexer().isNot(AsmToken::Identifier) || 3831 getTok().getIdentifier() != "within"), 3832 "expected 'within' identifier in '.cv_inline_site_id' directive")) 3833 return true; 3834 Lex(); 3835 3836 // IAFunc 3837 if (parseCVFunctionId(IAFunc, ".cv_inline_site_id")) 3838 return true; 3839 3840 // "inlined_at" 3841 if (check((getLexer().isNot(AsmToken::Identifier) || 3842 getTok().getIdentifier() != "inlined_at"), 3843 "expected 'inlined_at' identifier in '.cv_inline_site_id' " 3844 "directive") ) 3845 return true; 3846 Lex(); 3847 3848 // IAFile IALine 3849 if (parseCVFileId(IAFile, ".cv_inline_site_id") || 3850 parseIntToken(IALine, "expected line number after 'inlined_at'")) 3851 return true; 3852 3853 // [IACol] 3854 if (getLexer().is(AsmToken::Integer)) { 3855 IACol = getTok().getIntVal(); 3856 Lex(); 3857 } 3858 3859 if (parseEOL()) 3860 return true; 3861 3862 if (!getStreamer().emitCVInlineSiteIdDirective(FunctionId, IAFunc, IAFile, 3863 IALine, IACol, FunctionIdLoc)) 3864 return Error(FunctionIdLoc, "function id already allocated"); 3865 3866 return false; 3867 } 3868 3869 /// parseDirectiveCVLoc 3870 /// ::= .cv_loc FunctionId FileNumber [LineNumber] [ColumnPos] [prologue_end] 3871 /// [is_stmt VALUE] 3872 /// The first number is a file number, must have been previously assigned with 3873 /// a .file directive, the second number is the line number and optionally the 3874 /// third number is a column position (zero if not specified). The remaining 3875 /// optional items are .loc sub-directives. 3876 bool AsmParser::parseDirectiveCVLoc() { 3877 SMLoc DirectiveLoc = getTok().getLoc(); 3878 int64_t FunctionId, FileNumber; 3879 if (parseCVFunctionId(FunctionId, ".cv_loc") || 3880 parseCVFileId(FileNumber, ".cv_loc")) 3881 return true; 3882 3883 int64_t LineNumber = 0; 3884 if (getLexer().is(AsmToken::Integer)) { 3885 LineNumber = getTok().getIntVal(); 3886 if (LineNumber < 0) 3887 return TokError("line number less than zero in '.cv_loc' directive"); 3888 Lex(); 3889 } 3890 3891 int64_t ColumnPos = 0; 3892 if (getLexer().is(AsmToken::Integer)) { 3893 ColumnPos = getTok().getIntVal(); 3894 if (ColumnPos < 0) 3895 return TokError("column position less than zero in '.cv_loc' directive"); 3896 Lex(); 3897 } 3898 3899 bool PrologueEnd = false; 3900 uint64_t IsStmt = 0; 3901 3902 auto parseOp = [&]() -> bool { 3903 StringRef Name; 3904 SMLoc Loc = getTok().getLoc(); 3905 if (parseIdentifier(Name)) 3906 return TokError("unexpected token in '.cv_loc' directive"); 3907 if (Name == "prologue_end") 3908 PrologueEnd = true; 3909 else if (Name == "is_stmt") { 3910 Loc = getTok().getLoc(); 3911 const MCExpr *Value; 3912 if (parseExpression(Value)) 3913 return true; 3914 // The expression must be the constant 0 or 1. 3915 IsStmt = ~0ULL; 3916 if (const auto *MCE = dyn_cast<MCConstantExpr>(Value)) 3917 IsStmt = MCE->getValue(); 3918 3919 if (IsStmt > 1) 3920 return Error(Loc, "is_stmt value not 0 or 1"); 3921 } else { 3922 return Error(Loc, "unknown sub-directive in '.cv_loc' directive"); 3923 } 3924 return false; 3925 }; 3926 3927 if (parseMany(parseOp, false /*hasComma*/)) 3928 return true; 3929 3930 getStreamer().emitCVLocDirective(FunctionId, FileNumber, LineNumber, 3931 ColumnPos, PrologueEnd, IsStmt, StringRef(), 3932 DirectiveLoc); 3933 return false; 3934 } 3935 3936 /// parseDirectiveCVLinetable 3937 /// ::= .cv_linetable FunctionId, FnStart, FnEnd 3938 bool AsmParser::parseDirectiveCVLinetable() { 3939 int64_t FunctionId; 3940 StringRef FnStartName, FnEndName; 3941 SMLoc Loc = getTok().getLoc(); 3942 if (parseCVFunctionId(FunctionId, ".cv_linetable") || parseComma() || 3943 parseTokenLoc(Loc) || 3944 check(parseIdentifier(FnStartName), Loc, 3945 "expected identifier in directive") || 3946 parseComma() || parseTokenLoc(Loc) || 3947 check(parseIdentifier(FnEndName), Loc, 3948 "expected identifier in directive")) 3949 return true; 3950 3951 MCSymbol *FnStartSym = getContext().getOrCreateSymbol(FnStartName); 3952 MCSymbol *FnEndSym = getContext().getOrCreateSymbol(FnEndName); 3953 3954 getStreamer().emitCVLinetableDirective(FunctionId, FnStartSym, FnEndSym); 3955 return false; 3956 } 3957 3958 /// parseDirectiveCVInlineLinetable 3959 /// ::= .cv_inline_linetable PrimaryFunctionId FileId LineNum FnStart FnEnd 3960 bool AsmParser::parseDirectiveCVInlineLinetable() { 3961 int64_t PrimaryFunctionId, SourceFileId, SourceLineNum; 3962 StringRef FnStartName, FnEndName; 3963 SMLoc Loc = getTok().getLoc(); 3964 if (parseCVFunctionId(PrimaryFunctionId, ".cv_inline_linetable") || 3965 parseTokenLoc(Loc) || 3966 parseIntToken( 3967 SourceFileId, 3968 "expected SourceField in '.cv_inline_linetable' directive") || 3969 check(SourceFileId <= 0, Loc, 3970 "File id less than zero in '.cv_inline_linetable' directive") || 3971 parseTokenLoc(Loc) || 3972 parseIntToken( 3973 SourceLineNum, 3974 "expected SourceLineNum in '.cv_inline_linetable' directive") || 3975 check(SourceLineNum < 0, Loc, 3976 "Line number less than zero in '.cv_inline_linetable' directive") || 3977 parseTokenLoc(Loc) || check(parseIdentifier(FnStartName), Loc, 3978 "expected identifier in directive") || 3979 parseTokenLoc(Loc) || check(parseIdentifier(FnEndName), Loc, 3980 "expected identifier in directive")) 3981 return true; 3982 3983 if (parseEOL()) 3984 return true; 3985 3986 MCSymbol *FnStartSym = getContext().getOrCreateSymbol(FnStartName); 3987 MCSymbol *FnEndSym = getContext().getOrCreateSymbol(FnEndName); 3988 getStreamer().emitCVInlineLinetableDirective(PrimaryFunctionId, SourceFileId, 3989 SourceLineNum, FnStartSym, 3990 FnEndSym); 3991 return false; 3992 } 3993 3994 void AsmParser::initializeCVDefRangeTypeMap() { 3995 CVDefRangeTypeMap["reg"] = CVDR_DEFRANGE_REGISTER; 3996 CVDefRangeTypeMap["frame_ptr_rel"] = CVDR_DEFRANGE_FRAMEPOINTER_REL; 3997 CVDefRangeTypeMap["subfield_reg"] = CVDR_DEFRANGE_SUBFIELD_REGISTER; 3998 CVDefRangeTypeMap["reg_rel"] = CVDR_DEFRANGE_REGISTER_REL; 3999 } 4000 4001 /// parseDirectiveCVDefRange 4002 /// ::= .cv_def_range RangeStart RangeEnd (GapStart GapEnd)*, bytes* 4003 bool AsmParser::parseDirectiveCVDefRange() { 4004 SMLoc Loc; 4005 std::vector<std::pair<const MCSymbol *, const MCSymbol *>> Ranges; 4006 while (getLexer().is(AsmToken::Identifier)) { 4007 Loc = getLexer().getLoc(); 4008 StringRef GapStartName; 4009 if (parseIdentifier(GapStartName)) 4010 return Error(Loc, "expected identifier in directive"); 4011 MCSymbol *GapStartSym = getContext().getOrCreateSymbol(GapStartName); 4012 4013 Loc = getLexer().getLoc(); 4014 StringRef GapEndName; 4015 if (parseIdentifier(GapEndName)) 4016 return Error(Loc, "expected identifier in directive"); 4017 MCSymbol *GapEndSym = getContext().getOrCreateSymbol(GapEndName); 4018 4019 Ranges.push_back({GapStartSym, GapEndSym}); 4020 } 4021 4022 StringRef CVDefRangeTypeStr; 4023 if (parseToken( 4024 AsmToken::Comma, 4025 "expected comma before def_range type in .cv_def_range directive") || 4026 parseIdentifier(CVDefRangeTypeStr)) 4027 return Error(Loc, "expected def_range type in directive"); 4028 4029 StringMap<CVDefRangeType>::const_iterator CVTypeIt = 4030 CVDefRangeTypeMap.find(CVDefRangeTypeStr); 4031 CVDefRangeType CVDRType = (CVTypeIt == CVDefRangeTypeMap.end()) 4032 ? CVDR_DEFRANGE 4033 : CVTypeIt->getValue(); 4034 switch (CVDRType) { 4035 case CVDR_DEFRANGE_REGISTER: { 4036 int64_t DRRegister; 4037 if (parseToken(AsmToken::Comma, "expected comma before register number in " 4038 ".cv_def_range directive") || 4039 parseAbsoluteExpression(DRRegister)) 4040 return Error(Loc, "expected register number"); 4041 4042 codeview::DefRangeRegisterHeader DRHdr; 4043 DRHdr.Register = DRRegister; 4044 DRHdr.MayHaveNoName = 0; 4045 getStreamer().emitCVDefRangeDirective(Ranges, DRHdr); 4046 break; 4047 } 4048 case CVDR_DEFRANGE_FRAMEPOINTER_REL: { 4049 int64_t DROffset; 4050 if (parseToken(AsmToken::Comma, 4051 "expected comma before offset in .cv_def_range directive") || 4052 parseAbsoluteExpression(DROffset)) 4053 return Error(Loc, "expected offset value"); 4054 4055 codeview::DefRangeFramePointerRelHeader DRHdr; 4056 DRHdr.Offset = DROffset; 4057 getStreamer().emitCVDefRangeDirective(Ranges, DRHdr); 4058 break; 4059 } 4060 case CVDR_DEFRANGE_SUBFIELD_REGISTER: { 4061 int64_t DRRegister; 4062 int64_t DROffsetInParent; 4063 if (parseToken(AsmToken::Comma, "expected comma before register number in " 4064 ".cv_def_range directive") || 4065 parseAbsoluteExpression(DRRegister)) 4066 return Error(Loc, "expected register number"); 4067 if (parseToken(AsmToken::Comma, 4068 "expected comma before offset in .cv_def_range directive") || 4069 parseAbsoluteExpression(DROffsetInParent)) 4070 return Error(Loc, "expected offset value"); 4071 4072 codeview::DefRangeSubfieldRegisterHeader DRHdr; 4073 DRHdr.Register = DRRegister; 4074 DRHdr.MayHaveNoName = 0; 4075 DRHdr.OffsetInParent = DROffsetInParent; 4076 getStreamer().emitCVDefRangeDirective(Ranges, DRHdr); 4077 break; 4078 } 4079 case CVDR_DEFRANGE_REGISTER_REL: { 4080 int64_t DRRegister; 4081 int64_t DRFlags; 4082 int64_t DRBasePointerOffset; 4083 if (parseToken(AsmToken::Comma, "expected comma before register number in " 4084 ".cv_def_range directive") || 4085 parseAbsoluteExpression(DRRegister)) 4086 return Error(Loc, "expected register value"); 4087 if (parseToken( 4088 AsmToken::Comma, 4089 "expected comma before flag value in .cv_def_range directive") || 4090 parseAbsoluteExpression(DRFlags)) 4091 return Error(Loc, "expected flag value"); 4092 if (parseToken(AsmToken::Comma, "expected comma before base pointer offset " 4093 "in .cv_def_range directive") || 4094 parseAbsoluteExpression(DRBasePointerOffset)) 4095 return Error(Loc, "expected base pointer offset value"); 4096 4097 codeview::DefRangeRegisterRelHeader DRHdr; 4098 DRHdr.Register = DRRegister; 4099 DRHdr.Flags = DRFlags; 4100 DRHdr.BasePointerOffset = DRBasePointerOffset; 4101 getStreamer().emitCVDefRangeDirective(Ranges, DRHdr); 4102 break; 4103 } 4104 default: 4105 return Error(Loc, "unexpected def_range type in .cv_def_range directive"); 4106 } 4107 return true; 4108 } 4109 4110 /// parseDirectiveCVString 4111 /// ::= .cv_stringtable "string" 4112 bool AsmParser::parseDirectiveCVString() { 4113 std::string Data; 4114 if (checkForValidSection() || parseEscapedString(Data)) 4115 return true; 4116 4117 // Put the string in the table and emit the offset. 