1 //===- AsmParser.cpp - Parser for Assembly Files --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This class implements a parser for assembly files similar to gas syntax. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringMap.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/BinaryFormat/Dwarf.h" 25 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCCodeView.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDirectives.h" 30 #include "llvm/MC/MCDwarf.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/MC/MCInstPrinter.h" 33 #include "llvm/MC/MCInstrDesc.h" 34 #include "llvm/MC/MCInstrInfo.h" 35 #include "llvm/MC/MCParser/AsmCond.h" 36 #include "llvm/MC/MCParser/AsmLexer.h" 37 #include "llvm/MC/MCParser/MCAsmLexer.h" 38 #include "llvm/MC/MCParser/MCAsmParser.h" 39 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 40 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 41 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 42 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 43 #include "llvm/MC/MCRegisterInfo.h" 44 #include "llvm/MC/MCSection.h" 45 #include "llvm/MC/MCStreamer.h" 46 #include "llvm/MC/MCSymbol.h" 47 #include "llvm/MC/MCSymbolMachO.h" 48 #include "llvm/MC/MCTargetOptions.h" 49 #include "llvm/MC/MCValue.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MD5.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/MemoryBuffer.h" 56 #include "llvm/Support/SMLoc.h" 57 #include "llvm/Support/SourceMgr.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cctype> 62 #include <climits> 63 #include <cstddef> 64 #include <cstdint> 65 #include <deque> 66 #include <memory> 67 #include <optional> 68 #include <sstream> 69 #include <string> 70 #include <tuple> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 76 MCAsmParserSemaCallback::~MCAsmParserSemaCallback() = default; 77 78 namespace { 79 80 /// Helper types for tracking macro definitions. 81 typedef std::vector<AsmToken> MCAsmMacroArgument; 82 typedef std::vector<MCAsmMacroArgument> MCAsmMacroArguments; 83 84 /// Helper class for storing information about an active macro 85 /// instantiation. 86 struct MacroInstantiation { 87 /// The location of the instantiation. 88 SMLoc InstantiationLoc; 89 90 /// The buffer where parsing should resume upon instantiation completion. 91 unsigned ExitBuffer; 92 93 /// The location where parsing should resume upon instantiation completion. 94 SMLoc ExitLoc; 95 96 /// The depth of TheCondStack at the start of the instantiation. 97 size_t CondStackDepth; 98 }; 99 100 struct ParseStatementInfo { 101 /// The parsed operands from the last parsed statement. 102 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> ParsedOperands; 103 104 /// The opcode from the last parsed instruction. 105 unsigned Opcode = ~0U; 106 107 /// Was there an error parsing the inline assembly? 108 bool ParseError = false; 109 110 SmallVectorImpl<AsmRewrite> *AsmRewrites = nullptr; 111 112 ParseStatementInfo() = delete; 113 ParseStatementInfo(SmallVectorImpl<AsmRewrite> *rewrites) 114 : AsmRewrites(rewrites) {} 115 }; 116 117 /// The concrete assembly parser instance. 118 class AsmParser : public MCAsmParser { 119 private: 120 AsmLexer Lexer; 121 MCContext &Ctx; 122 MCStreamer &Out; 123 const MCAsmInfo &MAI; 124 SourceMgr &SrcMgr; 125 SourceMgr::DiagHandlerTy SavedDiagHandler; 126 void *SavedDiagContext; 127 std::unique_ptr<MCAsmParserExtension> PlatformParser; 128 SMLoc StartTokLoc; 129 std::optional<SMLoc> CFIStartProcLoc; 130 131 /// This is the current buffer index we're lexing from as managed by the 132 /// SourceMgr object. 133 unsigned CurBuffer; 134 135 AsmCond TheCondState; 136 std::vector<AsmCond> TheCondStack; 137 138 /// maps directive names to handler methods in parser 139 /// extensions. Extensions register themselves in this map by calling 140 /// addDirectiveHandler. 141 StringMap<ExtensionDirectiveHandler> ExtensionDirectiveMap; 142 143 /// Stack of active macro instantiations. 144 std::vector<MacroInstantiation*> ActiveMacros; 145 146 /// List of bodies of anonymous macros. 147 std::deque<MCAsmMacro> MacroLikeBodies; 148 149 /// Boolean tracking whether macro substitution is enabled. 150 unsigned MacrosEnabledFlag : 1; 151 152 /// Keeps track of how many .macro's have been instantiated. 153 unsigned NumOfMacroInstantiations; 154 155 /// The values from the last parsed cpp hash file line comment if any. 156 struct CppHashInfoTy { 157 StringRef Filename; 158 int64_t LineNumber; 159 SMLoc Loc; 160 unsigned Buf; 161 CppHashInfoTy() : LineNumber(0), Buf(0) {} 162 }; 163 CppHashInfoTy CppHashInfo; 164 165 /// The filename from the first cpp hash file line comment, if any. 166 StringRef FirstCppHashFilename; 167 168 /// List of forward directional labels for diagnosis at the end. 169 SmallVector<std::tuple<SMLoc, CppHashInfoTy, MCSymbol *>, 4> DirLabels; 170 171 SmallSet<StringRef, 2> LTODiscardSymbols; 172 173 /// AssemblerDialect. ~OU means unset value and use value provided by MAI. 174 unsigned AssemblerDialect = ~0U; 175 176 /// is Darwin compatibility enabled? 