1 //===- AsmParser.cpp - Parser for Assembly Files --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This class implements a parser for assembly files similar to gas syntax. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringMap.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/BinaryFormat/Dwarf.h" 25 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCCodeView.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDirectives.h" 30 #include "llvm/MC/MCDwarf.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/MC/MCInstPrinter.h" 33 #include "llvm/MC/MCInstrDesc.h" 34 #include "llvm/MC/MCInstrInfo.h" 35 #include "llvm/MC/MCParser/AsmCond.h" 36 #include "llvm/MC/MCParser/AsmLexer.h" 37 #include "llvm/MC/MCParser/MCAsmLexer.h" 38 #include "llvm/MC/MCParser/MCAsmParser.h" 39 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 40 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 41 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 42 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 43 #include "llvm/MC/MCRegisterInfo.h" 44 #include "llvm/MC/MCSection.h" 45 #include "llvm/MC/MCStreamer.h" 46 #include "llvm/MC/MCSymbol.h" 47 #include "llvm/MC/MCSymbolMachO.h" 48 #include "llvm/MC/MCTargetOptions.h" 49 #include "llvm/MC/MCValue.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MD5.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/MemoryBuffer.h" 56 #include "llvm/Support/SMLoc.h" 57 #include "llvm/Support/SourceMgr.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cctype> 62 #include <climits> 63 #include <cstddef> 64 #include <cstdint> 65 #include <deque> 66 #include <memory> 67 #include <optional> 68 #include <sstream> 69 #include <string> 70 #include <tuple> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 76 MCAsmParserSemaCallback::~MCAsmParserSemaCallback() = default; 77 78 namespace { 79 80 /// Helper types for tracking macro definitions. 81 typedef std::vector<AsmToken> MCAsmMacroArgument; 82 typedef std::vector<MCAsmMacroArgument> MCAsmMacroArguments; 83 84 /// Helper class for storing information about an active macro 85 /// instantiation. 86 struct MacroInstantiation { 87 /// The location of the instantiation. 88 SMLoc InstantiationLoc; 89 90 /// The buffer where parsing should resume upon instantiation completion. 91 unsigned ExitBuffer; 92 93 /// The location where parsing should resume upon instantiation completion. 94 SMLoc ExitLoc; 95 96 /// The depth of TheCondStack at the start of the instantiation. 97 size_t CondStackDepth; 98 }; 99 100 struct ParseStatementInfo { 101 /// The parsed operands from the last parsed statement. 102 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> ParsedOperands; 103 104 /// The opcode from the last parsed instruction. 105 unsigned Opcode = ~0U; 106 107 /// Was there an error parsing the inline assembly? 108 bool ParseError = false; 109 110 SmallVectorImpl<AsmRewrite> *AsmRewrites = nullptr; 111 112 ParseStatementInfo() = delete; 113 ParseStatementInfo(SmallVectorImpl<AsmRewrite> *rewrites) 114 : AsmRewrites(rewrites) {} 115 }; 116 117 /// The concrete assembly parser instance. 118 class AsmParser : public MCAsmParser { 119 private: 120 AsmLexer Lexer; 121 MCContext &Ctx; 122 MCStreamer &Out; 123 const MCAsmInfo &MAI; 124 SourceMgr &SrcMgr; 125 SourceMgr::DiagHandlerTy SavedDiagHandler; 126 void *SavedDiagContext; 127 std::unique_ptr<MCAsmParserExtension> PlatformParser; 128 SMLoc StartTokLoc; 129 std::optional<SMLoc> CFIStartProcLoc; 130 131 /// This is the current buffer index we're lexing from as managed by the 132 /// SourceMgr object. 133 unsigned CurBuffer; 134 135 AsmCond TheCondState; 136 std::vector<AsmCond> TheCondStack; 137 138 /// maps directive names to handler methods in parser 139 /// extensions. Extensions register themselves in this map by calling 140 /// addDirectiveHandler. 141 StringMap<ExtensionDirectiveHandler> ExtensionDirectiveMap; 142 143 /// Stack of active macro instantiations. 144 std::vector<MacroInstantiation*> ActiveMacros; 145 146 /// List of bodies of anonymous macros. 147 std::deque<MCAsmMacro> MacroLikeBodies; 148 149 /// Boolean tracking whether macro substitution is enabled. 150 unsigned MacrosEnabledFlag : 1; 151 152 /// Keeps track of how many .macro's have been instantiated. 153 unsigned NumOfMacroInstantiations; 154 155 /// The values from the last parsed cpp hash file line comment if any. 156 struct CppHashInfoTy { 157 StringRef Filename; 158 int64_t LineNumber; 159 SMLoc Loc; 160 unsigned Buf; 161 CppHashInfoTy() : LineNumber(0), Buf(0) {} 162 }; 163 CppHashInfoTy CppHashInfo; 164 165 /// The filename from the first cpp hash file line comment, if any. 166 StringRef FirstCppHashFilename; 167 168 /// List of forward directional labels for diagnosis at the end. 169 SmallVector<std::tuple<SMLoc, CppHashInfoTy, MCSymbol *>, 4> DirLabels; 170 171 SmallSet<StringRef, 2> LTODiscardSymbols; 172 173 /// AssemblerDialect. ~OU means unset value and use value provided by MAI. 174 unsigned AssemblerDialect = ~0U; 175 176 /// is Darwin compatibility enabled? 177 bool IsDarwin = false; 178 179 /// Are we parsing ms-style inline assembly? 180 bool ParsingMSInlineAsm = false; 181 182 /// Did we already inform the user about inconsistent MD5 usage? 183 bool ReportedInconsistentMD5 = false; 184 185 // Is alt macro mode enabled. 186 bool AltMacroMode = false; 187 188 protected: 189 virtual bool parseStatement(ParseStatementInfo &Info, 190 MCAsmParserSemaCallback *SI); 191 192 /// This routine uses the target specific ParseInstruction function to 193 /// parse an instruction into Operands, and then call the target specific 194 /// MatchAndEmit function to match and emit the instruction. 195 bool parseAndMatchAndEmitTargetInstruction(ParseStatementInfo &Info, 196 StringRef IDVal, AsmToken ID, 197 SMLoc IDLoc); 198 199 /// Should we emit DWARF describing this assembler source? (Returns false if 200 /// the source has .file directives, which means we don't want to generate 201 /// info describing the assembler source itself.) 202 bool enabledGenDwarfForAssembly(); 203 204 public: 205 AsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out, 206 const MCAsmInfo &MAI, unsigned CB); 207 AsmParser(const AsmParser &) = delete; 208 AsmParser &operator=(const AsmParser &) = delete; 209 ~AsmParser() override; 210 211 bool Run(bool NoInitialTextSection, bool NoFinalize = false) override; 212 213 void addDirectiveHandler(StringRef Directive, 214 ExtensionDirectiveHandler Handler) override { 215 ExtensionDirectiveMap[Directive] = Handler; 216 } 217 218 void addAliasForDirective(StringRef Directive, StringRef Alias) override { 219 DirectiveKindMap[Directive.lower()] = DirectiveKindMap[Alias.lower()]; 220 } 221 222 /// @name MCAsmParser Interface 223 /// { 224 225 SourceMgr &getSourceManager() override { return SrcMgr; } 226 MCAsmLexer &getLexer() override { return Lexer; } 227 MCContext &getContext() override { return Ctx; } 228 MCStreamer &getStreamer() override { return Out; } 229 230 CodeViewContext &getCVContext() { return Ctx.getCVContext(); } 231 232 unsigned getAssemblerDialect() override { 233 if (AssemblerDialect == ~0U) 234 return MAI.getAssemblerDialect(); 235 else 236 return AssemblerDialect; 237 } 238 void setAssemblerDialect(unsigned i) override { 239 AssemblerDialect = i; 240 } 241 242 void Note(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) override; 243 bool Warning(SMLoc L, const Twine &Msg, 244 SMRange Range = std::nullopt) override; 245 bool printError(SMLoc L, const Twine &Msg, 246 SMRange Range = std::nullopt) override; 247 248 const AsmToken &Lex() override; 249 250 void setParsingMSInlineAsm(bool V) override { 251 ParsingMSInlineAsm = V; 252 // When parsing MS inline asm, we must lex 0b1101 and 0ABCH as binary and 253 // hex integer literals. 254 Lexer.setLexMasmIntegers(V); 255 } 256 bool isParsingMSInlineAsm() override { return ParsingMSInlineAsm; } 257 258 bool discardLTOSymbol(StringRef Name) const override { 259 return LTODiscardSymbols.contains(Name); 260 } 261 262 bool parseMSInlineAsm(std::string &AsmString, unsigned &NumOutputs, 263 unsigned &NumInputs, 264 SmallVectorImpl<std::pair<void *, bool>> &OpDecls, 265 SmallVectorImpl<std::string> &Constraints, 266 SmallVectorImpl<std::string> &Clobbers, 267 const MCInstrInfo *MII, const MCInstPrinter *IP, 268 MCAsmParserSemaCallback &SI) override; 269 270 bool parseExpression(const MCExpr *&Res); 271 bool parseExpression(const MCExpr *&Res, SMLoc &EndLoc) override; 272 bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc, 273 AsmTypeInfo *TypeInfo) override; 274 bool parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) override; 275 bool parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res, 276 SMLoc &EndLoc) override; 277 bool parseAbsoluteExpression(int64_t &Res) override; 278 279 /// Parse a floating point expression using the float \p Semantics 280 /// and set \p Res to the value. 281 bool parseRealValue(const fltSemantics &Semantics, APInt &Res); 282 283 /// Parse an identifier or string (as a quoted identifier) 284 /// and set \p Res to the identifier contents. 285 bool parseIdentifier(StringRef &Res) override; 286 void eatToEndOfStatement() override; 287 288 bool checkForValidSection() override; 289 290 /// } 291 292 private: 293 bool parseCurlyBlockScope(SmallVectorImpl<AsmRewrite>& AsmStrRewrites); 294 bool parseCppHashLineFilenameComment(SMLoc L, bool SaveLocInfo = true); 295 296 void checkForBadMacro(SMLoc DirectiveLoc, StringRef Name, StringRef Body, 297 ArrayRef<MCAsmMacroParameter> Parameters); 298 bool expandMacro(raw_svector_ostream &OS, StringRef Body, 299 ArrayRef<MCAsmMacroParameter> Parameters, 300 ArrayRef<MCAsmMacroArgument> A, bool EnableAtPseudoVariable, 301 SMLoc L); 302 303 /// Are macros enabled in the parser? 304 bool areMacrosEnabled() {return MacrosEnabledFlag;} 305 306 /// Control a flag in the parser that enables or disables macros. 307 void setMacrosEnabled(bool Flag) {MacrosEnabledFlag = Flag;} 308 309 /// Are we inside a macro instantiation? 310 bool isInsideMacroInstantiation() {return !ActiveMacros.empty();} 311 312 /// Handle entry to macro instantiation. 313 /// 314 /// \param M The macro. 315 /// \param NameLoc Instantiation location. 316 bool handleMacroEntry(const MCAsmMacro *M, SMLoc NameLoc); 317 318 /// Handle exit from macro instantiation. 319 void handleMacroExit(); 320 321 /// Extract AsmTokens for a macro argument. 322 bool parseMacroArgument(MCAsmMacroArgument &MA, bool Vararg); 323 324 /// Parse all macro arguments for a given macro. 325 bool parseMacroArguments(const MCAsmMacro *M, MCAsmMacroArguments &A); 326 327 void printMacroInstantiations(); 328 void printMessage(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Msg, 329 SMRange Range = std::nullopt) const { 330 ArrayRef<SMRange> Ranges(Range); 331 SrcMgr.PrintMessage(Loc, Kind, Msg, Ranges); 332 } 333 static void DiagHandler(const SMDiagnostic &Diag, void *Context); 334 335 /// Enter the specified file. This returns true on failure. 336 bool enterIncludeFile(const std::string &Filename); 337 338 /// Process the specified file for the .incbin directive. 339 /// This returns true on failure. 340 bool processIncbinFile(const std::string &Filename, int64_t Skip = 0, 341 const MCExpr *Count = nullptr, SMLoc Loc = SMLoc()); 342 343 /// Reset the current lexer position to that given by \p Loc. The 344 /// current token is not set; clients should ensure Lex() is called 345 /// subsequently. 346 /// 347 /// \param InBuffer If not 0, should be the known buffer id that contains the 348 /// location. 349 void jumpToLoc(SMLoc Loc, unsigned InBuffer = 0); 350 351 /// Parse up to the end of statement and a return the contents from the 352 /// current token until the end of the statement; the current token on exit 353 /// will be either the EndOfStatement or EOF. 354 StringRef parseStringToEndOfStatement() override; 355 356 /// Parse until the end of a statement or a comma is encountered, 357 /// return the contents from the current token up to the end or comma. 358 StringRef parseStringToComma(); 359 360 enum class AssignmentKind { 361 Set, 362 Equiv, 363 Equal, 364 LTOSetConditional, 365 }; 366 367 bool parseAssignment(StringRef Name, AssignmentKind Kind); 368 369 unsigned getBinOpPrecedence(AsmToken::TokenKind K, 370 MCBinaryExpr::Opcode &Kind); 371 372 bool parseBinOpRHS(unsigned Precedence, const MCExpr *&Res, SMLoc &EndLoc); 373 bool parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc); 374 bool parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc); 375 376 bool parseRegisterOrRegisterNumber(int64_t &Register, SMLoc DirectiveLoc); 377 378 bool parseCVFunctionId(int64_t &FunctionId, StringRef DirectiveName); 379 bool parseCVFileId(int64_t &FileId, StringRef DirectiveName); 380 381 // Generic (target and platform independent) directive parsing. 382 enum DirectiveKind { 383 DK_NO_DIRECTIVE, // Placeholder 384 DK_SET, 385 DK_EQU, 386 DK_EQUIV, 387 DK_ASCII, 388 DK_ASCIZ, 389 DK_STRING, 390 DK_BYTE, 391 DK_SHORT, 392 DK_RELOC, 393 DK_VALUE, 394 DK_2BYTE, 395 DK_LONG, 396 DK_INT, 397 DK_4BYTE, 398 DK_QUAD, 399 DK_8BYTE, 400 DK_OCTA, 401 DK_DC, 402 DK_DC_A, 403 DK_DC_B, 404 DK_DC_D, 405 DK_DC_L, 406 DK_DC_S, 407 DK_DC_W, 408 DK_DC_X, 409 DK_DCB, 410 DK_DCB_B, 411 DK_DCB_D, 412 DK_DCB_L, 413 DK_DCB_S, 414 DK_DCB_W, 415 DK_DCB_X, 416 DK_DS, 417 DK_DS_B, 418 DK_DS_D, 419 DK_DS_L, 420 DK_DS_P, 421 DK_DS_S, 422 DK_DS_W, 423 DK_DS_X, 424 DK_SINGLE, 425 DK_FLOAT, 426 DK_DOUBLE, 427 DK_ALIGN, 428 DK_ALIGN32, 429 DK_BALIGN, 430 DK_BALIGNW, 431 DK_BALIGNL, 432 DK_P2ALIGN, 433 DK_P2ALIGNW, 434 DK_P2ALIGNL, 435 DK_ORG, 436 DK_FILL, 437 DK_ENDR, 438 DK_BUNDLE_ALIGN_MODE, 439 DK_BUNDLE_LOCK, 440 DK_BUNDLE_UNLOCK, 441 DK_ZERO, 442 DK_EXTERN, 443 DK_GLOBL, 444 DK_GLOBAL, 445 DK_LAZY_REFERENCE, 446 DK_NO_DEAD_STRIP, 447 DK_SYMBOL_RESOLVER, 448 DK_PRIVATE_EXTERN, 449 DK_REFERENCE, 450 DK_WEAK_DEFINITION, 451 DK_WEAK_REFERENCE, 452 DK_WEAK_DEF_CAN_BE_HIDDEN, 453 DK_COLD, 454 DK_COMM, 455 DK_COMMON, 456 DK_LCOMM, 457 DK_ABORT, 458 DK_INCLUDE, 459 DK_INCBIN, 460 DK_CODE16, 461 DK_CODE16GCC, 462 DK_REPT, 463 DK_IRP, 464 DK_IRPC, 465 DK_IF, 466 DK_IFEQ, 467 DK_IFGE, 468 DK_IFGT, 469 DK_IFLE, 470 DK_IFLT, 471 DK_IFNE, 472 DK_IFB, 473 DK_IFNB, 474 DK_IFC, 475 DK_IFEQS, 476 DK_IFNC, 477 DK_IFNES, 478 DK_IFDEF, 479 DK_IFNDEF, 480 DK_IFNOTDEF, 481 DK_ELSEIF, 482 DK_ELSE, 483 DK_ENDIF, 484 DK_SPACE, 485 DK_SKIP, 486 DK_FILE, 487 DK_LINE, 488 DK_LOC, 489 DK_STABS, 490 DK_CV_FILE, 491 DK_CV_FUNC_ID, 492 DK_CV_INLINE_SITE_ID, 493 DK_CV_LOC, 494 DK_CV_LINETABLE, 495 DK_CV_INLINE_LINETABLE, 496 DK_CV_DEF_RANGE, 497 DK_CV_STRINGTABLE, 498 DK_CV_STRING, 499 DK_CV_FILECHECKSUMS, 500 DK_CV_FILECHECKSUM_OFFSET, 501 DK_CV_FPO_DATA, 502 DK_CFI_SECTIONS, 503 DK_CFI_STARTPROC, 504 DK_CFI_ENDPROC, 505 DK_CFI_DEF_CFA, 506 DK_CFI_DEF_CFA_OFFSET, 507 DK_CFI_ADJUST_CFA_OFFSET, 508 DK_CFI_DEF_CFA_REGISTER, 509 DK_CFI_LLVM_DEF_ASPACE_CFA, 510 DK_CFI_OFFSET, 511 DK_CFI_REL_OFFSET, 512 DK_CFI_PERSONALITY, 513 DK_CFI_LSDA, 514 DK_CFI_REMEMBER_STATE, 515 DK_CFI_RESTORE_STATE, 516 DK_CFI_SAME_VALUE, 517 DK_CFI_RESTORE, 518 DK_CFI_ESCAPE, 519 DK_CFI_RETURN_COLUMN, 520 DK_CFI_SIGNAL_FRAME, 521 DK_CFI_UNDEFINED, 522 DK_CFI_REGISTER, 523 DK_CFI_WINDOW_SAVE, 524 DK_CFI_B_KEY_FRAME, 525 DK_MACROS_ON, 526 DK_MACROS_OFF, 527 DK_ALTMACRO, 528 DK_NOALTMACRO, 529 DK_MACRO, 530 DK_EXITM, 531 DK_ENDM, 532 DK_ENDMACRO, 533 DK_PURGEM, 534 DK_SLEB128, 535 DK_ULEB128, 536 DK_ERR, 537 DK_ERROR, 538 DK_WARNING, 539 DK_PRINT, 540 DK_ADDRSIG, 541 DK_ADDRSIG_SYM, 542 DK_PSEUDO_PROBE, 543 DK_LTO_DISCARD, 544 DK_LTO_SET_CONDITIONAL, 545 DK_CFI_MTE_TAGGED_FRAME, 546 DK_MEMTAG, 547 DK_END 548 }; 549 550 /// Maps directive name --> DirectiveKind enum, for 551 /// directives parsed by this class. 552 StringMap<DirectiveKind> DirectiveKindMap; 553 554 // Codeview def_range type parsing. 555 enum CVDefRangeType { 556 CVDR_DEFRANGE = 0, // Placeholder 557 CVDR_DEFRANGE_REGISTER, 558 CVDR_DEFRANGE_FRAMEPOINTER_REL, 559 CVDR_DEFRANGE_SUBFIELD_REGISTER, 560 CVDR_DEFRANGE_REGISTER_REL 561 }; 562 563 /// Maps Codeview def_range types --> CVDefRangeType enum, for 564 /// Codeview def_range types parsed by this class. 565 StringMap<CVDefRangeType> CVDefRangeTypeMap; 566 567 // ".ascii", ".asciz", ".string" 568 bool parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated); 569 bool parseDirectiveReloc(SMLoc DirectiveLoc); // ".reloc" 570 bool parseDirectiveValue(StringRef IDVal, 571 unsigned Size); // ".byte", ".long", ... 572 bool parseDirectiveOctaValue(StringRef IDVal); // ".octa", ... 573 bool parseDirectiveRealValue(StringRef IDVal, 574 const fltSemantics &); // ".single", ... 575 bool parseDirectiveFill(); // ".fill" 576 bool parseDirectiveZero(); // ".zero" 577 // ".set", ".equ", ".equiv", ".lto_set_conditional" 578 bool parseDirectiveSet(StringRef IDVal, AssignmentKind Kind); 579 bool parseDirectiveOrg(); // ".org" 580 // ".align{,32}", ".p2align{,w,l}" 581 bool parseDirectiveAlign(bool IsPow2, unsigned ValueSize); 582 583 // ".file", ".line", ".loc", ".stabs" 584 bool parseDirectiveFile(SMLoc DirectiveLoc); 585 bool parseDirectiveLine(); 586 bool parseDirectiveLoc(); 587 bool parseDirectiveStabs(); 588 589 // ".cv_file", ".cv_func_id", ".cv_inline_site_id", ".cv_loc", ".cv_linetable", 590 // ".cv_inline_linetable", ".cv_def_range", ".cv_string" 591 bool parseDirectiveCVFile(); 592 bool parseDirectiveCVFuncId(); 593 bool parseDirectiveCVInlineSiteId(); 594 bool parseDirectiveCVLoc(); 595 bool parseDirectiveCVLinetable(); 596 bool parseDirectiveCVInlineLinetable(); 597 bool parseDirectiveCVDefRange(); 598 bool parseDirectiveCVString(); 599 bool parseDirectiveCVStringTable(); 600 bool parseDirectiveCVFileChecksums(); 601 bool parseDirectiveCVFileChecksumOffset(); 602 bool parseDirectiveCVFPOData(); 603 604 // .cfi directives 605 bool parseDirectiveCFIRegister(SMLoc DirectiveLoc); 606 bool parseDirectiveCFIWindowSave(SMLoc DirectiveLoc); 607 bool parseDirectiveCFISections(); 608 bool parseDirectiveCFIStartProc(); 609 bool parseDirectiveCFIEndProc(); 610 bool parseDirectiveCFIDefCfaOffset(SMLoc DirectiveLoc); 611 bool parseDirectiveCFIDefCfa(SMLoc DirectiveLoc); 612 bool parseDirectiveCFIAdjustCfaOffset(SMLoc DirectiveLoc); 613 bool parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc); 614 bool parseDirectiveCFILLVMDefAspaceCfa(SMLoc DirectiveLoc); 615 bool parseDirectiveCFIOffset(SMLoc DirectiveLoc); 616 bool parseDirectiveCFIRelOffset(SMLoc DirectiveLoc); 617 bool parseDirectiveCFIPersonalityOrLsda(bool IsPersonality); 618 bool parseDirectiveCFIRememberState(SMLoc DirectiveLoc); 619 bool parseDirectiveCFIRestoreState(SMLoc DirectiveLoc); 620 bool parseDirectiveCFISameValue(SMLoc DirectiveLoc); 621 bool parseDirectiveCFIRestore(SMLoc DirectiveLoc); 622 bool parseDirectiveCFIEscape(SMLoc DirectiveLoc); 623 bool parseDirectiveCFIReturnColumn(SMLoc DirectiveLoc); 624 bool parseDirectiveCFISignalFrame(SMLoc DirectiveLoc); 625 bool parseDirectiveCFIUndefined(SMLoc DirectiveLoc); 626 627 // macro directives 628 bool parseDirectivePurgeMacro(SMLoc DirectiveLoc); 629 bool parseDirectiveExitMacro(StringRef Directive); 630 bool parseDirectiveEndMacro(StringRef Directive); 631 bool parseDirectiveMacro(SMLoc DirectiveLoc); 632 bool parseDirectiveMacrosOnOff(StringRef Directive); 633 // alternate macro mode directives 634 bool parseDirectiveAltmacro(StringRef Directive); 635 // ".bundle_align_mode" 636 bool parseDirectiveBundleAlignMode(); 637 // ".bundle_lock" 638 bool parseDirectiveBundleLock(); 639 // ".bundle_unlock" 640 bool parseDirectiveBundleUnlock(); 641 642 // ".space", ".skip" 643 bool parseDirectiveSpace(StringRef IDVal); 644 645 // ".dcb" 646 bool parseDirectiveDCB(StringRef IDVal, unsigned Size); 647 bool parseDirectiveRealDCB(StringRef IDVal, const fltSemantics &); 648 // ".ds" 649 bool parseDirectiveDS(StringRef IDVal, unsigned Size); 650 651 // .sleb128 (Signed=true) and .uleb128 (Signed=false) 652 bool parseDirectiveLEB128(bool Signed); 653 654 /// Parse a directive like ".globl" which 655 /// accepts a single symbol (which should be a label or an external). 656 bool parseDirectiveSymbolAttribute(MCSymbolAttr Attr); 657 658 bool parseDirectiveComm(bool IsLocal); // ".comm" and ".lcomm" 659 660 bool parseDirectiveAbort(); // ".abort" 661 bool parseDirectiveInclude(); // ".include" 662 bool parseDirectiveIncbin(); // ".incbin" 663 664 // ".if", ".ifeq", ".ifge", ".ifgt" , ".ifle", ".iflt" or ".ifne" 665 bool parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind); 666 // ".ifb" or ".ifnb", depending on ExpectBlank. 667 bool parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank); 668 // ".ifc" or ".ifnc", depending on ExpectEqual. 669 bool parseDirectiveIfc(SMLoc DirectiveLoc, bool ExpectEqual); 670 // ".ifeqs" or ".ifnes", depending on ExpectEqual. 671 bool parseDirectiveIfeqs(SMLoc DirectiveLoc, bool ExpectEqual); 672 // ".ifdef" or ".ifndef", depending on expect_defined 673 bool parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined); 674 bool parseDirectiveElseIf(SMLoc DirectiveLoc); // ".elseif" 675 bool parseDirectiveElse(SMLoc DirectiveLoc); // ".else" 676 bool parseDirectiveEndIf(SMLoc DirectiveLoc); // .endif 677 bool parseEscapedString(std::string &Data) override; 678 bool parseAngleBracketString(std::string &Data) override; 679 680 const MCExpr *applyModifierToExpr(const MCExpr *E, 681 MCSymbolRefExpr::VariantKind Variant); 682 683 // Macro-like directives 684 MCAsmMacro *parseMacroLikeBody(SMLoc DirectiveLoc); 685 void instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc, 686 raw_svector_ostream &OS); 687 bool parseDirectiveRept(SMLoc DirectiveLoc, StringRef Directive); 688 bool parseDirectiveIrp(SMLoc DirectiveLoc); // ".irp" 689 bool parseDirectiveIrpc(SMLoc DirectiveLoc); // ".irpc" 690 bool parseDirectiveEndr(SMLoc DirectiveLoc); // ".endr" 691 692 // "_emit" or "__emit" 693 bool parseDirectiveMSEmit(SMLoc DirectiveLoc, ParseStatementInfo &Info, 694 size_t Len); 695 696 // "align" 697 bool parseDirectiveMSAlign(SMLoc DirectiveLoc, ParseStatementInfo &Info); 698 699 // "end" 700 bool parseDirectiveEnd(SMLoc DirectiveLoc); 701 702 // ".err" or ".error" 703 bool parseDirectiveError(SMLoc DirectiveLoc, bool WithMessage); 704 705 // ".warning" 706 bool parseDirectiveWarning(SMLoc DirectiveLoc); 707 708 // .print <double-quotes-string> 709 bool parseDirectivePrint(SMLoc DirectiveLoc); 710 711 // .pseudoprobe 712 bool parseDirectivePseudoProbe(); 713 714 // ".lto_discard" 715 bool parseDirectiveLTODiscard(); 716 717 // Directives to support address-significance tables. 718 bool parseDirectiveAddrsig(); 719 bool parseDirectiveAddrsigSym(); 720 721 void initializeDirectiveKindMap(); 722 void initializeCVDefRangeTypeMap(); 723 }; 724 725 class HLASMAsmParser final : public AsmParser { 726 private: 727 MCAsmLexer &Lexer; 728 MCStreamer &Out; 729 730 void lexLeadingSpaces() { 731 while (Lexer.is(AsmToken::Space)) 732 Lexer.Lex(); 733 } 734 735 bool parseAsHLASMLabel(ParseStatementInfo &Info, MCAsmParserSemaCallback *SI); 736 bool parseAsMachineInstruction(ParseStatementInfo &Info, 737 MCAsmParserSemaCallback *SI); 738 739 public: 740 HLASMAsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out, 741 const MCAsmInfo &MAI, unsigned CB = 0) 742 : AsmParser(SM, Ctx, Out, MAI, CB), Lexer(getLexer()), Out(Out) { 743 Lexer.setSkipSpace(false); 744 Lexer.setAllowHashInIdentifier(true); 745 Lexer.setLexHLASMIntegers(true); 746 Lexer.setLexHLASMStrings(true); 747 } 748 749 ~HLASMAsmParser() { Lexer.setSkipSpace(true); } 750 751 bool parseStatement(ParseStatementInfo &Info, 752 MCAsmParserSemaCallback *SI) override; 753 }; 754 755 } // end anonymous namespace 756 757 namespace llvm { 758 759 extern cl::opt<unsigned> AsmMacroMaxNestingDepth; 760 761 extern MCAsmParserExtension *createDarwinAsmParser(); 762 extern MCAsmParserExtension *createELFAsmParser(); 763 extern MCAsmParserExtension *createCOFFAsmParser(); 764 extern MCAsmParserExtension *createGOFFAsmParser(); 765 extern MCAsmParserExtension *createXCOFFAsmParser(); 766 extern MCAsmParserExtension *createWasmAsmParser(); 767 768 } // end namespace llvm 769 770 enum { DEFAULT_ADDRSPACE = 0 }; 771 772 AsmParser::AsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out, 773 const MCAsmInfo &MAI, unsigned CB = 0) 774 : Lexer(MAI), Ctx(Ctx), Out(Out), MAI(MAI), SrcMgr(SM), 775 CurBuffer(CB ? CB : SM.getMainFileID()), MacrosEnabledFlag(true) { 776 HadError = false; 777 // Save the old handler. 778 SavedDiagHandler = SrcMgr.getDiagHandler(); 779 SavedDiagContext = SrcMgr.getDiagContext(); 780 // Set our own handler which calls the saved handler. 781 SrcMgr.setDiagHandler(DiagHandler, this); 782 Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); 783 // Make MCStreamer aware of the StartTokLoc for locations in diagnostics. 784 Out.setStartTokLocPtr(&StartTokLoc); 785 786 // Initialize the platform / file format parser. 787 switch (Ctx.getObjectFileType()) { 788 case MCContext::IsCOFF: 789 PlatformParser.reset(createCOFFAsmParser()); 790 break; 791 case MCContext::IsMachO: 792 PlatformParser.reset(createDarwinAsmParser()); 793 IsDarwin = true; 794 break; 795 case MCContext::IsELF: 796 PlatformParser.reset(createELFAsmParser()); 797 break; 798 case MCContext::IsGOFF: 799 PlatformParser.reset(createGOFFAsmParser()); 800 break; 801 case MCContext::IsSPIRV: 802 report_fatal_error( 803 "Need to implement createSPIRVAsmParser for SPIRV format."); 804 break; 805 case MCContext::IsWasm: 806 PlatformParser.reset(createWasmAsmParser()); 807 break; 808 case MCContext::IsXCOFF: 809 PlatformParser.reset(createXCOFFAsmParser()); 810 break; 811 case MCContext::IsDXContainer: 812 report_fatal_error("DXContainer is not supported yet"); 813 break; 814 } 815 816 PlatformParser->Initialize(*this); 817 initializeDirectiveKindMap(); 818 initializeCVDefRangeTypeMap(); 819 820 NumOfMacroInstantiations = 0; 821 } 822 823 AsmParser::~AsmParser() { 824 assert((HadError || ActiveMacros.empty()) && 825 "Unexpected active macro instantiation!"); 826 827 // Remove MCStreamer's reference to the parser SMLoc. 828 Out.setStartTokLocPtr(nullptr); 829 // Restore the saved diagnostics handler and context for use during 830 // finalization. 831 SrcMgr.setDiagHandler(SavedDiagHandler, SavedDiagContext); 832 } 833 834 void AsmParser::printMacroInstantiations() { 835 // Print the active macro instantiation stack. 