4118 std::pair<StringRef, unsigned> Insertion = 4119 getCVContext().addToStringTable(Data); 4120 getStreamer().emitInt32(Insertion.second); 4121 return false; 4122 } 4123 4124 /// parseDirectiveCVStringTable 4125 /// ::= .cv_stringtable 4126 bool AsmParser::parseDirectiveCVStringTable() { 4127 getStreamer().emitCVStringTableDirective(); 4128 return false; 4129 } 4130 4131 /// parseDirectiveCVFileChecksums 4132 /// ::= .cv_filechecksums 4133 bool AsmParser::parseDirectiveCVFileChecksums() { 4134 getStreamer().emitCVFileChecksumsDirective(); 4135 return false; 4136 } 4137 4138 /// parseDirectiveCVFileChecksumOffset 4139 /// ::= .cv_filechecksumoffset fileno 4140 bool AsmParser::parseDirectiveCVFileChecksumOffset() { 4141 int64_t FileNo; 4142 if (parseIntToken(FileNo, "expected identifier in directive")) 4143 return true; 4144 if (parseEOL()) 4145 return true; 4146 getStreamer().emitCVFileChecksumOffsetDirective(FileNo); 4147 return false; 4148 } 4149 4150 /// parseDirectiveCVFPOData 4151 /// ::= .cv_fpo_data procsym 4152 bool AsmParser::parseDirectiveCVFPOData() { 4153 SMLoc DirLoc = getLexer().getLoc(); 4154 StringRef ProcName; 4155 if (parseIdentifier(ProcName)) 4156 return TokError("expected symbol name"); 4157 if (parseEOL()) 4158 return true; 4159 MCSymbol *ProcSym = getContext().getOrCreateSymbol(ProcName); 4160 getStreamer().emitCVFPOData(ProcSym, DirLoc); 4161 return false; 4162 } 4163 4164 /// parseDirectiveCFISections 4165 /// ::= .cfi_sections section [, section] 4166 bool AsmParser::parseDirectiveCFISections() { 4167 StringRef Name; 4168 bool EH = false; 4169 bool Debug = false; 4170 4171 if (!parseOptionalToken(AsmToken::EndOfStatement)) { 4172 for (;;) { 4173 if (parseIdentifier(Name)) 4174 return TokError("expected .eh_frame or .debug_frame"); 4175 if (Name == ".eh_frame") 4176 EH = true; 4177 else if (Name == ".debug_frame") 4178 Debug = true; 4179 if (parseOptionalToken(AsmToken::EndOfStatement)) 4180 break; 4181 if (parseComma()) 4182 return true; 4183 } 4184 } 4185 getStreamer().emitCFISections(EH, Debug); 4186 return false; 4187 } 4188 4189 /// parseDirectiveCFIStartProc 4190 /// ::= .cfi_startproc [simple] 4191 bool AsmParser::parseDirectiveCFIStartProc() { 4192 StringRef Simple; 4193 if (!parseOptionalToken(AsmToken::EndOfStatement)) { 4194 if (check(parseIdentifier(Simple) || Simple != "simple", 4195 "unexpected token") || 4196 parseEOL()) 4197 return true; 4198 } 4199 4200 // TODO(kristina): Deal with a corner case of incorrect diagnostic context 4201 // being produced if this directive is emitted as part of preprocessor macro 4202 // expansion which can *ONLY* happen if Clang's cc1as is the API consumer. 4203 // Tools like llvm-mc on the other hand are not affected by it, and report 4204 // correct context information. 4205 getStreamer().emitCFIStartProc(!Simple.empty(), Lexer.getLoc()); 4206 return false; 4207 } 4208 4209 /// parseDirectiveCFIEndProc 4210 /// ::= .cfi_endproc 4211 bool AsmParser::parseDirectiveCFIEndProc() { 4212 if (parseEOL()) 4213 return true; 4214 getStreamer().emitCFIEndProc(); 4215 return false; 4216 } 4217 4218 /// parse register name or number. 4219 bool AsmParser::parseRegisterOrRegisterNumber(int64_t &Register, 4220 SMLoc DirectiveLoc) { 4221 MCRegister RegNo; 4222 4223 if (getLexer().isNot(AsmToken::Integer)) { 4224 if (getTargetParser().parseRegister(RegNo, DirectiveLoc, DirectiveLoc)) 4225 return true; 4226 Register = getContext().getRegisterInfo()->getDwarfRegNum(RegNo, true); 4227 } else 4228 return parseAbsoluteExpression(Register); 4229 4230 return false; 4231 } 4232 4233 /// parseDirectiveCFIDefCfa 4234 /// ::= .cfi_def_cfa register, offset 4235 bool AsmParser::parseDirectiveCFIDefCfa(SMLoc DirectiveLoc) { 4236 int64_t Register = 0, Offset = 0; 4237 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() || 4238 parseAbsoluteExpression(Offset) || parseEOL()) 4239 return true; 4240 4241 getStreamer().emitCFIDefCfa(Register, Offset); 4242 return false; 4243 } 4244 4245 /// parseDirectiveCFIDefCfaOffset 4246 /// ::= .cfi_def_cfa_offset offset 4247 bool AsmParser::parseDirectiveCFIDefCfaOffset() { 4248 int64_t Offset = 0; 4249 if (parseAbsoluteExpression(Offset) || parseEOL()) 4250 return true; 4251 4252 getStreamer().emitCFIDefCfaOffset(Offset); 4253 return false; 4254 } 4255 4256 /// parseDirectiveCFIRegister 4257 /// ::= .cfi_register register, register 4258 bool AsmParser::parseDirectiveCFIRegister(SMLoc DirectiveLoc) { 4259 int64_t Register1 = 0, Register2 = 0; 4260 if (parseRegisterOrRegisterNumber(Register1, DirectiveLoc) || parseComma() || 4261 parseRegisterOrRegisterNumber(Register2, DirectiveLoc) || parseEOL()) 4262 return true; 4263 4264 getStreamer().emitCFIRegister(Register1, Register2); 4265 return false; 4266 } 4267 4268 /// parseDirectiveCFIWindowSave 4269 /// ::= .cfi_window_save 4270 bool AsmParser::parseDirectiveCFIWindowSave() { 4271 if (parseEOL()) 4272 return true; 4273 getStreamer().emitCFIWindowSave(); 4274 return false; 4275 } 4276 4277 /// parseDirectiveCFIAdjustCfaOffset 4278 /// ::= .cfi_adjust_cfa_offset adjustment 4279 bool AsmParser::parseDirectiveCFIAdjustCfaOffset() { 4280 int64_t Adjustment = 0; 4281 if (parseAbsoluteExpression(Adjustment) || parseEOL()) 4282 return true; 4283 4284 getStreamer().emitCFIAdjustCfaOffset(Adjustment); 4285 return false; 4286 } 4287 4288 /// parseDirectiveCFIDefCfaRegister 4289 /// ::= .cfi_def_cfa_register register 4290 bool AsmParser::parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc) { 4291 int64_t Register = 0; 4292 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL()) 4293 return true; 4294 4295 getStreamer().emitCFIDefCfaRegister(Register); 4296 return false; 4297 } 4298 4299 /// parseDirectiveCFILLVMDefAspaceCfa 4300 /// ::= .cfi_llvm_def_aspace_cfa register, offset, address_space 4301 bool AsmParser::parseDirectiveCFILLVMDefAspaceCfa(SMLoc DirectiveLoc) { 4302 int64_t Register = 0, Offset = 0, AddressSpace = 0; 4303 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() || 4304 parseAbsoluteExpression(Offset) || parseComma() || 4305 parseAbsoluteExpression(AddressSpace) || parseEOL()) 4306 return true; 4307 4308 getStreamer().emitCFILLVMDefAspaceCfa(Register, Offset, AddressSpace); 4309 return false; 4310 } 4311 4312 /// parseDirectiveCFIOffset 4313 /// ::= .cfi_offset register, offset 4314 bool AsmParser::parseDirectiveCFIOffset(SMLoc DirectiveLoc) { 4315 int64_t Register = 0; 4316 int64_t Offset = 0; 4317 4318 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() || 4319 parseAbsoluteExpression(Offset) || parseEOL()) 4320 return true; 4321 4322 getStreamer().emitCFIOffset(Register, Offset); 4323 return false; 4324 } 4325 4326 /// parseDirectiveCFIRelOffset 4327 /// ::= .cfi_rel_offset register, offset 4328 bool AsmParser::parseDirectiveCFIRelOffset(SMLoc DirectiveLoc) { 4329 int64_t Register = 0, Offset = 0; 4330 4331 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() || 4332 parseAbsoluteExpression(Offset) || parseEOL()) 4333 return true; 4334 4335 getStreamer().emitCFIRelOffset(Register, Offset); 4336 return false; 4337 } 4338 4339 static bool isValidEncoding(int64_t Encoding) { 4340 if (Encoding & ~0xff) 4341 return false; 4342 4343 if (Encoding == dwarf::DW_EH_PE_omit) 4344 return true; 4345 4346 const unsigned Format = Encoding & 0xf; 4347 if (Format != dwarf::DW_EH_PE_absptr && Format != dwarf::DW_EH_PE_udata2 && 4348 Format != dwarf::DW_EH_PE_udata4 && Format != dwarf::DW_EH_PE_udata8 && 4349 Format != dwarf::DW_EH_PE_sdata2 && Format != dwarf::DW_EH_PE_sdata4 && 4350 Format != dwarf::DW_EH_PE_sdata8 && Format != dwarf::DW_EH_PE_signed) 4351 return false; 4352 4353 const unsigned Application = Encoding & 0x70; 4354 if (Application != dwarf::DW_EH_PE_absptr && 4355 Application != dwarf::DW_EH_PE_pcrel) 4356 return false; 4357 4358 return true; 4359 } 4360 4361 /// parseDirectiveCFIPersonalityOrLsda 4362 /// IsPersonality true for cfi_personality, false for cfi_lsda 4363 /// ::= .cfi_personality encoding, [symbol_name] 4364 /// ::= .cfi_lsda encoding, [symbol_name] 4365 bool AsmParser::parseDirectiveCFIPersonalityOrLsda(bool IsPersonality) { 4366 int64_t Encoding = 0; 4367 if (parseAbsoluteExpression(Encoding)) 4368 return true; 4369 if (Encoding == dwarf::DW_EH_PE_omit) 4370 return false; 4371 4372 StringRef Name; 4373 if (check(!isValidEncoding(Encoding), "unsupported encoding.") || 4374 parseComma() || 4375 check(parseIdentifier(Name), "expected identifier in directive") || 4376 parseEOL()) 4377 return true; 4378 4379 MCSymbol *Sym = getContext().getOrCreateSymbol(Name); 4380 4381 if (IsPersonality) 4382 getStreamer().emitCFIPersonality(Sym, Encoding); 4383 else 4384 getStreamer().emitCFILsda(Sym, Encoding); 4385 return false; 4386 } 4387 4388 /// parseDirectiveCFIRememberState 4389 /// ::= .cfi_remember_state 4390 bool AsmParser::parseDirectiveCFIRememberState() { 4391 if (parseEOL()) 4392 return true; 4393 getStreamer().emitCFIRememberState(); 4394 return false; 4395 } 4396 4397 /// parseDirectiveCFIRestoreState 4398 /// ::= .cfi_remember_state 4399 bool AsmParser::parseDirectiveCFIRestoreState() { 4400 if (parseEOL()) 4401 return true; 4402 getStreamer().emitCFIRestoreState(); 4403 return false; 4404 } 4405 4406 /// parseDirectiveCFISameValue 4407 /// ::= .cfi_same_value register 4408 bool AsmParser::parseDirectiveCFISameValue(SMLoc DirectiveLoc) { 4409 int64_t Register = 0; 4410 4411 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL()) 4412 return true; 4413 4414 getStreamer().emitCFISameValue(Register); 4415 return false; 4416 } 4417 4418 /// parseDirectiveCFIRestore 4419 /// ::= .cfi_restore register 4420 bool AsmParser::parseDirectiveCFIRestore(SMLoc DirectiveLoc) { 4421 int64_t Register = 0; 4422 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL()) 4423 return true; 4424 4425 getStreamer().emitCFIRestore(Register); 4426 return false; 4427 } 4428 4429 /// parseDirectiveCFIEscape 4430 /// ::= .cfi_escape expression[,...] 4431 bool AsmParser::parseDirectiveCFIEscape() { 4432 std::string Values; 4433 int64_t CurrValue; 4434 if (parseAbsoluteExpression(CurrValue)) 4435 return true; 4436 4437 Values.push_back((uint8_t)CurrValue); 4438 4439 while (getLexer().is(AsmToken::Comma)) { 4440 Lex(); 4441 4442 if (parseAbsoluteExpression(CurrValue)) 4443 return true; 4444 4445 Values.push_back((uint8_t)CurrValue); 4446 } 4447 4448 getStreamer().emitCFIEscape(Values); 4449 return false; 4450 } 4451 4452 /// parseDirectiveCFIReturnColumn 4453 /// ::= .cfi_return_column register 4454 bool AsmParser::parseDirectiveCFIReturnColumn(SMLoc DirectiveLoc) { 4455 int64_t Register = 0; 4456 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL()) 4457 return true; 4458 getStreamer().emitCFIReturnColumn(Register); 4459 return false; 4460 } 4461 4462 /// parseDirectiveCFISignalFrame 4463 /// ::= .cfi_signal_frame 4464 bool AsmParser::parseDirectiveCFISignalFrame() { 4465 if (parseEOL()) 4466 return true; 4467 4468 getStreamer().emitCFISignalFrame(); 4469 return false; 4470 } 4471 4472 /// parseDirectiveCFIUndefined 4473 /// ::= .cfi_undefined register 4474 bool AsmParser::parseDirectiveCFIUndefined(SMLoc DirectiveLoc) { 4475 int64_t Register = 0; 4476 4477 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL()) 4478 return true; 4479 4480 getStreamer().emitCFIUndefined(Register); 4481 return false; 4482 } 4483 4484 /// parseDirectiveAltmacro 4485 /// ::= .altmacro 4486 /// ::= .noaltmacro 4487 bool AsmParser::parseDirectiveAltmacro(StringRef Directive) { 4488 if (parseEOL()) 4489 return true; 4490 AltMacroMode = (Directive == ".altmacro"); 4491 return false; 4492 } 4493 4494 /// parseDirectiveMacrosOnOff 4495 /// ::= .macros_on 4496 /// ::= .macros_off 4497 bool AsmParser::parseDirectiveMacrosOnOff(StringRef Directive) { 4498 if (parseEOL()) 4499 