177 bool IsDarwin = false; 178 179 /// Are we parsing ms-style inline assembly? 180 bool ParsingMSInlineAsm = false; 181 182 /// Did we already inform the user about inconsistent MD5 usage? 183 bool ReportedInconsistentMD5 = false; 184 185 // Is alt macro mode enabled. 186 bool AltMacroMode = false; 187 188 protected: 189 virtual bool parseStatement(ParseStatementInfo &Info, 190 MCAsmParserSemaCallback *SI); 191 192 /// This routine uses the target specific ParseInstruction function to 193 /// parse an instruction into Operands, and then call the target specific 194 /// MatchAndEmit function to match and emit the instruction. 195 bool parseAndMatchAndEmitTargetInstruction(ParseStatementInfo &Info, 196 StringRef IDVal, AsmToken ID, 197 SMLoc IDLoc); 198 199 /// Should we emit DWARF describing this assembler source? (Returns false if 200 /// the source has .file directives, which means we don't want to generate 201 /// info describing the assembler source itself.) 202 bool enabledGenDwarfForAssembly(); 203 204 public: 205 AsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out, 206 const MCAsmInfo &MAI, unsigned CB); 207 AsmParser(const AsmParser &) = delete; 208 AsmParser &operator=(const AsmParser &) = delete; 209 ~AsmParser() override; 210 211 bool Run(bool NoInitialTextSection, bool NoFinalize = false) override; 212 213 void addDirectiveHandler(StringRef Directive, 214 ExtensionDirectiveHandler Handler) override { 215 ExtensionDirectiveMap[Directive] = Handler; 216 } 217 218 void addAliasForDirective(StringRef Directive, StringRef Alias) override { 219 DirectiveKindMap[Directive.lower()] = DirectiveKindMap[Alias.lower()]; 220 } 221 222 /// @name MCAsmParser Interface 223 /// { 224 225 SourceMgr &getSourceManager() override { return SrcMgr; } 226 MCAsmLexer &getLexer() override { return Lexer; } 227 MCContext &getContext() override { return Ctx; } 228 MCStreamer &getStreamer() override { return Out; } 229 230 CodeViewContext &getCVContext() { return Ctx.getCVContext(); } 231 232 unsigned getAssemblerDialect() override { 233 if (AssemblerDialect == ~0U) 234 return MAI.getAssemblerDialect(); 235 else 236 return AssemblerDialect; 237 } 238 void setAssemblerDialect(unsigned i) override { 239 AssemblerDialect = i; 240 } 241 242 void Note(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) override; 243 bool Warning(SMLoc L, const Twine &Msg, 244 SMRange Range = std::nullopt) override; 245 bool printError(SMLoc L, const Twine &Msg, 246 SMRange Range = std::nullopt) override; 247 248 const AsmToken &Lex() override; 249 250 void setParsingMSInlineAsm(bool V) override { 251 ParsingMSInlineAsm = V; 252 // When parsing MS inline asm, we must lex 0b1101 and 0ABCH as binary and 253 // hex integer literals. 254 Lexer.setLexMasmIntegers(V); 255 } 256 bool isParsingMSInlineAsm() override { return ParsingMSInlineAsm; } 257 258 bool discardLTOSymbol(StringRef Name) const override { 259 return LTODiscardSymbols.contains(Name); 260 } 261 262 bool parseMSInlineAsm(std::string &AsmString, unsigned &NumOutputs, 263 unsigned &NumInputs, 264 SmallVectorImpl<std::pair<void *, bool>> &OpDecls, 265 SmallVectorImpl<std::string> &Constraints, 266 SmallVectorImpl<std::string> &Clobbers, 267 const MCInstrInfo *MII, const MCInstPrinter *IP, 268 MCAsmParserSemaCallback &SI) override; 269 270 bool parseExpression(const MCExpr *&Res); 271 bool parseExpression(const MCExpr *&Res, SMLoc &EndLoc) override; 272 bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc, 273 AsmTypeInfo *TypeInfo) override; 274 bool parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) override; 275 bool parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res, 276 SMLoc &EndLoc) override; 277 bool parseAbsoluteExpression(int64_t &Res) override; 278 279 /// Parse a floating point expression using the float \p Semantics 280 /// and set \p Res to the value. 281 bool parseRealValue(const fltSemantics &Semantics, APInt &Res); 282 283 /// Parse an identifier or string (as a quoted identifier) 284 /// and set \p Res to the identifier contents. 285 bool parseIdentifier(StringRef &Res) override; 286 void eatToEndOfStatement() override; 287 288 bool checkForValidSection() override; 289 290 /// } 291 292 private: 293 bool parseCurlyBlockScope(SmallVectorImpl<AsmRewrite>& AsmStrRewrites); 294 bool parseCppHashLineFilenameComment(SMLoc L, bool SaveLocInfo = true); 295 296 void checkForBadMacro(SMLoc DirectiveLoc, StringRef Name, StringRef Body, 297 ArrayRef<MCAsmMacroParameter> Parameters); 298 bool expandMacro(raw_svector_ostream &OS, MCAsmMacro &Macro, 299 ArrayRef<MCAsmMacroParameter> Parameters, 300 ArrayRef<MCAsmMacroArgument> A, bool EnableAtPseudoVariable); 301 302 /// Are macros enabled in the parser? 303 bool areMacrosEnabled() {return MacrosEnabledFlag;} 304 305 /// Control a flag in the parser that enables or disables macros. 