836 for (std::vector<MacroInstantiation *>::const_reverse_iterator 837 it = ActiveMacros.rbegin(), 838 ie = ActiveMacros.rend(); 839 it != ie; ++it) 840 printMessage((*it)->InstantiationLoc, SourceMgr::DK_Note, 841 "while in macro instantiation"); 842 } 843 844 void AsmParser::Note(SMLoc L, const Twine &Msg, SMRange Range) { 845 printPendingErrors(); 846 printMessage(L, SourceMgr::DK_Note, Msg, Range); 847 printMacroInstantiations(); 848 } 849 850 bool AsmParser::Warning(SMLoc L, const Twine &Msg, SMRange Range) { 851 if(getTargetParser().getTargetOptions().MCNoWarn) 852 return false; 853 if (getTargetParser().getTargetOptions().MCFatalWarnings) 854 return Error(L, Msg, Range); 855 printMessage(L, SourceMgr::DK_Warning, Msg, Range); 856 printMacroInstantiations(); 857 return false; 858 } 859 860 bool AsmParser::printError(SMLoc L, const Twine &Msg, SMRange Range) { 861 HadError = true; 862 printMessage(L, SourceMgr::DK_Error, Msg, Range); 863 printMacroInstantiations(); 864 return true; 865 } 866 867 bool AsmParser::enterIncludeFile(const std::string &Filename) { 868 std::string IncludedFile; 869 unsigned NewBuf = 870 SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile); 871 if (!NewBuf) 872 return true; 873 874 CurBuffer = NewBuf; 875 Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); 876 return false; 877 } 878 879 /// Process the specified .incbin file by searching for it in the include paths 880 /// then just emitting the byte contents of the file to the streamer. This 881 /// returns true on failure. 882 bool AsmParser::processIncbinFile(const std::string &Filename, int64_t Skip, 883 const MCExpr *Count, SMLoc Loc) { 884 std::string IncludedFile; 885 unsigned NewBuf = 886 SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile); 887 if (!NewBuf) 888 return true; 889 890 // Pick up the bytes from the file and emit them. 891 StringRef Bytes = SrcMgr.getMemoryBuffer(NewBuf)->getBuffer(); 892 Bytes = Bytes.drop_front(Skip); 893 if (Count) { 894 int64_t Res; 895 if (!Count->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr())) 896 return Error(Loc, "expected absolute expression"); 897 if (Res < 0) 898 return Warning(Loc, "negative count has no effect"); 899 Bytes = Bytes.take_front(Res); 900 } 901 getStreamer().emitBytes(Bytes); 902 return false; 903 } 904 905 void AsmParser::jumpToLoc(SMLoc Loc, unsigned InBuffer) { 906 CurBuffer = InBuffer ? InBuffer : SrcMgr.FindBufferContainingLoc(Loc); 907 Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer(), 908 Loc.getPointer()); 909 } 910 911 const AsmToken &AsmParser::Lex() { 912 if (Lexer.getTok().is(AsmToken::Error)) 913 Error(Lexer.getErrLoc(), Lexer.getErr()); 914 915 // if it's a end of statement with a comment in it 916 if (getTok().is(AsmToken::EndOfStatement)) { 917 // if this is a line comment output it. 918 if (!getTok().getString().empty() && getTok().getString().front() != '\n' && 919 getTok().getString().front() != '\r' && MAI.preserveAsmComments()) 920 Out.addExplicitComment(Twine(getTok().getString())); 921 } 922 923 const AsmToken *tok = &Lexer.Lex(); 924 925 // Parse comments here to be deferred until end of next statement. 926 while (tok->is(AsmToken::Comment)) { 927 if (MAI.preserveAsmComments()) 928 Out.addExplicitComment(Twine(tok->getString())); 929 tok = &Lexer.Lex(); 930 } 931 932 if (tok->is(AsmToken::Eof)) { 933 // If this is the end of an included file, pop the parent file off the 934 // include stack. 935 SMLoc ParentIncludeLoc = SrcMgr.getParentIncludeLoc(CurBuffer); 936 if (ParentIncludeLoc != SMLoc()) { 937 jumpToLoc(ParentIncludeLoc); 938 return Lex(); 939 } 940 } 941 942 return *tok; 943 } 944 945 bool AsmParser::enabledGenDwarfForAssembly() { 946 // Check whether the user specified -g. 947 if (!getContext().getGenDwarfForAssembly()) 948 return false; 949 // If we haven't encountered any .file directives (which would imply that 950 // the assembler source was produced with debug info already) then emit one 951 // describing the assembler source file itself. 952 if (getContext().getGenDwarfFileNumber() == 0) { 953 // Use the first #line directive for this, if any. It's preprocessed, so 954 // there is no checksum, and of course no source directive. 955 if (!FirstCppHashFilename.empty()) 956 getContext().setMCLineTableRootFile( 957 /*CUID=*/0, getContext().getCompilationDir(), FirstCppHashFilename, 958 /*Cksum=*/std::nullopt, /*Source=*/std::nullopt); 959 const MCDwarfFile &RootFile = 960 getContext().getMCDwarfLineTable(/*CUID=*/0).getRootFile(); 961 getContext().setGenDwarfFileNumber(getStreamer().emitDwarfFileDirective( 962 /*CUID=*/0, getContext().getCompilationDir(), RootFile.Name, 963 RootFile.Checksum, RootFile.Source)); 964 } 965 return true; 966 } 967 968 bool AsmParser::Run(bool NoInitialTextSection, bool NoFinalize) { 969 LTODiscardSymbols.clear(); 970 971 // Create the initial section, if requested. 972 if (!NoInitialTextSection) 973 Out.initSections(false, getTargetParser().getSTI()); 974 975 // Prime the lexer. 976 Lex(); 977 978 HadError = false; 979 AsmCond StartingCondState = TheCondState; 980 SmallVector<AsmRewrite, 4> AsmStrRewrites; 981 982 // If we are generating dwarf for assembly source files save the initial text 983 // section. (Don't use enabledGenDwarfForAssembly() here, as we aren't 984 // emitting any actual debug info yet and haven't had a chance to parse any 985 // embedded .file directives.) 986 if (getContext().getGenDwarfForAssembly()) { 987 MCSection *Sec = getStreamer().getCurrentSectionOnly(); 988 if (!Sec->getBeginSymbol()) { 989 MCSymbol *SectionStartSym = getContext().createTempSymbol(); 990 getStreamer().emitLabel(SectionStartSym); 991 Sec->setBeginSymbol(SectionStartSym); 992 } 993 bool InsertResult = getContext().addGenDwarfSection(Sec); 994 assert(InsertResult && ".text section should not have debug info yet"); 995 (void)InsertResult; 996 } 997 998 getTargetParser().onBeginOfFile(); 999 1000 // While we have input, parse each statement. 1001 while (Lexer.isNot(AsmToken::Eof)) { 1002 ParseStatementInfo Info(&AsmStrRewrites); 1003 bool Parsed = parseStatement(Info, nullptr); 1004 1005 // If we have a Lexer Error we are on an Error Token. Load in Lexer Error 1006 // for printing ErrMsg via Lex() only if no (presumably better) parser error 1007 // exists. 1008 if (Parsed && !hasPendingError() && Lexer.getTok().is(AsmToken::Error)) { 1009 Lex(); 1010 } 1011 1012 // parseStatement returned true so may need to emit an error. 1013 printPendingErrors(); 1014 1015 // Skipping to the next line if needed. 1016 if (Parsed && !getLexer().isAtStartOfStatement()) 1017 eatToEndOfStatement(); 1018 } 1019 1020 getTargetParser().onEndOfFile(); 1021 printPendingErrors(); 1022 1023 // All errors should have been emitted. 1024 assert(!hasPendingError() && "unexpected error from parseStatement"); 1025 1026 getTargetParser().flushPendingInstructions(getStreamer()); 1027 1028 if (TheCondState.TheCond != StartingCondState.TheCond || 1029 TheCondState.Ignore != StartingCondState.Ignore) 1030 printError(getTok().getLoc(), "unmatched .ifs or .elses"); 1031 // Check to see there are no empty DwarfFile slots. 1032 const auto &LineTables = getContext().getMCDwarfLineTables(); 1033 if (!LineTables.empty()) { 1034 unsigned Index = 0; 1035 for (const auto &File : LineTables.begin()->second.getMCDwarfFiles()) { 1036 if (File.Name.empty() && Index != 0) 1037 printError(getTok().getLoc(), "unassigned file number: " + 1038 Twine(Index) + 1039 " for .file directives"); 1040 ++Index; 1041 } 1042 } 1043 1044 // Check to see that all assembler local symbols were actually defined. 1045 // Targets that don't do subsections via symbols may not want this, though, 1046 // so conservatively exclude them. Only do this if we're finalizing, though, 1047 // as otherwise we won't necessarilly have seen everything yet. 1048 if (!NoFinalize) { 1049 if (MAI.hasSubsectionsViaSymbols()) { 1050 for (const auto &TableEntry : getContext().getSymbols()) { 1051 MCSymbol *Sym = TableEntry.getValue(); 1052 // Variable symbols may not be marked as defined, so check those 1053 // explicitly. If we know it's a variable, we have a definition for 1054 // the purposes of this check. 1055 if (Sym->isTemporary() && !Sym->isVariable() && !Sym->isDefined()) 1056 // FIXME: We would really like to refer back to where the symbol was 1057 // first referenced for a source location. We need to add something 1058 // to track that. Currently, we just point to the end of the file. 1059 printError(getTok().getLoc(), "assembler local symbol '" + 1060 Sym->getName() + "' not defined"); 1061 } 1062 } 1063 1064 // Temporary symbols like the ones for directional jumps don't go in the 1065 // symbol table. They also need to be diagnosed in all (final) cases. 1066 for (std::tuple<SMLoc, CppHashInfoTy, MCSymbol *> &LocSym : DirLabels) { 1067 if (std::get<2>(LocSym)->isUndefined()) { 1068 // Reset the state of any "# line file" directives we've seen to the 1069 // context as it was at the diagnostic site. 1070 CppHashInfo = std::get<1>(LocSym); 1071 printError(std::get<0>(LocSym), "directional label undefined"); 1072 } 1073 } 1074 } 1075 // Finalize the output stream if there are no errors and if the client wants 1076 // us to. 1077 if (!HadError && !NoFinalize) { 1078 if (auto *TS = Out.getTargetStreamer()) 1079 TS->emitConstantPools(); 1080 1081 Out.finish(Lexer.getLoc()); 1082 } 1083 1084 return HadError || getContext().hadError(); 1085 } 1086 1087 bool AsmParser::checkForValidSection() { 1088 if (!ParsingMSInlineAsm && !getStreamer().getCurrentSectionOnly()) { 1089 Out.initSections(false, getTargetParser().getSTI()); 1090 return Error(getTok().getLoc(), 1091 "expected section directive before assembly directive"); 1092 } 1093 return false; 1094 } 1095 1096 /// Throw away the rest of the line for testing purposes. 1097 void AsmParser::eatToEndOfStatement() { 1098 while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof)) 1099 Lexer.Lex(); 1100 1101 // Eat EOL. 1102 if (Lexer.is(AsmToken::EndOfStatement)) 1103 Lexer.Lex(); 1104 } 1105 1106 StringRef AsmParser::parseStringToEndOfStatement() { 1107 const char *Start = getTok().getLoc().getPointer(); 1108 1109 while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof)) 1110 Lexer.Lex(); 1111 1112 const char *End = getTok().getLoc().getPointer(); 1113 return StringRef(Start, End - Start); 1114 } 1115 1116 StringRef AsmParser::parseStringToComma() { 1117 const char *Start = getTok().getLoc().getPointer(); 1118 1119 while (Lexer.isNot(AsmToken::EndOfStatement) && 1120 Lexer.isNot(AsmToken::Comma) && Lexer.isNot(AsmToken::Eof)) 1121 Lexer.Lex(); 1122 1123 const char *End = getTok().getLoc().getPointer(); 1124 return StringRef(Start, End - Start); 1125 } 1126 1127 /// Parse a paren expression and return it. 1128 /// NOTE: This assumes the leading '(' has already been consumed. 1129 /// 1130 /// parenexpr ::= expr) 1131 /// 1132 bool AsmParser::parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc) { 1133 if (parseExpression(Res)) 1134 return true; 1135 EndLoc = Lexer.getTok().getEndLoc(); 1136 return parseRParen(); 1137 } 1138 1139 /// Parse a bracket expression and return it. 1140 /// NOTE: This assumes the leading '[' has already been consumed. 1141 /// 1142 /// bracketexpr ::= expr] 1143 /// 1144 bool AsmParser::parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc) { 1145 if (parseExpression(Res)) 1146 return true; 1147 EndLoc = getTok().getEndLoc(); 1148 if (parseToken(AsmToken::RBrac, "expected ']' in brackets expression")) 1149 return true; 1150 return false; 1151 } 1152 1153 /// Parse a primary expression and return it. 1154 /// primaryexpr ::= (parenexpr 1155 /// primaryexpr ::= symbol 1156 /// primaryexpr ::= number 1157 /// primaryexpr ::= '.' 1158 /// primaryexpr ::= ~,+,- primaryexpr 1159 bool AsmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc, 1160 AsmTypeInfo *TypeInfo) { 1161 SMLoc FirstTokenLoc = getLexer().getLoc(); 1162 AsmToken::TokenKind FirstTokenKind = Lexer.getKind(); 1163 switch (FirstTokenKind) { 1164 default: 1165 return TokError("unknown token in expression"); 1166 // If we have an error assume that we've already handled it. 1167 case AsmToken::Error: 1168 return true; 1169 case AsmToken::Exclaim: 1170 Lex(); // Eat the operator. 1171 if (parsePrimaryExpr(Res, EndLoc, TypeInfo)) 1172 return true; 1173 Res = MCUnaryExpr::createLNot(Res, getContext(), FirstTokenLoc); 1174 return false; 1175 case AsmToken::Dollar: 1176 case AsmToken::Star: 1177 case AsmToken::At: 1178 case AsmToken::String: 1179 case AsmToken::Identifier: { 1180 StringRef Identifier; 1181 if (parseIdentifier(Identifier)) { 1182 // We may have failed but '$'|'*' may be a valid token in context of 1183 // the current PC. 1184 if (getTok().is(AsmToken::Dollar) || getTok().is(AsmToken::Star)) { 1185 bool ShouldGenerateTempSymbol = false; 1186 if ((getTok().is(AsmToken::Dollar) && MAI.getDollarIsPC()) || 1187 (getTok().is(AsmToken::Star) && MAI.getStarIsPC())) 1188 ShouldGenerateTempSymbol = true; 1189 1190 if (!ShouldGenerateTempSymbol) 1191 return Error(FirstTokenLoc, "invalid token in expression"); 1192 1193 // Eat the '$'|'*' token. 1194 Lex(); 1195 // This is either a '$'|'*' reference, which references the current PC. 1196 // Emit a temporary label to the streamer and refer to it. 1197 MCSymbol *Sym = Ctx.createTempSymbol(); 1198 Out.emitLabel(Sym); 1199 Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 1200 getContext()); 1201 EndLoc = FirstTokenLoc; 1202 return false; 1203 } 1204 } 1205 // Parse symbol variant 1206 std::pair<StringRef, StringRef> Split; 1207 if (!MAI.useParensForSymbolVariant()) { 1208 if (FirstTokenKind == AsmToken::String) { 1209 if (Lexer.is(AsmToken::At)) { 1210 Lex(); // eat @ 1211 SMLoc AtLoc = getLexer().getLoc(); 1212 StringRef VName; 1213 if (parseIdentifier(VName)) 1214 return Error(AtLoc, "expected symbol variant after '@'"); 1215 1216 Split = std::make_pair(Identifier, VName); 1217 } 1218 } else { 1219 Split = Identifier.split('@'); 1220 } 1221 } else if (Lexer.is(AsmToken::LParen)) { 1222 Lex(); // eat '('. 1223 StringRef VName; 1224 parseIdentifier(VName); 1225 if (parseRParen()) 1226 return true; 1227 Split = std::make_pair(Identifier, VName); 1228 } 1229 1230 EndLoc = SMLoc::getFromPointer(Identifier.end()); 1231 1232 // This is a symbol reference. 1233 StringRef SymbolName = Identifier; 1234 if (SymbolName.empty()) 1235 return Error(getLexer().getLoc(), "expected a symbol reference"); 1236 1237 MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; 1238 1239 // Lookup the symbol variant if used. 1240 if (!Split.second.empty()) { 1241 Variant = MCSymbolRefExpr::getVariantKindForName(Split.second); 1242 if (Variant != MCSymbolRefExpr::VK_Invalid) { 1243 SymbolName = Split.first; 1244 } else if (MAI.doesAllowAtInName() && !MAI.useParensForSymbolVariant()) { 1245 Variant = MCSymbolRefExpr::VK_None; 1246 } else { 1247 return Error(SMLoc::getFromPointer(Split.second.begin()), 1248 "invalid variant '" + Split.second + "'"); 1249 } 1250 } 1251 1252 MCSymbol *Sym = getContext().getInlineAsmLabel(SymbolName); 1253 if (!Sym) 1254 Sym = getContext().getOrCreateSymbol( 1255 MAI.shouldEmitLabelsInUpperCase() ? SymbolName.upper() : SymbolName); 1256 1257 // If this is an absolute variable reference, substitute it now to preserve 1258 // semantics in the face of reassignment. 1259 if (Sym->isVariable()) { 1260 auto V = Sym->getVariableValue(/*SetUsed*/ false); 1261 bool DoInline = isa<MCConstantExpr>(V) && !Variant; 1262 if (auto TV = dyn_cast<MCTargetExpr>(V)) 1263 DoInline = TV->inlineAssignedExpr(); 1264 if (DoInline) { 1265 if (Variant) 1266 return Error(EndLoc, "unexpected modifier on variable reference"); 1267 Res = Sym->getVariableValue(/*SetUsed*/ false); 1268 return false; 1269 } 1270 } 1271 1272 // Otherwise create a symbol ref. 1273 Res = MCSymbolRefExpr::create(Sym, Variant, getContext(), FirstTokenLoc); 1274 return false; 1275 } 1276 case AsmToken::BigNum: 1277 return TokError("literal value out of range for directive"); 1278 case AsmToken::Integer: { 1279 SMLoc Loc = getTok().getLoc(); 1280 int64_t IntVal = getTok().getIntVal(); 1281 Res = MCConstantExpr::create(IntVal, getContext()); 1282 EndLoc = Lexer.getTok().getEndLoc(); 1283 Lex(); // Eat token. 1284 // Look for 'b' or 'f' following an Integer as a directional label 1285 if (Lexer.getKind() == AsmToken::Identifier) { 1286 StringRef IDVal = getTok().getString(); 1287 // Lookup the symbol variant if used. 1288 std::pair<StringRef, StringRef> Split = IDVal.split('@'); 1289 MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; 1290 if (Split.first.size() != IDVal.size()) { 1291 Variant = MCSymbolRefExpr::getVariantKindForName(Split.second); 1292 if (Variant == MCSymbolRefExpr::VK_Invalid) 1293 return TokError("invalid variant '" + Split.second + "'"); 1294 IDVal = Split.first; 1295 } 1296 if (IDVal == "f" || IDVal == "b") { 1297 MCSymbol *Sym = 1298 Ctx.getDirectionalLocalSymbol(IntVal, IDVal == "b"); 1299 Res = MCSymbolRefExpr::create(Sym, Variant, getContext()); 1300 if (IDVal == "b" && Sym->isUndefined()) 1301 return Error(Loc, "directional label undefined"); 1302 DirLabels.push_back(std::make_tuple(Loc, CppHashInfo, Sym)); 1303 EndLoc = Lexer.getTok().getEndLoc(); 1304 Lex(); // Eat identifier. 1305 } 1306 } 1307 return false; 1308 } 1309 case AsmToken::Real: { 1310 APFloat RealVal(APFloat::IEEEdouble(), getTok().getString()); 1311 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 1312 Res = MCConstantExpr::create(IntVal, getContext()); 1313 EndLoc = Lexer.getTok().getEndLoc(); 1314 Lex(); // Eat token. 1315 return false; 1316 } 1317 case AsmToken::Dot: { 1318 if (!MAI.getDotIsPC()) 1319 return TokError("cannot use . as current PC"); 1320 1321 // This is a '.' reference, which references the current PC. Emit a 1322 // temporary label to the streamer and refer to it. 1323 MCSymbol *Sym = Ctx.createTempSymbol(); 1324 Out.emitLabel(Sym); 1325 Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext()); 1326 EndLoc = Lexer.getTok().getEndLoc(); 1327 Lex(); // Eat identifier. 1328 return false; 1329 } 1330 case AsmToken::LParen: 1331 Lex(); // Eat the '('. 1332 return parseParenExpr(Res, EndLoc); 1333 case AsmToken::LBrac: 1334 if (!PlatformParser->HasBracketExpressions()) 1335 return TokError("brackets expression not supported on this target"); 1336 Lex(); // Eat the '['. 1337 return parseBracketExpr(Res, EndLoc); 1338 case AsmToken::Minus: 1339 Lex(); // Eat the operator. 1340 if (parsePrimaryExpr(Res, EndLoc, TypeInfo)) 1341 return true; 1342 Res = MCUnaryExpr::createMinus(Res, getContext(), FirstTokenLoc); 1343 return false; 1344 case AsmToken::Plus: 1345 Lex(); // Eat the operator. 1346 if (parsePrimaryExpr(Res, EndLoc, TypeInfo)) 1347 return true; 1348 Res = MCUnaryExpr::createPlus(Res, getContext(), FirstTokenLoc); 1349 return false; 1350 case AsmToken::Tilde: 1351 Lex(); // Eat the operator. 1352 if (parsePrimaryExpr(Res, EndLoc, TypeInfo)) 1353 return true; 1354 Res = MCUnaryExpr::createNot(Res, getContext(), FirstTokenLoc); 1355 return false; 1356 // MIPS unary expression operators. The lexer won't generate these tokens if 1357 // MCAsmInfo::HasMipsExpressions is false for the target. 1358 case AsmToken::PercentCall16: 1359 case AsmToken::PercentCall_Hi: 1360 case AsmToken::PercentCall_Lo: 1361 case AsmToken::PercentDtprel_Hi: 1362 case AsmToken::PercentDtprel_Lo: 1363 case AsmToken::PercentGot: 1364 case AsmToken::PercentGot_Disp: 1365 case AsmToken::PercentGot_Hi: 1366 case AsmToken::PercentGot_Lo: 1367 case AsmToken::PercentGot_Ofst: 1368 case AsmToken::PercentGot_Page: 1369 case AsmToken::PercentGottprel: 1370 case AsmToken::PercentGp_Rel: 1371 case AsmToken::PercentHi: 1372 case AsmToken::PercentHigher: 1373 case AsmToken::PercentHighest: 1374 case AsmToken::PercentLo: 1375 case AsmToken::PercentNeg: 1376 case AsmToken::PercentPcrel_Hi: 1377 case AsmToken::PercentPcrel_Lo: 1378 case AsmToken::PercentTlsgd: 1379 case AsmToken::PercentTlsldm: 1380 case AsmToken::PercentTprel_Hi: 1381 case AsmToken::PercentTprel_Lo: 1382 Lex(); // Eat the operator. 1383 if (Lexer.isNot(AsmToken::LParen)) 1384 return TokError("expected '(' after operator"); 1385 Lex(); // Eat the operator. 1386 if (parseExpression(Res, EndLoc)) 1387 return true; 1388 if (parseRParen()) 1389 return true; 1390 Res = getTargetParser().createTargetUnaryExpr(Res, FirstTokenKind, Ctx); 1391 return !Res; 1392 } 1393 } 1394 1395 bool AsmParser::parseExpression(const MCExpr *&Res) { 1396 SMLoc EndLoc; 1397 return parseExpression(Res, EndLoc); 1398 } 1399 1400 const MCExpr * 1401 AsmParser::applyModifierToExpr(const MCExpr *E, 1402 MCSymbolRefExpr::VariantKind Variant) { 1403 // Ask the target implementation about this expression first. 1404 const MCExpr *NewE = getTargetParser().applyModifierToExpr(E, Variant, Ctx); 1405 if (NewE) 1406 return NewE; 1407 // Recurse over the given expression, rebuilding it to apply the given variant 1408 // if there is exactly one symbol. 1409 switch (E->getKind()) { 1410 case MCExpr::Target: 1411 case MCExpr::Constant: 1412 return nullptr; 1413 1414 case MCExpr::SymbolRef: { 1415 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1416 1417 if (SRE->getKind() != MCSymbolRefExpr::VK_None) { 1418 TokError("invalid variant on expression '" + getTok().getIdentifier() + 1419 "' (already modified)"); 1420 return E; 1421 } 1422 1423 return MCSymbolRefExpr::create(&SRE->getSymbol(), Variant, getContext()); 1424 } 1425 1426 case MCExpr::Unary: { 1427 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1428 const MCExpr *Sub = applyModifierToExpr(UE->getSubExpr(), Variant); 1429 if (!Sub) 1430 return nullptr; 1431 return MCUnaryExpr::create(UE->getOpcode(), Sub, getContext()); 1432 } 1433 1434 case MCExpr::Binary: { 1435 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1436 const MCExpr *LHS = applyModifierToExpr(BE->getLHS(), Variant); 1437 const MCExpr *RHS = applyModifierToExpr(BE->getRHS(), Variant); 1438 1439 if (!LHS && !RHS) 1440 return nullptr; 1441 1442 if (!LHS) 1443 LHS = BE->getLHS(); 1444 if (!RHS) 1445 RHS = BE->getRHS(); 1446 1447 return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, getContext()); 1448 } 1449 } 1450 1451 llvm_unreachable("Invalid expression kind!"); 1452 } 1453 1454 /// This function checks if the next token is <string> type or arithmetic. 1455 /// string that begin with character '<' must end with character '>'. 1456 /// otherwise it is arithmetics. 1457 /// If the function returns a 'true' value, 1458 /// the End argument will be filled with the last location pointed to the '>' 1459 /// character. 1460 1461 /// There is a gap between the AltMacro's documentation and the single quote 1462 /// implementation. GCC does not fully support this feature and so we will not 1463 /// support it. 1464 /// TODO: Adding single quote as a string. 1465 static bool isAngleBracketString(SMLoc &StrLoc, SMLoc &EndLoc) { 1466 assert((StrLoc.getPointer() != nullptr) && 1467 "Argument to the function cannot be a NULL value"); 1468 const char *CharPtr = StrLoc.getPointer(); 1469 while ((*CharPtr != '>') && (*CharPtr != '\n') && (*CharPtr != '\r') && 1470 (*CharPtr != '\0')) { 1471 if (*CharPtr == '!') 1472 CharPtr++; 1473 CharPtr++; 1474 } 1475 if (*CharPtr == '>') { 1476 EndLoc = StrLoc.getFromPointer(CharPtr + 1); 1477 return true; 1478 } 1479 return false; 1480 } 1481 1482 /// creating a string without the escape characters '!'. 1483 static std::string angleBracketString(StringRef AltMacroStr) { 1484 std::string Res; 1485 for (size_t Pos = 0; Pos < AltMacroStr.size(); Pos++) { 1486 if (AltMacroStr[Pos] == '!') 1487 Pos++; 1488 Res += AltMacroStr[Pos]; 1489 } 1490 return Res; 1491 } 1492 1493 /// Parse an expression and return it. 1494 /// 1495 /// expr ::= expr &&,|| expr -> lowest. 1496 /// expr ::= expr |,^,&,! expr 1497 /// expr ::= expr ==,!=,<>,<,<=,>,>= expr 1498 /// expr ::= expr <<,>> expr 1499 /// expr ::= expr +,- expr 1500 /// expr ::= expr *,/,% expr -> highest. 1501 /// expr ::= primaryexpr 1502 /// 1503 bool AsmParser::parseExpression(const MCExpr *&Res, SMLoc &EndLoc) { 1504 // Parse the expression. 1505 Res = nullptr; 1506 if (getTargetParser().parsePrimaryExpr(Res, EndLoc) || 1507 parseBinOpRHS(1, Res, EndLoc)) 1508 return true; 1509 1510 // As a special case, we support 'a op b @ modifier' by rewriting the 1511 // expression to include the modifier. This is inefficient, but in general we 1512 // expect users to use 'a@modifier op b'. 1513 if (Lexer.getKind() == AsmToken::At) { 1514 Lex(); 1515 1516 if (Lexer.isNot(AsmToken::Identifier)) 1517 return TokError("unexpected symbol modifier following '@'"); 1518 1519 MCSymbolRefExpr::VariantKind Variant = 1520 MCSymbolRefExpr::getVariantKindForName(getTok().getIdentifier()); 1521 if (Variant == MCSymbolRefExpr::VK_Invalid) 1522 return TokError("invalid variant '" + getTok().getIdentifier() + "'"); 1523 1524 const MCExpr *ModifiedRes = applyModifierToExpr(Res, Variant); 1525 if (!ModifiedRes) { 1526 return TokError("invalid modifier '" + getTok().getIdentifier() + 1527 "' (no symbols present)"); 1528 } 1529 1530 Res = ModifiedRes; 1531 Lex(); 1532 } 1533 1534 // Try to constant fold it up front, if possible. Do not exploit 1535 // assembler here. 1536 int64_t Value; 1537 if (Res->evaluateAsAbsolute(Value)) 1538 Res = MCConstantExpr::create(Value, getContext()); 1539 1540 return false; 1541 } 1542 1543 bool AsmParser::parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) { 1544 Res = nullptr; 1545 return parseParenExpr(Res, EndLoc) || parseBinOpRHS(1, Res, EndLoc); 1546 } 1547 1548 bool AsmParser::parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res, 1549 SMLoc &EndLoc) { 1550 if (parseParenExpr(Res, EndLoc)) 1551 return true; 1552 1553 for (; ParenDepth > 0; --ParenDepth) { 1554 if (parseBinOpRHS(1, Res, EndLoc)) 1555 return true; 1556 1557 // We don't Lex() the last RParen. 1558 // This is the same behavior as parseParenExpression(). 1559 if (ParenDepth - 1 > 0) { 1560 EndLoc = getTok().getEndLoc(); 1561 if (parseRParen()) 1562 return true; 1563 } 1564 } 1565 return false; 1566 } 1567 1568 bool AsmParser::parseAbsoluteExpression(int64_t &Res) { 1569 const MCExpr *Expr; 1570 1571 SMLoc StartLoc = Lexer.getLoc(); 1572 if (parseExpression(Expr)) 1573 return true; 1574 1575 if (!Expr->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr())) 1576 return Error(StartLoc, "expected absolute expression"); 1577 1578 return false; 1579 } 1580 1581 static unsigned getDarwinBinOpPrecedence(AsmToken::TokenKind K, 1582 MCBinaryExpr::Opcode &Kind, 1583 bool ShouldUseLogicalShr) { 1584 switch (K) { 1585 default: 1586 return 0; // not a binop. 1587 1588 // Lowest Precedence: &&, || 1589 case AsmToken::AmpAmp: 1590 Kind = MCBinaryExpr::LAnd; 1591 return 1; 1592 case AsmToken::PipePipe: 1593 Kind = MCBinaryExpr::LOr; 1594 return 1; 1595 1596 // Low Precedence: |, &, ^ 1597 case AsmToken::Pipe: 1598 Kind = MCBinaryExpr::Or; 1599 return 2; 1600 case AsmToken::Caret: 1601 Kind = MCBinaryExpr::Xor; 1602 return 2; 1603 case AsmToken::Amp: 1604 Kind = MCBinaryExpr::And; 1605 return 2; 1606 1607 // Low Intermediate Precedence: ==, !