return true; 4500 setMacrosEnabled(Directive == ".macros_on"); 4501 return false; 4502 } 4503 4504 /// parseDirectiveMacro 4505 /// ::= .macro name[,] [parameters] 4506 bool AsmParser::parseDirectiveMacro(SMLoc DirectiveLoc) { 4507 StringRef Name; 4508 if (parseIdentifier(Name)) 4509 return TokError("expected identifier in '.macro' directive"); 4510 4511 if (getLexer().is(AsmToken::Comma)) 4512 Lex(); 4513 4514 MCAsmMacroParameters Parameters; 4515 while (getLexer().isNot(AsmToken::EndOfStatement)) { 4516 4517 if (!Parameters.empty() && Parameters.back().Vararg) 4518 return Error(Lexer.getLoc(), "vararg parameter '" + 4519 Parameters.back().Name + 4520 "' should be the last parameter"); 4521 4522 MCAsmMacroParameter Parameter; 4523 if (parseIdentifier(Parameter.Name)) 4524 return TokError("expected identifier in '.macro' directive"); 4525 4526 // Emit an error if two (or more) named parameters share the same name 4527 for (const MCAsmMacroParameter& CurrParam : Parameters) 4528 if (CurrParam.Name.equals(Parameter.Name)) 4529 return TokError("macro '" + Name + "' has multiple parameters" 4530 " named '" + Parameter.Name + "'"); 4531 4532 if (Lexer.is(AsmToken::Colon)) { 4533 Lex(); // consume ':' 4534 4535 SMLoc QualLoc; 4536 StringRef Qualifier; 4537 4538 QualLoc = Lexer.getLoc(); 4539 if (parseIdentifier(Qualifier)) 4540 return Error(QualLoc, "missing parameter qualifier for " 4541 "'" + Parameter.Name + "' in macro '" + Name + "'"); 4542 4543 if (Qualifier == "req") 4544 Parameter.Required = true; 4545 else if (Qualifier == "vararg") 4546 Parameter.Vararg = true; 4547 else 4548 return Error(QualLoc, Qualifier + " is not a valid parameter qualifier " 4549 "for '" + Parameter.Name + "' in macro '" + Name + "'"); 4550 } 4551 4552 if (getLexer().is(AsmToken::Equal)) { 4553 Lex(); 4554 4555 SMLoc ParamLoc; 4556 4557 ParamLoc = Lexer.getLoc(); 4558 if (parseMacroArgument(Parameter.Value, /*Vararg=*/false )) 4559 return true; 4560 4561 if (Parameter.Required) 4562 Warning(ParamLoc, "pointless default value for required parameter " 4563 "'" + Parameter.Name + "' in macro '" + Name + "'"); 4564 } 4565 4566 Parameters.push_back(std::move(Parameter)); 4567 4568 if (getLexer().is(AsmToken::Comma)) 4569 Lex(); 4570 } 4571 4572 // Eat just the end of statement. 4573 Lexer.Lex(); 4574 4575 // Consuming deferred text, so use Lexer.Lex to ignore Lexing Errors 4576 AsmToken EndToken, StartToken = getTok(); 4577 unsigned MacroDepth = 0; 4578 // Lex the macro definition. 4579 while (true) { 4580 // Ignore Lexing errors in macros. 4581 while (Lexer.is(AsmToken::Error)) { 4582 Lexer.Lex(); 4583 } 4584 4585 // Check whether we have reached the end of the file. 4586 if (getLexer().is(AsmToken::Eof)) 4587 return Error(DirectiveLoc, "no matching '.endmacro' in definition"); 4588 4589 // Otherwise, check whether we have reach the .endmacro or the start of a 4590 // preprocessor line marker. 4591 if (getLexer().is(AsmToken::Identifier)) { 4592 if (getTok().getIdentifier() == ".endm" || 4593 getTok().getIdentifier() == ".endmacro") { 4594 if (MacroDepth == 0) { // Outermost macro. 4595 EndToken = getTok(); 4596 Lexer.Lex(); 4597 if (getLexer().isNot(AsmToken::EndOfStatement)) 4598 return TokError("unexpected token in '" + EndToken.getIdentifier() + 4599 "' directive"); 4600 break; 4601 } else { 4602 // Otherwise we just found the end of an inner macro. 4603 --MacroDepth; 4604 } 4605 } else if (getTok().getIdentifier() == ".macro") { 4606 // We allow nested macros. Those aren't instantiated until the outermost 4607 // macro is expanded so just ignore them for now. 4608 ++MacroDepth; 4609 } 4610 } else if (Lexer.is(AsmToken::HashDirective)) { 4611 (void)parseCppHashLineFilenameComment(getLexer().getLoc()); 4612 } 4613 4614 // Otherwise, scan til the end of the statement. 4615 eatToEndOfStatement(); 4616 } 4617 4618 if (getContext().lookupMacro(Name)) { 4619 return Error(DirectiveLoc, "macro '" + Name + "' is already defined"); 4620 } 4621 4622 const char *BodyStart = StartToken.getLoc().getPointer(); 4623 const char *BodyEnd = EndToken.getLoc().getPointer(); 4624 StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart); 4625 checkForBadMacro(DirectiveLoc, Name, Body, Parameters); 4626 MCAsmMacro Macro(Name, Body, std::move(Parameters)); 4627 DEBUG_WITH_TYPE("asm-macros", dbgs() << "Defining new macro:\n"; 4628 Macro.dump()); 4629 getContext().defineMacro(Name, std::move(Macro)); 4630 return false; 4631 } 4632 4633 /// checkForBadMacro 4634 /// 4635 /// With the support added for named parameters there may be code out there that 4636 /// is transitioning from positional parameters. In versions of gas that did 4637 /// not support named parameters they would be ignored on the macro definition. 4638 /// But to support both styles of parameters this is not possible so if a macro 4639 /// definition has named parameters but does not use them and has what appears 4640 /// to be positional parameters, strings like $1, $2, ... and $n, then issue a 4641 /// warning that the positional parameter found in body which have no effect. 4642 /// Hoping the developer will either remove the named parameters from the macro 4643 /// definition so the positional parameters get used if that was what was 4644 /// intended or change the macro to use the named parameters. It is possible 4645 /// this warning will trigger when the none of the named parameters are used 4646 /// and the strings like $1 are infact to simply to be passed trough unchanged. 4647 void AsmParser::checkForBadMacro(SMLoc DirectiveLoc, StringRef Name, 4648 StringRef Body, 4649 ArrayRef<MCAsmMacroParameter> Parameters) { 4650 // If this macro is not defined with named parameters the warning we are 4651 // checking for here doesn't apply. 4652 unsigned NParameters = Parameters.size(); 4653 if (NParameters == 0) 4654 return; 4655 4656 bool NamedParametersFound = false; 4657 bool PositionalParametersFound = false; 4658 4659 // Look at the body of the macro for use of both the named parameters and what 4660 // are likely to be positional parameters. This is what expandMacro() is 4661 // doing when it finds the parameters in the body. 4662 while (!Body.empty()) { 4663 // Scan for the next possible parameter. 4664 std::size_t End = Body.size(), Pos = 0; 4665 for (; Pos != End; ++Pos) { 4666 // Check for a substitution or escape. 4667 // This macro is defined with parameters, look for \foo, \bar, etc. 4668 if (Body[Pos] == '\\' && Pos + 1 != End) 4669 break; 4670 4671 // This macro should have parameters, but look for $0, $1, ..., $n too. 4672 if (Body[Pos] != '$' || Pos + 1 == End) 4673 continue; 4674 char Next = Body[Pos + 1]; 4675 if (Next == '$' || Next == 'n' || 4676 isdigit(static_cast<unsigned char>(Next))) 4677 break; 4678 } 4679 4680 // Check if we reached the end. 4681 if (Pos == End) 4682 break; 4683 4684 if (Body[Pos] == '$') { 4685 switch (Body[Pos + 1]) { 4686 // $$ => $ 4687 case '$': 4688 break; 4689 4690 // $n => number of arguments 4691 case 'n': 4692 PositionalParametersFound = true; 4693 break; 4694 4695 // $[0-9] => argument 4696 default: { 4697 PositionalParametersFound = true; 4698 break; 4699 } 4700 } 4701 Pos += 2; 4702 } else { 4703 unsigned I = Pos + 1; 4704 while (isIdentifierChar(Body[I]) && I + 1 != End) 4705 ++I; 4706 4707 const char *Begin = Body.data() + Pos + 1; 4708 StringRef Argument(Begin, I - (Pos + 1)); 4709 unsigned Index = 0; 4710 for (; Index < NParameters; ++Index) 4711 if (Parameters[Index].Name == Argument) 4712 break; 4713 4714 if (Index == NParameters) { 4715 if (Body[Pos + 1] == '(' && Body[Pos + 2] == ')') 4716 Pos += 3; 4717 else { 4718 Pos = I; 4719 } 4720 } else { 4721 NamedParametersFound = true; 4722 Pos += 1 + Argument.size(); 4723 } 4724 } 4725 // Update the scan point. 4726 Body = Body.substr(Pos); 4727 } 4728 4729 if (!NamedParametersFound && PositionalParametersFound) 4730 Warning(DirectiveLoc, "macro defined with named parameters which are not " 4731 "used in macro body, possible positional parameter " 4732 "found in body which will have no effect"); 4733 } 4734 4735 /// parseDirectiveExitMacro 4736 /// ::= .exitm 4737 bool AsmParser::parseDirectiveExitMacro(StringRef Directive) { 4738 if (parseEOL()) 4739 return true; 4740 4741 if (!isInsideMacroInstantiation()) 4742 return TokError("unexpected '" + Directive + "' in file, " 4743 "no current macro definition"); 4744 4745 // Exit all conditionals that are active in the current macro. 4746 while (TheCondStack.size() != ActiveMacros.back()->CondStackDepth) { 4747 TheCondState = TheCondStack.back(); 4748 TheCondStack.pop_back(); 4749 } 4750 4751 handleMacroExit(); 4752 return false; 4753 } 4754 4755 /// parseDirectiveEndMacro 4756 /// ::= .endm 4757 /// ::= .endmacro 4758 bool AsmParser::parseDirectiveEndMacro(StringRef Directive) { 4759 if (getLexer().isNot(AsmToken::EndOfStatement)) 4760 return TokError("unexpected token in '" + Directive + "' directive"); 4761 4762 // If we are inside a macro instantiation, terminate the current 4763 // instantiation. 4764 if (isInsideMacroInstantiation()) { 4765 handleMacroExit(); 4766 return false; 4767 } 4768 4769 // Otherwise, this .endmacro is a stray entry in the file; well formed 4770 // .endmacro directives are handled during the macro definition parsing. 4771 return TokError("unexpected '" + Directive + "' in file, " 4772 "no current macro definition"); 4773 } 4774 4775 /// parseDirectivePurgeMacro 4776 /// ::= .purgem name 4777 bool AsmParser::parseDirectivePurgeMacro(SMLoc DirectiveLoc) { 4778 StringRef Name; 4779 SMLoc Loc; 4780 if (parseTokenLoc(Loc) || 4781 check(parseIdentifier(Name), Loc, 4782 "expected identifier in '.purgem' directive") || 4783 parseEOL()) 4784 return true; 4785 4786 if (!getContext().lookupMacro(Name)) 4787 return Error(DirectiveLoc, "macro '" + Name + "' is not defined"); 4788 4789 getContext().undefineMacro(Name); 4790 DEBUG_WITH_TYPE("asm-macros", dbgs() 4791 << "Un-defining macro: " << Name << "\n"); 4792 return false; 4793 } 4794 4795 /// parseDirectiveBundleAlignMode 4796 /// ::= {.bundle_align_mode} expression 4797 bool AsmParser::parseDirectiveBundleAlignMode() { 4798 // Expect a single argument: an expression that evaluates to a constant 4799 // in the inclusive range 0-30. 