306 void setMacrosEnabled(bool Flag) {MacrosEnabledFlag = Flag;} 307 308 /// Are we inside a macro instantiation? 309 bool isInsideMacroInstantiation() {return !ActiveMacros.empty();} 310 311 /// Handle entry to macro instantiation. 312 /// 313 /// \param M The macro. 314 /// \param NameLoc Instantiation location. 315 bool handleMacroEntry(MCAsmMacro *M, SMLoc NameLoc); 316 317 /// Handle exit from macro instantiation. 318 void handleMacroExit(); 319 320 /// Extract AsmTokens for a macro argument. 321 bool parseMacroArgument(MCAsmMacroArgument &MA, bool Vararg); 322 323 /// Parse all macro arguments for a given macro. 324 bool parseMacroArguments(const MCAsmMacro *M, MCAsmMacroArguments &A); 325 326 void printMacroInstantiations(); 327 void printMessage(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Msg, 328 SMRange Range = std::nullopt) const { 329 ArrayRef<SMRange> Ranges(Range); 330 SrcMgr.PrintMessage(Loc, Kind, Msg, Ranges); 331 } 332 static void DiagHandler(const SMDiagnostic &Diag, void *Context); 333 334 /// Enter the specified file. This returns true on failure. 335 bool enterIncludeFile(const std::string &Filename); 336 337 /// Process the specified file for the .incbin directive. 338 /// This returns true on failure. 339 bool processIncbinFile(const std::string &Filename, int64_t Skip = 0, 340 const MCExpr *Count = nullptr, SMLoc Loc = SMLoc()); 341 342 /// Reset the current lexer position to that given by \p Loc. The 343 /// current token is not set; clients should ensure Lex() is called 344 /// subsequently. 345 /// 346 /// \param InBuffer If not 0, should be the known buffer id that contains the 347 /// location. 348 void jumpToLoc(SMLoc Loc, unsigned InBuffer = 0); 349 350 /// Parse up to the end of statement and a return the contents from the 351 /// current token until the end of the statement; the current token on exit 352 /// will be either the EndOfStatement or EOF. 353 StringRef parseStringToEndOfStatement() override; 354 355 /// Parse until the end of a statement or a comma is encountered, 356 /// return the contents from the current token up to the end or comma. 357 StringRef parseStringToComma(); 358 359 enum class AssignmentKind { 360 Set, 361 Equiv, 362 Equal, 363 LTOSetConditional, 364 }; 365 366 bool parseAssignment(StringRef Name, AssignmentKind Kind); 367 368 unsigned getBinOpPrecedence(AsmToken::TokenKind K, 369 MCBinaryExpr::Opcode &Kind); 370 371 bool parseBinOpRHS(unsigned Precedence, const MCExpr *&Res, SMLoc &EndLoc); 372 bool parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc); 373 bool parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc); 374 375 bool parseRegisterOrRegisterNumber(int64_t &Register, SMLoc DirectiveLoc); 376 377 bool parseCVFunctionId(int64_t &FunctionId, StringRef DirectiveName); 378 bool parseCVFileId(int64_t &FileId, StringRef DirectiveName); 379 380 // Generic (target and platform independent) directive parsing. 381 enum DirectiveKind { 382 DK_NO_DIRECTIVE, // Placeholder 383 DK_SET, 384 DK_EQU, 385 DK_EQUIV, 386 DK_ASCII, 387 DK_ASCIZ, 388 DK_STRING, 389 DK_BYTE, 390 DK_SHORT, 391 DK_RELOC, 392 DK_VALUE, 393 DK_2BYTE, 394 DK_LONG, 395 DK_INT, 396 DK_4BYTE, 397 DK_QUAD, 398 DK_8BYTE, 399 DK_OCTA, 400 DK_DC, 401 DK_DC_A, 402 DK_DC_B, 403 DK_DC_D, 404 DK_DC_L, 405 DK_DC_S, 406 DK_DC_W, 407 DK_DC_X, 408 DK_DCB, 409 DK_DCB_B, 410 DK_DCB_D, 411 DK_DCB_L, 412 DK_DCB_S, 413 DK_DCB_W, 414 DK_DCB_X, 415 DK_DS, 416 DK_DS_B, 417 DK_DS_D, 418 DK_DS_L, 419 DK_DS_P, 420 DK_DS_S, 421 DK_DS_W, 422 DK_DS_X, 423 DK_SINGLE, 424 DK_FLOAT, 425 DK_DOUBLE, 426 DK_ALIGN, 427 DK_ALIGN32, 428 DK_BALIGN, 429 DK_BALIGNW, 430 DK_BALIGNL, 431 DK_P2ALIGN, 432 DK_P2ALIGNW, 433 DK_P2ALIGNL, 434 DK_ORG, 435 DK_FILL, 436 DK_ENDR, 437 DK_BUNDLE_ALIGN_MODE, 438 DK_BUNDLE_LOCK, 439 DK_BUNDLE_UNLOCK, 440 DK_ZERO, 441 DK_EXTERN, 442 DK_GLOBL, 443 DK_GLOBAL, 444 DK_LAZY_REFERENCE, 445 DK_NO_DEAD_STRIP, 446 DK_SYMBOL_RESOLVER, 447 DK_PRIVATE_EXTERN, 448 DK_REFERENCE, 449 DK_WEAK_DEFINITION, 450 DK_WEAK_REFERENCE, 451 DK_WEAK_DEF_CAN_BE_HIDDEN, 452 DK_COLD, 453 DK_COMM, 454 DK_COMMON, 455 DK_LCOMM, 456 DK_ABORT, 457 DK_INCLUDE, 458 DK_INCBIN, 459 DK_CODE16, 460 DK_CODE16GCC, 461 DK_REPT, 462 DK_IRP, 463 DK_IRPC, 464 DK_IF, 465 DK_IFEQ, 466 DK_IFGE, 467 DK_IFGT, 468 DK_IFLE, 469 DK_IFLT, 470 DK_IFNE, 471 DK_IFB, 472 DK_IFNB, 473 DK_IFC, 474 DK_IFEQS, 475 DK_IFNC, 476 DK_IFNES, 477 DK_IFDEF, 478 DK_IFNDEF, 479 DK_IFNOTDEF, 480 DK_ELSEIF, 481 DK_ELSE, 482 DK_ENDIF, 483 DK_SPACE, 484 DK_SKIP, 485 DK_FILE, 486 DK_LINE, 487 DK_LOC, 488 DK_STABS, 489 DK_CV_FILE, 490 DK_CV_FUNC_ID, 491 DK_CV_INLINE_SITE_ID, 492 DK_CV_LOC, 493 DK_CV_LINETABLE, 494 DK_CV_INLINE_LINETABLE, 495 DK_CV_DEF_RANGE, 496 DK_CV_STRINGTABLE, 497 DK_CV_STRING, 498 DK_CV_FILECHECKSUMS, 499 DK_CV_FILECHECKSUM_OFFSET, 500 DK_CV_FPO_DATA, 501 DK_CFI_SECTIONS, 502 DK_CFI_STARTPROC, 503 DK_CFI_ENDPROC, 504 DK_CFI_DEF_CFA, 505 DK_CFI_DEF_CFA_OFFSET, 506 DK_CFI_ADJUST_CFA_OFFSET, 507 