=, <>, <, <=, >, >= 1608 case AsmToken::EqualEqual: 1609 Kind = MCBinaryExpr::EQ; 1610 return 3; 1611 case AsmToken::ExclaimEqual: 1612 case AsmToken::LessGreater: 1613 Kind = MCBinaryExpr::NE; 1614 return 3; 1615 case AsmToken::Less: 1616 Kind = MCBinaryExpr::LT; 1617 return 3; 1618 case AsmToken::LessEqual: 1619 Kind = MCBinaryExpr::LTE; 1620 return 3; 1621 case AsmToken::Greater: 1622 Kind = MCBinaryExpr::GT; 1623 return 3; 1624 case AsmToken::GreaterEqual: 1625 Kind = MCBinaryExpr::GTE; 1626 return 3; 1627 1628 // Intermediate Precedence: <<, >> 1629 case AsmToken::LessLess: 1630 Kind = MCBinaryExpr::Shl; 1631 return 4; 1632 case AsmToken::GreaterGreater: 1633 Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr; 1634 return 4; 1635 1636 // High Intermediate Precedence: +, - 1637 case AsmToken::Plus: 1638 Kind = MCBinaryExpr::Add; 1639 return 5; 1640 case AsmToken::Minus: 1641 Kind = MCBinaryExpr::Sub; 1642 return 5; 1643 1644 // Highest Precedence: *, /, % 1645 case AsmToken::Star: 1646 Kind = MCBinaryExpr::Mul; 1647 return 6; 1648 case AsmToken::Slash: 1649 Kind = MCBinaryExpr::Div; 1650 return 6; 1651 case AsmToken::Percent: 1652 Kind = MCBinaryExpr::Mod; 1653 return 6; 1654 } 1655 } 1656 1657 static unsigned getGNUBinOpPrecedence(const MCAsmInfo &MAI, 1658 AsmToken::TokenKind K, 1659 MCBinaryExpr::Opcode &Kind, 1660 bool ShouldUseLogicalShr) { 1661 switch (K) { 1662 default: 1663 return 0; // not a binop. 1664 1665 // Lowest Precedence: &&, || 1666 case AsmToken::AmpAmp: 1667 Kind = MCBinaryExpr::LAnd; 1668 return 2; 1669 case AsmToken::PipePipe: 1670 Kind = MCBinaryExpr::LOr; 1671 return 1; 1672 1673 // Low Precedence: ==, !=, <>, <, <=, >, >= 1674 case AsmToken::EqualEqual: 1675 Kind = MCBinaryExpr::EQ; 1676 return 3; 1677 case AsmToken::ExclaimEqual: 1678 case AsmToken::LessGreater: 1679 Kind = MCBinaryExpr::NE; 1680 return 3; 1681 case AsmToken::Less: 1682 Kind = MCBinaryExpr::LT; 1683 return 3; 1684 case AsmToken::LessEqual: 1685 Kind = MCBinaryExpr::LTE; 1686 return 3; 1687 case AsmToken::Greater: 1688 Kind = MCBinaryExpr::GT; 1689 return 3; 1690 case AsmToken::GreaterEqual: 1691 Kind = MCBinaryExpr::GTE; 1692 return 3; 1693 1694 // Low Intermediate Precedence: +, - 1695 case AsmToken::Plus: 1696 Kind = MCBinaryExpr::Add; 1697 return 4; 1698 case AsmToken::Minus: 1699 Kind = MCBinaryExpr::Sub; 1700 return 4; 1701 1702 // High Intermediate Precedence: |, !, &, ^ 1703 // 1704 case AsmToken::Pipe: 1705 Kind = MCBinaryExpr::Or; 1706 return 5; 1707 case AsmToken::Exclaim: 1708 // Hack to support ARM compatible aliases (implied 'sp' operand in 'srs*' 1709 // instructions like 'srsda #31!') and not parse ! as an infix operator. 1710 if (MAI.getCommentString() == "@") 1711 return 0; 1712 Kind = MCBinaryExpr::OrNot; 1713 return 5; 1714 case AsmToken::Caret: 1715 Kind = MCBinaryExpr::Xor; 1716 return 5; 1717 case AsmToken::Amp: 1718 Kind = MCBinaryExpr::And; 1719 return 5; 1720 1721 // Highest Precedence: *, /, %, <<, >> 1722 case AsmToken::Star: 1723 Kind = MCBinaryExpr::Mul; 1724 return 6; 1725 case AsmToken::Slash: 1726 Kind = MCBinaryExpr::Div; 1727 return 6; 1728 case AsmToken::Percent: 1729 Kind = MCBinaryExpr::Mod; 1730 return 6; 1731 case AsmToken::LessLess: 1732 Kind = MCBinaryExpr::Shl; 1733 return 6; 1734 case AsmToken::GreaterGreater: 1735 Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr; 1736 return 6; 1737 } 1738 } 1739 1740 unsigned AsmParser::getBinOpPrecedence(AsmToken::TokenKind K, 1741 MCBinaryExpr::Opcode &Kind) { 1742 bool ShouldUseLogicalShr = MAI.shouldUseLogicalShr(); 1743 return IsDarwin ? getDarwinBinOpPrecedence(K, Kind, ShouldUseLogicalShr) 1744 : getGNUBinOpPrecedence(MAI, K, Kind, ShouldUseLogicalShr); 1745 } 1746 1747 /// Parse all binary operators with precedence >= 'Precedence'. 1748 /// Res contains the LHS of the expression on input. 1749 bool AsmParser::parseBinOpRHS(unsigned Precedence, const MCExpr *&Res, 1750 SMLoc &EndLoc) { 1751 SMLoc StartLoc = Lexer.getLoc(); 1752 while (true) { 1753 MCBinaryExpr::Opcode Kind = MCBinaryExpr::Add; 1754 unsigned TokPrec = getBinOpPrecedence(Lexer.getKind(), Kind); 1755 1756 // If the next token is lower precedence than we are allowed to eat, return 1757 // successfully with what we ate already. 1758 if (TokPrec < Precedence) 1759 return false; 1760 1761 Lex(); 1762 1763 // Eat the next primary expression. 1764 const MCExpr *RHS; 1765 if (getTargetParser().parsePrimaryExpr(RHS, EndLoc)) 1766 return true; 1767 1768 // If BinOp binds less tightly with RHS than the operator after RHS, let 1769 // the pending operator take RHS as its LHS. 1770 MCBinaryExpr::Opcode Dummy; 1771 unsigned NextTokPrec = getBinOpPrecedence(Lexer.getKind(), Dummy); 1772 if (TokPrec < NextTokPrec && parseBinOpRHS(TokPrec + 1, RHS, EndLoc)) 1773 return true; 1774 1775 // Merge LHS and RHS according to operator. 1776 Res = MCBinaryExpr::create(Kind, Res, RHS, getContext(), StartLoc); 1777 } 1778 } 1779 1780 /// ParseStatement: 1781 /// ::= EndOfStatement 1782 /// ::= Label* Directive ...Operands... EndOfStatement 1783 /// ::= Label* Identifier OperandList* EndOfStatement 1784 bool AsmParser::parseStatement(ParseStatementInfo &Info, 1785 MCAsmParserSemaCallback *SI) { 1786 assert(!hasPendingError() && "parseStatement started with pending error"); 1787 // Eat initial spaces and comments 1788 while (Lexer.is(AsmToken::Space)) 1789 Lex(); 1790 if (Lexer.is(AsmToken::EndOfStatement)) { 1791 // if this is a line comment we can drop it safely 1792 if (getTok().getString().empty() || getTok().getString().front() == '\r' || 1793 getTok().getString().front() == '\n') 1794 Out.addBlankLine(); 1795 Lex(); 1796 return false; 1797 } 1798 // Statements always start with an identifier. 1799 AsmToken ID = getTok(); 1800 SMLoc IDLoc = ID.getLoc(); 1801 StringRef IDVal; 1802 int64_t LocalLabelVal = -1; 1803 StartTokLoc = ID.getLoc(); 1804 if (Lexer.is(AsmToken::HashDirective)) 1805 return parseCppHashLineFilenameComment(IDLoc, 1806 !isInsideMacroInstantiation()); 1807 1808 // Allow an integer followed by a ':' as a directional local label. 1809 if (Lexer.is(AsmToken::Integer)) { 1810 LocalLabelVal = getTok().getIntVal(); 1811 if (LocalLabelVal < 0) { 1812 if (!TheCondState.Ignore) { 1813 Lex(); // always eat a token 1814 return Error(IDLoc, "unexpected token at start of statement"); 1815 } 1816 IDVal = ""; 1817 } else { 1818 IDVal = getTok().getString(); 1819 Lex(); // Consume the integer token to be used as an identifier token. 1820 if (Lexer.getKind() != AsmToken::Colon) { 1821 if (!TheCondState.Ignore) { 1822 Lex(); // always eat a token 1823 return Error(IDLoc, "unexpected token at start of statement"); 1824 } 1825 } 1826 } 1827 } else if (Lexer.is(AsmToken::Dot)) { 1828 // Treat '.' as a valid identifier in this context. 1829 Lex(); 1830 IDVal = "."; 1831 } else if (Lexer.is(AsmToken::LCurly)) { 1832 // Treat '{' as a valid identifier in this context. 1833 Lex(); 1834 IDVal = "{"; 1835 1836 } else if (Lexer.is(AsmToken::RCurly)) { 1837 // Treat '}' as a valid identifier in this context. 1838 Lex(); 1839 IDVal = "}"; 1840 } else if (Lexer.is(AsmToken::Star) && 1841 getTargetParser().starIsStartOfStatement()) { 1842 // Accept '*' as a valid start of statement. 1843 Lex(); 1844 IDVal = "*"; 1845 } else if (parseIdentifier(IDVal)) { 1846 if (!TheCondState.Ignore) { 1847 Lex(); // always eat a token 1848 return Error(IDLoc, "unexpected token at start of statement"); 1849 } 1850 IDVal = ""; 1851 } 1852 1853 // Handle conditional assembly here before checking for skipping. We 1854 // have to do this so that .endif isn't skipped in a ".if 0" block for 1855 // example. 1856 StringMap<DirectiveKind>::const_iterator DirKindIt = 1857 DirectiveKindMap.find(IDVal.lower()); 1858 DirectiveKind DirKind = (DirKindIt == DirectiveKindMap.end()) 1859 ? DK_NO_DIRECTIVE 1860 : DirKindIt->getValue(); 1861 switch (DirKind) { 1862 default: 1863 break; 1864 case DK_IF: 1865 case DK_IFEQ: 1866 case DK_IFGE: 1867 case DK_IFGT: 1868 case DK_IFLE: 1869 case DK_IFLT: 1870 case DK_IFNE: 1871 return parseDirectiveIf(IDLoc, DirKind); 1872 case DK_IFB: 1873 return parseDirectiveIfb(IDLoc, true); 1874 case DK_IFNB: 1875 return parseDirectiveIfb(IDLoc, false); 1876 case DK_IFC: 1877 return parseDirectiveIfc(IDLoc, true); 1878 case DK_IFEQS: 1879 return parseDirectiveIfeqs(IDLoc, true); 1880 case DK_IFNC: 1881 return parseDirectiveIfc(IDLoc, false); 1882 case DK_IFNES: 1883 return parseDirectiveIfeqs(IDLoc, false); 1884 case DK_IFDEF: 1885 return parseDirectiveIfdef(IDLoc, true); 1886 case DK_IFNDEF: 1887 case DK_IFNOTDEF: 1888 return parseDirectiveIfdef(IDLoc, false); 1889 case DK_ELSEIF: 1890 return parseDirectiveElseIf(IDLoc); 1891 case DK_ELSE: 1892 return parseDirectiveElse(IDLoc); 1893 case DK_ENDIF: 1894 return parseDirectiveEndIf(IDLoc); 1895 } 1896 1897 // Ignore the statement if in the middle of inactive conditional 1898 // (e.g. ".if 0"). 1899 if (TheCondState.Ignore) { 1900 eatToEndOfStatement(); 1901 return false; 1902 } 1903 1904 // FIXME: Recurse on local labels? 1905 1906 // Check for a label. 1907 // ::= identifier ':' 1908 // ::= number ':' 1909 if (Lexer.is(AsmToken::Colon) && getTargetParser().isLabel(ID)) { 1910 if (checkForValidSection()) 1911 return true; 1912 1913 Lex(); // Consume the ':'. 1914 1915 // Diagnose attempt to use '.' as a label. 1916 if (IDVal == ".") 1917 return Error(IDLoc, "invalid use of pseudo-symbol '.' as a label"); 1918 1919 // Diagnose attempt to use a variable as a label. 1920 // 1921 // FIXME: Diagnostics. Note the location of the definition as a label. 1922 // FIXME: This doesn't diagnose assignment to a symbol which has been 1923 // implicitly marked as external. 1924 MCSymbol *Sym; 1925 if (LocalLabelVal == -1) { 1926 if (ParsingMSInlineAsm && SI) { 1927 StringRef RewrittenLabel = 1928 SI->LookupInlineAsmLabel(IDVal, getSourceManager(), IDLoc, true); 1929 assert(!RewrittenLabel.empty() && 1930 "We should have an internal name here."); 1931 Info.AsmRewrites->emplace_back(AOK_Label, IDLoc, IDVal.size(), 1932 RewrittenLabel); 1933 IDVal = RewrittenLabel; 1934 } 1935 Sym = getContext().getOrCreateSymbol(IDVal); 1936 } else 1937 Sym = Ctx.createDirectionalLocalSymbol(LocalLabelVal); 1938 // End of Labels should be treated as end of line for lexing 1939 // purposes but that information is not available to the Lexer who 1940 // does not understand Labels. This may cause us to see a Hash 1941 // here instead of a preprocessor line comment. 1942 if (getTok().is(AsmToken::Hash)) { 1943 StringRef CommentStr = parseStringToEndOfStatement(); 1944 Lexer.Lex(); 1945 Lexer.UnLex(AsmToken(AsmToken::EndOfStatement, CommentStr)); 1946 } 1947 1948 // Consume any end of statement token, if present, to avoid spurious 1949 // addBlankLine calls(). 1950 if (getTok().is(AsmToken::EndOfStatement)) { 1951 Lex(); 1952 } 1953 1954 if (MAI.hasSubsectionsViaSymbols() && CFIStartProcLoc && 1955 Sym->isExternal() && !cast<MCSymbolMachO>(Sym)->isAltEntry()) 1956 return Error(StartTokLoc, "non-private labels cannot appear between " 1957 ".cfi_startproc / .cfi_endproc pairs") && 1958 Error(*CFIStartProcLoc, "previous .cfi_startproc was here"); 1959 1960 if (discardLTOSymbol(IDVal)) 1961 return false; 1962 1963 getTargetParser().doBeforeLabelEmit(Sym, IDLoc); 1964 1965 // Emit the label. 1966 if (!getTargetParser().isParsingMSInlineAsm()) 1967 Out.emitLabel(Sym, IDLoc); 1968 1969 // If we are generating dwarf for assembly source files then gather the 1970 // info to make a dwarf label entry for this label if needed. 1971 if (enabledGenDwarfForAssembly()) 1972 MCGenDwarfLabelEntry::Make(Sym, &getStreamer(), getSourceManager(), 1973 IDLoc); 1974 1975 getTargetParser().onLabelParsed(Sym); 1976 1977 return false; 1978 } 1979 1980 // Check for an assignment statement. 1981 // ::= identifier '=' 1982 if (Lexer.is(AsmToken::Equal) && getTargetParser().equalIsAsmAssignment()) { 1983 Lex(); 1984 return parseAssignment(IDVal, AssignmentKind::Equal); 1985 } 1986 1987 // If macros are enabled, check to see if this is a macro instantiation. 1988 if (areMacrosEnabled()) 1989 if (const MCAsmMacro *M = getContext().lookupMacro(IDVal)) { 1990 return handleMacroEntry(M, IDLoc); 1991 } 1992 1993 // Otherwise, we have a normal instruction or directive. 1994 1995 // Directives start with "." 1996 if (IDVal.starts_with(".") && IDVal != ".") { 1997 // There are several entities interested in parsing directives: 1998 // 1999 // 1. The target-specific assembly parser. Some directives are target 2000 // specific or may potentially behave differently on certain targets. 2001 // 2. Asm parser extensions. For example, platform-specific parsers 2002 // (like the ELF parser) register themselves as extensions. 2003 // 3. The generic directive parser implemented by this class. These are 2004 // all the directives that behave in a target and platform independent 2005 // manner, or at least have a default behavior that's shared between 2006 // all targets and platforms. 2007 2008 getTargetParser().flushPendingInstructions(getStreamer()); 2009 2010 ParseStatus TPDirectiveReturn = getTargetParser().parseDirective(ID); 2011 assert(TPDirectiveReturn.isFailure() == hasPendingError() && 2012 "Should only return Failure iff there was an error"); 2013 if (TPDirectiveReturn.isFailure()) 2014 return true; 2015 if (TPDirectiveReturn.isSuccess()) 2016 return false; 2017 2018 // Next, check the extension directive map to see if any extension has 2019 // registered itself to parse this directive. 2020 std::pair<MCAsmParserExtension *, DirectiveHandler> Handler = 2021 ExtensionDirectiveMap.lookup(IDVal); 2022 if (Handler.first) 2023 return (*Handler.second)(Handler.first, IDVal, IDLoc); 2024 2025 // Finally, if no one else is interested in this directive, it must be 2026 // generic and familiar to this class. 2027 switch (DirKind) { 2028 default: 2029 break; 2030 case DK_SET: 2031 case DK_EQU: 2032 return parseDirectiveSet(IDVal, AssignmentKind::Set); 2033 case DK_EQUIV: 2034 return parseDirectiveSet(IDVal, AssignmentKind::Equiv); 2035 case DK_LTO_SET_CONDITIONAL: 2036 return parseDirectiveSet(IDVal, AssignmentKind::LTOSetConditional); 2037 case DK_ASCII: 2038 return parseDirectiveAscii(IDVal, false); 2039 case DK_ASCIZ: 2040 case DK_STRING: 2041 return parseDirectiveAscii(IDVal, true); 2042 case DK_BYTE: 2043 case DK_DC_B: 2044 return parseDirectiveValue(IDVal, 1); 2045 case DK_DC: 2046 case DK_DC_W: 2047 case DK_SHORT: 2048 case DK_VALUE: 2049 case DK_2BYTE: 2050 return parseDirectiveValue(IDVal, 2); 2051 case DK_LONG: 2052 case DK_INT: 2053 case DK_4BYTE: 2054 case DK_DC_L: 2055 return parseDirectiveValue(IDVal, 4); 2056 case DK_QUAD: 2057 case DK_8BYTE: 2058 return parseDirectiveValue(IDVal, 8); 2059 case DK_DC_A: 2060 return parseDirectiveValue( 2061 IDVal, getContext().getAsmInfo()->getCodePointerSize()); 2062 case DK_OCTA: 2063 return parseDirectiveOctaValue(IDVal); 2064 case DK_SINGLE: 2065 case DK_FLOAT: 2066 case DK_DC_S: 2067 return parseDirectiveRealValue(IDVal, APFloat::IEEEsingle()); 2068 case DK_DOUBLE: 2069 case DK_DC_D: 2070 return parseDirectiveRealValue(IDVal, APFloat::IEEEdouble()); 2071 case DK_ALIGN: { 2072 bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes(); 2073 return parseDirectiveAlign(IsPow2, /*ExprSize=*/1); 2074 } 2075 case DK_ALIGN32: { 2076 bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes(); 2077 return parseDirectiveAlign(IsPow2, /*ExprSize=*/4); 2078 } 2079 case DK_BALIGN: 2080 return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/1); 2081 case DK_BALIGNW: 2082 return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/2); 2083 case DK_BALIGNL: 2084 return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/4); 2085 case DK_P2ALIGN: 2086 return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/1); 2087 case DK_P2ALIGNW: 2088 return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/2); 2089 case DK_P2ALIGNL: 2090 return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/4); 2091 case DK_ORG: 2092 return parseDirectiveOrg(); 2093 case DK_FILL: 2094 return parseDirectiveFill(); 2095 case DK_ZERO: 2096 return parseDirectiveZero(); 2097 case DK_EXTERN: 2098 eatToEndOfStatement(); // .extern is the default, ignore it. 2099 return false; 2100 case DK_GLOBL: 2101 case DK_GLOBAL: 2102 return parseDirectiveSymbolAttribute(MCSA_Global); 2103 case DK_LAZY_REFERENCE: 2104 return parseDirectiveSymbolAttribute(MCSA_LazyReference); 2105 case DK_NO_DEAD_STRIP: 2106 return parseDirectiveSymbolAttribute(MCSA_NoDeadStrip); 2107 case DK_SYMBOL_RESOLVER: 2108 return parseDirectiveSymbolAttribute(MCSA_SymbolResolver); 2109 case DK_PRIVATE_EXTERN: 2110 return parseDirectiveSymbolAttribute(MCSA_PrivateExtern); 2111 case DK_REFERENCE: 2112 return parseDirectiveSymbolAttribute(MCSA_Reference); 2113 case DK_WEAK_DEFINITION: 2114 return parseDirectiveSymbolAttribute(MCSA_WeakDefinition); 2115 case DK_WEAK_REFERENCE: 2116 return parseDirectiveSymbolAttribute(MCSA_WeakReference); 2117 case DK_WEAK_DEF_CAN_BE_HIDDEN: 2118 return parseDirectiveSymbolAttribute(MCSA_WeakDefAutoPrivate); 2119 case DK_COLD: 2120 return parseDirectiveSymbolAttribute(MCSA_Cold); 2121 case DK_COMM: 2122 case DK_COMMON: 2123 return parseDirectiveComm(/*IsLocal=*/false); 2124 case DK_LCOMM: 2125 return parseDirectiveComm(/*IsLocal=*/true); 2126 case DK_ABORT: 2127 return parseDirectiveAbort(); 2128 case DK_INCLUDE: 2129 return parseDirectiveInclude(); 2130 case DK_INCBIN: 2131 return parseDirectiveIncbin(); 2132 case DK_CODE16: 2133 case DK_CODE16GCC: 2134 return TokError(Twine(IDVal) + 2135 " not currently supported for this target"); 2136 case DK_REPT: 2137 return parseDirectiveRept(IDLoc, IDVal); 2138 case DK_IRP: 2139 return parseDirectiveIrp(IDLoc); 2140 case DK_IRPC: 2141 return parseDirectiveIrpc(IDLoc); 2142 case DK_ENDR: 2143 return parseDirectiveEndr(IDLoc); 2144 case DK_BUNDLE_ALIGN_MODE: 2145 return parseDirectiveBundleAlignMode(); 2146 case DK_BUNDLE_LOCK: 2147 return parseDirectiveBundleLock(); 2148 case DK_BUNDLE_UNLOCK: 2149 return parseDirectiveBundleUnlock(); 2150 case DK_SLEB128: 2151 return parseDirectiveLEB128(true); 2152 case DK_ULEB128: 2153 return parseDirectiveLEB128(false); 2154 case DK_SPACE: 2155 case DK_SKIP: 2156 return parseDirectiveSpace(IDVal); 2157 case DK_FILE: 2158 return parseDirectiveFile(IDLoc); 2159 case DK_LINE: 2160 return parseDirectiveLine(); 2161 case DK_LOC: 2162 return parseDirectiveLoc(); 2163 case DK_STABS: 2164 return parseDirectiveStabs(); 2165 case DK_CV_FILE: 2166 return parseDirectiveCVFile(); 2167 case DK_CV_FUNC_ID: 2168 return parseDirectiveCVFuncId(); 2169 case DK_CV_INLINE_SITE_ID: 2170 return parseDirectiveCVInlineSiteId(); 2171 case DK_CV_LOC: 2172 return parseDirectiveCVLoc(); 2173 case DK_CV_LINETABLE: 2174 return parseDirectiveCVLinetable(); 2175 case DK_CV_INLINE_LINETABLE: 2176 return parseDirectiveCVInlineLinetable(); 2177 case DK_CV_DEF_RANGE: 2178 return parseDirectiveCVDefRange(); 2179 case DK_CV_STRING: 2180 return parseDirectiveCVString(); 2181 case DK_CV_STRINGTABLE: 2182 return parseDirectiveCVStringTable(); 2183 case DK_CV_FILECHECKSUMS: 2184 return parseDirectiveCVFileChecksums(); 2185 case DK_CV_FILECHECKSUM_OFFSET: 2186 return parseDirectiveCVFileChecksumOffset(); 2187 case DK_CV_FPO_DATA: 2188 return parseDirectiveCVFPOData(); 2189 case DK_CFI_SECTIONS: 2190 return parseDirectiveCFISections(); 2191 case DK_CFI_STARTPROC: 2192 return parseDirectiveCFIStartProc(); 2193 case DK_CFI_ENDPROC: 2194 return parseDirectiveCFIEndProc(); 2195 case DK_CFI_DEF_CFA: 2196 return parseDirectiveCFIDefCfa(IDLoc); 2197 case DK_CFI_DEF_CFA_OFFSET: 2198 return parseDirectiveCFIDefCfaOffset(IDLoc); 2199 case DK_CFI_ADJUST_CFA_OFFSET: 2200 return parseDirectiveCFIAdjustCfaOffset(IDLoc); 2201 case DK_CFI_DEF_CFA_REGISTER: 2202 return parseDirectiveCFIDefCfaRegister(IDLoc); 2203 case DK_CFI_LLVM_DEF_ASPACE_CFA: 2204 return parseDirectiveCFILLVMDefAspaceCfa(IDLoc); 2205 case DK_CFI_OFFSET: 2206 return parseDirectiveCFIOffset(IDLoc); 2207 case DK_CFI_REL_OFFSET: 2208 return parseDirectiveCFIRelOffset(IDLoc); 2209 case DK_CFI_PERSONALITY: 2210 return parseDirectiveCFIPersonalityOrLsda(true); 2211 case DK_CFI_LSDA: 2212 return parseDirectiveCFIPersonalityOrLsda(false); 2213 case DK_CFI_REMEMBER_STATE: 2214 return parseDirectiveCFIRememberState(IDLoc); 2215 case DK_CFI_RESTORE_STATE: 2216 return parseDirectiveCFIRestoreState(IDLoc); 2217 case DK_CFI_SAME_VALUE: 2218 return parseDirectiveCFISameValue(IDLoc); 2219 case DK_CFI_RESTORE: 2220 return parseDirectiveCFIRestore(IDLoc); 2221 case DK_CFI_ESCAPE: 2222 return parseDirectiveCFIEscape(IDLoc); 2223 case DK_CFI_RETURN_COLUMN: 2224 return parseDirectiveCFIReturnColumn(IDLoc); 2225 case DK_CFI_SIGNAL_FRAME: 2226 return parseDirectiveCFISignalFrame(IDLoc); 2227 case DK_CFI_UNDEFINED: 2228 return parseDirectiveCFIUndefined(IDLoc); 2229 case DK_CFI_REGISTER: 2230 return parseDirectiveCFIRegister(IDLoc); 2231 case DK_CFI_WINDOW_SAVE: 2232 return parseDirectiveCFIWindowSave(IDLoc); 2233 case DK_MACROS_ON: 2234 case DK_MACROS_OFF: 2235 return parseDirectiveMacrosOnOff(IDVal); 2236 case DK_MACRO: 2237 return parseDirectiveMacro(IDLoc); 2238 case DK_ALTMACRO: 2239 case DK_NOALTMACRO: 2240 return parseDirectiveAltmacro(IDVal); 2241 case DK_EXITM: 2242 return parseDirectiveExitMacro(IDVal); 2243 case DK_ENDM: 2244 case DK_ENDMACRO: 2245 return parseDirectiveEndMacro(IDVal); 2246 case DK_PURGEM: 2247 return parseDirectivePurgeMacro(IDLoc); 2248 case DK_END: 2249 return parseDirectiveEnd(IDLoc); 2250 case DK_ERR: 2251 return parseDirectiveError(IDLoc, false); 2252 case DK_ERROR: 2253 return parseDirectiveError(IDLoc, true); 2254 case DK_WARNING: 2255 return parseDirectiveWarning(IDLoc); 2256 case DK_RELOC: 2257 return parseDirectiveReloc(IDLoc); 2258 case DK_DCB: 2259 case DK_DCB_W: 2260 return parseDirectiveDCB(IDVal, 2); 2261 case DK_DCB_B: 2262 return parseDirectiveDCB(IDVal, 1); 2263 case DK_DCB_D: 2264 return parseDirectiveRealDCB(IDVal, APFloat::IEEEdouble()); 2265 case DK_DCB_L: 2266 return parseDirectiveDCB(IDVal, 4); 2267 case DK_DCB_S: 2268 return parseDirectiveRealDCB(IDVal, APFloat::IEEEsingle()); 2269 case DK_DC_X: 2270 case DK_DCB_X: 2271 return TokError(Twine(IDVal) + 2272 " not currently supported for this target"); 2273 case DK_DS: 2274 case DK_DS_W: 2275 return parseDirectiveDS(IDVal, 2); 2276 case DK_DS_B: 2277 return parseDirectiveDS(IDVal, 1); 2278 case DK_DS_D: 2279 return parseDirectiveDS(IDVal, 8); 2280 case DK_DS_L: 2281 case DK_DS_S: 2282 return parseDirectiveDS(IDVal, 4); 2283 case DK_DS_P: 2284 case DK_DS_X: 2285 return parseDirectiveDS(IDVal, 12); 2286 case DK_PRINT: 2287 return parseDirectivePrint(IDLoc); 2288 case DK_ADDRSIG: 2289 return parseDirectiveAddrsig(); 2290 case DK_ADDRSIG_SYM: 2291 return parseDirectiveAddrsigSym(); 2292 case DK_PSEUDO_PROBE: 2293 return parseDirectivePseudoProbe(); 2294 case DK_LTO_DISCARD: 2295 return parseDirectiveLTODiscard(); 2296 case DK_MEMTAG: 2297 return parseDirectiveSymbolAttribute(MCSA_Memtag); 2298 } 2299 2300 return Error(IDLoc, "unknown directive"); 2301 } 2302 2303 // __asm _emit or __asm __emit 2304 if (ParsingMSInlineAsm && (IDVal == "_emit" || IDVal == "__emit" || 2305 IDVal == "_EMIT" || IDVal == "__EMIT")) 2306 return parseDirectiveMSEmit(IDLoc, Info, IDVal.size()); 2307 2308 // __asm align 2309 if (ParsingMSInlineAsm && (IDVal == "align" || IDVal == "ALIGN")) 2310 return parseDirectiveMSAlign(IDLoc, Info); 2311 2312 if (ParsingMSInlineAsm && (IDVal == "even" || IDVal == "EVEN")) 2313 Info.AsmRewrites->emplace_back(AOK_EVEN, IDLoc, 4); 2314 if (checkForValidSection()) 2315 return true; 2316 2317 return parseAndMatchAndEmitTargetInstruction(Info, IDVal, ID, IDLoc); 2318 } 2319 2320 bool AsmParser::parseAndMatchAndEmitTargetInstruction(ParseStatementInfo &Info, 2321 StringRef IDVal, 2322 AsmToken ID, 2323 SMLoc IDLoc) { 2324 // Canonicalize the opcode to lower case. 2325 std::string OpcodeStr = IDVal.lower(); 2326 ParseInstructionInfo IInfo(Info.AsmRewrites); 2327 bool ParseHadError = getTargetParser().ParseInstruction(IInfo, OpcodeStr, ID, 2328 Info.ParsedOperands); 2329 Info.ParseError = ParseHadError; 2330 2331 // Dump the parsed representation, if requested. 2332 if (getShowParsedOperands()) { 2333 SmallString<256> Str; 2334 raw_svector_ostream OS(Str); 2335 OS << "parsed instruction: ["; 2336 for (unsigned i = 0; i != Info.ParsedOperands.size(); ++i) { 2337 if (i != 0) 2338 OS << ", "; 2339 Info.ParsedOperands[i]->print(OS); 2340 } 2341 OS << "]"; 2342 2343 printMessage(IDLoc, SourceMgr::DK_Note, OS.str()); 2344 } 2345 2346 // Fail even if ParseInstruction erroneously returns false. 2347 if (hasPendingError() || ParseHadError) 2348 return true; 2349 2350 // If we are generating dwarf for the current section then generate a .loc 2351 // directive for the instruction. 2352 if (!ParseHadError && enabledGenDwarfForAssembly() && 2353 getContext().getGenDwarfSectionSyms().count( 2354 getStreamer().getCurrentSectionOnly())) { 2355 unsigned Line; 2356 if (ActiveMacros.empty()) 2357 Line = SrcMgr.FindLineNumber(IDLoc, CurBuffer); 2358 else 2359 Line = SrcMgr.FindLineNumber(ActiveMacros.front()->InstantiationLoc, 2360 ActiveMacros.front()->ExitBuffer); 2361 2362 // If we previously parsed a cpp hash file line comment then make sure the 2363 // current Dwarf File is for the CppHashFilename if not then emit the 2364 // Dwarf File table for it and adjust the line number for the .loc. 2365 if (!CppHashInfo.Filename.empty()) { 2366 unsigned FileNumber = getStreamer().emitDwarfFileDirective( 2367 0, StringRef(), CppHashInfo.Filename); 2368 getContext().setGenDwarfFileNumber(FileNumber); 2369 2370 unsigned CppHashLocLineNo = 2371 SrcMgr.FindLineNumber(CppHashInfo.Loc, CppHashInfo.Buf); 2372 Line = CppHashInfo.LineNumber - 1 + (Line - CppHashLocLineNo); 2373 } 2374 2375 getStreamer().emitDwarfLocDirective( 2376 getContext().getGenDwarfFileNumber(), Line, 0, 2377 DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0, 0, 0, 2378 StringRef()); 2379 } 2380 2381 // If parsing succeeded, match the instruction. 2382 if (!ParseHadError) { 2383 uint64_t ErrorInfo; 2384 if (getTargetParser().MatchAndEmitInstruction( 2385 IDLoc, Info.Opcode, Info.ParsedOperands, Out, ErrorInfo, 2386 getTargetParser().isParsingMSInlineAsm())) 2387 return true; 2388 } 2389 return false; 2390 } 2391 2392 // Parse and erase curly braces marking block start/end 2393 bool 2394 AsmParser::parseCurlyBlockScope(SmallVectorImpl<AsmRewrite> &AsmStrRewrites) { 2395 // Identify curly brace marking block start/end 2396 if (Lexer.isNot(AsmToken::LCurly) && Lexer.isNot(AsmToken::RCurly)) 2397 return false; 2398 2399 SMLoc StartLoc = Lexer.getLoc(); 2400 Lex(); // Eat the brace 2401 if (Lexer.is(AsmToken::EndOfStatement)) 2402 Lex(); // Eat EndOfStatement following the brace 2403 2404 // Erase the block start/end brace from the output asm string 2405 AsmStrRewrites.emplace_back(AOK_Skip, StartLoc, Lexer.getLoc().getPointer() - 2406 StartLoc.getPointer()); 2407 return true; 2408 } 2409 2410 /// parseCppHashLineFilenameComment as this: 2411 /// ::= # number "filename" 2412 bool AsmParser::parseCppHashLineFilenameComment(SMLoc L, bool SaveLocInfo) { 2413 Lex(); // Eat the hash token. 2414 // Lexer only ever emits HashDirective if it fully formed if it's 2415 // done the checking already so this is an internal error. 2416 assert(getTok().is(AsmToken::Integer) && 2417 "Lexing Cpp line comment: Expected Integer"); 2418 int64_t LineNumber = getTok().getIntVal(); 2419 Lex(); 2420 assert(getTok().is(AsmToken::String) && 2421 "Lexing Cpp line comment: Expected String"); 2422 StringRef Filename = getTok().getString(); 2423 Lex(); 2424 2425 if (!SaveLocInfo) 2426 return false; 2427 2428 // Get rid of the enclosing quotes. 