4800 SMLoc ExprLoc = getLexer().getLoc(); 4801 int64_t AlignSizePow2; 4802 if (checkForValidSection() || parseAbsoluteExpression(AlignSizePow2) || 4803 parseEOL() || 4804 check(AlignSizePow2 < 0 || AlignSizePow2 > 30, ExprLoc, 4805 "invalid bundle alignment size (expected between 0 and 30)")) 4806 return true; 4807 4808 getStreamer().emitBundleAlignMode(Align(1ULL << AlignSizePow2)); 4809 return false; 4810 } 4811 4812 /// parseDirectiveBundleLock 4813 /// ::= {.bundle_lock} [align_to_end] 4814 bool AsmParser::parseDirectiveBundleLock() { 4815 if (checkForValidSection()) 4816 return true; 4817 bool AlignToEnd = false; 4818 4819 StringRef Option; 4820 SMLoc Loc = getTok().getLoc(); 4821 const char *kInvalidOptionError = 4822 "invalid option for '.bundle_lock' directive"; 4823 4824 if (!parseOptionalToken(AsmToken::EndOfStatement)) { 4825 if (check(parseIdentifier(Option), Loc, kInvalidOptionError) || 4826 check(Option != "align_to_end", Loc, kInvalidOptionError) || parseEOL()) 4827 return true; 4828 AlignToEnd = true; 4829 } 4830 4831 getStreamer().emitBundleLock(AlignToEnd); 4832 return false; 4833 } 4834 4835 /// parseDirectiveBundleLock 4836 /// ::= {.bundle_lock} 4837 bool AsmParser::parseDirectiveBundleUnlock() { 4838 if (checkForValidSection() || parseEOL()) 4839 return true; 4840 4841 getStreamer().emitBundleUnlock(); 4842 return false; 4843 } 4844 4845 /// parseDirectiveSpace 4846 /// ::= (.skip | .space) expression [ , expression ] 4847 bool AsmParser::parseDirectiveSpace(StringRef IDVal) { 4848 SMLoc NumBytesLoc = Lexer.getLoc(); 4849 const MCExpr *NumBytes; 4850 if (checkForValidSection() || parseExpression(NumBytes)) 4851 return true; 4852 4853 int64_t FillExpr = 0; 4854 if (parseOptionalToken(AsmToken::Comma)) 4855 if (parseAbsoluteExpression(FillExpr)) 4856 return true; 4857 if (parseEOL()) 4858 return true; 4859 4860 // FIXME: Sometimes the fill expr is 'nop' if it isn't supplied, instead of 0. 4861 getStreamer().emitFill(*NumBytes, FillExpr, NumBytesLoc); 4862 4863 return false; 4864 } 4865 4866 /// parseDirectiveDCB 4867 /// ::= .dcb.{b, l, w} expression, expression 4868 bool AsmParser::parseDirectiveDCB(StringRef IDVal, unsigned Size) { 4869 SMLoc NumValuesLoc = Lexer.getLoc(); 4870 int64_t NumValues; 4871 if (checkForValidSection() || parseAbsoluteExpression(NumValues)) 4872 return true; 4873 4874 if (NumValues < 0) { 4875 Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect"); 4876 return false; 4877 } 4878 4879 if (parseComma()) 4880 return true; 4881 4882 const MCExpr *Value; 4883 SMLoc ExprLoc = getLexer().getLoc(); 4884 if (parseExpression(Value)) 4885 return true; 4886 4887 // Special case constant expressions to match code generator. 4888 if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) { 4889 assert(Size <= 8 && "Invalid size"); 4890 uint64_t IntValue = MCE->getValue(); 4891 if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue)) 4892 return Error(ExprLoc, "literal value out of range for directive"); 4893 for (uint64_t i = 0, e = NumValues; i != e; ++i) 4894 getStreamer().emitIntValue(IntValue, Size); 4895 } else { 4896 for (uint64_t i = 0, e = NumValues; i != e; ++i) 4897 getStreamer().emitValue(Value, Size, ExprLoc); 4898 } 4899 4900 return parseEOL(); 4901 } 4902 4903 /// parseDirectiveRealDCB 4904 /// ::= .dcb.{d, s} expression, expression 4905 bool AsmParser::parseDirectiveRealDCB(StringRef IDVal, const fltSemantics &Semantics) { 4906 SMLoc NumValuesLoc = Lexer.getLoc(); 4907 int64_t NumValues; 4908 if (checkForValidSection() || parseAbsoluteExpression(NumValues)) 4909 return true; 4910 4911 if (NumValues < 0) { 4912 Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect"); 4913 return false; 4914 } 4915 4916 if (parseComma()) 4917 return true; 4918 4919 APInt AsInt; 4920 if (parseRealValue(Semantics, AsInt) || parseEOL()) 4921 return true; 4922 4923 for (uint64_t i = 0, e = NumValues; i != e; ++i) 4924 getStreamer().emitIntValue(AsInt.getLimitedValue(), 4925 AsInt.getBitWidth() / 8); 4926 4927 return false; 4928 } 4929 4930 /// parseDirectiveDS 4931 /// ::= .ds.{b, d, l, p, s, w, x} expression 4932 bool AsmParser::parseDirectiveDS(StringRef IDVal, unsigned Size) { 4933 SMLoc NumValuesLoc = Lexer.getLoc(); 4934 int64_t NumValues; 4935 if (checkForValidSection() || parseAbsoluteExpression(NumValues) || 4936 parseEOL()) 4937 return true; 4938 4939 if (NumValues < 0) { 4940 Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect"); 4941 return false; 4942 } 4943 4944 for (uint64_t i = 0, e = NumValues; i != e; ++i) 4945 getStreamer().emitFill(Size, 0); 4946 4947 return false; 4948 } 4949 4950 /// parseDirectiveLEB128 4951 /// ::= (.sleb128 | .uleb128) [ expression (, expression)* ] 4952 bool AsmParser::parseDirectiveLEB128(bool Signed) { 4953 if (checkForValidSection()) 4954 return true; 4955 4956 auto parseOp = [&]() -> bool { 4957 const MCExpr *Value; 4958 if (parseExpression(Value)) 4959 return true; 4960 if (Signed) 4961 getStreamer().emitSLEB128Value(Value); 4962 else 4963 getStreamer().emitULEB128Value(Value); 4964 return false; 4965 }; 4966 4967 return parseMany(parseOp); 4968 } 4969 4970 /// parseDirectiveSymbolAttribute 4971 /// ::= { ".globl", ".weak", ... } [ identifier ( , identifier )* ] 4972 bool AsmParser::parseDirectiveSymbolAttribute(MCSymbolAttr Attr) { 4973 auto parseOp = [&]() -> bool { 4974 StringRef Name; 4975 SMLoc Loc = getTok().getLoc(); 4976 if (parseIdentifier(Name)) 4977 return Error(Loc, "expected identifier"); 4978 4979 if (discardLTOSymbol(Name)) 4980 return false; 4981 4982 MCSymbol *Sym = getContext().getOrCreateSymbol(Name); 4983 4984 // Assembler local symbols don't make any sense here, except for directives 4985 // that the symbol should be tagged. 4986 if (Sym->isTemporary() && Attr != MCSA_Memtag) 4987 return Error(Loc, "non-local symbol required"); 4988 4989 if (!getStreamer().emitSymbolAttribute(Sym, Attr)) 4990 return Error(Loc, "unable to emit symbol attribute"); 4991 return false; 4992 }; 4993 4994 return parseMany(parseOp); 4995 } 4996 4997 /// parseDirectiveComm 4998 /// ::= ( .comm | .lcomm ) identifier , size_expression [ , align_expression ] 4999 bool AsmParser::parseDirectiveComm(bool IsLocal) { 5000 if (checkForValidSection()) 5001 return true; 5002 5003 SMLoc IDLoc = getLexer().getLoc(); 5004 StringRef Name; 5005 if (parseIdentifier(Name)) 5006 return TokError("expected identifier in directive"); 5007 5008 // Handle the identifier as the key symbol. 5009 MCSymbol *Sym = getContext().getOrCreateSymbol(Name); 5010 5011 if (parseComma()) 5012 return true; 5013 5014 int64_t Size; 5015 SMLoc SizeLoc = getLexer().getLoc(); 5016 if (parseAbsoluteExpression(Size)) 5017 return true; 5018 5019 int64_t Pow2Alignment = 0; 5020 SMLoc Pow2AlignmentLoc; 5021 if (getLexer().is(AsmToken::Comma)) { 5022 Lex(); 5023 Pow2AlignmentLoc = getLexer().getLoc(); 5024 if (parseAbsoluteExpression(Pow2Alignment)) 5025 return true; 5026 5027 LCOMM::LCOMMType LCOMM = Lexer.getMAI().getLCOMMDirectiveAlignmentType(); 5028 if (IsLocal && LCOMM == LCOMM::NoAlignment) 5029 return Error(Pow2AlignmentLoc, "alignment not supported on this target"); 5030 5031 // If this target takes alignments in bytes (not log) validate and convert. 5032 if ((!IsLocal && Lexer.getMAI().getCOMMDirectiveAlignmentIsInBytes()) || 5033 (IsLocal && LCOMM == LCOMM::ByteAlignment)) { 5034 if (!isPowerOf2_64(Pow2Alignment)) 5035 return Error(Pow2AlignmentLoc, "alignment must be a power of 2"); 5036 Pow2Alignment = Log2_64(Pow2Alignment); 5037 } 5038 } 5039 5040 if (parseEOL()) 5041 return true; 5042 5043 // NOTE: a size of zero for a .comm should create a undefined symbol 5044 // but a size of .lcomm creates a bss symbol of size zero. 5045 if (Size < 0) 5046 return Error(SizeLoc, "size must be non-negative"); 5047 5048 Sym->redefineIfPossible(); 5049 if (!Sym->isUndefined()) 5050 return Error(IDLoc, "invalid symbol redefinition"); 5051 5052 // Create the Symbol as a common or local common with Size and Pow2Alignment 5053 if (IsLocal) { 5054 getStreamer().emitLocalCommonSymbol(Sym, Size, 5055 Align(1ULL << Pow2Alignment)); 5056 return false; 5057 } 5058 5059 getStreamer().emitCommonSymbol(Sym, Size, Align(1ULL << Pow2Alignment)); 5060 return false; 5061 } 5062 5063 /// parseDirectiveAbort 5064 /// ::= .abort [... message ...] 5065 bool AsmParser::parseDirectiveAbort() { 5066 // FIXME: Use loc from directive. 5067 SMLoc Loc = getLexer().getLoc(); 5068 5069 StringRef Str = parseStringToEndOfStatement(); 5070 if (parseEOL()) 5071 return true; 5072 5073 if (Str.empty()) 5074 return Error(Loc, ".abort detected. Assembly stopping."); 5075 else 5076 return Error(Loc, ".abort '" + Str + "' detected. Assembly stopping."); 5077 // FIXME: Actually abort assembly here. 5078 5079 return false; 5080 } 5081 5082 /// parseDirectiveInclude 5083 /// ::= .include "filename" 5084 bool AsmParser::parseDirectiveInclude() { 5085 // Allow the strings to have escaped octal character sequence. 5086 std::string Filename; 5087 SMLoc IncludeLoc = getTok().getLoc(); 5088 5089 if (check(getTok().isNot(AsmToken::String), 5090 "expected string in '.include' directive") || 5091 parseEscapedString(Filename) || 5092 check(getTok().isNot(AsmToken::EndOfStatement), 5093 "unexpected token in '.include' directive") || 5094 // Attempt to switch the lexer to the included file before consuming the 5095 // end of statement to avoid losing it when we switch. 5096 check(enterIncludeFile(Filename), IncludeLoc, 5097 "Could not find include file '" + Filename + "'")) 5098 return true; 5099 5100 return false; 5101 } 5102 5103 /// parseDirectiveIncbin 5104 /// ::= .incbin "filename" [ , skip [ , count ] ] 5105 bool AsmParser::parseDirectiveIncbin() { 5106 // Allow the strings to have escaped octal character sequence. 5107 std::string Filename; 5108 SMLoc IncbinLoc = getTok().getLoc(); 5109 if (check(getTok().isNot(AsmToken::String), 5110 "expected string in '.incbin' directive") || 5111 parseEscapedString(Filename)) 5112 return true; 5113 5114 int64_t Skip = 0; 5115 const MCExpr *Count = nullptr; 5116 SMLoc SkipLoc, CountLoc; 5117 if (parseOptionalToken(AsmToken::Comma)) { 5118 // The skip expression can be omitted while specifying the count, e.g: 5119 // .incbin "filename",,4 5120 if (getTok().isNot(AsmToken::Comma)) { 5121 if (parseTokenLoc(SkipLoc) || parseAbsoluteExpression(Skip)) 5122 return true; 5123 } 5124 if (parseOptionalToken(AsmToken::Comma)) { 5125 CountLoc = getTok().getLoc(); 5126 if (parseExpression(Count)) 5127 return true; 5128 } 5129 } 5130 5131 if (parseEOL()) 5132 return true; 5133 5134 if (check(Skip < 0, SkipLoc, "skip is negative")) 5135 return true; 5136 5137 // Attempt to process the included file. 5138 if (processIncbinFile(Filename, Skip, Count, CountLoc)) 5139 return Error(IncbinLoc, "Could not find incbin file '" + Filename + "'"); 5140 return false; 5141 } 5142 5143 /// parseDirectiveIf 5144 /// ::= .if{,eq,ge,gt,le,lt,ne} expression 5145 bool AsmParser::parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind) { 5146 TheCondStack.push_back(TheCondState); 5147 TheCondState.TheCond = AsmCond::IfCond; 5148 if (TheCondState.Ignore) { 5149 eatToEndOfStatement(); 5150 } else { 5151 int64_t ExprValue; 5152 if (parseAbsoluteExpression(ExprValue) || parseEOL()) 5153 return true; 5154 5155 switch (DirKind) { 5156 default: 5157 llvm_unreachable("unsupported directive"); 5158 case DK_IF: 5159 case DK_IFNE: 5160 break; 5161 case DK_IFEQ: 5162 ExprValue = ExprValue == 0; 5163 break; 5164 case DK_IFGE: 5165 ExprValue = ExprValue >= 0; 5166 break; 5167 case DK_IFGT: 5168 ExprValue = ExprValue > 0; 5169 break; 5170 case DK_IFLE: 5171 ExprValue = ExprValue <= 0; 5172 break; 5173 case DK_IFLT: 5174 ExprValue = ExprValue < 0; 5175 break; 5176 } 5177 5178 TheCondState.CondMet = ExprValue; 5179 TheCondState.Ignore = !TheCondState.CondMet; 5180 } 5181 5182 return false; 5183 } 5184 