DK_CFI_DEF_CFA_REGISTER, 508 DK_CFI_LLVM_DEF_ASPACE_CFA, 509 DK_CFI_OFFSET, 510 DK_CFI_REL_OFFSET, 511 DK_CFI_PERSONALITY, 512 DK_CFI_LSDA, 513 DK_CFI_REMEMBER_STATE, 514 DK_CFI_RESTORE_STATE, 515 DK_CFI_SAME_VALUE, 516 DK_CFI_RESTORE, 517 DK_CFI_ESCAPE, 518 DK_CFI_RETURN_COLUMN, 519 DK_CFI_SIGNAL_FRAME, 520 DK_CFI_UNDEFINED, 521 DK_CFI_REGISTER, 522 DK_CFI_WINDOW_SAVE, 523 DK_CFI_LABEL, 524 DK_CFI_B_KEY_FRAME, 525 DK_MACROS_ON, 526 DK_MACROS_OFF, 527 DK_ALTMACRO, 528 DK_NOALTMACRO, 529 DK_MACRO, 530 DK_EXITM, 531 DK_ENDM, 532 DK_ENDMACRO, 533 DK_PURGEM, 534 DK_SLEB128, 535 DK_ULEB128, 536 DK_ERR, 537 DK_ERROR, 538 DK_WARNING, 539 DK_PRINT, 540 DK_ADDRSIG, 541 DK_ADDRSIG_SYM, 542 DK_PSEUDO_PROBE, 543 DK_LTO_DISCARD, 544 DK_LTO_SET_CONDITIONAL, 545 DK_CFI_MTE_TAGGED_FRAME, 546 DK_MEMTAG, 547 DK_END 548 }; 549 550 /// Maps directive name --> DirectiveKind enum, for 551 /// directives parsed by this class. 552 StringMap<DirectiveKind> DirectiveKindMap; 553 554 // Codeview def_range type parsing. 555 enum CVDefRangeType { 556 CVDR_DEFRANGE = 0, // Placeholder 557 CVDR_DEFRANGE_REGISTER, 558 CVDR_DEFRANGE_FRAMEPOINTER_REL, 559 CVDR_DEFRANGE_SUBFIELD_REGISTER, 560 CVDR_DEFRANGE_REGISTER_REL 561 }; 562 563 /// Maps Codeview def_range types --> CVDefRangeType enum, for 564 /// Codeview def_range types parsed by this class. 565 StringMap<CVDefRangeType> CVDefRangeTypeMap; 566 567 // ".ascii", ".asciz", ".string" 568 bool parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated); 569 bool parseDirectiveReloc(SMLoc DirectiveLoc); // ".reloc" 570 bool parseDirectiveValue(StringRef IDVal, 571 unsigned Size); // ".byte", ".long", ... 572 bool parseDirectiveOctaValue(StringRef IDVal); // ".octa", ... 573 bool parseDirectiveRealValue(StringRef IDVal, 574 const fltSemantics &); // ".single", ... 575 bool parseDirectiveFill(); // ".fill" 576 bool parseDirectiveZero(); // ".zero" 577 // ".set", ".equ", ".equiv", ".lto_set_conditional" 578 bool parseDirectiveSet(StringRef IDVal, AssignmentKind Kind); 579 bool parseDirectiveOrg(); // ".org" 580 // ".align{,32}", ".p2align{,w,l}" 581 bool parseDirectiveAlign(bool IsPow2, unsigned ValueSize); 582 583 // ".file", ".line", ".loc", ".stabs" 584 bool parseDirectiveFile(SMLoc DirectiveLoc); 585 bool parseDirectiveLine(); 586 bool parseDirectiveLoc(); 587 bool parseDirectiveStabs(); 588 589 // ".cv_file", ".cv_func_id", ".cv_inline_site_id", ".cv_loc", ".cv_linetable", 590 // ".cv_inline_linetable", ".cv_def_range", ".cv_string" 591 bool parseDirectiveCVFile(); 592 bool parseDirectiveCVFuncId(); 593 bool parseDirectiveCVInlineSiteId(); 594 bool parseDirectiveCVLoc(); 595 bool parseDirectiveCVLinetable(); 596 bool parseDirectiveCVInlineLinetable(); 597 bool parseDirectiveCVDefRange(); 598 bool parseDirectiveCVString(); 599 bool parseDirectiveCVStringTable(); 600 bool parseDirectiveCVFileChecksums(); 601 bool parseDirectiveCVFileChecksumOffset(); 602 bool parseDirectiveCVFPOData(); 603 604 // .cfi directives 605 bool parseDirectiveCFIRegister(SMLoc DirectiveLoc); 606 bool parseDirectiveCFIWindowSave(SMLoc DirectiveLoc); 607 bool parseDirectiveCFISections(); 608 bool parseDirectiveCFIStartProc(); 609 bool parseDirectiveCFIEndProc(); 610 bool parseDirectiveCFIDefCfaOffset(SMLoc DirectiveLoc); 611 bool parseDirectiveCFIDefCfa(SMLoc DirectiveLoc); 612 bool parseDirectiveCFIAdjustCfaOffset(SMLoc DirectiveLoc); 613 bool parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc); 614 bool parseDirectiveCFILLVMDefAspaceCfa(SMLoc DirectiveLoc); 615 bool parseDirectiveCFIOffset(SMLoc DirectiveLoc); 616 bool parseDirectiveCFIRelOffset(SMLoc DirectiveLoc); 617 bool parseDirectiveCFIPersonalityOrLsda(bool IsPersonality); 618 bool parseDirectiveCFIRememberState(SMLoc DirectiveLoc); 619 bool parseDirectiveCFIRestoreState(SMLoc DirectiveLoc); 620 bool parseDirectiveCFISameValue(SMLoc DirectiveLoc); 621 bool parseDirectiveCFIRestore(SMLoc DirectiveLoc); 622 bool parseDirectiveCFIEscape(SMLoc DirectiveLoc); 623 bool parseDirectiveCFIReturnColumn(SMLoc DirectiveLoc); 624 bool parseDirectiveCFISignalFrame(SMLoc DirectiveLoc); 625 bool parseDirectiveCFIUndefined(SMLoc DirectiveLoc); 626 bool parseDirectiveCFILabel(SMLoc DirectiveLoc); 627 628 // macro directives 629 bool parseDirectivePurgeMacro(SMLoc DirectiveLoc); 630 bool parseDirectiveExitMacro(StringRef Directive); 631 bool parseDirectiveEndMacro(StringRef Directive); 632 bool parseDirectiveMacro(SMLoc DirectiveLoc); 633 bool parseDirectiveMacrosOnOff(StringRef Directive); 634 // alternate macro mode directives 635 bool parseDirectiveAltmacro(StringRef Directive); 636 // ".bundle_align_mode" 637 bool parseDirectiveBundleAlignMode(); 638 // ".bundle_lock" 639 bool parseDirectiveBundleLock(); 640 // ".bundle_unlock" 641 bool parseDirectiveBundleUnlock(); 642 643 // ".space", ".skip" 644 bool parseDirectiveSpace(StringRef IDVal); 645 646 // ".dcb" 647 bool parseDirectiveDCB(StringRef IDVal, unsigned Size); 648 bool parseDirectiveRealDCB(StringRef IDVal, const fltSemantics &); 649 // ".ds" 650 bool parseDirectiveDS(StringRef IDVal, unsigned Size); 651 652 // .sleb128 (Signed=true) and .uleb128 (Signed=false) 653 bool parseDirectiveLEB128(bool Signed); 654 655 /// Parse a directive like ".globl" which 656 /// accepts a single symbol (which should be a label or an external). 