2429 Filename = Filename.substr(1, Filename.size() - 2); 2430 2431 // Save the SMLoc, Filename and LineNumber for later use by diagnostics 2432 // and possibly DWARF file info. 2433 CppHashInfo.Loc = L; 2434 CppHashInfo.Filename = Filename; 2435 CppHashInfo.LineNumber = LineNumber; 2436 CppHashInfo.Buf = CurBuffer; 2437 if (FirstCppHashFilename.empty()) 2438 FirstCppHashFilename = Filename; 2439 return false; 2440 } 2441 2442 /// will use the last parsed cpp hash line filename comment 2443 /// for the Filename and LineNo if any in the diagnostic. 2444 void AsmParser::DiagHandler(const SMDiagnostic &Diag, void *Context) { 2445 auto *Parser = static_cast<AsmParser *>(Context); 2446 raw_ostream &OS = errs(); 2447 2448 const SourceMgr &DiagSrcMgr = *Diag.getSourceMgr(); 2449 SMLoc DiagLoc = Diag.getLoc(); 2450 unsigned DiagBuf = DiagSrcMgr.FindBufferContainingLoc(DiagLoc); 2451 unsigned CppHashBuf = 2452 Parser->SrcMgr.FindBufferContainingLoc(Parser->CppHashInfo.Loc); 2453 2454 // Like SourceMgr::printMessage() we need to print the include stack if any 2455 // before printing the message. 2456 unsigned DiagCurBuffer = DiagSrcMgr.FindBufferContainingLoc(DiagLoc); 2457 if (!Parser->SavedDiagHandler && DiagCurBuffer && 2458 DiagCurBuffer != DiagSrcMgr.getMainFileID()) { 2459 SMLoc ParentIncludeLoc = DiagSrcMgr.getParentIncludeLoc(DiagCurBuffer); 2460 DiagSrcMgr.PrintIncludeStack(ParentIncludeLoc, OS); 2461 } 2462 2463 // If we have not parsed a cpp hash line filename comment or the source 2464 // manager changed or buffer changed (like in a nested include) then just 2465 // print the normal diagnostic using its Filename and LineNo. 2466 if (!Parser->CppHashInfo.LineNumber || DiagBuf != CppHashBuf) { 2467 if (Parser->SavedDiagHandler) 2468 Parser->SavedDiagHandler(Diag, Parser->SavedDiagContext); 2469 else 2470 Parser->getContext().diagnose(Diag); 2471 return; 2472 } 2473 2474 // Use the CppHashFilename and calculate a line number based on the 2475 // CppHashInfo.Loc and CppHashInfo.LineNumber relative to this Diag's SMLoc 2476 // for the diagnostic. 2477 const std::string &Filename = std::string(Parser->CppHashInfo.Filename); 2478 2479 int DiagLocLineNo = DiagSrcMgr.FindLineNumber(DiagLoc, DiagBuf); 2480 int CppHashLocLineNo = 2481 Parser->SrcMgr.FindLineNumber(Parser->CppHashInfo.Loc, CppHashBuf); 2482 int LineNo = 2483 Parser->CppHashInfo.LineNumber - 1 + (DiagLocLineNo - CppHashLocLineNo); 2484 2485 SMDiagnostic NewDiag(*Diag.getSourceMgr(), Diag.getLoc(), Filename, LineNo, 2486 Diag.getColumnNo(), Diag.getKind(), Diag.getMessage(), 2487 Diag.getLineContents(), Diag.getRanges()); 2488 2489 if (Parser->SavedDiagHandler) 2490 Parser->SavedDiagHandler(Diag, Parser->SavedDiagContext); 2491 else 2492 Parser->getContext().diagnose(NewDiag); 2493 } 2494 2495 // FIXME: This is mostly duplicated from the function in AsmLexer.cpp. The 2496 // difference being that that function accepts '@' as part of identifiers and 2497 // we can't do that. AsmLexer.cpp should probably be changed to handle 2498 // '@' as a special case when needed. 2499 static bool isIdentifierChar(char c) { 2500 return isalnum(static_cast<unsigned char>(c)) || c == '_' || c == '$' || 2501 c == '.'; 2502 } 2503 2504 bool AsmParser::expandMacro(raw_svector_ostream &OS, StringRef Body, 2505 ArrayRef<MCAsmMacroParameter> Parameters, 2506 ArrayRef<MCAsmMacroArgument> A, 2507 bool EnableAtPseudoVariable, SMLoc L) { 2508 unsigned NParameters = Parameters.size(); 2509 bool HasVararg = NParameters ? Parameters.back().Vararg : false; 2510 if ((!IsDarwin || NParameters != 0) && NParameters != A.size()) 2511 return Error(L, "Wrong number of arguments"); 2512 2513 // A macro without parameters is handled differently on Darwin: 2514 // gas accepts no arguments and does no substitutions 2515 while (!Body.empty()) { 2516 // Scan for the next substitution. 2517 std::size_t End = Body.size(), Pos = 0; 2518 for (; Pos != End; ++Pos) { 2519 // Check for a substitution or escape. 2520 if (IsDarwin && !NParameters) { 2521 // This macro has no parameters, look for $0, $1, etc. 2522 if (Body[Pos] != '$' || Pos + 1 == End) 2523 continue; 2524 2525 char Next = Body[Pos + 1]; 2526 if (Next == '$' || Next == 'n' || 2527 isdigit(static_cast<unsigned char>(Next))) 2528 break; 2529 } else { 2530 // This macro has parameters, look for \foo, \bar, etc. 2531 if (Body[Pos] == '\\' && Pos + 1 != End) 2532 break; 2533 } 2534 } 2535 2536 // Add the prefix. 2537 OS << Body.slice(0, Pos); 2538 2539 // Check if we reached the end. 2540 if (Pos == End) 2541 break; 2542 2543 if (IsDarwin && !NParameters) { 2544 switch (Body[Pos + 1]) { 2545 // $$ => $ 2546 case '$': 2547 OS << '$'; 2548 break; 2549 2550 // $n => number of arguments 2551 case 'n': 2552 OS << A.size(); 2553 break; 2554 2555 // $[0-9] => argument 2556 default: { 2557 // Missing arguments are ignored. 2558 unsigned Index = Body[Pos + 1] - '0'; 2559 if (Index >= A.size()) 2560 break; 2561 2562 // Otherwise substitute with the token values, with spaces eliminated. 2563 for (const AsmToken &Token : A[Index]) 2564 OS << Token.getString(); 2565 break; 2566 } 2567 } 2568 Pos += 2; 2569 } else { 2570 unsigned I = Pos + 1; 2571 2572 // Check for the \@ pseudo-variable. 2573 if (EnableAtPseudoVariable && Body[I] == '@' && I + 1 != End) 2574 ++I; 2575 else 2576 while (isIdentifierChar(Body[I]) && I + 1 != End) 2577 ++I; 2578 2579 const char *Begin = Body.data() + Pos + 1; 2580 StringRef Argument(Begin, I - (Pos + 1)); 2581 unsigned Index = 0; 2582 2583 if (Argument == "@") { 2584 OS << NumOfMacroInstantiations; 2585 Pos += 2; 2586 } else { 2587 for (; Index < NParameters; ++Index) 2588 if (Parameters[Index].Name == Argument) 2589 break; 2590 2591 if (Index == NParameters) { 2592 if (Body[Pos + 1] == '(' && Body[Pos + 2] == ')') 2593 Pos += 3; 2594 else { 2595 OS << '\\' << Argument; 2596 Pos = I; 2597 } 2598 } else { 2599 bool VarargParameter = HasVararg && Index == (NParameters - 1); 2600 for (const AsmToken &Token : A[Index]) 2601 // For altmacro mode, you can write '%expr'. 2602 // The prefix '%' evaluates the expression 'expr' 2603 // and uses the result as a string (e.g. replace %(1+2) with the 2604 // string "3"). 2605 // Here, we identify the integer token which is the result of the 2606 // absolute expression evaluation and replace it with its string 2607 // representation. 2608 if (AltMacroMode && Token.getString().front() == '%' && 2609 Token.is(AsmToken::Integer)) 2610 // Emit an integer value to the buffer. 2611 OS << Token.getIntVal(); 2612 // Only Token that was validated as a string and begins with '<' 2613 // is considered altMacroString!!! 2614 else if (AltMacroMode && Token.getString().front() == '<' && 2615 Token.is(AsmToken::String)) { 2616 OS << angleBracketString(Token.getStringContents()); 2617 } 2618 // We expect no quotes around the string's contents when 2619 // parsing for varargs. 2620 else if (Token.isNot(AsmToken::String) || VarargParameter) 2621 OS << Token.getString(); 2622 else 2623 OS << Token.getStringContents(); 2624 2625 Pos += 1 + Argument.size(); 2626 } 2627 } 2628 } 2629 // Update the scan point. 2630 Body = Body.substr(Pos); 2631 } 2632 2633 return false; 2634 } 2635 2636 static bool isOperator(AsmToken::TokenKind kind) { 2637 switch (kind) { 2638 default: 2639 return false; 2640 case AsmToken::Plus: 2641 case AsmToken::Minus: 2642 case AsmToken::Tilde: 2643 case AsmToken::Slash: 2644 case AsmToken::Star: 2645 case AsmToken::Dot: 2646 case AsmToken::Equal: 2647 case AsmToken::EqualEqual: 2648 case AsmToken::Pipe: 2649 case AsmToken::PipePipe: 2650 case AsmToken::Caret: 2651 case AsmToken::Amp: 2652 case AsmToken::AmpAmp: 2653 case AsmToken::Exclaim: 2654 case AsmToken::ExclaimEqual: 2655 case AsmToken::Less: 2656 case AsmToken::LessEqual: 2657 case AsmToken::LessLess: 2658 case AsmToken::LessGreater: 2659 case AsmToken::Greater: 2660 case AsmToken::GreaterEqual: 2661 case AsmToken::GreaterGreater: 2662 return true; 2663 } 2664 } 2665 2666 namespace { 2667 2668 class AsmLexerSkipSpaceRAII { 2669 public: 2670 AsmLexerSkipSpaceRAII(AsmLexer &Lexer, bool SkipSpace) : Lexer(Lexer) { 2671 Lexer.setSkipSpace(SkipSpace); 2672 } 2673 2674 ~AsmLexerSkipSpaceRAII() { 2675 Lexer.setSkipSpace(true); 2676 } 2677 2678 private: 2679 AsmLexer &Lexer; 2680 }; 2681 2682 } // end anonymous namespace 2683 2684 bool AsmParser::parseMacroArgument(MCAsmMacroArgument &MA, bool Vararg) { 2685 2686 if (Vararg) { 2687 if (Lexer.isNot(AsmToken::EndOfStatement)) { 2688 StringRef Str = parseStringToEndOfStatement(); 2689 MA.emplace_back(AsmToken::String, Str); 2690 } 2691 return false; 2692 } 2693 2694 unsigned ParenLevel = 0; 2695 2696 // Darwin doesn't use spaces to delmit arguments. 2697 AsmLexerSkipSpaceRAII ScopedSkipSpace(Lexer, IsDarwin); 2698 2699 bool SpaceEaten; 2700 2701 while (true) { 2702 SpaceEaten = false; 2703 if (Lexer.is(AsmToken::Eof) || Lexer.is(AsmToken::Equal)) 2704 return TokError("unexpected token in macro instantiation"); 2705 2706 if (ParenLevel == 0) { 2707 2708 if (Lexer.is(AsmToken::Comma)) 2709 break; 2710 2711 if (Lexer.is(AsmToken::Space)) { 2712 SpaceEaten = true; 2713 Lexer.Lex(); // Eat spaces 2714 } 2715 2716 // Spaces can delimit parameters, but could also be part an expression. 2717 // If the token after a space is an operator, add the token and the next 2718 // one into this argument 2719 if (!IsDarwin) { 2720 if (isOperator(Lexer.getKind())) { 2721 MA.push_back(getTok()); 2722 Lexer.Lex(); 2723 2724 // Whitespace after an operator can be ignored. 2725 if (Lexer.is(AsmToken::Space)) 2726 Lexer.Lex(); 2727 2728 continue; 2729 } 2730 } 2731 if (SpaceEaten) 2732 break; 2733 } 2734 2735 // handleMacroEntry relies on not advancing the lexer here 2736 // to be able to fill in the remaining default parameter values 2737 if (Lexer.is(AsmToken::EndOfStatement)) 2738 break; 2739 2740 // Adjust the current parentheses level. 2741 if (Lexer.is(AsmToken::LParen)) 2742 ++ParenLevel; 2743 else if (Lexer.is(AsmToken::RParen) && ParenLevel) 2744 --ParenLevel; 2745 2746 // Append the token to the current argument list. 2747 MA.push_back(getTok()); 2748 Lexer.Lex(); 2749 } 2750 2751 if (ParenLevel != 0) 2752 return TokError("unbalanced parentheses in macro argument"); 2753 return false; 2754 } 2755 2756 // Parse the macro instantiation arguments. 2757 bool AsmParser::parseMacroArguments(const MCAsmMacro *M, 2758 MCAsmMacroArguments &A) { 2759 const unsigned NParameters = M ? M->Parameters.size() : 0; 2760 bool NamedParametersFound = false; 2761 SmallVector<SMLoc, 4> FALocs; 2762 2763 A.resize(NParameters); 2764 FALocs.resize(NParameters); 2765 2766 // Parse two kinds of macro invocations: 2767 // - macros defined without any parameters accept an arbitrary number of them 2768 // - macros defined with parameters accept at most that many of them 2769 bool HasVararg = NParameters ? M->Parameters.back().Vararg : false; 2770 for (unsigned Parameter = 0; !NParameters || Parameter < NParameters; 2771 ++Parameter) { 2772 SMLoc IDLoc = Lexer.getLoc(); 2773 MCAsmMacroParameter FA; 2774 2775 if (Lexer.is(AsmToken::Identifier) && Lexer.peekTok().is(AsmToken::Equal)) { 2776 if (parseIdentifier(FA.Name)) 2777 return Error(IDLoc, "invalid argument identifier for formal argument"); 2778 2779 if (Lexer.isNot(AsmToken::Equal)) 2780 return TokError("expected '=' after formal parameter identifier"); 2781 2782 Lex(); 2783 2784 NamedParametersFound = true; 2785 } 2786 bool Vararg = HasVararg && Parameter == (NParameters - 1); 2787 2788 if (NamedParametersFound && FA.Name.empty()) 2789 return Error(IDLoc, "cannot mix positional and keyword arguments"); 2790 2791 SMLoc StrLoc = Lexer.getLoc(); 2792 SMLoc EndLoc; 2793 if (AltMacroMode && Lexer.is(AsmToken::Percent)) { 2794 const MCExpr *AbsoluteExp; 2795 int64_t Value; 2796 /// Eat '%' 2797 Lex(); 2798 if (parseExpression(AbsoluteExp, EndLoc)) 2799 return false; 2800 if (!AbsoluteExp->evaluateAsAbsolute(Value, 2801 getStreamer().getAssemblerPtr())) 2802 return Error(StrLoc, "expected absolute expression"); 2803 const char *StrChar = StrLoc.getPointer(); 2804 const char *EndChar = EndLoc.getPointer(); 2805 AsmToken newToken(AsmToken::Integer, 2806 StringRef(StrChar, EndChar - StrChar), Value); 2807 FA.Value.push_back(newToken); 2808 } else if (AltMacroMode && Lexer.is(AsmToken::Less) && 2809 isAngleBracketString(StrLoc, EndLoc)) { 2810 const char *StrChar = StrLoc.getPointer(); 2811 const char *EndChar = EndLoc.getPointer(); 2812 jumpToLoc(EndLoc, CurBuffer); 2813 /// Eat from '<' to '>' 2814 Lex(); 2815 AsmToken newToken(AsmToken::String, 2816 StringRef(StrChar, EndChar - StrChar)); 2817 FA.Value.push_back(newToken); 2818 } else if(parseMacroArgument(FA.Value, Vararg)) 2819 return true; 2820 2821 unsigned PI = Parameter; 2822 if (!FA.Name.empty()) { 2823 unsigned FAI = 0; 2824 for (FAI = 0; FAI < NParameters; ++FAI) 2825 if (M->Parameters[FAI].Name == FA.Name) 2826 break; 2827 2828 if (FAI >= NParameters) { 2829 assert(M && "expected macro to be defined"); 2830 return Error(IDLoc, "parameter named '" + FA.Name + 2831 "' does not exist for macro '" + M->Name + "'"); 2832 } 2833 PI = FAI; 2834 } 2835 2836 if (!FA.Value.empty()) { 2837 if (A.size() <= PI) 2838 A.resize(PI + 1); 2839 A[PI] = FA.Value; 2840 2841 if (FALocs.size() <= PI) 2842 FALocs.resize(PI + 1); 2843 2844 FALocs[PI] = Lexer.getLoc(); 2845 } 2846 2847 // At the end of the statement, fill in remaining arguments that have 2848 // default values. If there aren't any, then the next argument is 2849 // required but missing 2850 if (Lexer.is(AsmToken::EndOfStatement)) { 2851 bool Failure = false; 2852 for (unsigned FAI = 0; FAI < NParameters; ++FAI) { 2853 if (A[FAI].empty()) { 2854 if (M->Parameters[FAI].Required) { 2855 Error(FALocs[FAI].isValid() ? FALocs[FAI] : Lexer.getLoc(), 2856 "missing value for required parameter " 2857 "'" + M->Parameters[FAI].Name + "' in macro '" + M->Name + "'"); 2858 Failure = true; 2859 } 2860 2861 if (!M->Parameters[FAI].Value.empty()) 2862 A[FAI] = M->Parameters[FAI].Value; 2863 } 2864 } 2865 return Failure; 2866 } 2867 2868 if (Lexer.is(AsmToken::Comma)) 2869 Lex(); 2870 } 2871 2872 return TokError("too many positional arguments"); 2873 } 2874 2875 bool AsmParser::handleMacroEntry(const MCAsmMacro *M, SMLoc NameLoc) { 2876 // Arbitrarily limit macro nesting depth (default matches 'as'). We can 2877 // eliminate this, although we should protect against infinite loops. 2878 unsigned MaxNestingDepth = AsmMacroMaxNestingDepth; 2879 if (ActiveMacros.size() == MaxNestingDepth) { 2880 std::ostringstream MaxNestingDepthError; 2881 MaxNestingDepthError << "macros cannot be nested more than " 2882 << MaxNestingDepth << " levels deep." 2883 << " Use -asm-macro-max-nesting-depth to increase " 2884 "this limit."; 2885 return TokError(MaxNestingDepthError.str()); 2886 } 2887 2888 MCAsmMacroArguments A; 2889 if (parseMacroArguments(M, A)) 2890 return true; 2891 2892 // Macro instantiation is lexical, unfortunately. We construct a new buffer 2893 // to hold the macro body with substitutions. 2894 SmallString<256> Buf; 2895 StringRef Body = M->Body; 2896 raw_svector_ostream OS(Buf); 2897 2898 if (expandMacro(OS, Body, M->Parameters, A, true, getTok().getLoc())) 2899 return true; 2900 2901 // We include the .endmacro in the buffer as our cue to exit the macro 2902 // instantiation. 2903 OS << ".endmacro\n"; 2904 2905 std::unique_ptr<MemoryBuffer> Instantiation = 2906 MemoryBuffer::getMemBufferCopy(OS.str(), "<instantiation>"); 2907 2908 // Create the macro instantiation object and add to the current macro 2909 // instantiation stack. 2910 MacroInstantiation *MI = new MacroInstantiation{ 2911 NameLoc, CurBuffer, getTok().getLoc(), TheCondStack.size()}; 2912 ActiveMacros.push_back(MI); 2913 2914 ++NumOfMacroInstantiations; 2915 2916 // Jump to the macro instantiation and prime the lexer. 2917 CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc()); 2918 Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); 2919 Lex(); 2920 2921 return false; 2922 } 2923 2924 void AsmParser::handleMacroExit() { 2925 // Jump to the EndOfStatement we should return to, and consume it. 2926 jumpToLoc(ActiveMacros.back()->ExitLoc, ActiveMacros.back()->ExitBuffer); 2927 Lex(); 2928 2929 // Pop the instantiation entry. 2930 delete ActiveMacros.back(); 2931 ActiveMacros.pop_back(); 2932 } 2933 2934 bool AsmParser::parseAssignment(StringRef Name, AssignmentKind Kind) { 2935 MCSymbol *Sym; 2936 const MCExpr *Value; 2937 SMLoc ExprLoc = getTok().getLoc(); 2938 bool AllowRedef = 2939 Kind == AssignmentKind::Set || Kind == AssignmentKind::Equal; 2940 if (MCParserUtils::parseAssignmentExpression(Name, AllowRedef, *this, Sym, 2941 Value)) 2942 return true; 2943 2944 if (!Sym) { 2945 // In the case where we parse an expression starting with a '.', we will 2946 // not generate an error, nor will we create a symbol. In this case we 2947 // should just return out. 2948 return false; 2949 } 2950 2951 if (discardLTOSymbol(Name)) 2952 return false; 2953 2954 // Do the assignment. 2955 switch (Kind) { 2956 case AssignmentKind::Equal: 2957 Out.emitAssignment(Sym, Value); 2958 break; 2959 case AssignmentKind::Set: 2960 case AssignmentKind::Equiv: 2961 Out.emitAssignment(Sym, Value); 2962 Out.emitSymbolAttribute(Sym, MCSA_NoDeadStrip); 2963 break; 2964 case AssignmentKind::LTOSetConditional: 2965 if (Value->getKind() != MCExpr::SymbolRef) 2966 return Error(ExprLoc, "expected identifier"); 2967 2968 Out.emitConditionalAssignment(Sym, Value); 2969 break; 2970 } 2971 2972 return false; 2973 } 2974 2975 /// parseIdentifier: 2976 /// ::= identifier 2977 /// ::= string 2978 bool AsmParser::parseIdentifier(StringRef &Res) { 2979 // The assembler has relaxed rules for accepting identifiers, in particular we 2980 // allow things like '.globl $foo' and '.def @feat.00', which would normally be 2981 // separate tokens. At this level, we have already lexed so we cannot (currently) 2982 // handle this as a context dependent token, instead we detect adjacent tokens 2983 // and return the combined identifier. 2984 if (Lexer.is(AsmToken::Dollar) || Lexer.is(AsmToken::At)) { 2985 SMLoc PrefixLoc = getLexer().getLoc(); 2986 2987 // Consume the prefix character, and check for a following identifier. 2988 2989 AsmToken Buf[1]; 2990 Lexer.peekTokens(Buf, false); 2991 2992 if (Buf[0].isNot(AsmToken::Identifier) && Buf[0].isNot(AsmToken::Integer)) 2993 return true; 2994 2995 // We have a '$' or '@' followed by an identifier or integer token, make 2996 // sure they are adjacent. 2997 if (PrefixLoc.getPointer() + 1 != Buf[0].getLoc().getPointer()) 2998 return true; 2999 3000 // eat $ or @ 3001 Lexer.Lex(); // Lexer's Lex guarantees consecutive token. 3002 // Construct the joined identifier and consume the token. 3003 Res = StringRef(PrefixLoc.getPointer(), getTok().getString().size() + 1); 3004 Lex(); // Parser Lex to maintain invariants. 3005 return false; 3006 } 3007 3008 if (Lexer.isNot(AsmToken::Identifier) && Lexer.isNot(AsmToken::String)) 3009 return true; 3010 3011 Res = getTok().getIdentifier(); 3012 3013 Lex(); // Consume the identifier token. 3014 3015 return false; 3016 } 3017 3018 /// parseDirectiveSet: 3019 /// ::= .equ identifier ',' expression 3020 /// ::= .equiv identifier ',' expression 3021 /// ::= .set identifier ',' expression 3022 /// ::= .lto_set_conditional identifier ',' expression 3023 bool AsmParser::parseDirectiveSet(StringRef IDVal, AssignmentKind Kind) { 3024 StringRef Name; 3025 if (check(parseIdentifier(Name), "expected identifier") || parseComma() || 3026 parseAssignment(Name, Kind)) 3027 return true; 3028 return false; 3029 } 3030 3031 bool AsmParser::parseEscapedString(std::string &Data) { 3032 if (check(getTok().isNot(AsmToken::String), "expected string")) 3033 return true; 3034 3035 Data = ""; 3036 StringRef Str = getTok().getStringContents(); 3037 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 3038 if (Str[i] != '\\') { 3039 Data += Str[i]; 3040 continue; 3041 } 3042 3043 // Recognize escaped characters. Note that this escape semantics currently 3044 // loosely follows Darwin 'as'. 3045 ++i; 3046 if (i == e) 3047 return TokError("unexpected backslash at end of string"); 3048 3049 // Recognize hex sequences similarly to GNU 'as'. 3050 if (Str[i] == 'x' || Str[i] == 'X') { 3051 size_t length = Str.size(); 3052 if (i + 1 >= length || !isHexDigit(Str[i + 1])) 3053 return TokError("invalid hexadecimal escape sequence"); 3054 3055 // Consume hex characters. GNU 'as' reads all hexadecimal characters and 3056 // then truncates to the lower 16 bits. Seems reasonable. 3057 unsigned Value = 0; 3058 while (i + 1 < length && isHexDigit(Str[i + 1])) 3059 Value = Value * 16 + hexDigitValue(Str[++i]); 3060 3061 Data += (unsigned char)(Value & 0xFF); 3062 continue; 3063 } 3064 3065 // Recognize octal sequences. 3066 if ((unsigned)(Str[i] - '0') <= 7) { 3067 // Consume up to three octal characters. 3068 unsigned Value = Str[i] - '0'; 3069 3070 if (i + 1 != e && ((unsigned)(Str[i + 1] - '0')) <= 7) { 3071 ++i; 3072 Value = Value * 8 + (Str[i] - '0'); 3073 3074 if (i + 1 != e && ((unsigned)(Str[i + 1] - '0')) <= 7) { 3075 ++i; 3076 Value = Value * 8 + (Str[i] - '0'); 3077 } 3078 } 3079 3080 if (Value > 255) 3081 return TokError("invalid octal escape sequence (out of range)"); 3082 3083 Data += (unsigned char)Value; 3084 continue; 3085 } 3086 3087 // Otherwise recognize individual escapes. 3088 switch (Str[i]) { 3089 default: 3090 // Just reject invalid escape sequences for now. 3091 return TokError("invalid escape sequence (unrecognized character)"); 3092 3093 case 'b': Data += '\b'; break; 3094 case 'f': Data += '\f'; break; 3095 case 'n': Data += '\n'; break; 3096 case 'r': Data += '\r'; break; 3097 case 't': Data += '\t'; break; 3098 case '"': Data += '"'; break; 3099 case '\\': Data += '\\'; break; 3100 } 3101 } 3102 3103 Lex(); 3104 return false; 3105 } 3106 3107 bool AsmParser::parseAngleBracketString(std::string &Data) { 3108 SMLoc EndLoc, StartLoc = getTok().getLoc(); 3109 if (isAngleBracketString(StartLoc, EndLoc)) { 3110 const char *StartChar = StartLoc.getPointer() + 1; 3111 const char *EndChar = EndLoc.getPointer() - 1; 3112 jumpToLoc(EndLoc, CurBuffer); 3113 /// Eat from '<' to '>' 3114 Lex(); 3115 3116 Data = angleBracketString(StringRef(StartChar, EndChar - StartChar)); 3117 return false; 3118 } 3119 return true; 3120 } 3121 3122 /// parseDirectiveAscii: 3123 // ::= .ascii [ "string"+ ( , "string"+ )* ] 3124 /// ::= ( .asciz | .string ) [ "string" ( , "string" )* ] 3125 bool AsmParser::parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated) { 3126 auto parseOp = [&]() -> bool { 3127 std::string Data; 3128 if (checkForValidSection()) 3129 return true; 3130 // Only support spaces as separators for .ascii directive for now. See the 3131 // discusssion at https://reviews.llvm.org/D91460 for more details. 3132 do { 3133 if (parseEscapedString(Data)) 3134 return true; 3135 getStreamer().emitBytes(Data); 3136 } while (!ZeroTerminated && getTok().is(AsmToken::String)); 3137 if (ZeroTerminated) 3138 getStreamer().emitBytes(StringRef("\0", 1)); 3139 return false; 3140 }; 3141 3142 return parseMany(parseOp); 3143 } 3144 3145 /// parseDirectiveReloc 3146 /// ::= .reloc expression , identifier [ , expression ] 3147 bool AsmParser::parseDirectiveReloc(SMLoc DirectiveLoc) { 3148 const MCExpr *Offset; 3149 const MCExpr *Expr = nullptr; 3150 SMLoc OffsetLoc = Lexer.getTok().getLoc(); 3151 3152 if (parseExpression(Offset)) 3153 return true; 3154 if (parseComma() || 3155 check(getTok().isNot(AsmToken::Identifier), "expected relocation name")) 3156 return true; 3157 3158 SMLoc NameLoc = Lexer.getTok().getLoc(); 3159 StringRef Name = Lexer.getTok().getIdentifier(); 3160 Lex(); 3161 3162 if (Lexer.is(AsmToken::Comma)) { 3163 Lex(); 3164 SMLoc ExprLoc = Lexer.getLoc(); 3165 if (parseExpression(Expr)) 3166 return true; 3167 3168 MCValue Value; 3169 if (!Expr->evaluateAsRelocatable(Value, nullptr, nullptr)) 3170 return Error(ExprLoc, "expression must be relocatable"); 3171 } 3172 3173 if (parseEOL()) 3174 return true; 3175 3176 const MCTargetAsmParser &MCT = getTargetParser(); 3177 const MCSubtargetInfo &STI = MCT.getSTI(); 3178 if (std::optional<std::pair<bool, std::string>> Err = 3179 getStreamer().emitRelocDirective(*Offset, Name, Expr, DirectiveLoc, 3180 STI)) 3181 return Error(Err->first ? NameLoc : OffsetLoc, Err->second); 3182 3183 return false; 3184 } 3185 3186 /// parseDirectiveValue 3187 /// ::= (.byte | .short | ... ) [ expression (, expression)* ] 3188 bool AsmParser::parseDirectiveValue(StringRef IDVal, unsigned Size) { 3189 auto parseOp = [&]() -> bool { 3190 const MCExpr *Value; 3191 SMLoc ExprLoc = getLexer().getLoc(); 3192 if (checkForValidSection() || parseExpression(Value)) 3193 return true; 3194 // Special case constant expressions to match code generator. 3195 if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) { 3196 assert(Size <= 8 && "Invalid size"); 3197 uint64_t IntValue = MCE->getValue(); 3198 if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue)) 3199 return Error(ExprLoc, "out of range literal value"); 3200 getStreamer().emitIntValue(IntValue, Size); 3201 } else 3202 getStreamer().emitValue(Value, Size, ExprLoc); 3203 return false; 3204 }; 3205 3206 return parseMany(parseOp); 3207 } 3208 3209 static bool parseHexOcta(AsmParser &Asm, uint64_t &hi, uint64_t &lo) { 3210 if (Asm.getTok().isNot(AsmToken::Integer) && 3211 Asm.getTok().isNot(AsmToken::BigNum)) 3212 return Asm.TokError("unknown token in expression"); 3213 SMLoc ExprLoc = Asm.getTok().getLoc(); 3214 APInt IntValue = Asm.getTok().getAPIntVal(); 3215 Asm.Lex(); 3216 if (!IntValue.isIntN(128)) 3217 return Asm.Error(ExprLoc, "out of range literal value"); 3218 if (!IntValue.isIntN(64)) { 3219 hi = IntValue.getHiBits(IntValue.getBitWidth() - 64).getZExtValue(); 3220 lo = IntValue.getLoBits(64).getZExtValue(); 3221 } else { 3222 hi = 0; 3223 lo = IntValue.getZExtValue(); 3224 } 3225 return false; 3226 } 3227 3228 /// ParseDirectiveOctaValue 3229 /// ::= .octa [ hexconstant (, hexconstant)* ] 3230 3231 bool AsmParser::parseDirectiveOctaValue(StringRef IDVal) { 3232 auto parseOp = [&]() -> bool { 3233 if (checkForValidSection()) 3234 return true; 3235 uint64_t hi, lo; 3236 if (parseHexOcta(*this, hi, lo)) 3237 return true; 3238 if (MAI.isLittleEndian()) { 3239 getStreamer().emitInt64(lo); 3240 getStreamer().emitInt64(hi); 3241 } else { 3242 getStreamer().emitInt64(hi); 3243 getStreamer().emitInt64(lo); 3244 } 3245 return false; 3246 }; 3247 3248 return parseMany(parseOp); 3249 } 3250 3251 bool AsmParser::parseRealValue(const fltSemantics &Semantics, APInt &Res) { 3252 // We don't truly support arithmetic on floating point expressions, so we 3253 // have to manually parse unary prefixes. 3254 bool IsNeg = false; 3255 if (getLexer().is(AsmToken::Minus)) { 3256 Lexer.Lex(); 3257 IsNeg = true; 3258 } else if (getLexer().is(AsmToken::Plus)) 3259 Lexer.Lex(); 3260 3261 if (Lexer.is(AsmToken::Error)) 3262 return TokError(Lexer.getErr()); 3263 if (Lexer.isNot(AsmToken::Integer) && Lexer.isNot(AsmToken::Real) && 3264 Lexer.isNot(AsmToken::Identifier)) 3265 return TokError("unexpected token in directive"); 3266 3267 // Convert to an APFloat. 