5185 /// parseDirectiveIfb 5186 /// ::= .ifb string 5187 bool AsmParser::parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank) { 5188 TheCondStack.push_back(TheCondState); 5189 TheCondState.TheCond = AsmCond::IfCond; 5190 5191 if (TheCondState.Ignore) { 5192 eatToEndOfStatement(); 5193 } else { 5194 StringRef Str = parseStringToEndOfStatement(); 5195 5196 if (parseEOL()) 5197 return true; 5198 5199 TheCondState.CondMet = ExpectBlank == Str.empty(); 5200 TheCondState.Ignore = !TheCondState.CondMet; 5201 } 5202 5203 return false; 5204 } 5205 5206 /// parseDirectiveIfc 5207 /// ::= .ifc string1, string2 5208 /// ::= .ifnc string1, string2 5209 bool AsmParser::parseDirectiveIfc(SMLoc DirectiveLoc, bool ExpectEqual) { 5210 TheCondStack.push_back(TheCondState); 5211 TheCondState.TheCond = AsmCond::IfCond; 5212 5213 if (TheCondState.Ignore) { 5214 eatToEndOfStatement(); 5215 } else { 5216 StringRef Str1 = parseStringToComma(); 5217 5218 if (parseComma()) 5219 return true; 5220 5221 StringRef Str2 = parseStringToEndOfStatement(); 5222 5223 if (parseEOL()) 5224 return true; 5225 5226 TheCondState.CondMet = ExpectEqual == (Str1.trim() == Str2.trim()); 5227 TheCondState.Ignore = !TheCondState.CondMet; 5228 } 5229 5230 return false; 5231 } 5232 5233 /// parseDirectiveIfeqs 5234 /// ::= .ifeqs string1, string2 5235 bool AsmParser::parseDirectiveIfeqs(SMLoc DirectiveLoc, bool ExpectEqual) { 5236 if (Lexer.isNot(AsmToken::String)) { 5237 if (ExpectEqual) 5238 return TokError("expected string parameter for '.ifeqs' directive"); 5239 return TokError("expected string parameter for '.ifnes' directive"); 5240 } 5241 5242 StringRef String1 = getTok().getStringContents(); 5243 Lex(); 5244 5245 if (Lexer.isNot(AsmToken::Comma)) { 5246 if (ExpectEqual) 5247 return TokError( 5248 "expected comma after first string for '.ifeqs' directive"); 5249 return TokError("expected comma after first string for '.ifnes' directive"); 5250 } 5251 5252 Lex(); 5253 5254 if (Lexer.isNot(AsmToken::String)) { 5255 if (ExpectEqual) 5256 return TokError("expected string parameter for '.ifeqs' directive"); 5257 return TokError("expected string parameter for '.ifnes' directive"); 5258 } 5259 5260 StringRef String2 = getTok().getStringContents(); 5261 Lex(); 5262 5263 TheCondStack.push_back(TheCondState); 5264 TheCondState.TheCond = AsmCond::IfCond; 5265 TheCondState.CondMet = ExpectEqual == (String1 == String2); 5266 TheCondState.Ignore = !TheCondState.CondMet; 5267 5268 return false; 5269 } 5270 5271 /// parseDirectiveIfdef 5272 /// ::= .ifdef symbol 5273 bool AsmParser::parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined) { 5274 StringRef Name; 5275 TheCondStack.push_back(TheCondState); 5276 TheCondState.TheCond = AsmCond::IfCond; 5277 5278 if (TheCondState.Ignore) { 5279 eatToEndOfStatement(); 5280 } else { 5281 if (check(parseIdentifier(Name), "expected identifier after '.ifdef'") || 5282 parseEOL()) 5283 return true; 5284 5285 MCSymbol *Sym = getContext().lookupSymbol(Name); 5286 5287 if (expect_defined) 5288 TheCondState.CondMet = (Sym && !Sym->isUndefined(false)); 5289 else 5290 TheCondState.CondMet = (!Sym || Sym->isUndefined(false)); 5291 TheCondState.Ignore = !TheCondState.CondMet; 5292 } 5293 5294 return false; 5295 } 5296 5297 /// parseDirectiveElseIf 5298 /// ::= .elseif expression 5299 bool AsmParser::parseDirectiveElseIf(SMLoc DirectiveLoc) { 5300 if (TheCondState.TheCond != AsmCond::IfCond && 5301 TheCondState.TheCond != AsmCond::ElseIfCond) 5302 return Error(DirectiveLoc, "Encountered a .elseif that doesn't follow an" 5303 " .if or an .elseif"); 5304 TheCondState.TheCond = AsmCond::ElseIfCond; 5305 5306 bool LastIgnoreState = false; 5307 if (!TheCondStack.empty()) 5308 LastIgnoreState = TheCondStack.back().Ignore; 5309 if (LastIgnoreState || TheCondState.CondMet) { 5310 TheCondState.Ignore = true; 5311 eatToEndOfStatement(); 5312 } else { 5313 int64_t ExprValue; 5314 if (parseAbsoluteExpression(ExprValue)) 5315 return true; 5316 5317 if (parseEOL()) 5318 return true; 5319 5320 TheCondState.CondMet = ExprValue; 5321 TheCondState.Ignore = !TheCondState.CondMet; 5322 } 5323 5324 return false; 5325 } 5326 5327 /// parseDirectiveElse 5328 /// ::= .else 5329 bool AsmParser::parseDirectiveElse(SMLoc DirectiveLoc) { 5330 if (parseEOL()) 5331 return true; 5332 5333 if (TheCondState.TheCond != AsmCond::IfCond && 5334 TheCondState.TheCond != AsmCond::ElseIfCond) 5335 return Error(DirectiveLoc, "Encountered a .else that doesn't follow " 5336 " an .if or an .elseif"); 5337 TheCondState.TheCond = AsmCond::ElseCond; 5338 bool LastIgnoreState = false; 5339 if (!TheCondStack.empty()) 5340 LastIgnoreState = TheCondStack.back().Ignore; 5341 if (LastIgnoreState || TheCondState.CondMet) 5342 TheCondState.Ignore = true; 5343 else 5344 TheCondState.Ignore = false; 5345 5346 return false; 5347 } 5348 5349 /// parseDirectiveEnd 5350 /// ::= .end 5351 bool AsmParser::parseDirectiveEnd(SMLoc DirectiveLoc) { 5352 if (parseEOL()) 5353 return true; 5354 5355 while (Lexer.isNot(AsmToken::Eof)) 5356 Lexer.Lex(); 5357 5358 return false; 5359 } 5360 5361 /// parseDirectiveError 5362 /// ::= .err 5363 /// ::= .error [string] 5364 bool AsmParser::parseDirectiveError(SMLoc L, bool WithMessage) { 5365 if (!TheCondStack.empty()) { 5366 if (TheCondStack.back().Ignore) { 5367 eatToEndOfStatement(); 5368 return false; 5369 } 5370 } 5371 5372 if (!WithMessage) 5373 return Error(L, ".err encountered"); 5374 5375 StringRef Message = ".error directive invoked in source file"; 5376 if (Lexer.isNot(AsmToken::EndOfStatement)) { 5377 if (Lexer.isNot(AsmToken::String)) 5378 return TokError(".error argument must be a string"); 5379 5380 Message = getTok().getStringContents(); 5381 Lex(); 5382 } 5383 5384 return Error(L, Message); 5385 } 5386 5387 /// parseDirectiveWarning 5388 /// ::= .warning [string] 5389 bool AsmParser::parseDirectiveWarning(SMLoc L) { 5390 if (!TheCondStack.empty()) { 5391 if (TheCondStack.back().Ignore) { 5392 eatToEndOfStatement(); 5393 return false; 5394 } 5395 } 5396 5397 StringRef Message = ".warning directive invoked in source file"; 5398 5399 if (!parseOptionalToken(AsmToken::EndOfStatement)) { 5400 if (Lexer.isNot(AsmToken::String)) 5401 return TokError(".warning argument must be a string"); 5402 5403 Message = getTok().getStringContents(); 5404 Lex(); 5405 if (parseEOL()) 5406 return true; 5407 } 5408 5409 return Warning(L, Message); 5410 } 5411 5412 /// parseDirectiveEndIf 5413 /// ::= .endif 5414 bool AsmParser::parseDirectiveEndIf(SMLoc DirectiveLoc) { 5415 if (parseEOL()) 5416 return true; 5417 5418 if ((TheCondState.TheCond == AsmCond::NoCond) || TheCondStack.empty()) 5419 return Error(DirectiveLoc, "Encountered a .endif that doesn't follow " 5420 "an .if or .else"); 5421 if (!TheCondStack.empty()) { 5422 TheCondState = TheCondStack.back(); 5423 TheCondStack.pop_back(); 5424 } 5425 5426 return false; 5427 } 5428 5429 void AsmParser::initializeDirectiveKindMap() { 5430 /* Lookup will be done with the directive 5431 * converted to lower case, so all these 5432 * keys should be lower case. 5433 * (target specific directives are handled 5434 * elsewhere) 5435 */ 5436 DirectiveKindMap[".set"] = DK_SET; 5437 DirectiveKindMap[".equ"] = DK_EQU; 5438 DirectiveKindMap[".equiv"] = DK_EQUIV; 5439 DirectiveKindMap[".ascii"] = DK_ASCII; 5440 DirectiveKindMap[".asciz"] = DK_ASCIZ; 5441 DirectiveKindMap[".string"] = DK_STRING; 5442 DirectiveKindMap[".byte"] = DK_BYTE; 5443 DirectiveKindMap[".short"] = DK_SHORT; 5444 DirectiveKindMap[".value"] = DK_VALUE; 5445 DirectiveKindMap[".2byte"] = DK_2BYTE; 5446 DirectiveKindMap[".long"] = DK_LONG; 5447 DirectiveKindMap[".int"] = DK_INT; 5448 DirectiveKindMap[".4byte"] = DK_4BYTE; 5449 DirectiveKindMap[".quad"] = DK_QUAD; 5450 DirectiveKindMap[".8byte"] = DK_8BYTE; 5451 DirectiveKindMap[".octa"] = DK_OCTA; 5452 DirectiveKindMap[".single"] = DK_SINGLE; 5453 DirectiveKindMap[".float"] = DK_FLOAT; 5454 DirectiveKindMap[".double"] = DK_DOUBLE; 5455 DirectiveKindMap[".align"] = DK_ALIGN; 5456 DirectiveKindMap[".align32"] = DK_ALIGN32; 5457 DirectiveKindMap[".balign"] = DK_BALIGN; 5458 DirectiveKindMap[".balignw"] = DK_BALIGNW; 5459 DirectiveKindMap[".balignl"] = DK_BALIGNL; 5460 DirectiveKindMap[".p2align"] = DK_P2ALIGN; 5461 DirectiveKindMap[".p2alignw"] = DK_P2ALIGNW; 5462 DirectiveKindMap[".p2alignl"] = DK_P2ALIGNL; 5463 DirectiveKindMap[".org"] = DK_ORG; 5464 DirectiveKindMap[".fill"] = DK_FILL; 5465 DirectiveKindMap[".zero"] = DK_ZERO; 5466 DirectiveKindMap[".extern"] = DK_EXTERN; 5467 DirectiveKindMap[".globl"] = DK_GLOBL; 5468 DirectiveKindMap[".global"] = DK_GLOBAL; 5469 DirectiveKindMap[".lazy_reference"] = DK_LAZY_REFERENCE; 5470 DirectiveKindMap[".no_dead_strip"] = DK_NO_DEAD_STRIP; 5471 DirectiveKindMap[".symbol_resolver"] = DK_SYMBOL_RESOLVER; 5472 DirectiveKindMap[".private_extern"] = DK_PRIVATE_EXTERN; 5473 DirectiveKindMap[".reference"] = DK_REFERENCE; 5474 DirectiveKindMap[".weak_definition"] = DK_WEAK_DEFINITION; 5475 DirectiveKindMap[".weak_reference"] = DK_WEAK_REFERENCE; 5476 DirectiveKindMap[".weak_def_can_be_hidden"] = DK_WEAK_DEF_CAN_BE_HIDDEN; 5477 DirectiveKindMap[".cold"] = DK_COLD; 5478 DirectiveKindMap[".comm"] = DK_COMM; 5479 DirectiveKindMap[".common"] = DK_COMMON; 5480 DirectiveKindMap[".lcomm"] = DK_LCOMM; 5481 DirectiveKindMap[".abort"] = DK_ABORT; 5482 DirectiveKindMap[".include"] = DK_INCLUDE; 5483 DirectiveKindMap[".incbin"] = DK_INCBIN; 5484 DirectiveKindMap[".code16"] = DK_CODE16; 5485 DirectiveKindMap[".code16gcc"] = DK_CODE16GCC; 5486 DirectiveKindMap[".rept"] = DK_REPT; 5487 DirectiveKindMap[".rep"] = DK_REPT; 5488 DirectiveKindMap[".irp"] = DK_IRP; 5489 DirectiveKindMap[".irpc"] = DK_IRPC; 5490 DirectiveKindMap[".endr"] = DK_ENDR; 5491 DirectiveKindMap[".bundle_align_mode"] = DK_BUNDLE_ALIGN_MODE; 5492 DirectiveKindMap[".bundle_lock"] = DK_BUNDLE_LOCK; 5493 DirectiveKindMap[".bundle_unlock"] = DK_BUNDLE_UNLOCK; 5494 DirectiveKindMap[".if"] = DK_IF; 5495 DirectiveKindMap[".ifeq"] = DK_IFEQ; 5496 DirectiveKindMap[".ifge"] = DK_IFGE; 5497 DirectiveKindMap[".ifgt"] = DK_IFGT; 5498 DirectiveKindMap[".ifle"] = DK_IFLE; 5499 DirectiveKindMap[".iflt"] = DK_IFLT; 5500 DirectiveKindMap[".ifne"] = DK_IFNE; 5501 DirectiveKindMap[".ifb"] = DK_IFB; 5502 DirectiveKindMap[".ifnb"] = DK_IFNB; 5503 DirectiveKindMap[".ifc"] = DK_IFC; 5504 DirectiveKindMap[".ifeqs"] = DK_IFEQS; 5505 DirectiveKindMap[".ifnc"] = DK_IFNC; 5506 DirectiveKindMap[".ifnes"] = DK_IFNES; 5507 DirectiveKindMap[".ifdef"] = DK_IFDEF; 5508 DirectiveKindMap[".ifndef"] = DK_IFNDEF; 5509 DirectiveKindMap[".ifnotdef"] = DK_IFNOTDEF; 5510 DirectiveKindMap[".elseif"] = DK_ELSEIF; 5511 DirectiveKindMap[".else"] = DK_ELSE; 5512 DirectiveKindMap[".end"] = DK_END; 5513 DirectiveKindMap[".endif"] = DK_ENDIF; 5514 DirectiveKindMap[".skip"] = DK_SKIP; 5515 DirectiveKindMap[".space"] = DK_SPACE; 5516 DirectiveKindMap[".file"] = DK_FILE; 5517 DirectiveKindMap[".line"] = DK_LINE; 5518 DirectiveKindMap[".loc"] = DK_LOC; 5519 DirectiveKindMap[".stabs"] = DK_STABS; 5520 DirectiveKindMap[".cv_file"] = DK_CV_FILE; 5521 