657 bool parseDirectiveSymbolAttribute(MCSymbolAttr Attr); 658 659 bool parseDirectiveComm(bool IsLocal); // ".comm" and ".lcomm" 660 661 bool parseDirectiveAbort(SMLoc DirectiveLoc); // ".abort" 662 bool parseDirectiveInclude(); // ".include" 663 bool parseDirectiveIncbin(); // ".incbin" 664 665 // ".if", ".ifeq", ".ifge", ".ifgt" , ".ifle", ".iflt" or ".ifne" 666 bool parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind); 667 // ".ifb" or ".ifnb", depending on ExpectBlank. 668 bool parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank); 669 // ".ifc" or ".ifnc", depending on ExpectEqual. 670 bool parseDirectiveIfc(SMLoc DirectiveLoc, bool ExpectEqual); 671 // ".ifeqs" or ".ifnes", depending on ExpectEqual. 672 bool parseDirectiveIfeqs(SMLoc DirectiveLoc, bool ExpectEqual); 673 // ".ifdef" or ".ifndef", depending on expect_defined 674 bool parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined); 675 bool parseDirectiveElseIf(SMLoc DirectiveLoc); // ".elseif" 676 bool parseDirectiveElse(SMLoc DirectiveLoc); // ".else" 677 bool parseDirectiveEndIf(SMLoc DirectiveLoc); // .endif 678 bool parseEscapedString(std::string &Data) override; 679 bool parseAngleBracketString(std::string &Data) override; 680 681 const MCExpr *applyModifierToExpr(const MCExpr *E, 682 MCSymbolRefExpr::VariantKind Variant); 683 684 // Macro-like directives 685 MCAsmMacro *parseMacroLikeBody(SMLoc DirectiveLoc); 686 void instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc, 687 raw_svector_ostream &OS); 688 bool parseDirectiveRept(SMLoc DirectiveLoc, StringRef Directive); 689 bool parseDirectiveIrp(SMLoc DirectiveLoc); // ".irp" 690 bool parseDirectiveIrpc(SMLoc DirectiveLoc); // ".irpc" 691 bool parseDirectiveEndr(SMLoc DirectiveLoc); // ".endr" 692 693 // "_emit" or "__emit" 694 bool parseDirectiveMSEmit(SMLoc DirectiveLoc, ParseStatementInfo &Info, 695 size_t Len); 696 697 // "align" 698 bool parseDirectiveMSAlign(SMLoc DirectiveLoc, ParseStatementInfo &Info); 699 700 // "end" 701 bool parseDirectiveEnd(SMLoc DirectiveLoc); 702 703 // ".err" or ".error" 704 bool parseDirectiveError(SMLoc DirectiveLoc, bool WithMessage); 705 706 // ".warning" 707 bool parseDirectiveWarning(SMLoc DirectiveLoc); 708 709 // .print <double-quotes-string> 710 bool parseDirectivePrint(SMLoc DirectiveLoc); 711 712 // .pseudoprobe 713 bool parseDirectivePseudoProbe(); 714 715 // ".lto_discard" 716 bool parseDirectiveLTODiscard(); 717 718 // Directives to support address-significance tables. 719 bool parseDirectiveAddrsig(); 720 bool parseDirectiveAddrsigSym(); 721 722 void initializeDirectiveKindMap(); 723 void initializeCVDefRangeTypeMap(); 724 }; 725 726 class HLASMAsmParser final : public AsmParser { 727 private: 728 MCAsmLexer &Lexer; 729 MCStreamer &Out; 730 731 void lexLeadingSpaces() { 732 while (Lexer.is(AsmToken::Space)) 733 Lexer.Lex(); 734 } 735 736 bool parseAsHLASMLabel(ParseStatementInfo &Info, MCAsmParserSemaCallback *SI); 737 bool parseAsMachineInstruction(ParseStatementInfo &Info, 738 MCAsmParserSemaCallback *SI); 739 740 public: 741 HLASMAsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out, 742 const MCAsmInfo &MAI, unsigned CB = 0) 743 : AsmParser(SM, Ctx, Out, MAI, CB), Lexer(getLexer()), Out(Out) { 744 Lexer.setSkipSpace(false); 745 Lexer.setAllowHashInIdentifier(true); 746 Lexer.setLexHLASMIntegers(true); 747 Lexer.setLexHLASMStrings(true); 748 } 749 750 ~HLASMAsmParser() { Lexer.setSkipSpace(true); } 751 752 bool parseStatement(ParseStatementInfo &Info, 753 MCAsmParserSemaCallback *SI) override; 754 }; 755 756 } // end anonymous namespace 757 758 namespace llvm { 759 760 extern cl::opt<unsigned> AsmMacroMaxNestingDepth; 761 762 extern MCAsmParserExtension *createDarwinAsmParser(); 763 extern MCAsmParserExtension *createELFAsmParser(); 764 extern MCAsmParserExtension *createCOFFAsmParser(); 765 extern MCAsmParserExtension *createGOFFAsmParser(); 766 extern MCAsmParserExtension *createXCOFFAsmParser(); 767 extern MCAsmParserExtension *createWasmAsmParser(); 768 769 } // end namespace llvm 770 771 enum { DEFAULT_ADDRSPACE = 0 }; 772 773 AsmParser::AsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out, 774 const MCAsmInfo &MAI, unsigned CB = 0) 775 : Lexer(MAI), Ctx(Ctx), Out(Out), MAI(MAI), SrcMgr(SM), 776 CurBuffer(CB ? CB : SM.getMainFileID()), MacrosEnabledFlag(true) { 777 HadError = false; 778 // Save the old handler. 779 SavedDiagHandler = SrcMgr.getDiagHandler(); 780 SavedDiagContext = SrcMgr.getDiagContext(); 781 // Set our own handler which calls the saved handler. 