3268 APFloat Value(Semantics); 3269 StringRef IDVal = getTok().getString(); 3270 if (getLexer().is(AsmToken::Identifier)) { 3271 if (!IDVal.compare_insensitive("infinity") || 3272 !IDVal.compare_insensitive("inf")) 3273 Value = APFloat::getInf(Semantics); 3274 else if (!IDVal.compare_insensitive("nan")) 3275 Value = APFloat::getNaN(Semantics, false, ~0); 3276 else 3277 return TokError("invalid floating point literal"); 3278 } else if (errorToBool( 3279 Value.convertFromString(IDVal, APFloat::rmNearestTiesToEven) 3280 .takeError())) 3281 return TokError("invalid floating point literal"); 3282 if (IsNeg) 3283 Value.changeSign(); 3284 3285 // Consume the numeric token. 3286 Lex(); 3287 3288 Res = Value.bitcastToAPInt(); 3289 3290 return false; 3291 } 3292 3293 /// parseDirectiveRealValue 3294 /// ::= (.single | .double) [ expression (, expression)* ] 3295 bool AsmParser::parseDirectiveRealValue(StringRef IDVal, 3296 const fltSemantics &Semantics) { 3297 auto parseOp = [&]() -> bool { 3298 APInt AsInt; 3299 if (checkForValidSection() || parseRealValue(Semantics, AsInt)) 3300 return true; 3301 getStreamer().emitIntValue(AsInt.getLimitedValue(), 3302 AsInt.getBitWidth() / 8); 3303 return false; 3304 }; 3305 3306 return parseMany(parseOp); 3307 } 3308 3309 /// parseDirectiveZero 3310 /// ::= .zero expression 3311 bool AsmParser::parseDirectiveZero() { 3312 SMLoc NumBytesLoc = Lexer.getLoc(); 3313 const MCExpr *NumBytes; 3314 if (checkForValidSection() || parseExpression(NumBytes)) 3315 return true; 3316 3317 int64_t Val = 0; 3318 if (getLexer().is(AsmToken::Comma)) { 3319 Lex(); 3320 if (parseAbsoluteExpression(Val)) 3321 return true; 3322 } 3323 3324 if (parseEOL()) 3325 return true; 3326 getStreamer().emitFill(*NumBytes, Val, NumBytesLoc); 3327 3328 return false; 3329 } 3330 3331 /// parseDirectiveFill 3332 /// ::= .fill expression [ , expression [ , expression ] ] 3333 bool AsmParser::parseDirectiveFill() { 3334 SMLoc NumValuesLoc = Lexer.getLoc(); 3335 const MCExpr *NumValues; 3336 if (checkForValidSection() || parseExpression(NumValues)) 3337 return true; 3338 3339 int64_t FillSize = 1; 3340 int64_t FillExpr = 0; 3341 3342 SMLoc SizeLoc, ExprLoc; 3343 3344 if (parseOptionalToken(AsmToken::Comma)) { 3345 SizeLoc = getTok().getLoc(); 3346 if (parseAbsoluteExpression(FillSize)) 3347 return true; 3348 if (parseOptionalToken(AsmToken::Comma)) { 3349 ExprLoc = getTok().getLoc(); 3350 if (parseAbsoluteExpression(FillExpr)) 3351 return true; 3352 } 3353 } 3354 if (parseEOL()) 3355 return true; 3356 3357 if (FillSize < 0) { 3358 Warning(SizeLoc, "'.fill' directive with negative size has no effect"); 3359 return false; 3360 } 3361 if (FillSize > 8) { 3362 Warning(SizeLoc, "'.fill' directive with size greater than 8 has been truncated to 8"); 3363 FillSize = 8; 3364 } 3365 3366 if (!isUInt<32>(FillExpr) && FillSize > 4) 3367 Warning(ExprLoc, "'.fill' directive pattern has been truncated to 32-bits"); 3368 3369 getStreamer().emitFill(*NumValues, FillSize, FillExpr, NumValuesLoc); 3370 3371 return false; 3372 } 3373 3374 /// parseDirectiveOrg 3375 /// ::= .org expression [ , expression ] 3376 bool AsmParser::parseDirectiveOrg() { 3377 const MCExpr *Offset; 3378 SMLoc OffsetLoc = Lexer.getLoc(); 3379 if (checkForValidSection() || parseExpression(Offset)) 3380 return true; 3381 3382 // Parse optional fill expression. 3383 int64_t FillExpr = 0; 3384 if (parseOptionalToken(AsmToken::Comma)) 3385 if (parseAbsoluteExpression(FillExpr)) 3386 return true; 3387 if (parseEOL()) 3388 return true; 3389 3390 getStreamer().emitValueToOffset(Offset, FillExpr, OffsetLoc); 3391 return false; 3392 } 3393 3394 /// parseDirectiveAlign 3395 /// ::= {.align, ...} expression [ , expression [ , expression ]] 3396 bool AsmParser::parseDirectiveAlign(bool IsPow2, unsigned ValueSize) { 3397 SMLoc AlignmentLoc = getLexer().getLoc(); 3398 int64_t Alignment; 3399 SMLoc MaxBytesLoc; 3400 bool HasFillExpr = false; 3401 int64_t FillExpr = 0; 3402 int64_t MaxBytesToFill = 0; 3403 SMLoc FillExprLoc; 3404 3405 auto parseAlign = [&]() -> bool { 3406 if (parseAbsoluteExpression(Alignment)) 3407 return true; 3408 if (parseOptionalToken(AsmToken::Comma)) { 3409 // The fill expression can be omitted while specifying a maximum number of 3410 // alignment bytes, e.g: 3411 // .align 3,,4 3412 if (getTok().isNot(AsmToken::Comma)) { 3413 HasFillExpr = true; 3414 if (parseTokenLoc(FillExprLoc) || parseAbsoluteExpression(FillExpr)) 3415 return true; 3416 } 3417 if (parseOptionalToken(AsmToken::Comma)) 3418 if (parseTokenLoc(MaxBytesLoc) || 3419 parseAbsoluteExpression(MaxBytesToFill)) 3420 return true; 3421 } 3422 return parseEOL(); 3423 }; 3424 3425 if (checkForValidSection()) 3426 return true; 3427 // Ignore empty '.p2align' directives for GNU-as compatibility 3428 if (IsPow2 && (ValueSize == 1) && getTok().is(AsmToken::EndOfStatement)) { 3429 Warning(AlignmentLoc, "p2align directive with no operand(s) is ignored"); 3430 return parseEOL(); 3431 } 3432 if (parseAlign()) 3433 return true; 3434 3435 // Always emit an alignment here even if we thrown an error. 3436 bool ReturnVal = false; 3437 3438 // Compute alignment in bytes. 3439 if (IsPow2) { 3440 // FIXME: Diagnose overflow. 3441 if (Alignment >= 32) { 3442 ReturnVal |= Error(AlignmentLoc, "invalid alignment value"); 3443 Alignment = 31; 3444 } 3445 3446 Alignment = 1ULL << Alignment; 3447 } else { 3448 // Reject alignments that aren't either a power of two or zero, 3449 // for gas compatibility. Alignment of zero is silently rounded 3450 // up to one. 3451 if (Alignment == 0) 3452 Alignment = 1; 3453 else if (!isPowerOf2_64(Alignment)) { 3454 ReturnVal |= Error(AlignmentLoc, "alignment must be a power of 2"); 3455 Alignment = llvm::bit_floor<uint64_t>(Alignment); 3456 } 3457 if (!isUInt<32>(Alignment)) { 3458 ReturnVal |= Error(AlignmentLoc, "alignment must be smaller than 2**32"); 3459 Alignment = 1u << 31; 3460 } 3461 } 3462 3463 if (HasFillExpr && FillExpr != 0) { 3464 MCSection *Sec = getStreamer().getCurrentSectionOnly(); 3465 if (Sec && Sec->isVirtualSection()) { 3466 ReturnVal |= 3467 Warning(FillExprLoc, "ignoring non-zero fill value in " + 3468 Sec->getVirtualSectionKind() + " section '" + 3469 Sec->getName() + "'"); 3470 FillExpr = 0; 3471 } 3472 } 3473 3474 // Diagnose non-sensical max bytes to align. 3475 if (MaxBytesLoc.isValid()) { 3476 if (MaxBytesToFill < 1) { 3477 ReturnVal |= Error(MaxBytesLoc, 3478 "alignment directive can never be satisfied in this " 3479 "many bytes, ignoring maximum bytes expression"); 3480 MaxBytesToFill = 0; 3481 } 3482 3483 if (MaxBytesToFill >= Alignment) { 3484 Warning(MaxBytesLoc, "maximum bytes expression exceeds alignment and " 3485 "has no effect"); 3486 MaxBytesToFill = 0; 3487 } 3488 } 3489 3490 // Check whether we should use optimal code alignment for this .align 3491 // directive. 3492 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 3493 assert(Section && "must have section to emit alignment"); 3494 bool useCodeAlign = Section->useCodeAlign(); 3495 if ((!HasFillExpr || Lexer.getMAI().getTextAlignFillValue() == FillExpr) && 3496 ValueSize == 1 && useCodeAlign) { 3497 getStreamer().emitCodeAlignment( 3498 Align(Alignment), &getTargetParser().getSTI(), MaxBytesToFill); 3499 } else { 3500 // FIXME: Target specific behavior about how the "extra" bytes are filled. 3501 getStreamer().emitValueToAlignment(Align(Alignment), FillExpr, ValueSize, 3502 MaxBytesToFill); 3503 } 3504 3505 return ReturnVal; 3506 } 3507 3508 /// parseDirectiveFile 3509 /// ::= .file filename 3510 /// ::= .file number [directory] filename [md5 checksum] [source source-text] 3511 bool AsmParser::parseDirectiveFile(SMLoc DirectiveLoc) { 3512 // FIXME: I'm not sure what this is. 3513 int64_t FileNumber = -1; 3514 if (getLexer().is(AsmToken::Integer)) { 3515 FileNumber = getTok().getIntVal(); 3516 Lex(); 3517 3518 if (FileNumber < 0) 3519 return TokError("negative file number"); 3520 } 3521 3522 std::string Path; 3523 3524 // Usually the directory and filename together, otherwise just the directory. 3525 // Allow the strings to have escaped octal character sequence. 3526 if (parseEscapedString(Path)) 3527 return true; 3528 3529 StringRef Directory; 3530 StringRef Filename; 3531 std::string FilenameData; 3532 if (getLexer().is(AsmToken::String)) { 3533 if (check(FileNumber == -1, 3534 "explicit path specified, but no file number") || 3535 parseEscapedString(FilenameData)) 3536 return true; 3537 Filename = FilenameData; 3538 Directory = Path; 3539 } else { 3540 Filename = Path; 3541 } 3542 3543 uint64_t MD5Hi, MD5Lo; 3544 bool HasMD5 = false; 3545 3546 std::optional<StringRef> Source; 3547 bool HasSource = false; 3548 std::string SourceString; 3549 3550 while (!parseOptionalToken(AsmToken::EndOfStatement)) { 3551 StringRef Keyword; 3552 if (check(getTok().isNot(AsmToken::Identifier), 3553 "unexpected token in '.file' directive") || 3554 parseIdentifier(Keyword)) 3555 return true; 3556 if (Keyword == "md5") { 3557 HasMD5 = true; 3558 if (check(FileNumber == -1, 3559 "MD5 checksum specified, but no file number") || 3560 parseHexOcta(*this, MD5Hi, MD5Lo)) 3561 return true; 3562 } else if (Keyword == "source") { 3563 HasSource = true; 3564 if (check(FileNumber == -1, 3565 "source specified, but no file number") || 3566 check(getTok().isNot(AsmToken::String), 3567 "unexpected token in '.file' directive") || 3568 parseEscapedString(SourceString)) 3569 return true; 3570 } else { 3571 return TokError("unexpected token in '.file' directive"); 3572 } 3573 } 3574 3575 if (FileNumber == -1) { 3576 // Ignore the directive if there is no number and the target doesn't support 3577 // numberless .file directives. This allows some portability of assembler 3578 // between different object file formats. 3579 if (getContext().getAsmInfo()->hasSingleParameterDotFile()) 3580 getStreamer().emitFileDirective(Filename); 3581 } else { 3582 // In case there is a -g option as well as debug info from directive .file, 3583 // we turn off the -g option, directly use the existing debug info instead. 3584 // Throw away any implicit file table for the assembler source. 3585 if (Ctx.getGenDwarfForAssembly()) { 3586 Ctx.getMCDwarfLineTable(0).resetFileTable(); 3587 Ctx.setGenDwarfForAssembly(false); 3588 } 3589 3590 std::optional<MD5::MD5Result> CKMem; 3591 if (HasMD5) { 3592 MD5::MD5Result Sum; 3593 for (unsigned i = 0; i != 8; ++i) { 3594 Sum[i] = uint8_t(MD5Hi >> ((7 - i) * 8)); 3595 Sum[i + 8] = uint8_t(MD5Lo >> ((7 - i) * 8)); 3596 } 3597 CKMem = Sum; 3598 } 3599 if (HasSource) { 3600 char *SourceBuf = static_cast<char *>(Ctx.allocate(SourceString.size())); 3601 memcpy(SourceBuf, SourceString.data(), SourceString.size()); 3602 Source = StringRef(SourceBuf, SourceString.size()); 3603 } 3604 if (FileNumber == 0) { 3605 // Upgrade to Version 5 for assembly actions like clang -c a.s. 3606 if (Ctx.getDwarfVersion() < 5) 3607 Ctx.setDwarfVersion(5); 3608 getStreamer().emitDwarfFile0Directive(Directory, Filename, CKMem, Source); 3609 } else { 3610 Expected<unsigned> FileNumOrErr = getStreamer().tryEmitDwarfFileDirective( 3611 FileNumber, Directory, Filename, CKMem, Source); 3612 if (!FileNumOrErr) 3613 return Error(DirectiveLoc, toString(FileNumOrErr.takeError())); 3614 } 3615 // Alert the user if there are some .file directives with MD5 and some not. 3616 // But only do that once. 3617 if (!ReportedInconsistentMD5 && !Ctx.isDwarfMD5UsageConsistent(0)) { 3618 ReportedInconsistentMD5 = true; 3619 return Warning(DirectiveLoc, "inconsistent use of MD5 checksums"); 3620 } 3621 } 3622 3623 return false; 3624 } 3625 3626 /// parseDirectiveLine 3627 /// ::= .line [number] 3628 bool AsmParser::parseDirectiveLine() { 3629 int64_t LineNumber; 3630 if (getLexer().is(AsmToken::Integer)) { 3631 if (parseIntToken(LineNumber, "unexpected token in '.line' directive")) 3632 return true; 3633 (void)LineNumber; 3634 // FIXME: Do something with the .line. 3635 } 3636 return parseEOL(); 3637 } 3638 3639 /// parseDirectiveLoc 3640 /// ::= .loc FileNumber [LineNumber] [ColumnPos] [basic_block] [prologue_end] 3641 /// [epilogue_begin] [is_stmt VALUE] [isa VALUE] 3642 /// The first number is a file number, must have been previously assigned with 3643 /// a .file directive, the second number is the line number and optionally the 3644 /// third number is a column position (zero if not specified). The remaining 3645 /// optional items are .loc sub-directives. 3646 bool AsmParser::parseDirectiveLoc() { 3647 int64_t FileNumber = 0, LineNumber = 0; 3648 SMLoc Loc = getTok().getLoc(); 3649 if (parseIntToken(FileNumber, "unexpected token in '.loc' directive") || 3650 check(FileNumber < 1 && Ctx.getDwarfVersion() < 5, Loc, 3651 "file number less than one in '.loc' directive") || 3652 check(!getContext().isValidDwarfFileNumber(FileNumber), Loc, 3653 "unassigned file number in '.loc' directive")) 3654 return true; 3655 3656 // optional 3657 if (getLexer().is(AsmToken::Integer)) { 3658 LineNumber = getTok().getIntVal(); 3659 if (LineNumber < 0) 3660 return TokError("line number less than zero in '.loc' directive"); 3661 Lex(); 3662 } 3663 3664 int64_t ColumnPos = 0; 3665 if (getLexer().is(AsmToken::Integer)) { 3666 ColumnPos = getTok().getIntVal(); 3667 if (ColumnPos < 0) 3668 return TokError("column position less than zero in '.loc' directive"); 3669 Lex(); 3670 } 3671 3672 auto PrevFlags = getContext().getCurrentDwarfLoc().getFlags(); 3673 unsigned Flags = PrevFlags & DWARF2_FLAG_IS_STMT; 3674 unsigned Isa = 0; 3675 int64_t Discriminator = 0; 3676 3677 auto parseLocOp = [&]() -> bool { 3678 StringRef Name; 3679 SMLoc Loc = getTok().getLoc(); 3680 if (parseIdentifier(Name)) 3681 return TokError("unexpected token in '.loc' directive"); 3682 3683 if (Name == "basic_block") 3684 Flags |= DWARF2_FLAG_BASIC_BLOCK; 3685 else if (Name == "prologue_end") 3686 Flags |= DWARF2_FLAG_PROLOGUE_END; 3687 else if (Name == "epilogue_begin") 3688 Flags |= DWARF2_FLAG_EPILOGUE_BEGIN; 3689 else if (Name == "is_stmt") { 3690 Loc = getTok().getLoc(); 3691 const MCExpr *Value; 3692 if (parseExpression(Value)) 3693 return true; 3694 // The expression must be the constant 0 or 1. 3695 if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) { 3696 int Value = MCE->getValue(); 3697 if (Value == 0) 3698 Flags &= ~DWARF2_FLAG_IS_STMT; 3699 else if (Value == 1) 3700 Flags |= DWARF2_FLAG_IS_STMT; 3701 else 3702 return Error(Loc, "is_stmt value not 0 or 1"); 3703 } else { 3704 return Error(Loc, "is_stmt value not the constant value of 0 or 1"); 3705 } 3706 } else if (Name == "isa") { 3707 Loc = getTok().getLoc(); 3708 const MCExpr *Value; 3709 if (parseExpression(Value)) 3710 return true; 3711 // The expression must be a constant greater or equal to 0. 3712 if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) { 3713 int Value = MCE->getValue(); 3714 if (Value < 0) 3715 return Error(Loc, "isa number less than zero"); 3716 Isa = Value; 3717 } else { 3718 return Error(Loc, "isa number not a constant value"); 3719 } 3720 } else if (Name == "discriminator") { 3721 if (parseAbsoluteExpression(Discriminator)) 3722 return true; 3723 } else { 3724 return Error(Loc, "unknown sub-directive in '.loc' directive"); 3725 } 3726 return false; 3727 }; 3728 3729 if (parseMany(parseLocOp, false /*hasComma*/)) 3730 return true; 3731 3732 getStreamer().emitDwarfLocDirective(FileNumber, LineNumber, ColumnPos, Flags, 3733 Isa, Discriminator, StringRef()); 3734 3735 return false; 3736 } 3737 3738 /// parseDirectiveStabs 3739 /// ::= .stabs string, number, number, number 3740 bool AsmParser::parseDirectiveStabs() { 3741 return TokError("unsupported directive '.stabs'"); 3742 } 3743 3744 /// parseDirectiveCVFile 3745 /// ::= .cv_file number filename [checksum] [checksumkind] 3746 bool AsmParser::parseDirectiveCVFile() { 3747 SMLoc FileNumberLoc = getTok().getLoc(); 3748 int64_t FileNumber; 3749 std::string Filename; 3750 std::string Checksum; 3751 int64_t ChecksumKind = 0; 3752 3753 if (parseIntToken(FileNumber, 3754 "expected file number in '.cv_file' directive") || 3755 check(FileNumber < 1, FileNumberLoc, "file number less than one") || 3756 check(getTok().isNot(AsmToken::String), 3757 "unexpected token in '.cv_file' directive") || 3758 parseEscapedString(Filename)) 3759 return true; 3760 if (!parseOptionalToken(AsmToken::EndOfStatement)) { 3761 if (check(getTok().isNot(AsmToken::String), 3762 "unexpected token in '.cv_file' directive") || 3763 parseEscapedString(Checksum) || 3764 parseIntToken(ChecksumKind, 3765 "expected checksum kind in '.cv_file' directive") || 3766 parseEOL()) 3767 return true; 3768 } 3769 3770 Checksum = fromHex(Checksum); 3771 void *CKMem = Ctx.allocate(Checksum.size(), 1); 3772 memcpy(CKMem, Checksum.data(), Checksum.size()); 3773 ArrayRef<uint8_t> ChecksumAsBytes(reinterpret_cast<const uint8_t *>(CKMem), 3774 Checksum.size()); 3775 3776 if (!getStreamer().emitCVFileDirective(FileNumber, Filename, ChecksumAsBytes, 3777 static_cast<uint8_t>(ChecksumKind))) 3778 return Error(FileNumberLoc, "file number already allocated"); 3779 3780 return false; 3781 } 3782 3783 bool AsmParser::parseCVFunctionId(int64_t &FunctionId, 3784 StringRef DirectiveName) { 3785 SMLoc Loc; 3786 return parseTokenLoc(Loc) || 3787 parseIntToken(FunctionId, "expected function id in '" + DirectiveName + 3788 "' directive") || 3789 check(FunctionId < 0 || FunctionId >= UINT_MAX, Loc, 3790 "expected function id within range [0, UINT_MAX)"); 3791 } 3792 3793 bool AsmParser::parseCVFileId(int64_t &FileNumber, StringRef DirectiveName) { 3794 SMLoc Loc; 3795 return parseTokenLoc(Loc) || 3796 parseIntToken(FileNumber, "expected integer in '" + DirectiveName + 3797 "' directive") || 3798 check(FileNumber < 1, Loc, "file number less than one in '" + 3799 DirectiveName + "' directive") || 3800 check(!getCVContext().isValidFileNumber(FileNumber), Loc, 3801 "unassigned file number in '" + DirectiveName + "' directive"); 3802 } 3803 3804 /// parseDirectiveCVFuncId 3805 /// ::= .cv_func_id FunctionId 3806 /// 3807 /// Introduces a function ID that can be used with .cv_loc. 3808 bool AsmParser::parseDirectiveCVFuncId() { 3809 SMLoc FunctionIdLoc = getTok().getLoc(); 3810 int64_t FunctionId; 3811 3812 if (parseCVFunctionId(FunctionId, ".cv_func_id") || parseEOL()) 3813 return true; 3814 3815 if (!getStreamer().emitCVFuncIdDirective(FunctionId)) 3816 return Error(FunctionIdLoc, "function id already allocated"); 3817 3818 return false; 3819 } 3820 3821 /// parseDirectiveCVInlineSiteId 3822 /// ::= .cv_inline_site_id FunctionId 3823 /// "within" IAFunc 3824 /// "inlined_at" IAFile IALine [IACol] 3825 /// 3826 /// Introduces a function ID that can be used with .cv_loc. Includes "inlined 3827 /// at" source location information for use in the line table of the caller, 3828 /// whether the caller is a real function or another inlined call site. 3829 bool AsmParser::parseDirectiveCVInlineSiteId() { 3830 SMLoc FunctionIdLoc = getTok().getLoc(); 3831 int64_t FunctionId; 3832 int64_t IAFunc; 3833 int64_t IAFile; 3834 int64_t IALine; 3835 int64_t IACol = 0; 3836 3837 // FunctionId 3838 if (parseCVFunctionId(FunctionId, ".cv_inline_site_id")) 3839 return true; 3840 3841 // "within" 3842 if (check((getLexer().isNot(AsmToken::Identifier) || 3843 getTok().getIdentifier() != "within"), 3844 "expected 'within' identifier in '.cv_inline_site_id' directive")) 3845 return true; 3846 Lex(); 3847 3848 // IAFunc 3849 if (parseCVFunctionId(IAFunc, ".cv_inline_site_id")) 3850 return true; 3851 3852 // "inlined_at" 3853 if (check((getLexer().isNot(AsmToken::Identifier) || 3854 getTok().getIdentifier() != "inlined_at"), 3855 "expected 'inlined_at' identifier in '.cv_inline_site_id' " 3856 "directive") ) 3857 return true; 3858 Lex(); 3859 3860 // IAFile IALine 3861 if (parseCVFileId(IAFile, ".cv_inline_site_id") || 3862 parseIntToken(IALine, "expected line number after 'inlined_at'")) 3863 return true; 3864 3865 // [IACol] 3866 if (getLexer().is(AsmToken::Integer)) { 3867 IACol = getTok().getIntVal(); 3868 Lex(); 3869 } 3870 3871 if (parseEOL()) 3872 return true; 3873 3874 if (!getStreamer().emitCVInlineSiteIdDirective(FunctionId, IAFunc, IAFile, 3875 IALine, IACol, FunctionIdLoc)) 3876 return Error(FunctionIdLoc, "function id already allocated"); 3877 3878 return false; 3879 } 3880 3881 /// parseDirectiveCVLoc 3882 /// ::= .cv_loc FunctionId FileNumber [LineNumber] [ColumnPos] [prologue_end] 3883 /// [is_stmt VALUE] 3884 /// The first number is a file number, must have been previously assigned with 3885 /// a .file directive, the second number is the line number and optionally the 3886 /// third number is a column position (zero if not specified). The remaining 3887 /// optional items are .loc sub-directives. 3888 bool AsmParser::parseDirectiveCVLoc() { 3889 SMLoc DirectiveLoc = getTok().getLoc(); 3890 int64_t FunctionId, FileNumber; 3891 if (parseCVFunctionId(FunctionId, ".cv_loc") || 3892 parseCVFileId(FileNumber, ".cv_loc")) 3893 return true; 3894 3895 int64_t LineNumber = 0; 3896 if (getLexer().is(AsmToken::Integer)) { 3897 LineNumber = getTok().getIntVal(); 3898 if (LineNumber < 0) 3899 return TokError("line number less than zero in '.cv_loc' directive"); 3900 Lex(); 3901 } 3902 3903 int64_t ColumnPos = 0; 3904 if (getLexer().is(AsmToken::Integer)) { 3905 ColumnPos = getTok().getIntVal(); 3906 if (ColumnPos < 0) 3907 return TokError("column position less than zero in '.cv_loc' directive"); 3908 Lex(); 3909 } 3910 3911 bool PrologueEnd = false; 3912 uint64_t IsStmt = 0; 3913 3914 auto parseOp = [&]() -> bool { 3915 StringRef Name; 3916 SMLoc Loc = getTok().getLoc(); 3917 if (parseIdentifier(Name)) 3918 return TokError("unexpected token in '.cv_loc' directive"); 3919 if (Name == "prologue_end") 3920 PrologueEnd = true; 3921 else if (Name == "is_stmt") { 3922 Loc = getTok().getLoc(); 3923 const MCExpr *Value; 3924 if (parseExpression(Value)) 3925 return true; 3926 // The expression must be the constant 0 or 1. 3927 IsStmt = ~0ULL; 3928 if (const auto *MCE = dyn_cast<MCConstantExpr>(Value)) 3929 IsStmt = MCE->getValue(); 3930 3931 if (IsStmt > 1) 3932 return Error(Loc, "is_stmt value not 0 or 1"); 3933 } else { 3934 return Error(Loc, "unknown sub-directive in '.cv_loc' directive"); 3935 } 3936 return false; 3937 }; 3938 3939 if (parseMany(parseOp, false /*hasComma*/)) 3940 return true; 3941 3942 getStreamer().emitCVLocDirective(FunctionId, FileNumber, LineNumber, 3943 ColumnPos, PrologueEnd, IsStmt, StringRef(), 3944 DirectiveLoc); 3945 return false; 3946 } 3947 3948 /// parseDirectiveCVLinetable 3949 /// ::= .cv_linetable FunctionId, FnStart, FnEnd 3950 bool AsmParser::parseDirectiveCVLinetable() { 3951 int64_t FunctionId; 3952 StringRef FnStartName, FnEndName; 3953 SMLoc Loc = getTok().getLoc(); 3954 if (parseCVFunctionId(FunctionId, ".cv_linetable") || parseComma() || 3955 parseTokenLoc(Loc) || 3956 check(parseIdentifier(FnStartName), Loc, 3957 "expected identifier in directive") || 3958 parseComma() || parseTokenLoc(Loc) || 3959 check(parseIdentifier(FnEndName), Loc, 3960 "expected identifier in directive")) 3961 return true; 3962 3963 MCSymbol *FnStartSym = getContext().getOrCreateSymbol(FnStartName); 3964 MCSymbol *FnEndSym = getContext().getOrCreateSymbol(FnEndName); 3965 3966 getStreamer().emitCVLinetableDirective(FunctionId, FnStartSym, FnEndSym); 3967 return false; 3968 } 3969 3970 /// parseDirectiveCVInlineLinetable 3971 /// ::= .cv_inline_linetable PrimaryFunctionId FileId LineNum FnStart FnEnd 3972 bool AsmParser::parseDirectiveCVInlineLinetable() { 3973 int64_t PrimaryFunctionId, SourceFileId, SourceLineNum; 3974 StringRef FnStartName, FnEndName; 3975 SMLoc Loc = getTok().getLoc(); 3976 if (parseCVFunctionId(PrimaryFunctionId, ".cv_inline_linetable") || 3977 parseTokenLoc(Loc) || 3978 parseIntToken( 3979 SourceFileId, 3980 "expected SourceField in '.cv_inline_linetable' directive") || 3981 check(SourceFileId <= 0, Loc, 3982 "File id less than zero in '.cv_inline_linetable' directive") || 3983 parseTokenLoc(Loc) || 3984 parseIntToken( 3985 SourceLineNum, 3986 "expected SourceLineNum in '.cv_inline_linetable' directive") || 3987 check(SourceLineNum < 0, Loc, 3988 "Line number less than zero in '.cv_inline_linetable' directive") || 3989 parseTokenLoc(Loc) || check(parseIdentifier(FnStartName), Loc, 3990 "expected identifier in directive") || 3991 parseTokenLoc(Loc) || check(parseIdentifier(FnEndName), Loc, 3992 "expected identifier in directive")) 3993 return true; 3994 3995 if (parseEOL()) 3996 return true; 3997 3998 MCSymbol *FnStartSym = getContext().getOrCreateSymbol(FnStartName); 3999 MCSymbol *FnEndSym = getContext().getOrCreateSymbol(FnEndName); 4000 getStreamer().emitCVInlineLinetableDirective(PrimaryFunctionId, SourceFileId, 4001 SourceLineNum, FnStartSym, 4002 FnEndSym); 4003 return false; 4004 } 4005 4006 void AsmParser::initializeCVDefRangeTypeMap() { 4007 CVDefRangeTypeMap["reg"] = CVDR_DEFRANGE_REGISTER; 4008 CVDefRangeTypeMap["frame_ptr_rel"] = CVDR_DEFRANGE_FRAMEPOINTER_REL; 4009 CVDefRangeTypeMap["subfield_reg"] = CVDR_DEFRANGE_SUBFIELD_REGISTER; 4010 CVDefRangeTypeMap["reg_rel"] = CVDR_DEFRANGE_REGISTER_REL; 4011 } 4012 4013 /// parseDirectiveCVDefRange 4014 /// ::= .cv_def_range RangeStart RangeEnd (GapStart GapEnd)*, bytes* 4015 bool AsmParser::parseDirectiveCVDefRange() { 4016 SMLoc Loc; 4017 std::vector<std::pair<const MCSymbol *, const MCSymbol *>> Ranges; 4018 while (getLexer().is(AsmToken::Identifier)) { 4019 Loc = getLexer().getLoc(); 4020 StringRef GapStartName; 4021 if (parseIdentifier(GapStartName)) 4022 return Error(Loc, "expected identifier in directive"); 4023 MCSymbol *GapStartSym = getContext().getOrCreateSymbol(GapStartName); 4024 4025 Loc = getLexer().getLoc(); 4026 StringRef GapEndName; 4027 if (parseIdentifier(GapEndName)) 4028 return Error(Loc, "expected identifier in directive"); 4029 MCSymbol *GapEndSym = getContext().getOrCreateSymbol(GapEndName); 4030 4031 Ranges.push_back({GapStartSym, GapEndSym}); 4032 } 4033 4034 StringRef CVDefRangeTypeStr; 4035 if (parseToken( 4036 AsmToken::Comma, 4037 "expected comma before def_range type in .cv_def_range directive") || 4038 parseIdentifier(CVDefRangeTypeStr)) 4039 return Error(Loc, "expected def_range type in directive"); 4040 4041 StringMap<CVDefRangeType>::const_iterator CVTypeIt = 4042 CVDefRangeTypeMap.find(CVDefRangeTypeStr); 4043 CVDefRangeType CVDRType = (CVTypeIt == CVDefRangeTypeMap.end()) 4044 ? CVDR_DEFRANGE 4045 : CVTypeIt->getValue(); 4046 switch (CVDRType) { 4047 case CVDR_DEFRANGE_REGISTER: { 4048 int64_t DRRegister; 4049 if (parseToken(AsmToken::Comma, "expected comma before register number in " 4050 ".cv_def_range directive") || 4051 parseAbsoluteExpression(DRRegister)) 4052 return Error(Loc, "expected register number"); 4053 4054 codeview::DefRangeRegisterHeader DRHdr; 4055 DRHdr.Register = DRRegister; 4056 DRHdr.MayHaveNoName = 0; 4057 getStreamer().emitCVDefRangeDirective(Ranges, DRHdr); 4058 break; 4059 } 4060 case CVDR_DEFRANGE_FRAMEPOINTER_REL: { 4061 int64_t DROffset; 4062 if (parseToken(AsmToken::Comma, 4063 "expected comma before offset in .cv_def_range directive") || 4064 parseAbsoluteExpression(DROffset)) 4065 return Error(Loc, "expected offset value"); 4066 4067 codeview::DefRangeFramePointerRelHeader DRHdr; 4068 DRHdr.Offset = DROffset; 4069 getStreamer().emitCVDefRangeDirective(Ranges, DRHdr); 4070 break; 4071 } 4072 case CVDR_DEFRANGE_SUBFIELD_REGISTER: { 4073 int64_t DRRegister; 4074 int64_t DROffsetInParent; 4075 if (parseToken(AsmToken::Comma, "expected comma before register number in " 4076 ".cv_def_range directive") || 4077 parseAbsoluteExpression(DRRegister)) 4078 return Error(Loc, "expected register number"); 4079 if (parseToken(AsmToken::Comma, 4080 "expected comma before offset in .cv_def_range directive") || 4081 parseAbsoluteExpression(DROffsetInParent)) 4082 return Error(Loc, "expected offset value"); 4083 4084 codeview::DefRangeSubfieldRegisterHeader DRHdr; 4085 DRHdr.Register = DRRegister; 4086 DRHdr.MayHaveNoName = 0; 4087 DRHdr.OffsetInParent = DROffsetInParent; 4088 getStreamer().emitCVDefRangeDirective(Ranges, DRHdr); 4089 break; 4090 } 4091 case CVDR_DEFRANGE_REGISTER_REL: { 4092 int64_t DRRegister; 4093 int64_t DRFlags; 4094 int64_t DRBasePointerOffset; 4095 if (parseToken(AsmToken::Comma, "expected comma before register number in " 4096 ".cv_def_range directive") || 4097 parseAbsoluteExpression(DRRegister)) 4098 return Error(Loc, "expected register value"); 4099 if (parseToken( 4100 AsmToken::Comma, 4101 "expected comma before flag value in .cv_def_range directive") || 4102 parseAbsoluteExpression(DRFlags)) 4103 return Error(Loc, "expected flag value"); 4104 if (parseToken(AsmToken::Comma, "expected comma before base pointer offset " 4105 "in .cv_def_range directive") || 4106 parseAbsoluteExpression(DRBasePointerOffset)) 4107 return Error(Loc, "expected base pointer offset value"); 4108 4109 codeview::DefRangeRegisterRelHeader DRHdr; 4110 DRHdr.Register = DRRegister; 4111 DRHdr.Flags = DRFlags; 4112 DRHdr.BasePointerOffset = DRBasePointerOffset; 4113 getStreamer().emitCVDefRangeDirective(Ranges, DRHdr); 4114 break; 4115 } 4116 default: 4117 return Error(Loc, "unexpected def_range type in .cv_def_range directive"); 4118 } 4119 return true; 4120 } 4121 4122 /// parseDirectiveCVString 4123 /// ::= .cv_stringtable "string" 4124 bool AsmParser::parseDirectiveCVString() { 4125 std::string Data; 4126 if (checkForValidSection() || parseEscapedString(Data)) 4127 return true; 4128 4129 // Put the string in the table and emit the offset. 