DirectiveKindMap[".cv_func_id"] = DK_CV_FUNC_ID; 5522 DirectiveKindMap[".cv_loc"] = DK_CV_LOC; 5523 DirectiveKindMap[".cv_linetable"] = DK_CV_LINETABLE; 5524 DirectiveKindMap[".cv_inline_linetable"] = DK_CV_INLINE_LINETABLE; 5525 DirectiveKindMap[".cv_inline_site_id"] = DK_CV_INLINE_SITE_ID; 5526 DirectiveKindMap[".cv_def_range"] = DK_CV_DEF_RANGE; 5527 DirectiveKindMap[".cv_string"] = DK_CV_STRING; 5528 DirectiveKindMap[".cv_stringtable"] = DK_CV_STRINGTABLE; 5529 DirectiveKindMap[".cv_filechecksums"] = DK_CV_FILECHECKSUMS; 5530 DirectiveKindMap[".cv_filechecksumoffset"] = DK_CV_FILECHECKSUM_OFFSET; 5531 DirectiveKindMap[".cv_fpo_data"] = DK_CV_FPO_DATA; 5532 DirectiveKindMap[".sleb128"] = DK_SLEB128; 5533 DirectiveKindMap[".uleb128"] = DK_ULEB128; 5534 DirectiveKindMap[".cfi_sections"] = DK_CFI_SECTIONS; 5535 DirectiveKindMap[".cfi_startproc"] = DK_CFI_STARTPROC; 5536 DirectiveKindMap[".cfi_endproc"] = DK_CFI_ENDPROC; 5537 DirectiveKindMap[".cfi_def_cfa"] = DK_CFI_DEF_CFA; 5538 DirectiveKindMap[".cfi_def_cfa_offset"] = DK_CFI_DEF_CFA_OFFSET; 5539 DirectiveKindMap[".cfi_adjust_cfa_offset"] = DK_CFI_ADJUST_CFA_OFFSET; 5540 DirectiveKindMap[".cfi_def_cfa_register"] = DK_CFI_DEF_CFA_REGISTER; 5541 DirectiveKindMap[".cfi_llvm_def_aspace_cfa"] = DK_CFI_LLVM_DEF_ASPACE_CFA; 5542 DirectiveKindMap[".cfi_offset"] = DK_CFI_OFFSET; 5543 DirectiveKindMap[".cfi_rel_offset"] = DK_CFI_REL_OFFSET; 5544 DirectiveKindMap[".cfi_personality"] = DK_CFI_PERSONALITY; 5545 DirectiveKindMap[".cfi_lsda"] = DK_CFI_LSDA; 5546 DirectiveKindMap[".cfi_remember_state"] = DK_CFI_REMEMBER_STATE; 5547 DirectiveKindMap[".cfi_restore_state"] = DK_CFI_RESTORE_STATE; 5548 DirectiveKindMap[".cfi_same_value"] = DK_CFI_SAME_VALUE; 5549 DirectiveKindMap[".cfi_restore"] = DK_CFI_RESTORE; 5550 DirectiveKindMap[".cfi_escape"] = DK_CFI_ESCAPE; 5551 DirectiveKindMap[".cfi_return_column"] = DK_CFI_RETURN_COLUMN; 5552 DirectiveKindMap[".cfi_signal_frame"] = DK_CFI_SIGNAL_FRAME; 5553 DirectiveKindMap[".cfi_undefined"] = DK_CFI_UNDEFINED; 5554 DirectiveKindMap[".cfi_register"] = DK_CFI_REGISTER; 5555 DirectiveKindMap[".cfi_window_save"] = DK_CFI_WINDOW_SAVE; 5556 DirectiveKindMap[".cfi_b_key_frame"] = DK_CFI_B_KEY_FRAME; 5557 DirectiveKindMap[".cfi_mte_tagged_frame"] = DK_CFI_MTE_TAGGED_FRAME; 5558 DirectiveKindMap[".macros_on"] = DK_MACROS_ON; 5559 DirectiveKindMap[".macros_off"] = DK_MACROS_OFF; 5560 DirectiveKindMap[".macro"] = DK_MACRO; 5561 DirectiveKindMap[".exitm"] = DK_EXITM; 5562 DirectiveKindMap[".endm"] = DK_ENDM; 5563 DirectiveKindMap[".endmacro"] = DK_ENDMACRO; 5564 DirectiveKindMap[".purgem"] = DK_PURGEM; 5565 DirectiveKindMap[".err"] = DK_ERR; 5566 DirectiveKindMap[".error"] = DK_ERROR; 5567 DirectiveKindMap[".warning"] = DK_WARNING; 5568 DirectiveKindMap[".altmacro"] = DK_ALTMACRO; 5569 DirectiveKindMap[".noaltmacro"] = DK_NOALTMACRO; 5570 DirectiveKindMap[".reloc"] = DK_RELOC; 5571 DirectiveKindMap[".dc"] = DK_DC; 5572 DirectiveKindMap[".dc.a"] = DK_DC_A; 5573 DirectiveKindMap[".dc.b"] = DK_DC_B; 5574 DirectiveKindMap[".dc.d"] = DK_DC_D; 5575 DirectiveKindMap[".dc.l"] = DK_DC_L; 5576 DirectiveKindMap[".dc.s"] = DK_DC_S; 5577 DirectiveKindMap[".dc.w"] = DK_DC_W; 5578 DirectiveKindMap[".dc.x"] = DK_DC_X; 5579 DirectiveKindMap[".dcb"] = DK_DCB; 5580 DirectiveKindMap[".dcb.b"] = DK_DCB_B; 5581 DirectiveKindMap[".dcb.d"] = DK_DCB_D; 5582 DirectiveKindMap[".dcb.l"] = DK_DCB_L; 5583 DirectiveKindMap[".dcb.s"] = DK_DCB_S; 5584 DirectiveKindMap[".dcb.w"] = DK_DCB_W; 5585 DirectiveKindMap[".dcb.x"] = DK_DCB_X; 5586 DirectiveKindMap[".ds"] = DK_DS; 5587 DirectiveKindMap[".ds.b"] = DK_DS_B; 5588 DirectiveKindMap[".ds.d"] = DK_DS_D; 5589 DirectiveKindMap[".ds.l"] = DK_DS_L; 5590 DirectiveKindMap[".ds.p"] = DK_DS_P; 5591 DirectiveKindMap[".ds.s"] = DK_DS_S; 5592 DirectiveKindMap[".ds.w"] = DK_DS_W; 5593 DirectiveKindMap[".ds.x"] = DK_DS_X; 5594 DirectiveKindMap[".print"] = DK_PRINT; 5595 DirectiveKindMap[".addrsig"] = DK_ADDRSIG; 5596 DirectiveKindMap[".addrsig_sym"] = DK_ADDRSIG_SYM; 5597 DirectiveKindMap[".pseudoprobe"] = DK_PSEUDO_PROBE; 5598 DirectiveKindMap[".lto_discard"] = DK_LTO_DISCARD; 5599 DirectiveKindMap[".lto_set_conditional"] = DK_LTO_SET_CONDITIONAL; 5600 DirectiveKindMap[".memtag"] = DK_MEMTAG; 5601 } 5602 5603 MCAsmMacro *AsmParser::parseMacroLikeBody(SMLoc DirectiveLoc) { 5604 AsmToken EndToken, StartToken = getTok(); 5605 5606 unsigned NestLevel = 0; 5607 while (true) { 5608 // Check whether we have reached the end of the file. 5609 if (getLexer().is(AsmToken::Eof)) { 5610 printError(DirectiveLoc, "no matching '.endr' in definition"); 5611 return nullptr; 5612 } 5613 5614 if (Lexer.is(AsmToken::Identifier) && 5615 (getTok().getIdentifier() == ".rep" || 5616 getTok().getIdentifier() == ".rept" || 5617 getTok().getIdentifier() == ".irp" || 5618 getTok().getIdentifier() == ".irpc")) { 5619 ++NestLevel; 5620 } 5621 5622 // Otherwise, check whether we have reached the .endr. 5623 if (Lexer.is(AsmToken::Identifier) && getTok().getIdentifier() == ".endr") { 5624 if (NestLevel == 0) { 5625 EndToken = getTok(); 5626 Lex(); 5627 if (Lexer.isNot(AsmToken::EndOfStatement)) { 5628 printError(getTok().getLoc(), 5629 "unexpected token in '.endr' directive"); 5630 return nullptr; 5631 } 5632 break; 5633 } 5634 --NestLevel; 5635 } 5636 5637 // Otherwise, scan till the end of the statement. 5638 eatToEndOfStatement(); 5639 } 5640 5641 const char *BodyStart = StartToken.getLoc().getPointer(); 5642 const char *BodyEnd = EndToken.getLoc().getPointer(); 5643 StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart); 5644 5645 // We Are Anonymous. 5646 MacroLikeBodies.emplace_back(StringRef(), Body, MCAsmMacroParameters()); 5647 return &MacroLikeBodies.back(); 5648 } 5649 5650 void AsmParser::instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc, 5651 raw_svector_ostream &OS) { 5652 OS << ".endr\n"; 5653 5654 std::unique_ptr<MemoryBuffer> Instantiation = 5655 MemoryBuffer::getMemBufferCopy(OS.str(), "<instantiation>"); 5656 5657 // Create the macro instantiation object and add to the current macro 5658 // instantiation stack. 5659 MacroInstantiation *MI = new MacroInstantiation{ 5660 DirectiveLoc, CurBuffer, getTok().getLoc(), TheCondStack.size()}; 5661 ActiveMacros.push_back(MI); 5662 5663 // Jump to the macro instantiation and prime the lexer. 5664 CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc()); 5665 Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); 5666 Lex(); 5667 } 5668 5669 /// parseDirectiveRept 5670 /// ::= .rep | .rept count 5671 bool AsmParser::parseDirectiveRept(SMLoc DirectiveLoc, StringRef Dir) { 5672 const MCExpr *CountExpr; 5673 SMLoc CountLoc = getTok().getLoc(); 5674 if (parseExpression(CountExpr)) 5675 return true; 5676 5677 int64_t Count; 5678 if (!CountExpr->evaluateAsAbsolute(Count, getStreamer().getAssemblerPtr())) { 5679 return Error(CountLoc, "unexpected token in '" + Dir + "' directive"); 5680 } 5681 5682 if (check(Count < 0, CountLoc, "Count is negative") || parseEOL()) 5683 return true; 5684 5685 // Lex the rept definition. 5686 MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc); 5687 if (!M) 5688 return true; 5689 5690 // Macro instantiation is lexical, unfortunately. We construct a new buffer 5691 // to hold the macro body with substitutions. 5692 SmallString<256> Buf; 5693 raw_svector_ostream OS(Buf); 5694 while (Count--) { 5695 // Note that the AtPseudoVariable is disabled for instantiations of .rep(t). 5696 if (expandMacro(OS, M->Body, std::nullopt, std::nullopt, false, 5697 getTok().getLoc())) 5698 return true; 5699 } 5700 instantiateMacroLikeBody(M, DirectiveLoc, OS); 5701 5702 return false; 5703 } 5704 5705 /// parseDirectiveIrp 5706 /// ::= .irp symbol,values 5707 bool AsmParser::parseDirectiveIrp(SMLoc DirectiveLoc) { 5708 MCAsmMacroParameter Parameter; 5709 MCAsmMacroArguments A; 5710 if (check(parseIdentifier(Parameter.Name), 5711 "expected identifier in '.irp' directive") || 5712 parseComma() || parseMacroArguments(nullptr, A) || parseEOL()) 5713 return true; 5714 5715 // Lex the irp definition. 5716 MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc); 5717 if (!M) 5718 return true; 5719 5720 // Macro instantiation is lexical, unfortunately. We construct a new buffer 5721 // to hold the macro body with substitutions. 5722 SmallString<256> Buf; 5723 raw_svector_ostream OS(Buf); 5724 5725 for (const MCAsmMacroArgument &Arg : A) { 5726 // Note that the AtPseudoVariable is enabled for instantiations of .irp. 5727 // This is undocumented, but GAS seems to support it. 5728 if (expandMacro(OS, M->Body, Parameter, Arg, true, getTok().getLoc())) 5729 return true; 5730 } 5731 5732 instantiateMacroLikeBody(M, DirectiveLoc, OS); 5733 5734 return false; 5735 } 5736 5737 /// parseDirectiveIrpc 5738 /// ::= .irpc symbol,values 5739 bool AsmParser::parseDirectiveIrpc(SMLoc DirectiveLoc) { 5740 MCAsmMacroParameter Parameter; 5741 MCAsmMacroArguments A; 5742 5743 if (check(parseIdentifier(Parameter.Name), 5744 "expected identifier in '.irpc' directive") || 5745 parseComma() || parseMacroArguments(nullptr, A)) 5746 return true; 5747 5748 if (A.size() != 1 || A.front().size() != 1) 5749 return TokError("unexpected token in '.irpc' directive"); 5750 if (parseEOL()) 5751 return true; 5752 5753 // Lex the irpc definition. 5754 MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc); 5755 if (!M) 5756 return true; 5757 5758 // Macro instantiation is lexical, unfortunately. We construct a new buffer 5759 // to hold the macro body with substitutions. 5760 SmallString<256> Buf; 5761 raw_svector_ostream OS(Buf); 5762 5763 StringRef Values = A.front().front().getString(); 5764 for (std::size_t I = 0, End = Values.size(); I != End; ++I) { 5765 MCAsmMacroArgument Arg; 5766 Arg.emplace_back(AsmToken::Identifier, Values.slice(I, I + 1)); 5767 5768 // Note that the AtPseudoVariable is enabled for instantiations of .irpc. 5769 // This is undocumented, but GAS seems to support it. 5770 if (expandMacro(OS, M->Body, Parameter, Arg, true, getTok().getLoc())) 5771 return true; 5772 } 5773 5774 instantiateMacroLikeBody(M, DirectiveLoc, OS); 5775 5776 return false; 5777 } 5778 5779 bool AsmParser::parseDirectiveEndr(SMLoc DirectiveLoc) { 5780 if (ActiveMacros.empty()) 5781 return TokError("unmatched '.endr' directive"); 5782 5783 // The only .repl that should get here are the ones created by 5784 // instantiateMacroLikeBody. 