782 SrcMgr.setDiagHandler(DiagHandler, this); 783 Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); 784 // Make MCStreamer aware of the StartTokLoc for locations in diagnostics. 785 Out.setStartTokLocPtr(&StartTokLoc); 786 787 // Initialize the platform / file format parser. 788 switch (Ctx.getObjectFileType()) { 789 case MCContext::IsCOFF: 790 PlatformParser.reset(createCOFFAsmParser()); 791 break; 792 case MCContext::IsMachO: 793 PlatformParser.reset(createDarwinAsmParser()); 794 IsDarwin = true; 795 break; 796 case MCContext::IsELF: 797 PlatformParser.reset(createELFAsmParser()); 798 break; 799 case MCContext::IsGOFF: 800 PlatformParser.reset(createGOFFAsmParser()); 801 break; 802 case MCContext::IsSPIRV: 803 report_fatal_error( 804 "Need to implement createSPIRVAsmParser for SPIRV format."); 805 break; 806 case MCContext::IsWasm: 807 PlatformParser.reset(createWasmAsmParser()); 808 break; 809 case MCContext::IsXCOFF: 810 PlatformParser.reset(createXCOFFAsmParser()); 811 break; 812 case MCContext::IsDXContainer: 813 report_fatal_error("DXContainer is not supported yet"); 814 break; 815 } 816 817 PlatformParser->Initialize(*this); 818 initializeDirectiveKindMap(); 819 initializeCVDefRangeTypeMap(); 820 821 NumOfMacroInstantiations = 0; 822 } 823 824 AsmParser::~AsmParser() { 825 assert((HadError || ActiveMacros.empty()) && 826 "Unexpected active macro instantiation!"); 827 828 // Remove MCStreamer's reference to the parser SMLoc. 829 Out.setStartTokLocPtr(nullptr); 830 // Restore the saved diagnostics handler and context for use during 831 // finalization. 832 SrcMgr.setDiagHandler(SavedDiagHandler, SavedDiagContext); 833 } 834 835 void AsmParser::printMacroInstantiations() { 836 // Print the active macro instantiation stack. 837 for (MacroInstantiation *M : reverse(ActiveMacros)) 838 printMessage(M->InstantiationLoc, SourceMgr::DK_Note, 839 "while in macro instantiation"); 840 } 841 842 void AsmParser::Note(SMLoc L, const Twine &Msg, SMRange Range) { 843 printPendingErrors(); 844 printMessage(L, SourceMgr::DK_Note, Msg, Range); 845 printMacroInstantiations(); 846 } 847 848 bool AsmParser::Warning(SMLoc L, const Twine &Msg, SMRange Range) { 849 if(getTargetParser().getTargetOptions().MCNoWarn) 850 return false; 851 if (getTargetParser().getTargetOptions().MCFatalWarnings) 852 return Error(L, Msg, Range); 853 printMessage(L, SourceMgr::DK_Warning, Msg, Range); 854 printMacroInstantiations(); 855 return false; 856 } 857 858 bool AsmParser::printError(SMLoc L, const Twine &Msg, SMRange Range) { 859 HadError = true; 860 printMessage(L, SourceMgr::DK_Error, Msg, Range); 861 printMacroInstantiations(); 862 return true; 863 } 864 865 bool AsmParser::enterIncludeFile(const std::string &Filename) { 866 std::string IncludedFile; 867 unsigned NewBuf = 868 SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile); 869 if (!NewBuf) 870 return true; 871 872 CurBuffer = NewBuf; 873 Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); 874 return false; 875 } 876 877 /// Process the specified .incbin file by searching for it in the include paths 878 /// then just emitting the byte contents of the file to the streamer. This 879 /// returns true on failure. 880 bool AsmParser::processIncbinFile(const std::string &Filename, int64_t Skip, 881 const MCExpr *Count, SMLoc Loc) { 882 std::string IncludedFile; 883 unsigned NewBuf = 884 SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile); 885 if (!NewBuf) 886 return true; 887 888 // Pick up the bytes from the file and emit them. 889 StringRef Bytes = SrcMgr.getMemoryBuffer(NewBuf)->getBuffer(); 890 Bytes = Bytes.drop_front(Skip); 891 if (Count) { 892 int64_t Res; 893 if (!Count->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr())) 894 return Error(Loc, "expected absolute expression"); 895 if (Res < 0) 896 return Warning(Loc, "negative count has no effect"); 897 Bytes = Bytes.take_front(Res); 898 } 899 getStreamer().emitBytes(Bytes); 900 return false; 901 } 902 903 void AsmParser::jumpToLoc(SMLoc Loc, unsigned InBuffer) { 904 CurBuffer = InBuffer ? InBuffer : SrcMgr.FindBufferContainingLoc(Loc); 905 Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer(), 906 Loc.getPointer()); 907 } 908 909 const AsmToken &AsmParser::Lex() { 910 if (Lexer.getTok().is(AsmToken::Error)) 911 Error(Lexer.getErrLoc(), Lexer.getErr()); 912 913 // if it's a end of statement with a comment in it 914 if (getTok().is(AsmToken::EndOfStatement)) { 915 // if this is a line comment output it. 916 if (!getTok().getString().empty() && getTok().getString().front() != '\n' && 917 getTok().getString().front() != '\r' && MAI.preserveAsmComments()) 918 Out.addExplicitComment(Twine(getTok().getString())); 919 } 920 921 const AsmToken *tok = &Lexer.Lex(); 922 923 // Parse comments here to be deferred until end of next statement. 924 while (tok->is(AsmToken::Comment)) { 925 if (MAI.preserveAsmComments()) 926 Out.addExplicitComment(Twine(tok->getString())); 927 tok = &Lexer.Lex(); 928 } 929 930 if (tok->is(AsmToken::Eof)) { 931 // If this is the end of an included file, pop the parent file off the 932 // include stack. 