4130 std::pair<StringRef, unsigned> Insertion = 4131 getCVContext().addToStringTable(Data); 4132 getStreamer().emitInt32(Insertion.second); 4133 return false; 4134 } 4135 4136 /// parseDirectiveCVStringTable 4137 /// ::= .cv_stringtable 4138 bool AsmParser::parseDirectiveCVStringTable() { 4139 getStreamer().emitCVStringTableDirective(); 4140 return false; 4141 } 4142 4143 /// parseDirectiveCVFileChecksums 4144 /// ::= .cv_filechecksums 4145 bool AsmParser::parseDirectiveCVFileChecksums() { 4146 getStreamer().emitCVFileChecksumsDirective(); 4147 return false; 4148 } 4149 4150 /// parseDirectiveCVFileChecksumOffset 4151 /// ::= .cv_filechecksumoffset fileno 4152 bool AsmParser::parseDirectiveCVFileChecksumOffset() { 4153 int64_t FileNo; 4154 if (parseIntToken(FileNo, "expected identifier in directive")) 4155 return true; 4156 if (parseEOL()) 4157 return true; 4158 getStreamer().emitCVFileChecksumOffsetDirective(FileNo); 4159 return false; 4160 } 4161 4162 /// parseDirectiveCVFPOData 4163 /// ::= .cv_fpo_data procsym 4164 bool AsmParser::parseDirectiveCVFPOData() { 4165 SMLoc DirLoc = getLexer().getLoc(); 4166 StringRef ProcName; 4167 if (parseIdentifier(ProcName)) 4168 return TokError("expected symbol name"); 4169 if (parseEOL()) 4170 return true; 4171 MCSymbol *ProcSym = getContext().getOrCreateSymbol(ProcName); 4172 getStreamer().emitCVFPOData(ProcSym, DirLoc); 4173 return false; 4174 } 4175 4176 /// parseDirectiveCFISections 4177 /// ::= .cfi_sections section [, section] 4178 bool AsmParser::parseDirectiveCFISections() { 4179 StringRef Name; 4180 bool EH = false; 4181 bool Debug = false; 4182 4183 if (!parseOptionalToken(AsmToken::EndOfStatement)) { 4184 for (;;) { 4185 if (parseIdentifier(Name)) 4186 return TokError("expected .eh_frame or .debug_frame"); 4187 if (Name == ".eh_frame") 4188 EH = true; 4189 else if (Name == ".debug_frame") 4190 Debug = true; 4191 if (parseOptionalToken(AsmToken::EndOfStatement)) 4192 break; 4193 if (parseComma()) 4194 return true; 4195 } 4196 } 4197 getStreamer().emitCFISections(EH, Debug); 4198 return false; 4199 } 4200 4201 /// parseDirectiveCFIStartProc 4202 /// ::= .cfi_startproc [simple] 4203 bool AsmParser::parseDirectiveCFIStartProc() { 4204 CFIStartProcLoc = StartTokLoc; 4205 4206 StringRef Simple; 4207 if (!parseOptionalToken(AsmToken::EndOfStatement)) { 4208 if (check(parseIdentifier(Simple) || Simple != "simple", 4209 "unexpected token") || 4210 parseEOL()) 4211 return true; 4212 } 4213 4214 // TODO(kristina): Deal with a corner case of incorrect diagnostic context 4215 // being produced if this directive is emitted as part of preprocessor macro 4216 // expansion which can *ONLY* happen if Clang's cc1as is the API consumer. 4217 // Tools like llvm-mc on the other hand are not affected by it, and report 4218 // correct context information. 4219 getStreamer().emitCFIStartProc(!Simple.empty(), Lexer.getLoc()); 4220 return false; 4221 } 4222 4223 /// parseDirectiveCFIEndProc 4224 /// ::= .cfi_endproc 4225 bool AsmParser::parseDirectiveCFIEndProc() { 4226 CFIStartProcLoc = std::nullopt; 4227 4228 if (parseEOL()) 4229 return true; 4230 4231 getStreamer().emitCFIEndProc(); 4232 return false; 4233 } 4234 4235 /// parse register name or number. 4236 bool AsmParser::parseRegisterOrRegisterNumber(int64_t &Register, 4237 SMLoc DirectiveLoc) { 4238 MCRegister RegNo; 4239 4240 if (getLexer().isNot(AsmToken::Integer)) { 4241 if (getTargetParser().parseRegister(RegNo, DirectiveLoc, DirectiveLoc)) 4242 return true; 4243 Register = getContext().getRegisterInfo()->getDwarfRegNum(RegNo, true); 4244 } else 4245 return parseAbsoluteExpression(Register); 4246 4247 return false; 4248 } 4249 4250 /// parseDirectiveCFIDefCfa 4251 /// ::= .cfi_def_cfa register, offset 4252 bool AsmParser::parseDirectiveCFIDefCfa(SMLoc DirectiveLoc) { 4253 int64_t Register = 0, Offset = 0; 4254 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() || 4255 parseAbsoluteExpression(Offset) || parseEOL()) 4256 return true; 4257 4258 getStreamer().emitCFIDefCfa(Register, Offset, DirectiveLoc); 4259 return false; 4260 } 4261 4262 /// parseDirectiveCFIDefCfaOffset 4263 /// ::= .cfi_def_cfa_offset offset 4264 bool AsmParser::parseDirectiveCFIDefCfaOffset(SMLoc DirectiveLoc) { 4265 int64_t Offset = 0; 4266 if (parseAbsoluteExpression(Offset) || parseEOL()) 4267 return true; 4268 4269 getStreamer().emitCFIDefCfaOffset(Offset, DirectiveLoc); 4270 return false; 4271 } 4272 4273 /// parseDirectiveCFIRegister 4274 /// ::= .cfi_register register, register 4275 bool AsmParser::parseDirectiveCFIRegister(SMLoc DirectiveLoc) { 4276 int64_t Register1 = 0, Register2 = 0; 4277 if (parseRegisterOrRegisterNumber(Register1, DirectiveLoc) || parseComma() || 4278 parseRegisterOrRegisterNumber(Register2, DirectiveLoc) || parseEOL()) 4279 return true; 4280 4281 getStreamer().emitCFIRegister(Register1, Register2, DirectiveLoc); 4282 return false; 4283 } 4284 4285 /// parseDirectiveCFIWindowSave 4286 /// ::= .cfi_window_save 4287 bool AsmParser::parseDirectiveCFIWindowSave(SMLoc DirectiveLoc) { 4288 if (parseEOL()) 4289 return true; 4290 getStreamer().emitCFIWindowSave(DirectiveLoc); 4291 return false; 4292 } 4293 4294 /// parseDirectiveCFIAdjustCfaOffset 4295 /// ::= .cfi_adjust_cfa_offset adjustment 4296 bool AsmParser::parseDirectiveCFIAdjustCfaOffset(SMLoc DirectiveLoc) { 4297 int64_t Adjustment = 0; 4298 if (parseAbsoluteExpression(Adjustment) || parseEOL()) 4299 return true; 4300 4301 getStreamer().emitCFIAdjustCfaOffset(Adjustment, DirectiveLoc); 4302 return false; 4303 } 4304 4305 /// parseDirectiveCFIDefCfaRegister 4306 /// ::= .cfi_def_cfa_register register 4307 bool AsmParser::parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc) { 4308 int64_t Register = 0; 4309 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL()) 4310 return true; 4311 4312 getStreamer().emitCFIDefCfaRegister(Register, DirectiveLoc); 4313 return false; 4314 } 4315 4316 /// parseDirectiveCFILLVMDefAspaceCfa 4317 /// ::= .cfi_llvm_def_aspace_cfa register, offset, address_space 4318 bool AsmParser::parseDirectiveCFILLVMDefAspaceCfa(SMLoc DirectiveLoc) { 4319 int64_t Register = 0, Offset = 0, AddressSpace = 0; 4320 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() || 4321 parseAbsoluteExpression(Offset) || parseComma() || 4322 parseAbsoluteExpression(AddressSpace) || parseEOL()) 4323 return true; 4324 4325 getStreamer().emitCFILLVMDefAspaceCfa(Register, Offset, AddressSpace, 4326 DirectiveLoc); 4327 return false; 4328 } 4329 4330 /// parseDirectiveCFIOffset 4331 /// ::= .cfi_offset register, offset 4332 bool AsmParser::parseDirectiveCFIOffset(SMLoc DirectiveLoc) { 4333 int64_t Register = 0; 4334 int64_t Offset = 0; 4335 4336 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() || 4337 parseAbsoluteExpression(Offset) || parseEOL()) 4338 return true; 4339 4340 getStreamer().emitCFIOffset(Register, Offset, DirectiveLoc); 4341 return false; 4342 } 4343 4344 /// parseDirectiveCFIRelOffset 4345 /// ::= .cfi_rel_offset register, offset 4346 bool AsmParser::parseDirectiveCFIRelOffset(SMLoc DirectiveLoc) { 4347 int64_t Register = 0, Offset = 0; 4348 4349 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() || 4350 parseAbsoluteExpression(Offset) || parseEOL()) 4351 return true; 4352 4353 getStreamer().emitCFIRelOffset(Register, Offset, DirectiveLoc); 4354 return false; 4355 } 4356 4357 static bool isValidEncoding(int64_t Encoding) { 4358 if (Encoding & ~0xff) 4359 return false; 4360 4361 if (Encoding == dwarf::DW_EH_PE_omit) 4362 return true; 4363 4364 const unsigned Format = Encoding & 0xf; 4365 if (Format != dwarf::DW_EH_PE_absptr && Format != dwarf::DW_EH_PE_udata2 && 4366 Format != dwarf::DW_EH_PE_udata4 && Format != dwarf::DW_EH_PE_udata8 && 4367 Format != dwarf::DW_EH_PE_sdata2 && Format != dwarf::DW_EH_PE_sdata4 && 4368 Format != dwarf::DW_EH_PE_sdata8 && Format != dwarf::DW_EH_PE_signed) 4369 return false; 4370 4371 const unsigned Application = Encoding & 0x70; 4372 if (Application != dwarf::DW_EH_PE_absptr && 4373 Application != dwarf::DW_EH_PE_pcrel) 4374 return false; 4375 4376 return true; 4377 } 4378 4379 /// parseDirectiveCFIPersonalityOrLsda 4380 /// IsPersonality true for cfi_personality, false for cfi_lsda 4381 /// ::= .cfi_personality encoding, [symbol_name] 4382 /// ::= .cfi_lsda encoding, [symbol_name] 4383 bool AsmParser::parseDirectiveCFIPersonalityOrLsda(bool IsPersonality) { 4384 int64_t Encoding = 0; 4385 if (parseAbsoluteExpression(Encoding)) 4386 return true; 4387 if (Encoding == dwarf::DW_EH_PE_omit) 4388 return false; 4389 4390 StringRef Name; 4391 if (check(!isValidEncoding(Encoding), "unsupported encoding.") || 4392 parseComma() || 4393 check(parseIdentifier(Name), "expected identifier in directive") || 4394 parseEOL()) 4395 return true; 4396 4397 MCSymbol *Sym = getContext().getOrCreateSymbol(Name); 4398 4399 if (IsPersonality) 4400 getStreamer().emitCFIPersonality(Sym, Encoding); 4401 else 4402 getStreamer().emitCFILsda(Sym, Encoding); 4403 return false; 4404 } 4405 4406 /// parseDirectiveCFIRememberState 4407 /// ::= .cfi_remember_state 4408 bool AsmParser::parseDirectiveCFIRememberState(SMLoc DirectiveLoc) { 4409 if (parseEOL()) 4410 return true; 4411 getStreamer().emitCFIRememberState(DirectiveLoc); 4412 return false; 4413 } 4414 4415 /// parseDirectiveCFIRestoreState 4416 /// ::= .cfi_remember_state 4417 bool AsmParser::parseDirectiveCFIRestoreState(SMLoc DirectiveLoc) { 4418 if (parseEOL()) 4419 return true; 4420 getStreamer().emitCFIRestoreState(DirectiveLoc); 4421 return false; 4422 } 4423 4424 /// parseDirectiveCFISameValue 4425 /// ::= .cfi_same_value register 4426 bool AsmParser::parseDirectiveCFISameValue(SMLoc DirectiveLoc) { 4427 int64_t Register = 0; 4428 4429 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL()) 4430 return true; 4431 4432 getStreamer().emitCFISameValue(Register, DirectiveLoc); 4433 return false; 4434 } 4435 4436 /// parseDirectiveCFIRestore 4437 /// ::= .cfi_restore register 4438 bool AsmParser::parseDirectiveCFIRestore(SMLoc DirectiveLoc) { 4439 int64_t Register = 0; 4440 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL()) 4441 return true; 4442 4443 getStreamer().emitCFIRestore(Register, DirectiveLoc); 4444 return false; 4445 } 4446 4447 /// parseDirectiveCFIEscape 4448 /// ::= .cfi_escape expression[,...] 4449 bool AsmParser::parseDirectiveCFIEscape(SMLoc DirectiveLoc) { 4450 std::string Values; 4451 int64_t CurrValue; 4452 if (parseAbsoluteExpression(CurrValue)) 4453 return true; 4454 4455 Values.push_back((uint8_t)CurrValue); 4456 4457 while (getLexer().is(AsmToken::Comma)) { 4458 Lex(); 4459 4460 if (parseAbsoluteExpression(CurrValue)) 4461 return true; 4462 4463 Values.push_back((uint8_t)CurrValue); 4464 } 4465 4466 getStreamer().emitCFIEscape(Values, DirectiveLoc); 4467 return false; 4468 } 4469 4470 /// parseDirectiveCFIReturnColumn 4471 /// ::= .cfi_return_column register 4472 bool AsmParser::parseDirectiveCFIReturnColumn(SMLoc DirectiveLoc) { 4473 int64_t Register = 0; 4474 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL()) 4475 return true; 4476 getStreamer().emitCFIReturnColumn(Register); 4477 return false; 4478 } 4479 4480 /// parseDirectiveCFISignalFrame 4481 /// ::= .cfi_signal_frame 4482 bool AsmParser::parseDirectiveCFISignalFrame(SMLoc DirectiveLoc) { 4483 if (parseEOL()) 4484 return true; 4485 4486 getStreamer().emitCFISignalFrame(); 4487 return false; 4488 } 4489 4490 /// parseDirectiveCFIUndefined 4491 /// ::= .cfi_undefined register 4492 bool AsmParser::parseDirectiveCFIUndefined(SMLoc DirectiveLoc) { 4493 int64_t Register = 0; 4494 4495 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL()) 4496 return true; 4497 4498 getStreamer().emitCFIUndefined(Register, DirectiveLoc); 4499 return false; 4500 } 4501 4502 /// parseDirectiveAltmacro 4503 /// ::= .altmacro 4504 /// ::= .noaltmacro 4505 bool AsmParser::parseDirectiveAltmacro(StringRef Directive) { 4506 if (parseEOL()) 4507 return true; 4508 AltMacroMode = (Directive == ".altmacro"); 4509 return false; 4510 } 4511 4512 /// parseDirectiveMacrosOnOff 4513 /// ::= .macros_on 4514 /// ::= .macros_off 4515 bool AsmParser::parseDirectiveMacrosOnOff(StringRef Directive) { 4516 if (parseEOL()) 4517 return true; 4518 setMacrosEnabled(Directive == ".macros_on"); 4519 return false; 4520 } 4521 4522 /// parseDirectiveMacro 4523 /// ::= .macro name[,] [parameters] 4524 bool AsmParser::parseDirectiveMacro(SMLoc DirectiveLoc) { 4525 StringRef Name; 4526 if (parseIdentifier(Name)) 4527 return TokError("expected identifier in '.macro' directive"); 4528 4529 if (getLexer().is(AsmToken::Comma)) 4530 Lex(); 4531 4532 MCAsmMacroParameters Parameters; 4533 while (getLexer().isNot(AsmToken::EndOfStatement)) { 4534 4535 if (!Parameters.empty() && Parameters.back().Vararg) 4536 return Error(Lexer.getLoc(), "vararg parameter '" + 4537 Parameters.back().Name + 4538 "' should be the last parameter"); 4539 4540 MCAsmMacroParameter Parameter; 4541 if (parseIdentifier(Parameter.Name)) 4542 return TokError("expected identifier in '.macro' directive"); 4543 4544 // Emit an error if two (or more) named parameters share the same name 4545 for (const MCAsmMacroParameter& CurrParam : Parameters) 4546 if (CurrParam.Name.equals(Parameter.Name)) 4547 return TokError("macro '" + Name + "' has multiple parameters" 4548 " named '" + Parameter.Name + "'"); 4549 4550 if (Lexer.is(AsmToken::Colon)) { 4551 Lex(); // consume ':' 4552 4553 SMLoc QualLoc; 4554 StringRef Qualifier; 4555 4556 QualLoc = Lexer.getLoc(); 4557 if (parseIdentifier(Qualifier)) 4558 return Error(QualLoc, "missing parameter qualifier for " 4559 "'" + Parameter.Name + "' in macro '" + Name + "'"); 4560 4561 if (Qualifier == "req") 4562 Parameter.Required = true; 4563 else if (Qualifier == "vararg") 4564 Parameter.Vararg = true; 4565 else 4566 return Error(QualLoc, Qualifier + " is not a valid parameter qualifier " 4567 "for '" + Parameter.Name + "' in macro '" + Name + "'"); 4568 } 4569 4570 if (getLexer().is(AsmToken::Equal)) { 4571 Lex(); 4572 4573 SMLoc ParamLoc; 4574 4575 ParamLoc = Lexer.getLoc(); 4576 if (parseMacroArgument(Parameter.Value, /*Vararg=*/false )) 4577 return true; 4578 4579 if (Parameter.Required) 4580 Warning(ParamLoc, "pointless default value for required parameter " 4581 "'" + Parameter.Name + "' in macro '" + Name + "'"); 4582 } 4583 4584 Parameters.push_back(std::move(Parameter)); 4585 4586 if (getLexer().is(AsmToken::Comma)) 4587 Lex(); 4588 } 4589 4590 // Eat just the end of statement. 4591 Lexer.Lex(); 4592 4593 // Consuming deferred text, so use Lexer.Lex to ignore Lexing Errors 4594 AsmToken EndToken, StartToken = getTok(); 4595 unsigned MacroDepth = 0; 4596 // Lex the macro definition. 4597 while (true) { 4598 // Ignore Lexing errors in macros. 4599 while (Lexer.is(AsmToken::Error)) { 4600 Lexer.Lex(); 4601 } 4602 4603 // Check whether we have reached the end of the file. 4604 if (getLexer().is(AsmToken::Eof)) 4605 return Error(DirectiveLoc, "no matching '.endmacro' in definition"); 4606 4607 // Otherwise, check whether we have reach the .endmacro or the start of a 4608 // preprocessor line marker. 4609 if (getLexer().is(AsmToken::Identifier)) { 4610 if (getTok().getIdentifier() == ".endm" || 4611 getTok().getIdentifier() == ".endmacro") { 4612 if (MacroDepth == 0) { // Outermost macro. 4613 EndToken = getTok(); 4614 Lexer.Lex(); 4615 if (getLexer().isNot(AsmToken::EndOfStatement)) 4616 return TokError("unexpected token in '" + EndToken.getIdentifier() + 4617 "' directive"); 4618 break; 4619 } else { 4620 // Otherwise we just found the end of an inner macro. 4621 --MacroDepth; 4622 } 4623 } else if (getTok().getIdentifier() == ".macro") { 4624 // We allow nested macros. Those aren't instantiated until the outermost 4625 // macro is expanded so just ignore them for now. 4626 ++MacroDepth; 4627 } 4628 } else if (Lexer.is(AsmToken::HashDirective)) { 4629 (void)parseCppHashLineFilenameComment(getLexer().getLoc()); 4630 } 4631 4632 // Otherwise, scan til the end of the statement. 4633 eatToEndOfStatement(); 4634 } 4635 4636 if (getContext().lookupMacro(Name)) { 4637 return Error(DirectiveLoc, "macro '" + Name + "' is already defined"); 4638 } 4639 4640 const char *BodyStart = StartToken.getLoc().getPointer(); 4641 const char *BodyEnd = EndToken.getLoc().getPointer(); 4642 StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart); 4643 checkForBadMacro(DirectiveLoc, Name, Body, Parameters); 4644 MCAsmMacro Macro(Name, Body, std::move(Parameters)); 4645 DEBUG_WITH_TYPE("asm-macros", dbgs() << "Defining new macro:\n"; 4646 Macro.dump()); 4647 getContext().defineMacro(Name, std::move(Macro)); 4648 return false; 4649 } 4650 4651 /// checkForBadMacro 4652 /// 4653 /// With the support added for named parameters there may be code out there that 4654 /// is transitioning from positional parameters. In versions of gas that did 4655 /// not support named parameters they would be ignored on the macro definition. 4656 /// But to support both styles of parameters this is not possible so if a macro 4657 /// definition has named parameters but does not use them and has what appears 4658 /// to be positional parameters, strings like $1, $2, ... and $n, then issue a 4659 /// warning that the positional parameter found in body which have no effect. 4660 /// Hoping the developer will either remove the named parameters from the macro 4661 /// definition so the positional parameters get used if that was what was 4662 /// intended or change the macro to use the named parameters. It is possible 4663 /// this warning will trigger when the none of the named parameters are used 4664 /// and the strings like $1 are infact to simply to be passed trough unchanged. 4665 void AsmParser::checkForBadMacro(SMLoc DirectiveLoc, StringRef Name, 4666 StringRef Body, 4667 ArrayRef<MCAsmMacroParameter> Parameters) { 4668 // If this macro is not defined with named parameters the warning we are 4669 // checking for here doesn't apply. 4670 unsigned NParameters = Parameters.size(); 4671 if (NParameters == 0) 4672 return; 4673 4674 bool NamedParametersFound = false; 4675 bool PositionalParametersFound = false; 4676 4677 // Look at the body of the macro for use of both the named parameters and what 4678 // are likely to be positional parameters. This is what expandMacro() is 4679 // doing when it finds the parameters in the body. 4680 while (!Body.empty()) { 4681 // Scan for the next possible parameter. 4682 std::size_t End = Body.size(), Pos = 0; 4683 for (; Pos != End; ++Pos) { 4684 // Check for a substitution or escape. 4685 // This macro is defined with parameters, look for \foo, \bar, etc. 4686 if (Body[Pos] == '\\' && Pos + 1 != End) 4687 break; 4688 4689 // This macro should have parameters, but look for $0, $1, ..., $n too. 4690 if (Body[Pos] != '$' || Pos + 1 == End) 4691 continue; 4692 char Next = Body[Pos + 1]; 4693 if (Next == '$' || Next == 'n' || 4694 isdigit(static_cast<unsigned char>(Next))) 4695 break; 4696 } 4697 4698 // Check if we reached the end. 4699 if (Pos == End) 4700 break; 4701 4702 if (Body[Pos] == '$') { 4703 switch (Body[Pos + 1]) { 4704 // $$ => $ 4705 case '$': 4706 break; 4707 4708 // $n => number of arguments 4709 case 'n': 4710 PositionalParametersFound = true; 4711 break; 4712 4713 // $[0-9] => argument 4714 default: { 4715 PositionalParametersFound = true; 4716 break; 4717 } 4718 } 4719 Pos += 2; 4720 } else { 4721 unsigned I = Pos + 1; 4722 while (isIdentifierChar(Body[I]) && I + 1 != End) 4723 ++I; 4724 4725 const char *Begin = Body.data() + Pos + 1; 4726 StringRef Argument(Begin, I - (Pos + 1)); 4727 unsigned Index = 0; 4728 for (; Index < NParameters; ++Index) 4729 if (Parameters[Index].Name == Argument) 4730 break; 4731 4732 if (Index == NParameters) { 4733 if (Body[Pos + 1] == '(' && Body[Pos + 2] == ')') 4734 Pos += 3; 4735 else { 4736 Pos = I; 4737 } 4738 } else { 4739 NamedParametersFound = true; 4740 Pos += 1 + Argument.size(); 4741 } 4742 } 4743 // Update the scan point. 4744 Body = Body.substr(Pos); 4745 } 4746 4747 if (!NamedParametersFound && PositionalParametersFound) 4748 Warning(DirectiveLoc, "macro defined with named parameters which are not " 4749 "used in macro body, possible positional parameter " 4750 "found in body which will have no effect"); 4751 } 4752 4753 /// parseDirectiveExitMacro 4754 /// ::= .exitm 4755 bool AsmParser::parseDirectiveExitMacro(StringRef Directive) { 4756 if (parseEOL()) 4757 return true; 4758 4759 if (!isInsideMacroInstantiation()) 4760 return TokError("unexpected '" + Directive + "' in file, " 4761 "no current macro definition"); 4762 4763 // Exit all conditionals that are active in the current macro. 4764 while (TheCondStack.size() != ActiveMacros.back()->CondStackDepth) { 4765 TheCondState = TheCondStack.back(); 4766 TheCondStack.pop_back(); 4767 } 4768 4769 handleMacroExit(); 4770 return false; 4771 } 4772 4773 /// parseDirectiveEndMacro 4774 /// ::= .endm 4775 /// ::= .endmacro 4776 bool AsmParser::parseDirectiveEndMacro(StringRef Directive) { 4777 if (getLexer().isNot(AsmToken::EndOfStatement)) 4778 return TokError("unexpected token in '" + Directive + "' directive"); 4779 4780 // If we are inside a macro instantiation, terminate the current 4781 // instantiation. 4782 if (isInsideMacroInstantiation()) { 4783 handleMacroExit(); 4784 return false; 4785 } 4786 4787 // Otherwise, this .endmacro is a stray entry in the file; well formed 4788 // .endmacro directives are handled during the macro definition parsing. 4789 return TokError("unexpected '" + Directive + "' in file, " 4790 "no current macro definition"); 4791 } 4792 4793 /// parseDirectivePurgeMacro 4794 /// ::= .purgem name 4795 bool AsmParser::parseDirectivePurgeMacro(SMLoc DirectiveLoc) { 4796 StringRef Name; 4797 SMLoc Loc; 4798 if (parseTokenLoc(Loc) || 4799 check(parseIdentifier(Name), Loc, 4800 "expected identifier in '.purgem' directive") || 4801 parseEOL()) 4802 return true; 4803 4804 if (!getContext().lookupMacro(Name)) 4805 return Error(DirectiveLoc, "macro '" + Name + "' is not defined"); 4806 4807 getContext().undefineMacro(Name); 4808 DEBUG_WITH_TYPE("asm-macros", dbgs() 4809 << "Un-defining macro: " << Name << "\n"); 4810 return false; 4811 } 4812 4813 /// parseDirectiveBundleAlignMode 4814 /// ::= {.bundle_align_mode} expression 4815 bool AsmParser::parseDirectiveBundleAlignMode() { 4816 // Expect a single argument: an expression that evaluates to a constant 4817 // in the inclusive range 0-30. 4818 SMLoc ExprLoc = getLexer().getLoc(); 4819 int64_t AlignSizePow2; 4820 if (checkForValidSection() || parseAbsoluteExpression(AlignSizePow2) || 4821 parseEOL() || 4822 check(AlignSizePow2 < 0 || AlignSizePow2 > 30, ExprLoc, 4823 "invalid bundle alignment size (expected between 0 and 30)")) 4824 return true; 4825 4826 getStreamer().emitBundleAlignMode(Align(1ULL << AlignSizePow2)); 4827 return false; 4828 } 4829 4830 /// parseDirectiveBundleLock 4831 /// ::= {.bundle_lock} [align_to_end] 4832 bool AsmParser::parseDirectiveBundleLock() { 4833 if (checkForValidSection()) 4834 return true; 4835 bool AlignToEnd = false; 4836 4837 StringRef Option; 4838 SMLoc Loc = getTok().getLoc(); 4839 const char *kInvalidOptionError = 4840 "invalid option for '.bundle_lock' directive"; 4841 4842 if (!parseOptionalToken(AsmToken::EndOfStatement)) { 4843 if (check(parseIdentifier(Option), Loc, kInvalidOptionError) || 4844 check(Option != "align_to_end", Loc, kInvalidOptionError) || parseEOL()) 4845 return true; 4846 AlignToEnd = true; 4847 } 4848 4849 getStreamer().emitBundleLock(AlignToEnd); 4850 return false; 4851 } 4852 4853 /// parseDirectiveBundleLock 4854 /// ::= {.bundle_lock} 4855 bool AsmParser::parseDirectiveBundleUnlock() { 4856 if (checkForValidSection() || parseEOL()) 4857 return true; 4858 4859 getStreamer().emitBundleUnlock(); 4860 return false; 4861 } 4862 4863 /// parseDirectiveSpace 4864 /// ::= (.skip | .space) expression [ , expression ] 4865 bool AsmParser::parseDirectiveSpace(StringRef IDVal) { 4866 SMLoc NumBytesLoc = Lexer.getLoc(); 4867 const MCExpr *NumBytes; 4868 if (checkForValidSection() || parseExpression(NumBytes)) 4869 return true; 4870 4871 int64_t FillExpr = 0; 4872 if (parseOptionalToken(AsmToken::Comma)) 4873 if (parseAbsoluteExpression(FillExpr)) 4874 return true; 4875 if (parseEOL()) 4876 return true; 4877 4878 // FIXME: Sometimes the fill expr is 'nop' if it isn't supplied, instead of 0. 