5785 assert(getLexer().is(AsmToken::EndOfStatement)); 5786 5787 handleMacroExit(); 5788 return false; 5789 } 5790 5791 bool AsmParser::parseDirectiveMSEmit(SMLoc IDLoc, ParseStatementInfo &Info, 5792 size_t Len) { 5793 const MCExpr *Value; 5794 SMLoc ExprLoc = getLexer().getLoc(); 5795 if (parseExpression(Value)) 5796 return true; 5797 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value); 5798 if (!MCE) 5799 return Error(ExprLoc, "unexpected expression in _emit"); 5800 uint64_t IntValue = MCE->getValue(); 5801 if (!isUInt<8>(IntValue) && !isInt<8>(IntValue)) 5802 return Error(ExprLoc, "literal value out of range for directive"); 5803 5804 Info.AsmRewrites->emplace_back(AOK_Emit, IDLoc, Len); 5805 return false; 5806 } 5807 5808 bool AsmParser::parseDirectiveMSAlign(SMLoc IDLoc, ParseStatementInfo &Info) { 5809 const MCExpr *Value; 5810 SMLoc ExprLoc = getLexer().getLoc(); 5811 if (parseExpression(Value)) 5812 return true; 5813 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value); 5814 if (!MCE) 5815 return Error(ExprLoc, "unexpected expression in align"); 5816 uint64_t IntValue = MCE->getValue(); 5817 if (!isPowerOf2_64(IntValue)) 5818 return Error(ExprLoc, "literal value not a power of two greater then zero"); 5819 5820 Info.AsmRewrites->emplace_back(AOK_Align, IDLoc, 5, Log2_64(IntValue)); 5821 return false; 5822 } 5823 5824 bool AsmParser::parseDirectivePrint(SMLoc DirectiveLoc) { 5825 const AsmToken StrTok = getTok(); 5826 Lex(); 5827 if (StrTok.isNot(AsmToken::String) || StrTok.getString().front() != '"') 5828 return Error(DirectiveLoc, "expected double quoted string after .print"); 5829 if (parseEOL()) 5830 return true; 5831 llvm::outs() << StrTok.getStringContents() << '\n'; 5832 return false; 5833 } 5834 5835 bool AsmParser::parseDirectiveAddrsig() { 5836 if (parseEOL()) 5837 return true; 5838 getStreamer().emitAddrsig(); 5839 return false; 5840 } 5841 5842 bool AsmParser::parseDirectiveAddrsigSym() { 5843 StringRef Name; 5844 if (check(parseIdentifier(Name), "expected identifier") || parseEOL()) 5845 return true; 5846 MCSymbol *Sym = getContext().getOrCreateSymbol(Name); 5847 getStreamer().emitAddrsigSym(Sym); 5848 return false; 5849 } 5850 5851 bool AsmParser::parseDirectivePseudoProbe() { 5852 int64_t Guid; 5853 int64_t Index; 5854 int64_t Type; 5855 int64_t Attr; 5856 5857 if (getLexer().is(AsmToken::Integer)) { 5858 if (parseIntToken(Guid, "unexpected token in '.pseudoprobe' directive")) 5859 return true; 5860 } 5861 5862 if (getLexer().is(AsmToken::Integer)) { 5863 if (parseIntToken(Index, "unexpected token in '.pseudoprobe' directive")) 5864 return true; 5865 } 5866 5867 if (getLexer().is(AsmToken::Integer)) { 5868 if (parseIntToken(Type, "unexpected token in '.pseudoprobe' directive")) 5869 return true; 5870 } 5871 5872 if (getLexer().is(AsmToken::Integer)) { 5873 if (parseIntToken(Attr, "unexpected token in '.pseudoprobe' directive")) 5874 return true; 5875 } 5876 5877 // Parse inline stack like @ GUID:11:12 @ GUID:1:11 @ GUID:3:21 5878 MCPseudoProbeInlineStack InlineStack; 5879 5880 while (getLexer().is(AsmToken::At)) { 5881 // eat @ 5882 Lex(); 5883 5884 int64_t CallerGuid = 0; 5885 if (getLexer().is(AsmToken::Integer)) { 5886 if (parseIntToken(CallerGuid, 5887 "unexpected token in '.pseudoprobe' directive")) 5888 return true; 5889 } 5890 5891 // eat colon 5892 if (getLexer().is(AsmToken::Colon)) 5893 Lex(); 5894 5895 int64_t CallerProbeId = 0; 5896 if (getLexer().is(AsmToken::Integer)) { 5897 if (parseIntToken(CallerProbeId, 5898 "unexpected token in '.pseudoprobe' directive")) 5899 return true; 5900 } 5901 5902 InlineSite Site(CallerGuid, CallerProbeId); 5903 InlineStack.push_back(Site); 5904 } 5905 5906 // Parse function entry name 5907 StringRef FnName; 5908 if (parseIdentifier(FnName)) 5909 return Error(getLexer().getLoc(), "unexpected token in '.pseudoprobe' directive"); 5910 MCSymbol *FnSym = getContext().lookupSymbol(FnName); 5911 5912 if (parseEOL()) 5913 return true; 5914 5915 getStreamer().emitPseudoProbe(Guid, Index, Type, Attr, InlineStack, FnSym); 5916 return false; 5917 } 5918 5919 /// parseDirectiveLTODiscard 5920 /// ::= ".lto_discard" [ identifier ( , identifier )* ] 5921 /// The LTO library emits this directive to discard non-prevailing symbols. 5922 /// We ignore symbol assignments and attribute changes for the specified 5923 /// symbols. 5924 bool AsmParser::parseDirectiveLTODiscard() { 5925 auto ParseOp = [&]() -> bool { 5926 StringRef Name; 5927 SMLoc Loc = getTok().getLoc(); 5928 if (parseIdentifier(Name)) 5929 return Error(Loc, "expected identifier"); 5930 LTODiscardSymbols.insert(Name); 5931 return false; 5932 }; 5933 5934 LTODiscardSymbols.clear(); 5935 return parseMany(ParseOp); 5936 } 5937 5938 // We are comparing pointers, but the pointers are relative to a single string. 5939 // Thus, this should always be deterministic. 5940 static int rewritesSort(const AsmRewrite *AsmRewriteA, 5941 const AsmRewrite *AsmRewriteB) { 5942 if (AsmRewriteA->Loc.getPointer() < AsmRewriteB->Loc.getPointer()) 5943 return -1; 5944 if (AsmRewriteB->Loc.getPointer() < AsmRewriteA->Loc.getPointer()) 5945 return 1; 5946 5947 // It's possible to have a SizeDirective, Imm/ImmPrefix and an Input/Output 5948 // rewrite to the same location. Make sure the SizeDirective rewrite is 5949 // performed first, then the Imm/ImmPrefix and finally the Input/Output. This 5950 // ensures the sort algorithm is stable. 5951 if (AsmRewritePrecedence[AsmRewriteA->Kind] > 5952 AsmRewritePrecedence[AsmRewriteB->Kind]) 5953 return -1; 5954 5955 if (AsmRewritePrecedence[AsmRewriteA->Kind] < 5956 AsmRewritePrecedence[AsmRewriteB->Kind]) 5957 return 1; 5958 llvm_unreachable("Unstable rewrite sort."); 5959 } 5960 5961 bool AsmParser::parseMSInlineAsm( 5962 std::string &AsmString, unsigned &NumOutputs, unsigned &NumInputs, 5963 SmallVectorImpl<std::pair<void *, bool>> &OpDecls, 5964 SmallVectorImpl<std::string> &Constraints, 5965 SmallVectorImpl<std::string> &Clobbers, const MCInstrInfo *MII, 5966 const MCInstPrinter *IP, MCAsmParserSemaCallback &SI) { 5967 SmallVector<void *, 4> InputDecls; 5968 SmallVector<void *, 4> OutputDecls; 5969 SmallVector<bool, 4> InputDeclsAddressOf; 5970 SmallVector<bool, 4> OutputDeclsAddressOf; 5971 SmallVector<std::string, 4> InputConstraints; 5972 SmallVector<std::string, 4> OutputConstraints; 5973 SmallVector<unsigned, 4> ClobberRegs; 5974 5975 SmallVector<AsmRewrite, 4> AsmStrRewrites; 5976 5977 // Prime the lexer. 5978 Lex(); 5979 5980 // While we have input, parse each statement. 5981 unsigned InputIdx = 0; 5982 unsigned OutputIdx = 0; 5983 while (getLexer().isNot(AsmToken::Eof)) { 5984 // Parse curly braces marking block start/end 5985 if (parseCurlyBlockScope(AsmStrRewrites)) 5986 continue; 5987 5988 ParseStatementInfo Info(&AsmStrRewrites); 5989 bool StatementErr = parseStatement(Info, &SI); 5990 5991 if (StatementErr || Info.ParseError) { 5992 // Emit pending errors if any exist. 5993 printPendingErrors(); 5994 return true; 5995 } 5996 5997 // No pending error should exist here. 5998 assert(!hasPendingError() && "unexpected error from parseStatement"); 5999 6000 if (Info.Opcode == ~0U) 6001 continue; 6002 6003 const MCInstrDesc &Desc = MII->get(Info.Opcode); 6004 6005 // Build the list of clobbers, outputs and inputs. 6006 for (unsigned i = 1, e = Info.ParsedOperands.size(); i != e; ++i) { 6007 MCParsedAsmOperand &Operand = *Info.ParsedOperands[i]; 6008 6009 // Register operand. 6010 if (Operand.isReg() && !Operand.needAddressOf() && 6011 !getTargetParser().OmitRegisterFromClobberLists(Operand.getReg())) { 6012 unsigned NumDefs = Desc.getNumDefs(); 6013 // Clobber. 6014 if (NumDefs && Operand.getMCOperandNum() < NumDefs) 6015 ClobberRegs.push_back(Operand.getReg()); 6016 continue; 6017 } 6018 6019 // Expr/Input or Output. 6020 StringRef SymName = Operand.getSymName(); 6021 if (SymName.empty()) 6022 continue; 6023 6024 void *OpDecl = Operand.getOpDecl(); 6025 if (!OpDecl) 6026 continue; 6027 6028 StringRef Constraint = Operand.getConstraint(); 6029 if (Operand.isImm()) { 6030 // Offset as immediate 6031 if (Operand.isOffsetOfLocal()) 6032 Constraint = "r"; 6033 else 6034 Constraint = "i"; 6035 } 6036 6037 bool isOutput = (i == 1) && Desc.mayStore(); 6038 bool Restricted = Operand.isMemUseUpRegs(); 6039 SMLoc Start = SMLoc::getFromPointer(SymName.data()); 6040 if (isOutput) { 6041 ++InputIdx; 6042 OutputDecls.push_back(OpDecl); 6043 OutputDeclsAddressOf.push_back(Operand.needAddressOf()); 6044 OutputConstraints.push_back(("=" + Constraint).str()); 6045 AsmStrRewrites.emplace_back(AOK_Output, Start, SymName.size(), 0, 6046 Restricted); 6047 } else { 6048 InputDecls.push_back(OpDecl); 6049 InputDeclsAddressOf.push_back(Operand.needAddressOf()); 6050 InputConstraints.push_back(Constraint.str()); 6051 if (Desc.operands()[i - 1].isBranchTarget()) 6052 AsmStrRewrites.emplace_back(AOK_CallInput, Start, SymName.size(), 0, 6053 Restricted); 6054 else 6055 AsmStrRewrites.emplace_back(AOK_Input, Start, SymName.size(), 0, 6056 Restricted); 6057 } 6058 } 6059 6060 // Consider implicit defs to be clobbers. Think of cpuid and push. 6061 llvm::append_range(ClobberRegs, Desc.implicit_defs()); 6062 } 6063 6064 // Set the number of Outputs and Inputs. 6065 NumOutputs = OutputDecls.size(); 6066 NumInputs = InputDecls.size(); 6067 6068 // Set the unique clobbers. 6069 array_pod_sort(ClobberRegs.begin(), ClobberRegs.end()); 6070 ClobberRegs.erase(std::unique(ClobberRegs.begin(), ClobberRegs.end()), 6071 ClobberRegs.end()); 6072 Clobbers.assign(ClobberRegs.size(), std::string()); 6073 for (unsigned I = 0, E = ClobberRegs.size(); I != E; ++I) { 6074 raw_string_ostream OS(Clobbers[I]); 6075 IP->printRegName(OS, ClobberRegs[I]); 6076 } 6077 6078 // Merge the various outputs and inputs. Output are expected first. 6079 if (NumOutputs || NumInputs) { 6080 unsigned NumExprs = NumOutputs + NumInputs; 6081 OpDecls.resize(NumExprs); 6082 Constraints.resize(NumExprs); 6083 for (unsigned i = 0; i < NumOutputs; ++i) { 6084 OpDecls[i] = std::make_pair(OutputDecls[i], OutputDeclsAddressOf[i]); 6085 Constraints[i] = OutputConstraints[i]; 6086 } 6087 for (unsigned i = 0, j = NumOutputs; i < NumInputs; ++i, ++j) { 6088 OpDecls[j] = std::make_pair(InputDecls[i], InputDeclsAddressOf[i]); 6089 Constraints[j] = InputConstraints[i]; 6090 } 6091 } 6092 6093 // Build the IR assembly string. 6094 std::string AsmStringIR; 6095 raw_string_ostream OS(AsmStringIR); 6096 StringRef ASMString = 6097 SrcMgr.getMemoryBuffer(SrcMgr.getMainFileID())->getBuffer(); 6098 const char *AsmStart = ASMString.begin(); 6099 const char *AsmEnd = ASMString.end(); 6100 array_pod_sort(AsmStrRewrites.begin(), AsmStrRewrites.end(), rewritesSort); 6101 for (auto it = AsmStrRewrites.begin(); it != AsmStrRewrites.end(); ++it) { 6102 const AsmRewrite &AR = *it; 6103 // Check if this has already been covered by another rewrite... 6104 if (AR.Done) 6105 continue; 6106 AsmRewriteKind Kind = AR.Kind; 6107 6108 const char *Loc = AR.Loc.getPointer(); 6109 assert(Loc >= AsmStart && "Expected Loc to be at or after Start!"); 6110 6111 // Emit everything up to the immediate/expression. 6112 if (unsigned Len = Loc - AsmStart) 6113 OS << StringRef(AsmStart, Len); 6114 6115 // Skip the original expression. 6116 if (Kind == AOK_Skip) { 6117 AsmStart = Loc + AR.Len; 6118 continue; 6119 } 6120 6121 unsigned AdditionalSkip = 0; 6122 // Rewrite expressions in $N notation. 6123 switch (Kind) { 6124 default: 6125 break; 6126 case AOK_IntelExpr: 6127 assert(AR.IntelExp.isValid() && "cannot write invalid intel expression"); 6128 if (AR.IntelExp.NeedBracs) 6129 OS << "["; 6130 if (AR.IntelExp.hasBaseReg()) 6131 OS << AR.IntelExp.BaseReg; 6132 if (AR.IntelExp.hasIndexReg()) 6133 OS << (AR.IntelExp.hasBaseReg() ? " + " : "") 6134 << AR.IntelExp.IndexReg; 6135 if (AR.IntelExp.Scale > 1) 6136 OS << " * $$" << AR.IntelExp.Scale; 6137 if (AR.IntelExp.hasOffset()) { 6138 if (AR.IntelExp.hasRegs()) 6139 OS << " + "; 6140 // Fuse this rewrite with a rewrite of the offset name, if present. 