933 SMLoc ParentIncludeLoc = SrcMgr.getParentIncludeLoc(CurBuffer); 934 if (ParentIncludeLoc != SMLoc()) { 935 jumpToLoc(ParentIncludeLoc); 936 return Lex(); 937 } 938 } 939 940 return *tok; 941 } 942 943 bool AsmParser::enabledGenDwarfForAssembly() { 944 // Check whether the user specified -g. 945 if (!getContext().getGenDwarfForAssembly()) 946 return false; 947 // If we haven't encountered any .file directives (which would imply that 948 // the assembler source was produced with debug info already) then emit one 949 // describing the assembler source file itself. 950 if (getContext().getGenDwarfFileNumber() == 0) { 951 // Use the first #line directive for this, if any. It's preprocessed, so 952 // there is no checksum, and of course no source directive. 953 if (!FirstCppHashFilename.empty()) 954 getContext().setMCLineTableRootFile( 955 /*CUID=*/0, getContext().getCompilationDir(), FirstCppHashFilename, 956 /*Cksum=*/std::nullopt, /*Source=*/std::nullopt); 957 const MCDwarfFile &RootFile = 958 getContext().getMCDwarfLineTable(/*CUID=*/0).getRootFile(); 959 getContext().setGenDwarfFileNumber(getStreamer().emitDwarfFileDirective( 960 /*CUID=*/0, getContext().getCompilationDir(), RootFile.Name, 961 RootFile.Checksum, RootFile.Source)); 962 } 963 return true; 964 } 965 966 bool AsmParser::Run(bool NoInitialTextSection, bool NoFinalize) { 967 LTODiscardSymbols.clear(); 968 969 // Create the initial section, if requested. 970 if (!NoInitialTextSection) 971 Out.initSections(false, getTargetParser().getSTI()); 972 973 // Prime the lexer. 974 Lex(); 975 976 HadError = false; 977 AsmCond StartingCondState = TheCondState; 978 SmallVector<AsmRewrite, 4> AsmStrRewrites; 979 980 // If we are generating dwarf for assembly source files save the initial text 981 // section. (Don't use enabledGenDwarfForAssembly() here, as we aren't 982 // emitting any actual debug info yet and haven't had a chance to parse any 983 // embedded .file directives.) 984 if (getContext().getGenDwarfForAssembly()) { 985 MCSection *Sec = getStreamer().getCurrentSectionOnly(); 986 if (!Sec->getBeginSymbol()) { 987 MCSymbol *SectionStartSym = getContext().createTempSymbol(); 988 getStreamer().emitLabel(SectionStartSym); 989 Sec->setBeginSymbol(SectionStartSym); 990 } 991 bool InsertResult = getContext().addGenDwarfSection(Sec); 992 assert(InsertResult && ".text section should not have debug info yet"); 993 (void)InsertResult; 994 } 995 996 getTargetParser().onBeginOfFile(); 997 998 // While we have input, parse each statement. 999 while (Lexer.isNot(AsmToken::Eof)) { 1000 ParseStatementInfo Info(&AsmStrRewrites); 1001 bool Parsed = parseStatement(Info, nullptr); 1002 1003 // If we have a Lexer Error we are on an Error Token. Load in Lexer Error 1004 // for printing ErrMsg via Lex() only if no (presumably better) parser error 1005 // exists. 1006 if (Parsed && !hasPendingError() && Lexer.getTok().is(AsmToken::Error)) { 1007 Lex(); 1008 } 1009 1010 // parseStatement returned true so may need to emit an error. 1011 printPendingErrors(); 1012 1013 // Skipping to the next line if needed. 1014 if (Parsed && !getLexer().isAtStartOfStatement()) 1015 eatToEndOfStatement(); 1016 } 1017 1018 getTargetParser().onEndOfFile(); 1019 printPendingErrors(); 1020 1021 // All errors should have been emitted. 1022 assert(!hasPendingError() && "unexpected error from parseStatement"); 1023 1024 getTargetParser().flushPendingInstructions(getStreamer()); 1025 1026 if (TheCondState.TheCond != StartingCondState.TheCond || 1027 TheCondState.Ignore != StartingCondState.Ignore) 1028 printError(getTok().getLoc(), "unmatched .ifs or .elses"); 1029 // Check to see there are no empty DwarfFile slots. 1030 const auto &LineTables = getContext().getMCDwarfLineTables(); 1031 if (!LineTables.empty()) { 1032 unsigned Index = 0; 1033 for (const auto &File : LineTables.begin()->second.getMCDwarfFiles()) { 1034 if (File.Name.empty() && Index != 0) 1035 printError(getTok().getLoc(), "unassigned file number: " + 1036 Twine(Index) + 1037 " for .file directives"); 1038 ++Index; 1039 } 1040 } 1041 1042 // Check to see that all assembler local symbols were actually defined. 1043 // Targets that don't do subsections via symbols may not want this, though, 1044 // so conservatively exclude them. Only do this if we're finalizing, though, 1045 // as otherwise we won't necessarilly have seen everything yet. 1046 if (!NoFinalize) { 1047 if (MAI.hasSubsectionsViaSymbols()) { 1048 for (const auto &TableEntry : getContext().getSymbols()) { 1049 MCSymbol *Sym = TableEntry.getValue().Symbol; 1050 // Variable symbols may not be marked as defined, so check those 1051 // explicitly. If we know it's a variable, we have a definition for 1052 // the purposes of this check. 