4879 getStreamer().emitFill(*NumBytes, FillExpr, NumBytesLoc); 4880 4881 return false; 4882 } 4883 4884 /// parseDirectiveDCB 4885 /// ::= .dcb.{b, l, w} expression, expression 4886 bool AsmParser::parseDirectiveDCB(StringRef IDVal, unsigned Size) { 4887 SMLoc NumValuesLoc = Lexer.getLoc(); 4888 int64_t NumValues; 4889 if (checkForValidSection() || parseAbsoluteExpression(NumValues)) 4890 return true; 4891 4892 if (NumValues < 0) { 4893 Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect"); 4894 return false; 4895 } 4896 4897 if (parseComma()) 4898 return true; 4899 4900 const MCExpr *Value; 4901 SMLoc ExprLoc = getLexer().getLoc(); 4902 if (parseExpression(Value)) 4903 return true; 4904 4905 // Special case constant expressions to match code generator. 4906 if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) { 4907 assert(Size <= 8 && "Invalid size"); 4908 uint64_t IntValue = MCE->getValue(); 4909 if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue)) 4910 return Error(ExprLoc, "literal value out of range for directive"); 4911 for (uint64_t i = 0, e = NumValues; i != e; ++i) 4912 getStreamer().emitIntValue(IntValue, Size); 4913 } else { 4914 for (uint64_t i = 0, e = NumValues; i != e; ++i) 4915 getStreamer().emitValue(Value, Size, ExprLoc); 4916 } 4917 4918 return parseEOL(); 4919 } 4920 4921 /// parseDirectiveRealDCB 4922 /// ::= .dcb.{d, s} expression, expression 4923 bool AsmParser::parseDirectiveRealDCB(StringRef IDVal, const fltSemantics &Semantics) { 4924 SMLoc NumValuesLoc = Lexer.getLoc(); 4925 int64_t NumValues; 4926 if (checkForValidSection() || parseAbsoluteExpression(NumValues)) 4927 return true; 4928 4929 if (NumValues < 0) { 4930 Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect"); 4931 return false; 4932 } 4933 4934 if (parseComma()) 4935 return true; 4936 4937 APInt AsInt; 4938 if (parseRealValue(Semantics, AsInt) || parseEOL()) 4939 return true; 4940 4941 for (uint64_t i = 0, e = NumValues; i != e; ++i) 4942 getStreamer().emitIntValue(AsInt.getLimitedValue(), 4943 AsInt.getBitWidth() / 8); 4944 4945 return false; 4946 } 4947 4948 /// parseDirectiveDS 4949 /// ::= .ds.{b, d, l, p, s, w, x} expression 4950 bool AsmParser::parseDirectiveDS(StringRef IDVal, unsigned Size) { 4951 SMLoc NumValuesLoc = Lexer.getLoc(); 4952 int64_t NumValues; 4953 if (checkForValidSection() || parseAbsoluteExpression(NumValues) || 4954 parseEOL()) 4955 return true; 4956 4957 if (NumValues < 0) { 4958 Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect"); 4959 return false; 4960 } 4961 4962 for (uint64_t i = 0, e = NumValues; i != e; ++i) 4963 getStreamer().emitFill(Size, 0); 4964 4965 return false; 4966 } 4967 4968 /// parseDirectiveLEB128 4969 /// ::= (.sleb128 | .uleb128) [ expression (, expression)* ] 4970 bool AsmParser::parseDirectiveLEB128(bool Signed) { 4971 if (checkForValidSection()) 4972 return true; 4973 4974 auto parseOp = [&]() -> bool { 4975 const MCExpr *Value; 4976 if (parseExpression(Value)) 4977 return true; 4978 if (Signed) 4979 getStreamer().emitSLEB128Value(Value); 4980 else 4981 getStreamer().emitULEB128Value(Value); 4982 return false; 4983 }; 4984 4985 return parseMany(parseOp); 4986 } 4987 4988 /// parseDirectiveSymbolAttribute 4989 /// ::= { ".globl", ".weak", ... } [ identifier ( , identifier )* ] 4990 bool AsmParser::parseDirectiveSymbolAttribute(MCSymbolAttr Attr) { 4991 auto parseOp = [&]() -> bool { 4992 StringRef Name; 4993 SMLoc Loc = getTok().getLoc(); 4994 if (parseIdentifier(Name)) 4995 return Error(Loc, "expected identifier"); 4996 4997 if (discardLTOSymbol(Name)) 4998 return false; 4999 5000 MCSymbol *Sym = getContext().getOrCreateSymbol(Name); 5001 5002 // Assembler local symbols don't make any sense here, except for directives 5003 // that the symbol should be tagged. 5004 if (Sym->isTemporary() && Attr != MCSA_Memtag) 5005 return Error(Loc, "non-local symbol required"); 5006 5007 if (!getStreamer().emitSymbolAttribute(Sym, Attr)) 5008 return Error(Loc, "unable to emit symbol attribute"); 5009 return false; 5010 }; 5011 5012 return parseMany(parseOp); 5013 } 5014 5015 /// parseDirectiveComm 5016 /// ::= ( .comm | .lcomm ) identifier , size_expression [ , align_expression ] 5017 bool AsmParser::parseDirectiveComm(bool IsLocal) { 5018 if (checkForValidSection()) 5019 return true; 5020 5021 SMLoc IDLoc = getLexer().getLoc(); 5022 StringRef Name; 5023 if (parseIdentifier(Name)) 5024 return TokError("expected identifier in directive"); 5025 5026 // Handle the identifier as the key symbol. 5027 MCSymbol *Sym = getContext().getOrCreateSymbol(Name); 5028 5029 if (parseComma()) 5030 return true; 5031 5032 int64_t Size; 5033 SMLoc SizeLoc = getLexer().getLoc(); 5034 if (parseAbsoluteExpression(Size)) 5035 return true; 5036 5037 int64_t Pow2Alignment = 0; 5038 SMLoc Pow2AlignmentLoc; 5039 if (getLexer().is(AsmToken::Comma)) { 5040 Lex(); 5041 Pow2AlignmentLoc = getLexer().getLoc(); 5042 if (parseAbsoluteExpression(Pow2Alignment)) 5043 return true; 5044 5045 LCOMM::LCOMMType LCOMM = Lexer.getMAI().getLCOMMDirectiveAlignmentType(); 5046 if (IsLocal && LCOMM == LCOMM::NoAlignment) 5047 return Error(Pow2AlignmentLoc, "alignment not supported on this target"); 5048 5049 // If this target takes alignments in bytes (not log) validate and convert. 5050 if ((!IsLocal && Lexer.getMAI().getCOMMDirectiveAlignmentIsInBytes()) || 5051 (IsLocal && LCOMM == LCOMM::ByteAlignment)) { 5052 if (!isPowerOf2_64(Pow2Alignment)) 5053 return Error(Pow2AlignmentLoc, "alignment must be a power of 2"); 5054 Pow2Alignment = Log2_64(Pow2Alignment); 5055 } 5056 } 5057 5058 if (parseEOL()) 5059 return true; 5060 5061 // NOTE: a size of zero for a .comm should create a undefined symbol 5062 // but a size of .lcomm creates a bss symbol of size zero. 5063 if (Size < 0) 5064 return Error(SizeLoc, "size must be non-negative"); 5065 5066 Sym->redefineIfPossible(); 5067 if (!Sym->isUndefined()) 5068 return Error(IDLoc, "invalid symbol redefinition"); 5069 5070 // Create the Symbol as a common or local common with Size and Pow2Alignment 5071 if (IsLocal) { 5072 getStreamer().emitLocalCommonSymbol(Sym, Size, 5073 Align(1ULL << Pow2Alignment)); 5074 return false; 5075 } 5076 5077 getStreamer().emitCommonSymbol(Sym, Size, Align(1ULL << Pow2Alignment)); 5078 return false; 5079 } 5080 5081 /// parseDirectiveAbort 5082 /// ::= .abort [... message ...] 5083 bool AsmParser::parseDirectiveAbort() { 5084 // FIXME: Use loc from directive. 5085 SMLoc Loc = getLexer().getLoc(); 5086 5087 StringRef Str = parseStringToEndOfStatement(); 5088 if (parseEOL()) 5089 return true; 5090 5091 if (Str.empty()) 5092 return Error(Loc, ".abort detected. Assembly stopping."); 5093 else 5094 return Error(Loc, ".abort '" + Str + "' detected. Assembly stopping."); 5095 // FIXME: Actually abort assembly here. 5096 5097 return false; 5098 } 5099 5100 /// parseDirectiveInclude 5101 /// ::= .include "filename" 5102 bool AsmParser::parseDirectiveInclude() { 5103 // Allow the strings to have escaped octal character sequence. 5104 std::string Filename; 5105 SMLoc IncludeLoc = getTok().getLoc(); 5106 5107 if (check(getTok().isNot(AsmToken::String), 5108 "expected string in '.include' directive") || 5109 parseEscapedString(Filename) || 5110 check(getTok().isNot(AsmToken::EndOfStatement), 5111 "unexpected token in '.include' directive") || 5112 // Attempt to switch the lexer to the included file before consuming the 5113 // end of statement to avoid losing it when we switch. 5114 check(enterIncludeFile(Filename), IncludeLoc, 5115 "Could not find include file '" + Filename + "'")) 5116 return true; 5117 5118 return false; 5119 } 5120 5121 /// parseDirectiveIncbin 5122 /// ::= .incbin "filename" [ , skip [ , count ] ] 5123 bool AsmParser::parseDirectiveIncbin() { 5124 // Allow the strings to have escaped octal character sequence. 5125 std::string Filename; 5126 SMLoc IncbinLoc = getTok().getLoc(); 5127 if (check(getTok().isNot(AsmToken::String), 5128 "expected string in '.incbin' directive") || 5129 parseEscapedString(Filename)) 5130 return true; 5131 5132 int64_t Skip = 0; 5133 const MCExpr *Count = nullptr; 5134 SMLoc SkipLoc, CountLoc; 5135 if (parseOptionalToken(AsmToken::Comma)) { 5136 // The skip expression can be omitted while specifying the count, e.g: 5137 // .incbin "filename",,4 5138 if (getTok().isNot(AsmToken::Comma)) { 5139 if (parseTokenLoc(SkipLoc) || parseAbsoluteExpression(Skip)) 5140 return true; 5141 } 5142 if (parseOptionalToken(AsmToken::Comma)) { 5143 CountLoc = getTok().getLoc(); 5144 if (parseExpression(Count)) 5145 return true; 5146 } 5147 } 5148 5149 if (parseEOL()) 5150 return true; 5151 5152 if (check(Skip < 0, SkipLoc, "skip is negative")) 5153 return true; 5154 5155 // Attempt to process the included file. 5156 if (processIncbinFile(Filename, Skip, Count, CountLoc)) 5157 return Error(IncbinLoc, "Could not find incbin file '" + Filename + "'"); 5158 return false; 5159 } 5160 5161 /// parseDirectiveIf 5162 /// ::= .if{,eq,ge,gt,le,lt,ne} expression 5163 bool AsmParser::parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind) { 5164 TheCondStack.push_back(TheCondState); 5165 TheCondState.TheCond = AsmCond::IfCond; 5166 if (TheCondState.Ignore) { 5167 eatToEndOfStatement(); 5168 } else { 5169 int64_t ExprValue; 5170 if (parseAbsoluteExpression(ExprValue) || parseEOL()) 5171 return true; 5172 5173 switch (DirKind) { 5174 default: 5175 llvm_unreachable("unsupported directive"); 5176 case DK_IF: 5177 case DK_IFNE: 5178 break; 5179 case DK_IFEQ: 5180 ExprValue = ExprValue == 0; 5181 break; 5182 case DK_IFGE: 5183 ExprValue = ExprValue >= 0; 5184 break; 5185 case DK_IFGT: 5186 ExprValue = ExprValue > 0; 5187 break; 5188 case DK_IFLE: 5189 ExprValue = ExprValue <= 0; 5190 break; 5191 case DK_IFLT: 5192 ExprValue = ExprValue < 0; 5193 break; 5194 } 5195 5196 TheCondState.CondMet = ExprValue; 5197 TheCondState.Ignore = !TheCondState.CondMet; 5198 } 5199 5200 return false; 5201 } 5202 5203 /// parseDirectiveIfb 5204 /// ::= .ifb string 5205 bool AsmParser::parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank) { 5206 TheCondStack.push_back(TheCondState); 5207 TheCondState.TheCond = AsmCond::IfCond; 5208 5209 if (TheCondState.Ignore) { 5210 eatToEndOfStatement(); 5211 } else { 5212 StringRef Str = parseStringToEndOfStatement(); 5213 5214 if (parseEOL()) 5215 return true; 5216 5217 TheCondState.CondMet = ExpectBlank == Str.empty(); 5218 TheCondState.Ignore = !TheCondState.CondMet; 5219 } 5220 5221 return false; 5222 } 5223 5224 /// parseDirectiveIfc 5225 /// ::= .ifc string1, string2 5226 /// ::= .ifnc string1, string2 5227 bool AsmParser::parseDirectiveIfc(SMLoc DirectiveLoc, bool ExpectEqual) { 5228 TheCondStack.push_back(TheCondState); 5229 TheCondState.TheCond = AsmCond::IfCond; 5230 5231 if (TheCondState.Ignore) { 5232 eatToEndOfStatement(); 5233 } else { 5234 StringRef Str1 = parseStringToComma(); 5235 5236 if (parseComma()) 5237 return true; 5238 5239 StringRef Str2 = parseStringToEndOfStatement(); 5240 5241 if (parseEOL()) 5242 return true; 5243 5244 TheCondState.CondMet = ExpectEqual == (Str1.trim() == Str2.trim()); 5245 TheCondState.Ignore = !TheCondState.CondMet; 5246 } 5247 5248 return false; 5249 } 5250 5251 /// parseDirectiveIfeqs 5252 /// ::= .ifeqs string1, string2 5253 bool AsmParser::parseDirectiveIfeqs(SMLoc DirectiveLoc, bool ExpectEqual) { 5254 if (Lexer.isNot(AsmToken::String)) { 5255 if (ExpectEqual) 5256 return TokError("expected string parameter for '.ifeqs' directive"); 5257 return TokError("expected string parameter for '.ifnes' directive"); 5258 } 5259 5260 StringRef String1 = getTok().getStringContents(); 5261 Lex(); 5262 5263 if (Lexer.isNot(AsmToken::Comma)) { 5264 if (ExpectEqual) 5265 return TokError( 5266 "expected comma after first string for '.ifeqs' directive"); 5267 return TokError("expected comma after first string for '.ifnes' directive"); 5268 } 5269 5270 Lex(); 5271 5272 if (Lexer.isNot(AsmToken::String)) { 5273 if (ExpectEqual) 5274 return TokError("expected string parameter for '.ifeqs' directive"); 5275 return TokError("expected string parameter for '.ifnes' directive"); 5276 } 5277 5278 StringRef String2 = getTok().getStringContents(); 5279 Lex(); 5280 5281 TheCondStack.push_back(TheCondState); 5282 TheCondState.TheCond = AsmCond::IfCond; 5283 TheCondState.CondMet = ExpectEqual == (String1 == String2); 5284 TheCondState.Ignore = !TheCondState.CondMet; 5285 5286 return false; 5287 } 5288 5289 /// parseDirectiveIfdef 5290 /// ::= .ifdef symbol 5291 bool AsmParser::parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined) { 5292 StringRef Name; 5293 TheCondStack.push_back(TheCondState); 5294 TheCondState.TheCond = AsmCond::IfCond; 5295 5296 if (TheCondState.Ignore) { 5297 eatToEndOfStatement(); 5298 } else { 5299 if (check(parseIdentifier(Name), "expected identifier after '.ifdef'") || 5300 parseEOL()) 5301 return true; 5302 5303 MCSymbol *Sym = getContext().lookupSymbol(Name); 5304 5305 if (expect_defined) 5306 TheCondState.CondMet = (Sym && !Sym->isUndefined(false)); 5307 else 5308 TheCondState.CondMet = (!Sym || Sym->isUndefined(false)); 5309 TheCondState.Ignore = !TheCondState.CondMet; 5310 } 5311 5312 return false; 5313 } 5314 5315 /// parseDirectiveElseIf 5316 /// ::= .elseif expression 5317 bool AsmParser::parseDirectiveElseIf(SMLoc DirectiveLoc) { 5318 if (TheCondState.TheCond != AsmCond::IfCond && 5319 TheCondState.TheCond != AsmCond::ElseIfCond) 5320 return Error(DirectiveLoc, "Encountered a .elseif that doesn't follow an" 5321 " .if or an .elseif"); 5322 TheCondState.TheCond = AsmCond::ElseIfCond; 5323 5324 bool LastIgnoreState = false; 5325 if (!TheCondStack.empty()) 5326 LastIgnoreState = TheCondStack.back().Ignore; 5327 if (LastIgnoreState || TheCondState.CondMet) { 5328 TheCondState.Ignore = true; 5329 eatToEndOfStatement(); 5330 } else { 5331 int64_t ExprValue; 5332 if (parseAbsoluteExpression(ExprValue)) 5333 return true; 5334 5335 if (parseEOL()) 5336 return true; 5337 5338 TheCondState.CondMet = ExprValue; 5339 TheCondState.Ignore = !TheCondState.CondMet; 5340 } 5341 5342 return false; 5343 } 5344 5345 /// parseDirectiveElse 5346 /// ::= .else 5347 bool AsmParser::parseDirectiveElse(SMLoc DirectiveLoc) { 5348 if (parseEOL()) 5349 return true; 5350 5351 if (TheCondState.TheCond != AsmCond::IfCond && 5352 TheCondState.TheCond != AsmCond::ElseIfCond) 5353 return Error(DirectiveLoc, "Encountered a .else that doesn't follow " 5354 " an .if or an .elseif"); 5355 TheCondState.TheCond = AsmCond::ElseCond; 5356 bool LastIgnoreState = false; 5357 if (!TheCondStack.empty()) 5358 LastIgnoreState = TheCondStack.back().Ignore; 5359 if (LastIgnoreState || TheCondState.CondMet) 5360 TheCondState.Ignore = true; 5361 else 5362 TheCondState.Ignore = false; 5363 5364 return false; 5365 } 5366 5367 /// parseDirectiveEnd 5368 /// ::= .end 5369 bool AsmParser::parseDirectiveEnd(SMLoc DirectiveLoc) { 5370 if (parseEOL()) 5371 return true; 5372 5373 while (Lexer.isNot(AsmToken::Eof)) 5374 Lexer.Lex(); 5375 5376 return false; 5377 } 5378 5379 /// parseDirectiveError 5380 /// ::= .err 5381 /// ::= .error [string] 5382 bool AsmParser::parseDirectiveError(SMLoc L, bool WithMessage) { 5383 if (!TheCondStack.empty()) { 5384 if (TheCondStack.back().Ignore) { 5385 eatToEndOfStatement(); 5386 return false; 5387 } 5388 } 5389 5390 if (!WithMessage) 5391 return Error(L, ".err encountered"); 5392 5393 StringRef Message = ".error directive invoked in source file"; 5394 if (Lexer.isNot(AsmToken::EndOfStatement)) { 5395 if (Lexer.isNot(AsmToken::String)) 5396 return TokError(".error argument must be a string"); 5397 5398 Message = getTok().getStringContents(); 5399 Lex(); 5400 } 5401 5402 return Error(L, Message); 5403 } 5404 5405 /// parseDirectiveWarning 5406 /// ::= .warning [string] 5407 bool AsmParser::parseDirectiveWarning(SMLoc L) { 5408 if (!TheCondStack.empty()) { 5409 if (TheCondStack.back().Ignore) { 5410 eatToEndOfStatement(); 5411 return false; 5412 } 5413 } 5414 5415 StringRef Message = ".warning directive invoked in source file"; 5416 5417 if (!parseOptionalToken(AsmToken::EndOfStatement)) { 5418 if (Lexer.isNot(AsmToken::String)) 5419 return TokError(".warning argument must be a string"); 5420 5421 Message = getTok().getStringContents(); 5422 Lex(); 5423 if (parseEOL()) 5424 return true; 5425 } 5426 5427 return Warning(L, Message); 5428 } 5429 5430 /// parseDirectiveEndIf 5431 /// ::= .endif 5432 bool AsmParser::parseDirectiveEndIf(SMLoc DirectiveLoc) { 5433 if (parseEOL()) 5434 return true; 5435 5436 if ((TheCondState.TheCond == AsmCond::NoCond) || TheCondStack.empty()) 5437 return Error(DirectiveLoc, "Encountered a .endif that doesn't follow " 5438 "an .if or .else"); 5439 if (!TheCondStack.empty()) { 5440 TheCondState = TheCondStack.back(); 5441 TheCondStack.pop_back(); 5442 } 5443 5444 return false; 5445 } 5446 5447 void AsmParser::initializeDirectiveKindMap() { 5448 /* Lookup will be done with the directive 5449 * converted to lower case, so all these 5450 * keys should be lower case. 5451 * (target specific directives are handled 5452 * elsewhere) 5453 */ 5454 DirectiveKindMap[".set"] = DK_SET; 5455 DirectiveKindMap[".equ"] = DK_EQU; 5456 DirectiveKindMap[".equiv"] = DK_EQUIV; 5457 DirectiveKindMap[".ascii"] = DK_ASCII; 5458 DirectiveKindMap[".asciz"] = DK_ASCIZ; 5459 DirectiveKindMap[".string"] = DK_STRING; 5460 DirectiveKindMap[".byte"] = DK_BYTE; 5461 DirectiveKindMap[".short"] = DK_SHORT; 5462 DirectiveKindMap[".value"] = DK_VALUE; 5463 DirectiveKindMap[".2byte"] = DK_2BYTE; 5464 DirectiveKindMap[".long"] = DK_LONG; 5465 DirectiveKindMap[".int"] = DK_INT; 5466 DirectiveKindMap[".4byte"] = DK_4BYTE; 5467 DirectiveKindMap[".quad"] = DK_QUAD; 5468 DirectiveKindMap[".8byte"] = DK_8BYTE; 5469 DirectiveKindMap[".octa"] = DK_OCTA; 5470 DirectiveKindMap[".single"] = DK_SINGLE; 5471 DirectiveKindMap[".float"] = DK_FLOAT; 5472 DirectiveKindMap[".double"] = DK_DOUBLE; 5473 DirectiveKindMap[".align"] = DK_ALIGN; 5474 DirectiveKindMap[".align32"] = DK_ALIGN32; 5475 DirectiveKindMap[".balign"] = DK_BALIGN; 5476 DirectiveKindMap[".balignw"] = DK_BALIGNW; 5477 DirectiveKindMap[".balignl"] = DK_BALIGNL; 5478 DirectiveKindMap[".p2align"] = DK_P2ALIGN; 5479 DirectiveKindMap[".p2alignw"] = DK_P2ALIGNW; 5480 DirectiveKindMap[".p2alignl"] = DK_P2ALIGNL; 5481 DirectiveKindMap[".org"] = DK_ORG; 5482 DirectiveKindMap[".fill"] = DK_FILL; 5483 DirectiveKindMap[".zero"] = DK_ZERO; 5484 DirectiveKindMap[".extern"] = DK_EXTERN; 5485 DirectiveKindMap[".globl"] = DK_GLOBL; 5486 DirectiveKindMap[".global"] = DK_GLOBAL; 5487 DirectiveKindMap[".lazy_reference"] = DK_LAZY_REFERENCE; 5488 DirectiveKindMap[".no_dead_strip"] = DK_NO_DEAD_STRIP; 5489 DirectiveKindMap[".symbol_resolver"] = DK_SYMBOL_RESOLVER; 5490 DirectiveKindMap[".private_extern"] = DK_PRIVATE_EXTERN; 5491 DirectiveKindMap[".reference"] = DK_REFERENCE; 5492 DirectiveKindMap[".weak_definition"] = DK_WEAK_DEFINITION; 5493 DirectiveKindMap[".weak_reference"] = DK_WEAK_REFERENCE; 5494 DirectiveKindMap[".weak_def_can_be_hidden"] = DK_WEAK_DEF_CAN_BE_HIDDEN; 5495 DirectiveKindMap[".cold"] = DK_COLD; 5496 DirectiveKindMap[".comm"] = DK_COMM; 5497 DirectiveKindMap[".common"] = DK_COMMON; 5498 DirectiveKindMap[".lcomm"] = DK_LCOMM; 5499 DirectiveKindMap[".abort"] = DK_ABORT; 5500 DirectiveKindMap[".include"] = DK_INCLUDE; 5501 DirectiveKindMap[".incbin"] = DK_INCBIN; 5502 DirectiveKindMap[".code16"] = DK_CODE16; 5503 DirectiveKindMap[".code16gcc"] = DK_CODE16GCC; 5504 DirectiveKindMap[".rept"] = DK_REPT; 5505 DirectiveKindMap[".rep"] = DK_REPT; 5506 DirectiveKindMap[".irp"] = DK_IRP; 5507 DirectiveKindMap[".irpc"] = DK_IRPC; 5508 DirectiveKindMap[".endr"] = DK_ENDR; 5509 DirectiveKindMap[".bundle_align_mode"] = DK_BUNDLE_ALIGN_MODE; 5510 DirectiveKindMap[".bundle_lock"] = DK_BUNDLE_LOCK; 5511 DirectiveKindMap[".bundle_unlock"] = DK_BUNDLE_UNLOCK; 5512 DirectiveKindMap[".if"] = DK_IF; 5513 DirectiveKindMap[".ifeq"] = DK_IFEQ; 5514 DirectiveKindMap[".ifge"] = DK_IFGE; 5515 DirectiveKindMap[".ifgt"] = DK_IFGT; 5516 DirectiveKindMap[".ifle"] = DK_IFLE; 5517 DirectiveKindMap[".iflt"] = DK_IFLT; 5518 DirectiveKindMap[".ifne"] = DK_IFNE; 5519 DirectiveKindMap[".ifb"] = DK_IFB; 5520 DirectiveKindMap[".ifnb"] = DK_IFNB; 5521 DirectiveKindMap[".ifc"] = DK_IFC; 5522 DirectiveKindMap[".ifeqs"] = DK_IFEQS; 5523 DirectiveKindMap[".ifnc"] = DK_IFNC; 5524 DirectiveKindMap[".ifnes"] = DK_IFNES; 5525 DirectiveKindMap[".ifdef"] = DK_IFDEF; 5526 DirectiveKindMap[".ifndef"] = DK_IFNDEF; 5527 DirectiveKindMap[".ifnotdef"] = DK_IFNOTDEF; 5528 DirectiveKindMap[".elseif"] = DK_ELSEIF; 5529 DirectiveKindMap[".else"] = DK_ELSE; 5530 DirectiveKindMap[".end"] = DK_END; 5531 DirectiveKindMap[".endif"] = DK_ENDIF; 5532 DirectiveKindMap[".skip"] = DK_SKIP; 5533 DirectiveKindMap[".space"] = DK_SPACE; 5534 DirectiveKindMap[".file"] = DK_FILE; 5535 DirectiveKindMap[".line"] = DK_LINE; 5536 DirectiveKindMap[".loc"] = DK_LOC; 5537 DirectiveKindMap[".stabs"] = DK_STABS; 5538 DirectiveKindMap[".cv_file"] = DK_CV_FILE; 5539 DirectiveKindMap[".cv_func_id"] = DK_CV_FUNC_ID; 5540 DirectiveKindMap[".cv_loc"] = DK_CV_LOC; 5541 DirectiveKindMap[".cv_linetable"] = DK_CV_LINETABLE; 5542 DirectiveKindMap[".cv_inline_linetable"] = DK_CV_INLINE_LINETABLE; 5543 DirectiveKindMap[".cv_inline_site_id"] = DK_CV_INLINE_SITE_ID; 5544 DirectiveKindMap[".cv_def_range"] = DK_CV_DEF_RANGE; 5545 DirectiveKindMap[".cv_string"] = DK_CV_STRING; 5546 DirectiveKindMap[".cv_stringtable"] = DK_CV_STRINGTABLE; 5547 DirectiveKindMap[".cv_filechecksums"] = DK_CV_FILECHECKSUMS; 5548 DirectiveKindMap[".cv_filechecksumoffset"] = DK_CV_FILECHECKSUM_OFFSET; 5549 DirectiveKindMap[".cv_fpo_data"] = DK_CV_FPO_DATA; 5550 DirectiveKindMap[".sleb128"] = DK_SLEB128; 5551 DirectiveKindMap[".uleb128"] = DK_ULEB128; 5552 DirectiveKindMap[".cfi_sections"] = DK_CFI_SECTIONS; 5553 DirectiveKindMap[".cfi_startproc"] = DK_CFI_STARTPROC; 5554 DirectiveKindMap[".cfi_endproc"] = DK_CFI_ENDPROC; 5555 DirectiveKindMap[".cfi_def_cfa"] = DK_CFI_DEF_CFA; 5556 DirectiveKindMap[".cfi_def_cfa_offset"] = DK_CFI_DEF_CFA_OFFSET; 5557 DirectiveKindMap[".cfi_adjust_cfa_offset"] = DK_CFI_ADJUST_CFA_OFFSET; 5558 DirectiveKindMap[".cfi_def_cfa_register"] = DK_CFI_DEF_CFA_REGISTER; 5559 DirectiveKindMap[".cfi_llvm_def_aspace_cfa"] = DK_CFI_LLVM_DEF_ASPACE_CFA; 5560 DirectiveKindMap[".cfi_offset"] = DK_CFI_OFFSET; 5561 DirectiveKindMap[".cfi_rel_offset"] = DK_CFI_REL_OFFSET; 5562 DirectiveKindMap[".cfi_personality"] = DK_CFI_PERSONALITY; 5563 DirectiveKindMap[".cfi_lsda"] = DK_CFI_LSDA; 5564 DirectiveKindMap[".cfi_remember_state"] = DK_CFI_REMEMBER_STATE; 5565 DirectiveKindMap[".cfi_restore_state"] = DK_CFI_RESTORE_STATE; 5566 DirectiveKindMap[".cfi_same_value"] = DK_CFI_SAME_VALUE; 5567 DirectiveKindMap[".cfi_restore"] = DK_CFI_RESTORE; 5568 DirectiveKindMap[".cfi_escape"] = DK_CFI_ESCAPE; 5569 DirectiveKindMap[".cfi_return_column"] = DK_CFI_RETURN_COLUMN; 5570 DirectiveKindMap[".cfi_signal_frame"] = DK_CFI_SIGNAL_FRAME; 5571 DirectiveKindMap[".cfi_undefined"] = DK_CFI_UNDEFINED; 5572 DirectiveKindMap[".cfi_register"] = DK_CFI_REGISTER; 5573 DirectiveKindMap[".cfi_window_save"] = DK_CFI_WINDOW_SAVE; 5574 DirectiveKindMap[".cfi_b_key_frame"] = DK_CFI_B_KEY_FRAME; 5575 DirectiveKindMap[".cfi_mte_tagged_frame"] = DK_CFI_MTE_TAGGED_FRAME; 5576 DirectiveKindMap[".macros_on"] = DK_MACROS_ON; 5577 DirectiveKindMap[".macros_off"] = DK_MACROS_OFF; 5578 DirectiveKindMap[".macro"] = DK_MACRO; 5579 DirectiveKindMap[".exitm"] = DK_EXITM; 5580 DirectiveKindMap[".endm"] = DK_ENDM; 5581 DirectiveKindMap[".endmacro"] = DK_ENDMACRO; 5582 DirectiveKindMap[".purgem"] = DK_PURGEM; 5583 DirectiveKindMap[".err"] = DK_ERR; 5584 DirectiveKindMap[".error"] = DK_ERROR; 5585 DirectiveKindMap[".warning"] = DK_WARNING; 5586 DirectiveKindMap[".altmacro"] = DK_ALTMACRO; 5587 DirectiveKindMap[".noaltmacro"] = DK_NOALTMACRO; 5588 DirectiveKindMap[".reloc"] = DK_RELOC; 5589 DirectiveKindMap[".dc"] = DK_DC; 5590 DirectiveKindMap[".dc.a"] = DK_DC_A; 5591 DirectiveKindMap[".dc.b"] = DK_DC_B; 5592 DirectiveKindMap[".dc.d"] = DK_DC_D; 5593 DirectiveKindMap[".dc.l"] = DK_DC_L; 5594 DirectiveKindMap[".dc.s"] = DK_DC_S; 5595 DirectiveKindMap[".dc.w"] = DK_DC_W; 5596 DirectiveKindMap[".dc.x"] = DK_DC_X; 5597 DirectiveKindMap[".dcb"] = DK_DCB; 5598 DirectiveKindMap[".dcb.b"] = DK_DCB_B; 5599 DirectiveKindMap[".dcb.d"] = DK_DCB_D; 5600 DirectiveKindMap[".dcb.l"] = DK_DCB_L; 5601 DirectiveKindMap[".dcb.s"] = DK_DCB_S; 5602 DirectiveKindMap[".dcb.w"] = DK_DCB_W; 5603 DirectiveKindMap[".dcb.x"] = DK_DCB_X; 5604 DirectiveKindMap[".ds"] = DK_DS; 5605 DirectiveKindMap[".ds.b"] = DK_DS_B; 5606 DirectiveKindMap[".ds.d"] = DK_DS_D; 5607 DirectiveKindMap[".ds.l"] = DK_DS_L; 5608 DirectiveKindMap[".ds.p"] = DK_DS_P; 5609 DirectiveKindMap[".ds.s"] = DK_DS_S; 5610 DirectiveKindMap[".ds.w"] = DK_DS_W; 5611 DirectiveKindMap[".ds.x"] = DK_DS_X; 5612 DirectiveKindMap[".print"] = DK_PRINT; 5613 DirectiveKindMap[".addrsig"] = DK_ADDRSIG; 5614 DirectiveKindMap[".addrsig_sym"] = DK_ADDRSIG_SYM; 5615 DirectiveKindMap[".pseudoprobe"] = DK_PSEUDO_PROBE; 5616 DirectiveKindMap[".lto_discard"] = DK_LTO_DISCARD; 5617 DirectiveKindMap[".lto_set_conditional"] = DK_LTO_SET_CONDITIONAL; 5618 DirectiveKindMap[".memtag"] = DK_MEMTAG; 5619 } 5620 5621 MCAsmMacro *AsmParser::parseMacroLikeBody(SMLoc DirectiveLoc) { 5622 AsmToken EndToken, StartToken = getTok(); 5623 5624 unsigned NestLevel = 0; 5625 while (true) { 5626 // Check whether we have reached the end of the file. 5627 if (getLexer().is(AsmToken::Eof)) { 5628 printError(DirectiveLoc, "no matching '.endr' in definition"); 5629 return nullptr; 5630 } 5631 5632 if (Lexer.is(AsmToken::Identifier) && 5633 (getTok().getIdentifier() == ".rep" || 5634 getTok().getIdentifier() == ".rept" || 5635 getTok().getIdentifier() == ".irp" || 5636 getTok().getIdentifier() == ".irpc")) { 5637 ++NestLevel; 5638 } 5639 5640 // Otherwise, check whether we have reached the .endr. 5641 if (Lexer.is(AsmToken::Identifier) && getTok().getIdentifier() == ".endr") { 5642 if (NestLevel == 0) { 5643 EndToken = getTok(); 5644 Lex(); 5645 if (Lexer.isNot(AsmToken::EndOfStatement)) { 5646 printError(getTok().getLoc(), 5647 "unexpected token in '.endr' directive"); 5648 return nullptr; 5649 } 5650 break; 5651 } 5652 --NestLevel; 5653 } 5654 5655 // Otherwise, scan till the end of the statement. 5656 eatToEndOfStatement(); 5657 } 5658 5659 const char *BodyStart = StartToken.getLoc().getPointer(); 5660 const char *BodyEnd = EndToken.getLoc().getPointer(); 5661 StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart); 5662 5663 // We Are Anonymous. 5664 MacroLikeBodies.emplace_back(StringRef(), Body, MCAsmMacroParameters()); 5665 return &MacroLikeBodies.back(); 5666 } 5667 5668 void AsmParser::instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc, 5669 raw_svector_ostream &OS) { 5670 OS << ".endr\n"; 5671 5672 std::unique_ptr<MemoryBuffer> Instantiation = 5673 MemoryBuffer::getMemBufferCopy(OS.str(), "<instantiation>"); 5674 5675 // Create the macro instantiation object and add to the current macro 5676 // instantiation stack. 