6141 StringRef OffsetName = AR.IntelExp.OffsetName; 6142 SMLoc OffsetLoc = SMLoc::getFromPointer(AR.IntelExp.OffsetName.data()); 6143 size_t OffsetLen = OffsetName.size(); 6144 auto rewrite_it = std::find_if( 6145 it, AsmStrRewrites.end(), [&](const AsmRewrite &FusingAR) { 6146 return FusingAR.Loc == OffsetLoc && FusingAR.Len == OffsetLen && 6147 (FusingAR.Kind == AOK_Input || 6148 FusingAR.Kind == AOK_CallInput); 6149 }); 6150 if (rewrite_it == AsmStrRewrites.end()) { 6151 OS << "offset " << OffsetName; 6152 } else if (rewrite_it->Kind == AOK_CallInput) { 6153 OS << "${" << InputIdx++ << ":P}"; 6154 rewrite_it->Done = true; 6155 } else { 6156 OS << '$' << InputIdx++; 6157 rewrite_it->Done = true; 6158 } 6159 } 6160 if (AR.IntelExp.Imm || AR.IntelExp.emitImm()) 6161 OS << (AR.IntelExp.emitImm() ? "$$" : " + $$") << AR.IntelExp.Imm; 6162 if (AR.IntelExp.NeedBracs) 6163 OS << "]"; 6164 break; 6165 case AOK_Label: 6166 OS << Ctx.getAsmInfo()->getPrivateLabelPrefix() << AR.Label; 6167 break; 6168 case AOK_Input: 6169 if (AR.IntelExpRestricted) 6170 OS << "${" << InputIdx++ << ":P}"; 6171 else 6172 OS << '$' << InputIdx++; 6173 break; 6174 case AOK_CallInput: 6175 OS << "${" << InputIdx++ << ":P}"; 6176 break; 6177 case AOK_Output: 6178 if (AR.IntelExpRestricted) 6179 OS << "${" << OutputIdx++ << ":P}"; 6180 else 6181 OS << '$' << OutputIdx++; 6182 break; 6183 case AOK_SizeDirective: 6184 switch (AR.Val) { 6185 default: break; 6186 case 8: OS << "byte ptr "; break; 6187 case 16: OS << "word ptr "; break; 6188 case 32: OS << "dword ptr "; break; 6189 case 64: OS << "qword ptr "; break; 6190 case 80: OS << "xword ptr "; break; 6191 case 128: OS << "xmmword ptr "; break; 6192 case 256: OS << "ymmword ptr "; break; 6193 } 6194 break; 6195 case AOK_Emit: 6196 OS << ".byte"; 6197 break; 6198 case AOK_Align: { 6199 // MS alignment directives are measured in bytes. If the native assembler 6200 // measures alignment in bytes, we can pass it straight through. 6201 OS << ".align"; 6202 if (getContext().getAsmInfo()->getAlignmentIsInBytes()) 6203 break; 6204 6205 // Alignment is in log2 form, so print that instead and skip the original 6206 // immediate. 6207 unsigned Val = AR.Val; 6208 OS << ' ' << Val; 6209 assert(Val < 10 && "Expected alignment less then 2^10."); 6210 AdditionalSkip = (Val < 4) ? 2 : Val < 7 ? 3 : 4; 6211 break; 6212 } 6213 case AOK_EVEN: 6214 OS << ".even"; 6215 break; 6216 case AOK_EndOfStatement: 6217 OS << "\n\t"; 6218 break; 6219 } 6220 6221 // Skip the original expression. 6222 AsmStart = Loc + AR.Len + AdditionalSkip; 6223 } 6224 6225 // Emit the remainder of the asm string. 6226 if (AsmStart != AsmEnd) 6227 OS << StringRef(AsmStart, AsmEnd - AsmStart); 6228 6229 AsmString = OS.str(); 6230 return false; 6231 } 6232 6233 bool HLASMAsmParser::parseAsHLASMLabel(ParseStatementInfo &Info, 6234 MCAsmParserSemaCallback *SI) { 6235 AsmToken LabelTok = getTok(); 6236 SMLoc LabelLoc = LabelTok.getLoc(); 6237 StringRef LabelVal; 6238 6239 if (parseIdentifier(LabelVal)) 6240 return Error(LabelLoc, "The HLASM Label has to be an Identifier"); 6241 6242 // We have validated whether the token is an Identifier. 6243 // Now we have to validate whether the token is a 6244 // valid HLASM Label. 6245 if (!getTargetParser().isLabel(LabelTok) || checkForValidSection()) 6246 return true; 6247 6248 // Lex leading spaces to get to the next operand. 6249 lexLeadingSpaces(); 6250 6251 // We shouldn't emit the label if there is nothing else after the label. 6252 // i.e asm("<token>\n") 6253 if (getTok().is(AsmToken::EndOfStatement)) 6254 return Error(LabelLoc, 6255 "Cannot have just a label for an HLASM inline asm statement"); 6256 6257 MCSymbol *Sym = getContext().getOrCreateSymbol( 6258 getContext().getAsmInfo()->shouldEmitLabelsInUpperCase() 6259 ? LabelVal.upper() 6260 : LabelVal); 6261 6262 getTargetParser().doBeforeLabelEmit(Sym, LabelLoc); 6263 6264 // Emit the label. 6265 Out.emitLabel(Sym, LabelLoc); 6266 6267 // If we are generating dwarf for assembly source files then gather the 6268 // info to make a dwarf label entry for this label if needed. 6269 if (enabledGenDwarfForAssembly()) 6270 MCGenDwarfLabelEntry::Make(Sym, &getStreamer(), getSourceManager(), 6271 LabelLoc); 6272 6273 getTargetParser().onLabelParsed(Sym); 6274 6275 return false; 6276 } 6277 6278 bool HLASMAsmParser::parseAsMachineInstruction(ParseStatementInfo &Info, 6279 MCAsmParserSemaCallback *SI) { 6280 AsmToken OperationEntryTok = Lexer.getTok(); 6281 SMLoc OperationEntryLoc = OperationEntryTok.getLoc(); 6282 StringRef OperationEntryVal; 6283 6284 // Attempt to parse the first token as an Identifier 6285 if (parseIdentifier(OperationEntryVal)) 6286 return Error(OperationEntryLoc, "unexpected token at start of statement"); 6287 6288 // Once we've parsed the operation entry successfully, lex 6289 // any spaces to get to the OperandEntries. 6290 lexLeadingSpaces(); 6291 6292 return parseAndMatchAndEmitTargetInstruction( 6293 Info, OperationEntryVal, OperationEntryTok, OperationEntryLoc); 6294 } 6295 6296 bool HLASMAsmParser::parseStatement(ParseStatementInfo &Info, 6297 MCAsmParserSemaCallback *SI) { 6298 assert(!hasPendingError() && "parseStatement started with pending error"); 6299 6300 // Should the first token be interpreted as a HLASM Label. 6301 bool ShouldParseAsHLASMLabel = false; 6302 6303 // If a Name Entry exists, it should occur at the very 6304 // start of the string. In this case, we should parse the 6305 // first non-space token as a Label. 6306 // If the Name entry is missing (i.e. there's some other 6307 // token), then we attempt to parse the first non-space 6308 // token as a Machine Instruction. 6309 if (getTok().isNot(AsmToken::Space)) 6310 ShouldParseAsHLASMLabel = true; 6311 6312 // If we have an EndOfStatement (which includes the target's comment 6313 // string) we can appropriately lex it early on) 6314 if (Lexer.is(AsmToken::EndOfStatement)) { 6315 // if this is a line comment we can drop it safely 6316 if (getTok().getString().empty() || getTok().getString().front() == '\r' || 6317 getTok().getString().front() == '\n') 6318 Out.addBlankLine(); 6319 Lex(); 6320 return false; 6321 } 6322 6323 // We have established how to parse the inline asm statement. 6324 // Now we can safely lex any leading spaces to get to the 6325 // first token. 6326 lexLeadingSpaces(); 6327 6328 // If we see a new line or carriage return as the first operand, 6329 // after lexing leading spaces, emit the new line and lex the 6330 // EndOfStatement token. 6331 if (Lexer.is(AsmToken::EndOfStatement)) { 6332 if (getTok().getString().front() == '\n' || 6333 getTok().getString().front() == '\r') { 6334 Out.addBlankLine(); 6335 Lex(); 6336 return false; 6337 } 6338 } 6339 6340 // Handle the label first if we have to before processing the rest 6341 // of the tokens as a machine instruction. 6342 if (ShouldParseAsHLASMLabel) { 6343 // If there were any errors while handling and emitting the label, 6344 // early return. 6345 if (parseAsHLASMLabel(Info, SI)) { 6346 // If we know we've failed in parsing, simply eat until end of the 6347 // statement. This ensures that we don't process any other statements. 6348 eatToEndOfStatement(); 6349 return true; 6350 } 6351 } 6352 6353 return parseAsMachineInstruction(Info, SI); 6354 } 6355 6356 namespace llvm { 6357 namespace MCParserUtils { 6358 6359 /// Returns whether the given symbol is used anywhere in the given expression, 6360 /// or subexpressions. 6361 static bool isSymbolUsedInExpression(const MCSymbol *Sym, const MCExpr *Value) { 6362 switch (Value->getKind()) { 6363 case MCExpr::Binary: { 6364 const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Value); 6365 return isSymbolUsedInExpression(Sym, BE->getLHS()) || 6366 isSymbolUsedInExpression(Sym, BE->getRHS()); 6367 } 6368 case MCExpr::Target: 6369 case MCExpr::Constant: 6370 return false; 6371 case MCExpr::SymbolRef: { 6372 const MCSymbol &S = 6373 static_cast<const MCSymbolRefExpr *>(Value)->getSymbol(); 6374 if (S.isVariable()) 6375 return isSymbolUsedInExpression(Sym, S.getVariableValue()); 6376 return &S == Sym; 6377 } 6378 case MCExpr::Unary: 6379 return isSymbolUsedInExpression( 6380 Sym, static_cast<const MCUnaryExpr *>(Value)->getSubExpr()); 6381 } 6382 6383 llvm_unreachable("Unknown expr kind!"); 6384 } 6385 6386 bool parseAssignmentExpression(StringRef Name, bool allow_redef, 6387 MCAsmParser &Parser, MCSymbol *&Sym, 6388 const MCExpr *&Value) { 6389 6390 // FIXME: Use better location, we should use proper tokens. 6391 SMLoc EqualLoc = Parser.getTok().getLoc(); 6392 if (Parser.parseExpression(Value)) 6393 return Parser.TokError("missing expression"); 6394 6395 // Note: we don't count b as used in "a = b". This is to allow 6396 // a = b 6397 // b = c 6398 6399 if (Parser.parseEOL()) 6400 return true; 6401 6402 // Validate that the LHS is allowed to be a variable (either it has not been 6403 // used as a symbol, or it is an absolute symbol). 6404 Sym = Parser.getContext().lookupSymbol(Name); 6405 if (Sym) { 6406 // Diagnose assignment to a label. 6407 // 6408 // FIXME: Diagnostics. Note the location of the definition as a label. 6409 // FIXME: Diagnose assignment to protected identifier (e.g., register name). 6410 if (isSymbolUsedInExpression(Sym, Value)) 6411 return Parser.Error(EqualLoc, "Recursive use of '" + Name + "'"); 6412 else if (Sym->isUndefined(/*SetUsed*/ false) && !Sym->isUsed() && 6413 !Sym->isVariable()) 6414 ; // Allow redefinitions of undefined symbols only used in directives. 6415 else if (Sym->isVariable() && !Sym->isUsed() && allow_redef) 6416 ; // Allow redefinitions of variables that haven't yet been used. 6417 else if (!Sym->isUndefined() && (!Sym->isVariable() || !allow_redef)) 6418 return Parser.Error(EqualLoc, "redefinition of '" + Name + "'"); 6419 else if (!Sym->isVariable()) 6420 return Parser.Error(EqualLoc, "invalid assignment to '" + Name + "'"); 6421 else if (!isa<MCConstantExpr>(Sym->getVariableValue())) 6422 return Parser.Error(EqualLoc, 6423 "invalid reassignment of non-absolute variable '" + 6424 Name + "'"); 6425 } else if (Name == ".") { 6426 Parser.getStreamer().emitValueToOffset(Value, 0, EqualLoc); 6427 return false; 6428 } else 6429 Sym = Parser.getContext().getOrCreateSymbol(Name); 6430 6431 Sym->setRedefinable(allow_redef); 6432 6433 return false; 6434 } 6435 6436 } // end namespace MCParserUtils 6437 } // end namespace llvm 6438 6439 /// Create an MCAsmParser instance. 6440 MCAsmParser *llvm::createMCAsmParser(SourceMgr &SM, MCContext &C, 6441 MCStreamer &Out, const MCAsmInfo &MAI, 6442 unsigned CB) { 6443 if (C.getTargetTriple().isSystemZ() && C.getTargetTriple().isOSzOS()) 6444 return new HLASMAsmParser(SM, C, Out, MAI, CB); 6445 6446 return new AsmParser(SM, C, Out, MAI, CB); 6447 } 6448