5677 MacroInstantiation *MI = new MacroInstantiation{ 5678 DirectiveLoc, CurBuffer, getTok().getLoc(), TheCondStack.size()}; 5679 ActiveMacros.push_back(MI); 5680 5681 // Jump to the macro instantiation and prime the lexer. 5682 CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc()); 5683 Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); 5684 Lex(); 5685 } 5686 5687 /// parseDirectiveRept 5688 /// ::= .rep | .rept count 5689 bool AsmParser::parseDirectiveRept(SMLoc DirectiveLoc, StringRef Dir) { 5690 const MCExpr *CountExpr; 5691 SMLoc CountLoc = getTok().getLoc(); 5692 if (parseExpression(CountExpr)) 5693 return true; 5694 5695 int64_t Count; 5696 if (!CountExpr->evaluateAsAbsolute(Count, getStreamer().getAssemblerPtr())) { 5697 return Error(CountLoc, "unexpected token in '" + Dir + "' directive"); 5698 } 5699 5700 if (check(Count < 0, CountLoc, "Count is negative") || parseEOL()) 5701 return true; 5702 5703 // Lex the rept definition. 5704 MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc); 5705 if (!M) 5706 return true; 5707 5708 // Macro instantiation is lexical, unfortunately. We construct a new buffer 5709 // to hold the macro body with substitutions. 5710 SmallString<256> Buf; 5711 raw_svector_ostream OS(Buf); 5712 while (Count--) { 5713 // Note that the AtPseudoVariable is disabled for instantiations of .rep(t). 5714 if (expandMacro(OS, M->Body, std::nullopt, std::nullopt, false, 5715 getTok().getLoc())) 5716 return true; 5717 } 5718 instantiateMacroLikeBody(M, DirectiveLoc, OS); 5719 5720 return false; 5721 } 5722 5723 /// parseDirectiveIrp 5724 /// ::= .irp symbol,values 5725 bool AsmParser::parseDirectiveIrp(SMLoc DirectiveLoc) { 5726 MCAsmMacroParameter Parameter; 5727 MCAsmMacroArguments A; 5728 if (check(parseIdentifier(Parameter.Name), 5729 "expected identifier in '.irp' directive") || 5730 parseComma() || parseMacroArguments(nullptr, A) || parseEOL()) 5731 return true; 5732 5733 // Lex the irp definition. 5734 MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc); 5735 if (!M) 5736 return true; 5737 5738 // Macro instantiation is lexical, unfortunately. We construct a new buffer 5739 // to hold the macro body with substitutions. 5740 SmallString<256> Buf; 5741 raw_svector_ostream OS(Buf); 5742 5743 for (const MCAsmMacroArgument &Arg : A) { 5744 // Note that the AtPseudoVariable is enabled for instantiations of .irp. 5745 // This is undocumented, but GAS seems to support it. 5746 if (expandMacro(OS, M->Body, Parameter, Arg, true, getTok().getLoc())) 5747 return true; 5748 } 5749 5750 instantiateMacroLikeBody(M, DirectiveLoc, OS); 5751 5752 return false; 5753 } 5754 5755 /// parseDirectiveIrpc 5756 /// ::= .irpc symbol,values 5757 bool AsmParser::parseDirectiveIrpc(SMLoc DirectiveLoc) { 5758 MCAsmMacroParameter Parameter; 5759 MCAsmMacroArguments A; 5760 5761 if (check(parseIdentifier(Parameter.Name), 5762 "expected identifier in '.irpc' directive") || 5763 parseComma() || parseMacroArguments(nullptr, A)) 5764 return true; 5765 5766 if (A.size() != 1 || A.front().size() != 1) 5767 return TokError("unexpected token in '.irpc' directive"); 5768 if (parseEOL()) 5769 return true; 5770 5771 // Lex the irpc definition. 5772 MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc); 5773 if (!M) 5774 return true; 5775 5776 // Macro instantiation is lexical, unfortunately. We construct a new buffer 5777 // to hold the macro body with substitutions. 5778 SmallString<256> Buf; 5779 raw_svector_ostream OS(Buf); 5780 5781 StringRef Values = A.front().front().getString(); 5782 for (std::size_t I = 0, End = Values.size(); I != End; ++I) { 5783 MCAsmMacroArgument Arg; 5784 Arg.emplace_back(AsmToken::Identifier, Values.slice(I, I + 1)); 5785 5786 // Note that the AtPseudoVariable is enabled for instantiations of .irpc. 5787 // This is undocumented, but GAS seems to support it. 5788 if (expandMacro(OS, M->Body, Parameter, Arg, true, getTok().getLoc())) 5789 return true; 5790 } 5791 5792 instantiateMacroLikeBody(M, DirectiveLoc, OS); 5793 5794 return false; 5795 } 5796 5797 bool AsmParser::parseDirectiveEndr(SMLoc DirectiveLoc) { 5798 if (ActiveMacros.empty()) 5799 return TokError("unmatched '.endr' directive"); 5800 5801 // The only .repl that should get here are the ones created by 5802 // instantiateMacroLikeBody. 5803 assert(getLexer().is(AsmToken::EndOfStatement)); 5804 5805 handleMacroExit(); 5806 return false; 5807 } 5808 5809 bool AsmParser::parseDirectiveMSEmit(SMLoc IDLoc, ParseStatementInfo &Info, 5810 size_t Len) { 5811 const MCExpr *Value; 5812 SMLoc ExprLoc = getLexer().getLoc(); 5813 if (parseExpression(Value)) 5814 return true; 5815 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value); 5816 if (!MCE) 5817 return Error(ExprLoc, "unexpected expression in _emit"); 5818 uint64_t IntValue = MCE->getValue(); 5819 if (!isUInt<8>(IntValue) && !isInt<8>(IntValue)) 5820 return Error(ExprLoc, "literal value out of range for directive"); 5821 5822 Info.AsmRewrites->emplace_back(AOK_Emit, IDLoc, Len); 5823 return false; 5824 } 5825 5826 bool AsmParser::parseDirectiveMSAlign(SMLoc IDLoc, ParseStatementInfo &Info) { 5827 const MCExpr *Value; 5828 SMLoc ExprLoc = getLexer().getLoc(); 5829 if (parseExpression(Value)) 5830 return true; 5831 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value); 5832 if (!MCE) 5833 return Error(ExprLoc, "unexpected expression in align"); 5834 uint64_t IntValue = MCE->getValue(); 5835 if (!isPowerOf2_64(IntValue)) 5836 return Error(ExprLoc, "literal value not a power of two greater then zero"); 5837 5838 Info.AsmRewrites->emplace_back(AOK_Align, IDLoc, 5, Log2_64(IntValue)); 5839 return false; 5840 } 5841 5842 bool AsmParser::parseDirectivePrint(SMLoc DirectiveLoc) { 5843 const AsmToken StrTok = getTok(); 5844 Lex(); 5845 if (StrTok.isNot(AsmToken::String) || StrTok.getString().front() != '"') 5846 return Error(DirectiveLoc, "expected double quoted string after .print"); 5847 if (parseEOL()) 5848 return true; 5849 llvm::outs() << StrTok.getStringContents() << '\n'; 5850 return false; 5851 } 5852 5853 bool AsmParser::parseDirectiveAddrsig() { 5854 if (parseEOL()) 5855 return true; 5856 getStreamer().emitAddrsig(); 5857 return false; 5858 } 5859 5860 bool AsmParser::parseDirectiveAddrsigSym() { 5861 StringRef Name; 5862 if (check(parseIdentifier(Name), "expected identifier") || parseEOL()) 5863 return true; 5864 MCSymbol *Sym = getContext().getOrCreateSymbol(Name); 5865 getStreamer().emitAddrsigSym(Sym); 5866 return false; 5867 } 5868 5869 bool AsmParser::parseDirectivePseudoProbe() { 5870 int64_t Guid; 5871 int64_t Index; 5872 int64_t Type; 5873 int64_t Attr; 5874 int64_t Discriminator = 0; 5875 5876 if (parseIntToken(Guid, "unexpected token in '.pseudoprobe' directive")) 5877 return true; 5878 5879 if (parseIntToken(Index, "unexpected token in '.pseudoprobe' directive")) 5880 return true; 5881 5882 if (parseIntToken(Type, "unexpected token in '.pseudoprobe' directive")) 5883 return true; 5884 5885 if (parseIntToken(Attr, "unexpected token in '.pseudoprobe' directive")) 5886 return true; 5887 5888 if (hasDiscriminator(Attr)) { 5889 if (parseIntToken(Discriminator, 5890 "unexpected token in '.pseudoprobe' directive")) 5891 return true; 5892 } 5893 5894 // Parse inline stack like @ GUID:11:12 @ GUID:1:11 @ GUID:3:21 5895 MCPseudoProbeInlineStack InlineStack; 5896 5897 while (getLexer().is(AsmToken::At)) { 5898 // eat @ 5899 Lex(); 5900 5901 int64_t CallerGuid = 0; 5902 if (getLexer().is(AsmToken::Integer)) { 5903 if (parseIntToken(CallerGuid, 5904 "unexpected token in '.pseudoprobe' directive")) 5905 return true; 5906 } 5907 5908 // eat colon 5909 if (getLexer().is(AsmToken::Colon)) 5910 Lex(); 5911 5912 int64_t CallerProbeId = 0; 5913 if (getLexer().is(AsmToken::Integer)) { 5914 if (parseIntToken(CallerProbeId, 5915 "unexpected token in '.pseudoprobe' directive")) 5916 return true; 5917 } 5918 5919 InlineSite Site(CallerGuid, CallerProbeId); 5920 InlineStack.push_back(Site); 5921 } 5922 5923 // Parse function entry name 5924 StringRef FnName; 5925 if (parseIdentifier(FnName)) 5926 return Error(getLexer().getLoc(), "unexpected token in '.pseudoprobe' directive"); 5927 MCSymbol *FnSym = getContext().lookupSymbol(FnName); 5928 5929 if (parseEOL()) 5930 return true; 5931 5932 getStreamer().emitPseudoProbe(Guid, Index, Type, Attr, Discriminator, 5933 InlineStack, FnSym); 5934 return false; 5935 } 5936 5937 /// parseDirectiveLTODiscard 5938 /// ::= ".lto_discard" [ identifier ( , identifier )* ] 5939 /// The LTO library emits this directive to discard non-prevailing symbols. 5940 /// We ignore symbol assignments and attribute changes for the specified 5941 /// symbols. 5942 bool AsmParser::parseDirectiveLTODiscard() { 5943 auto ParseOp = [&]() -> bool { 5944 StringRef Name; 5945 SMLoc Loc = getTok().getLoc(); 5946 if (parseIdentifier(Name)) 5947 return Error(Loc, "expected identifier"); 5948 LTODiscardSymbols.insert(Name); 5949 return false; 5950 }; 5951 5952 LTODiscardSymbols.clear(); 5953 return parseMany(ParseOp); 5954 } 5955 5956 // We are comparing pointers, but the pointers are relative to a single string. 5957 // Thus, this should always be deterministic. 5958 static int rewritesSort(const AsmRewrite *AsmRewriteA, 5959 const AsmRewrite *AsmRewriteB) { 5960 if (AsmRewriteA->Loc.getPointer() < AsmRewriteB->Loc.getPointer()) 5961 return -1; 5962 if (AsmRewriteB->Loc.getPointer() < AsmRewriteA->Loc.getPointer()) 5963 return 1; 5964 5965 // It's possible to have a SizeDirective, Imm/ImmPrefix and an Input/Output 5966 // rewrite to the same location. Make sure the SizeDirective rewrite is 5967 // performed first, then the Imm/ImmPrefix and finally the Input/Output. This 5968 // ensures the sort algorithm is stable. 5969 if (AsmRewritePrecedence[AsmRewriteA->Kind] > 5970 AsmRewritePrecedence[AsmRewriteB->Kind]) 5971 return -1; 5972 5973 if (AsmRewritePrecedence[AsmRewriteA->Kind] < 5974 AsmRewritePrecedence[AsmRewriteB->Kind]) 5975 return 1; 5976 llvm_unreachable("Unstable rewrite sort."); 5977 } 5978 5979 bool AsmParser::parseMSInlineAsm( 5980 std::string &AsmString, unsigned &NumOutputs, unsigned &NumInputs, 5981 SmallVectorImpl<std::pair<void *, bool>> &OpDecls, 5982 SmallVectorImpl<std::string> &Constraints, 5983 SmallVectorImpl<std::string> &Clobbers, const MCInstrInfo *MII, 5984 const MCInstPrinter *IP, MCAsmParserSemaCallback &SI) { 5985 SmallVector<void *, 4> InputDecls; 5986 SmallVector<void *, 4> OutputDecls; 5987 SmallVector<bool, 4> InputDeclsAddressOf; 5988 SmallVector<bool, 4> OutputDeclsAddressOf; 5989 SmallVector<std::string, 4> InputConstraints; 5990 SmallVector<std::string, 4> OutputConstraints; 5991 SmallVector<unsigned, 4> ClobberRegs; 5992 5993 SmallVector<AsmRewrite, 4> AsmStrRewrites; 5994 5995 // Prime the lexer. 5996 Lex(); 5997 5998 // While we have input, parse each statement. 5999 unsigned InputIdx = 0; 6000 unsigned OutputIdx = 0; 6001 while (getLexer().isNot(AsmToken::Eof)) { 6002 // Parse curly braces marking block start/end 6003 if (parseCurlyBlockScope(AsmStrRewrites)) 6004 continue; 6005 6006 ParseStatementInfo Info(&AsmStrRewrites); 6007 bool StatementErr = parseStatement(Info, &SI); 6008 6009 if (StatementErr || Info.ParseError) { 6010 // Emit pending errors if any exist. 6011 printPendingErrors(); 6012 return true; 6013 } 6014 6015 // No pending error should exist here. 6016 assert(!hasPendingError() && "unexpected error from parseStatement"); 6017 6018 if (Info.Opcode == ~0U) 6019 continue; 6020 6021 const MCInstrDesc &Desc = MII->get(Info.Opcode); 6022 6023 // Build the list of clobbers, outputs and inputs. 6024 for (unsigned i = 1, e = Info.ParsedOperands.size(); i != e; ++i) { 6025 MCParsedAsmOperand &Operand = *Info.ParsedOperands[i]; 6026 6027 // Register operand. 6028 if (Operand.isReg() && !Operand.needAddressOf() && 6029 !getTargetParser().OmitRegisterFromClobberLists(Operand.getReg())) { 6030 unsigned NumDefs = Desc.getNumDefs(); 6031 // Clobber. 6032 if (NumDefs && Operand.getMCOperandNum() < NumDefs) 6033 ClobberRegs.push_back(Operand.getReg()); 6034 continue; 6035 } 6036 6037 // Expr/Input or Output. 6038 StringRef SymName = Operand.getSymName(); 6039 if (SymName.empty()) 6040 continue; 6041 6042 void *OpDecl = Operand.getOpDecl(); 6043 if (!OpDecl) 6044 continue; 6045 6046 StringRef Constraint = Operand.getConstraint(); 6047 if (Operand.isImm()) { 6048 // Offset as immediate 6049 if (Operand.isOffsetOfLocal()) 6050 Constraint = "r"; 6051 else 6052 Constraint = "i"; 6053 } 6054 6055 bool isOutput = (i == 1) && Desc.mayStore(); 6056 bool Restricted = Operand.isMemUseUpRegs(); 6057 SMLoc Start = SMLoc::getFromPointer(SymName.data()); 6058 if (isOutput) { 6059 ++InputIdx; 6060 OutputDecls.push_back(OpDecl); 6061 OutputDeclsAddressOf.push_back(Operand.needAddressOf()); 6062 OutputConstraints.push_back(("=" + Constraint).str()); 6063 AsmStrRewrites.emplace_back(AOK_Output, Start, SymName.size(), 0, 6064 Restricted); 6065 } else { 6066 InputDecls.push_back(OpDecl); 6067 InputDeclsAddressOf.push_back(Operand.needAddressOf()); 6068 InputConstraints.push_back(Constraint.str()); 6069 if (Desc.operands()[i - 1].isBranchTarget()) 6070 AsmStrRewrites.emplace_back(AOK_CallInput, Start, SymName.size(), 0, 6071 Restricted); 6072 else 6073 AsmStrRewrites.emplace_back(AOK_Input, Start, SymName.size(), 0, 6074 Restricted); 6075 } 6076 } 6077 6078 // Consider implicit defs to be clobbers. Think of cpuid and push. 6079 llvm::append_range(ClobberRegs, Desc.implicit_defs()); 6080 } 6081 6082 // Set the number of Outputs and Inputs. 6083 NumOutputs = OutputDecls.size(); 6084 NumInputs = InputDecls.size(); 6085 6086 // Set the unique clobbers. 6087 array_pod_sort(ClobberRegs.begin(), ClobberRegs.end()); 6088 ClobberRegs.erase(std::unique(ClobberRegs.begin(), ClobberRegs.end()), 6089 ClobberRegs.end()); 6090 Clobbers.assign(ClobberRegs.size(), std::string()); 6091 for (unsigned I = 0, E = ClobberRegs.size(); I != E; ++I) { 6092 raw_string_ostream OS(Clobbers[I]); 6093 IP->printRegName(OS, ClobberRegs[I]); 6094 } 6095 6096 // Merge the various outputs and inputs. Output are expected first. 6097 if (NumOutputs || NumInputs) { 6098 unsigned NumExprs = NumOutputs + NumInputs; 6099 OpDecls.resize(NumExprs); 6100 Constraints.resize(NumExprs); 6101 for (unsigned i = 0; i < NumOutputs; ++i) { 6102 OpDecls[i] = std::make_pair(OutputDecls[i], OutputDeclsAddressOf[i]); 6103 Constraints[i] = OutputConstraints[i]; 6104 } 6105 for (unsigned i = 0, j = NumOutputs; i < NumInputs; ++i, ++j) { 6106 OpDecls[j] = std::make_pair(InputDecls[i], InputDeclsAddressOf[i]); 6107 Constraints[j] = InputConstraints[i]; 6108 } 6109 } 6110 6111 // Build the IR assembly string. 6112 std::string AsmStringIR; 6113 raw_string_ostream OS(AsmStringIR); 6114 StringRef ASMString = 6115 SrcMgr.getMemoryBuffer(SrcMgr.getMainFileID())->getBuffer(); 6116 const char *AsmStart = ASMString.begin(); 6117 const char *AsmEnd = ASMString.end(); 6118 array_pod_sort(AsmStrRewrites.begin(), AsmStrRewrites.end(), rewritesSort); 6119 for (auto it = AsmStrRewrites.begin(); it != AsmStrRewrites.end(); ++it) { 6120 const AsmRewrite &AR = *it; 6121 // Check if this has already been covered by another rewrite... 6122 if (AR.Done) 6123 continue; 6124 AsmRewriteKind Kind = AR.Kind; 6125 6126 const char *Loc = AR.Loc.getPointer(); 6127 assert(Loc >= AsmStart && "Expected Loc to be at or after Start!"); 6128 6129 // Emit everything up to the immediate/expression. 6130 if (unsigned Len = Loc - AsmStart) 6131 OS << StringRef(AsmStart, Len); 6132 6133 // Skip the original expression. 6134 if (Kind == AOK_Skip) { 6135 AsmStart = Loc + AR.Len; 6136 continue; 6137 } 6138 6139 unsigned AdditionalSkip = 0; 6140 // Rewrite expressions in $N notation. 6141 switch (Kind) { 6142 default: 6143 break; 6144 case AOK_IntelExpr: 6145 assert(AR.IntelExp.isValid() && "cannot write invalid intel expression"); 6146 if (AR.IntelExp.NeedBracs) 6147 OS << "["; 6148 if (AR.IntelExp.hasBaseReg()) 6149 OS << AR.IntelExp.BaseReg; 6150 if (AR.IntelExp.hasIndexReg()) 6151 OS << (AR.IntelExp.hasBaseReg() ? " + " : "") 6152 << AR.IntelExp.IndexReg; 6153 if (AR.IntelExp.Scale > 1) 6154 OS << " * $$" << AR.IntelExp.Scale; 6155 if (AR.IntelExp.hasOffset()) { 6156 if (AR.IntelExp.hasRegs()) 6157 OS << " + "; 6158 // Fuse this rewrite with a rewrite of the offset name, if present. 6159 StringRef OffsetName = AR.IntelExp.OffsetName; 6160 SMLoc OffsetLoc = SMLoc::getFromPointer(AR.IntelExp.OffsetName.data()); 6161 size_t OffsetLen = OffsetName.size(); 6162 auto rewrite_it = std::find_if( 6163 it, AsmStrRewrites.end(), [&](const AsmRewrite &FusingAR) { 6164 return FusingAR.Loc == OffsetLoc && FusingAR.Len == OffsetLen && 6165 (FusingAR.Kind == AOK_Input || 6166 FusingAR.Kind == AOK_CallInput); 6167 }); 6168 if (rewrite_it == AsmStrRewrites.end()) { 6169 OS << "offset " << OffsetName; 6170 } else if (rewrite_it->Kind == AOK_CallInput) { 6171 OS << "${" << InputIdx++ << ":P}"; 6172 rewrite_it->Done = true; 6173 } else { 6174 OS << '$' << InputIdx++; 6175 rewrite_it->Done = true; 6176 } 6177 } 6178 if (AR.IntelExp.Imm || AR.IntelExp.emitImm()) 6179 OS << (AR.IntelExp.emitImm() ? "$$" : " + $$") << AR.IntelExp.Imm; 6180 if (AR.IntelExp.NeedBracs) 6181 OS << "]"; 6182 break; 6183 case AOK_Label: 6184 OS << Ctx.getAsmInfo()->getPrivateLabelPrefix() << AR.Label; 6185 break; 6186 case AOK_Input: 6187 if (AR.IntelExpRestricted) 6188 OS << "${" << InputIdx++ << ":P}"; 6189 else 6190 OS << '$' << InputIdx++; 6191 break; 6192 case AOK_CallInput: 6193 OS << "${" << InputIdx++ << ":P}"; 6194 break; 6195 case AOK_Output: 6196 if (AR.IntelExpRestricted) 6197 OS << "${" << OutputIdx++ << ":P}"; 6198 else 6199 OS << '$' << OutputIdx++; 6200 break; 6201 case AOK_SizeDirective: 6202 switch (AR.Val) { 6203 default: break; 6204 case 8: OS << "byte ptr "; break; 6205 case 16: OS << "word ptr "; break; 6206 case 32: OS << "dword ptr "; break; 6207 case 64: OS << "qword ptr "; break; 6208 case 80: OS << "xword ptr "; break; 6209 case 128: OS << "xmmword ptr "; break; 6210 case 256: OS << "ymmword ptr "; break; 6211 } 6212 break; 6213 case AOK_Emit: 6214 OS << ".byte"; 6215 break; 6216 case AOK_Align: { 6217 // MS alignment directives are measured in bytes. If the native assembler 6218 // measures alignment in bytes, we can pass it straight through. 6219 OS << ".align"; 6220 if (getContext().getAsmInfo()->getAlignmentIsInBytes()) 6221 break; 6222 6223 // Alignment is in log2 form, so print that instead and skip the original 6224 // immediate. 6225 unsigned Val = AR.Val; 6226 OS << ' ' << Val; 6227 assert(Val < 10 && "Expected alignment less then 2^10."); 6228 AdditionalSkip = (Val < 4) ? 2 : Val < 7 ? 3 : 4; 6229 break; 6230 } 6231 case AOK_EVEN: 6232 OS << ".even"; 6233 break; 6234 case AOK_EndOfStatement: 6235 OS << "\n\t"; 6236 break; 6237 } 6238 6239 // Skip the original expression. 6240 AsmStart = Loc + AR.Len + AdditionalSkip; 6241 } 6242 6243 // Emit the remainder of the asm string. 6244 if (AsmStart != AsmEnd) 6245 OS << StringRef(AsmStart, AsmEnd - AsmStart); 6246 6247 AsmString = OS.str(); 6248 return false; 6249 } 6250 6251 bool HLASMAsmParser::parseAsHLASMLabel(ParseStatementInfo &Info, 6252 MCAsmParserSemaCallback *SI) { 6253 AsmToken LabelTok = getTok(); 6254 SMLoc LabelLoc = LabelTok.getLoc(); 6255 StringRef LabelVal; 6256 6257 if (parseIdentifier(LabelVal)) 6258 return Error(LabelLoc, "The HLASM Label has to be an Identifier"); 6259 6260 // We have validated whether the token is an Identifier. 6261 // Now we have to validate whether the token is a 6262 // valid HLASM Label. 6263 if (!getTargetParser().isLabel(LabelTok) || checkForValidSection()) 6264 return true; 6265 6266 // Lex leading spaces to get to the next operand. 6267 lexLeadingSpaces(); 6268 6269 // We shouldn't emit the label if there is nothing else after the label. 6270 // i.e asm("<token>\n") 6271 if (getTok().is(AsmToken::EndOfStatement)) 6272 return Error(LabelLoc, 6273 "Cannot have just a label for an HLASM inline asm statement"); 6274 6275 MCSymbol *Sym = getContext().getOrCreateSymbol( 6276 getContext().getAsmInfo()->shouldEmitLabelsInUpperCase() 6277 ? LabelVal.upper() 6278 : LabelVal); 6279 6280 getTargetParser().doBeforeLabelEmit(Sym, LabelLoc); 6281 6282 // Emit the label. 6283 Out.emitLabel(Sym, LabelLoc); 6284 6285 // If we are generating dwarf for assembly source files then gather the 6286 // info to make a dwarf label entry for this label if needed. 6287 if (enabledGenDwarfForAssembly()) 6288 MCGenDwarfLabelEntry::Make(Sym, &getStreamer(), getSourceManager(), 6289 LabelLoc); 6290 6291 getTargetParser().onLabelParsed(Sym); 6292 6293 return false; 6294 } 6295 6296 bool HLASMAsmParser::parseAsMachineInstruction(ParseStatementInfo &Info, 6297 MCAsmParserSemaCallback *SI) { 6298 AsmToken OperationEntryTok = Lexer.getTok(); 6299 SMLoc OperationEntryLoc = OperationEntryTok.getLoc(); 6300 StringRef OperationEntryVal; 6301 6302 // Attempt to parse the first token as an Identifier 6303 if (parseIdentifier(OperationEntryVal)) 6304 return Error(OperationEntryLoc, "unexpected token at start of statement"); 6305 6306 // Once we've parsed the operation entry successfully, lex 6307 // any spaces to get to the OperandEntries. 6308 lexLeadingSpaces(); 6309 6310 return parseAndMatchAndEmitTargetInstruction( 6311 Info, OperationEntryVal, OperationEntryTok, OperationEntryLoc); 6312 } 6313 6314 bool HLASMAsmParser::parseStatement(ParseStatementInfo &Info, 6315 MCAsmParserSemaCallback *SI) { 6316 assert(!hasPendingError() && "parseStatement started with pending error"); 6317 6318 // Should the first token be interpreted as a HLASM Label. 6319 bool ShouldParseAsHLASMLabel = false; 6320 6321 // If a Name Entry exists, it should occur at the very 6322 // start of the string. In this case, we should parse the 6323 // first non-space token as a Label. 6324 // If the Name entry is missing (i.e. there's some other 6325 // token), then we attempt to parse the first non-space 6326 // token as a Machine Instruction. 6327 if (getTok().isNot(AsmToken::Space)) 6328 ShouldParseAsHLASMLabel = true; 6329 6330 // If we have an EndOfStatement (which includes the target's comment 6331 // string) we can appropriately lex it early on) 6332 if (Lexer.is(AsmToken::EndOfStatement)) { 6333 // if this is a line comment we can drop it safely 6334 if (getTok().getString().empty() || getTok().getString().front() == '\r' || 6335 getTok().getString().front() == '\n') 6336 Out.addBlankLine(); 6337 Lex(); 6338 return false; 6339 } 6340 6341 // We have established how to parse the inline asm statement. 6342 // Now we can safely lex any leading spaces to get to the 6343 // first token. 6344 lexLeadingSpaces(); 6345 6346 // If we see a new line or carriage return as the first operand, 6347 // after lexing leading spaces, emit the new line and lex the 6348 // EndOfStatement token. 6349 if (Lexer.is(AsmToken::EndOfStatement)) { 6350 if (getTok().getString().front() == '\n' || 6351 getTok().getString().front() == '\r') { 6352 Out.addBlankLine(); 6353 Lex(); 6354 return false; 6355 } 6356 } 6357 6358 // Handle the label first if we have to before processing the rest 6359 // of the tokens as a machine instruction. 6360 if (ShouldParseAsHLASMLabel) { 6361 // If there were any errors while handling and emitting the label, 6362 // early return. 6363 if (parseAsHLASMLabel(Info, SI)) { 6364 // If we know we've failed in parsing, simply eat until end of the 6365 // statement. This ensures that we don't process any other statements. 6366 eatToEndOfStatement(); 6367 return true; 6368 } 6369 } 6370 6371 return parseAsMachineInstruction(Info, SI); 6372 } 6373 6374 namespace llvm { 6375 namespace MCParserUtils { 6376 6377 /// Returns whether the given symbol is used anywhere in the given expression, 6378 /// or subexpressions. 6379 static bool isSymbolUsedInExpression(const MCSymbol *Sym, const MCExpr *Value) { 6380 switch (Value->getKind()) { 6381 case MCExpr::Binary: { 6382 const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Value); 6383 return isSymbolUsedInExpression(Sym, BE->getLHS()) || 6384 isSymbolUsedInExpression(Sym, BE->getRHS()); 6385 } 6386 case MCExpr::Target: 6387 case MCExpr::Constant: 6388 return false; 6389 case MCExpr::SymbolRef: { 6390 const MCSymbol &S = 6391 static_cast<const MCSymbolRefExpr *>(Value)->getSymbol(); 6392 if (S.isVariable() && !S.isWeakExternal()) 6393 return isSymbolUsedInExpression(Sym, S.getVariableValue()); 6394 return &S == Sym; 6395 } 6396 case MCExpr::Unary: 6397 return isSymbolUsedInExpression( 6398 Sym, static_cast<const MCUnaryExpr *>(Value)->getSubExpr()); 6399 } 6400 6401 llvm_unreachable("Unknown expr kind!"); 6402 } 6403 6404 bool parseAssignmentExpression(StringRef Name, bool allow_redef, 6405 MCAsmParser &Parser, MCSymbol *&Sym, 6406 const MCExpr *&Value) { 6407 6408 // FIXME: Use better location, we should use proper tokens. 6409 SMLoc EqualLoc = Parser.getTok().getLoc(); 6410 if (Parser.parseExpression(Value)) 6411 return Parser.TokError("missing expression"); 6412 6413 // Note: we don't count b as used in "a = b". This is to allow 6414 // a = b 6415 // b = c 6416 6417 if (Parser.parseEOL()) 6418 return true; 6419 6420 // Validate that the LHS is allowed to be a variable (either it has not been 6421 // used as a symbol, or it is an absolute symbol). 6422 Sym = Parser.getContext().lookupSymbol(Name); 6423 if (Sym) { 6424 // Diagnose assignment to a label. 6425 // 6426 // FIXME: Diagnostics. Note the location of the definition as a label. 6427 // FIXME: Diagnose assignment to protected identifier (e.g., register name). 6428 if (isSymbolUsedInExpression(Sym, Value)) 6429 return Parser.Error(EqualLoc, "Recursive use of '" + Name + "'"); 6430 else if (Sym->isUndefined(/*SetUsed*/ false) && !Sym->isUsed() && 6431 !Sym->isVariable()) 6432 ; // Allow redefinitions of undefined symbols only used in directives. 6433 else if (Sym->isVariable() && !Sym->isUsed() && allow_redef) 6434 ; // Allow redefinitions of variables that haven't yet been used. 6435 else if (!Sym->isUndefined() && (!Sym->isVariable() || !allow_redef)) 6436 return Parser.Error(EqualLoc, "redefinition of '" + Name + "'"); 6437 else if (!Sym->isVariable()) 6438 return Parser.Error(EqualLoc, "invalid assignment to '" + Name + "'"); 6439 else if (!isa<MCConstantExpr>(Sym->getVariableValue())) 6440 return Parser.Error(EqualLoc, 6441 "invalid reassignment of non-absolute variable '" + 6442 Name + "'"); 6443 } else if (Name == ".") { 6444 Parser.getStreamer().emitValueToOffset(Value, 0, EqualLoc); 6445 return false; 6446 } else 6447 Sym = Parser.getContext().getOrCreateSymbol(Name); 6448 6449 Sym->setRedefinable(allow_redef); 6450 6451 return false; 6452 } 6453 6454 } // end namespace MCParserUtils 6455 } // end namespace llvm 6456 6457 /// Create an MCAsmParser instance. 6458 MCAsmParser *llvm::createMCAsmParser(SourceMgr &SM, MCContext &C, 6459 MCStreamer &Out, const MCAsmInfo &MAI, 6460 unsigned CB) { 6461 if (C.getTargetTriple().isSystemZ() && C.getTargetTriple().isOSzOS()) 6462 return new HLASMAsmParser(SM, C, Out, MAI, CB); 6463 6464 return new AsmParser(SM, C, Out, MAI, CB); 6465 } 6466