1053 if (Sym && Sym->isTemporary() && !Sym->isVariable() && 1054 !Sym->isDefined()) 1055 // FIXME: We would really like to refer back to where the symbol was 1056 // first referenced for a source location. We need to add something 1057 // to track that. Currently, we just point to the end of the file. 1058 printError(getTok().getLoc(), "assembler local symbol '" + 1059 Sym->getName() + "' not defined"); 1060 } 1061 } 1062 1063 // Temporary symbols like the ones for directional jumps don't go in the 1064 // symbol table. They also need to be diagnosed in all (final) cases. 1065 for (std::tuple<SMLoc, CppHashInfoTy, MCSymbol *> &LocSym : DirLabels) { 1066 if (std::get<2>(LocSym)->isUndefined()) { 1067 // Reset the state of any "# line file" directives we've seen to the 1068 // context as it was at the diagnostic site. 1069 CppHashInfo = std::get<1>(LocSym); 1070 printError(std::get<0>(LocSym), "directional label undefined"); 1071 } 1072 } 1073 } 1074 // Finalize the output stream if there are no errors and if the client wants 1075 // us to. 1076 if (!HadError && !NoFinalize) { 1077 if (auto *TS = Out.getTargetStreamer()) 1078 TS->emitConstantPools(); 1079 1080 Out.finish(Lexer.getLoc()); 1081 } 1082 1083 return HadError || getContext().hadError(); 1084 } 1085 1086 bool AsmParser::checkForValidSection() { 1087 if (!ParsingMSInlineAsm && !getStreamer().getCurrentFragment()) { 1088 Out.initSections(false, getTargetParser().getSTI()); 1089 return Error(getTok().getLoc(), 1090 "expected section directive before assembly directive"); 1091 } 1092 return false; 1093 } 1094 1095 /// Throw away the rest of the line for testing purposes. 1096 void AsmParser::eatToEndOfStatement() { 1097 while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof)) 1098 Lexer.Lex(); 1099 1100 // Eat EOL. 1101 if (Lexer.is(AsmToken::EndOfStatement)) 1102 Lexer.Lex(); 1103 } 1104 1105 StringRef AsmParser::parseStringToEndOfStatement() { 1106 const char *Start = getTok().getLoc().getPointer(); 1107 1108 while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof)) 1109 Lexer.Lex(); 1110 1111 const char *End = getTok().getLoc().getPointer(); 1112 return StringRef(Start, End - Start); 1113 } 1114 1115 StringRef AsmParser::parseStringToComma() { 1116 const char *Start = getTok().getLoc().getPointer(); 1117 1118 while (Lexer.isNot(AsmToken::EndOfStatement) && 1119 Lexer.isNot(AsmToken::Comma) && Lexer.isNot(AsmToken::Eof)) 1120 Lexer.Lex(); 1121 1122 const char *End = getTok().getLoc().getPointer(); 1123 return StringRef(Start, End - Start); 1124 } 1125 1126 /// Parse a paren expression and return it. 1127 /// NOTE: This assumes the leading '(' has already been consumed. 1128 /// 1129 /// parenexpr ::= expr) 1130 /// 1131 bool AsmParser::parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc) { 1132 if (parseExpression(Res)) 1133 return true; 1134 EndLoc = Lexer.getTok().getEndLoc(); 1135 return parseRParen(); 1136 } 1137 1138 /// Parse a bracket expression and return it. 1139 /// NOTE: This assumes the leading '[' has already been consumed. 1140 /// 1141 /// bracketexpr ::= expr] 1142 /// 1143 bool AsmParser::parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc) { 1144 if (parseExpression(Res)) 1145 return true; 1146 EndLoc = getTok().getEndLoc(); 1147 if (parseToken(AsmToken::RBrac, "expected ']' in brackets expression")) 1148 return true; 1149 return false; 1150 } 1151 1152 /// Parse a primary expression and return it. 1153 /// primaryexpr ::= (parenexpr 1154 /// primaryexpr ::= symbol 1155 /// primaryexpr ::= number 1156 /// primaryexpr ::= '.' 1157 /// primaryexpr ::= ~,+,- primaryexpr 1158 bool AsmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc, 1159 AsmTypeInfo *TypeInfo) { 1160 SMLoc FirstTokenLoc = getLexer().getLoc(); 1161 AsmToken::TokenKind FirstTokenKind = Lexer.getKind(); 1162 switch (FirstTokenKind) { 1163 default: 1164 return TokError("unknown token in expression"); 1165 // If we have an error assume that we've already handled it. 1166 case AsmToken::Error: 1167 return true; 1168 case AsmToken::Exclaim: 1169 Lex(); // Eat the operator. 1170 if (parsePrimaryExpr(Res, EndLoc, TypeInfo)) 1171 return true; 1172 Res = MCUnaryExpr::createLNot(Res, getContext(), FirstTokenLoc); 1173 return false; 1174 case AsmToken::Dollar: 1175 case AsmToken::Star: 1176 case AsmToken::At: 1177 case AsmToken::String: 1178 case AsmToken::Identifier: { 1179 StringRef Identifier; 1180 if (parseIdentifier(Identifier)) { 1181 // We may have failed but '$'|'*' may be a valid token in context of 1182 // the current PC. 1183 if (getTok().is(AsmToken::Dollar) || getTok().is(AsmToken::Star)) { 1184 bool ShouldGenerateTempSymbol = false; 1185 if ((getTok().is(AsmToken::Dollar) && MAI.getDollarIsPC()) || 1186 (getTok().is(AsmToken::Star) && MAI.getStarIsPC())) 1187 ShouldGenerateTempSymbol = true; 1188 1189 if (!ShouldGenerateTempSymbol) 1190 return Error(FirstTokenLoc, "invalid token in expression"); 1191 1192 // Eat the '$'|'*' token. 1193 Lex(); 1194 // This is either a '$'|'*' reference, which references the current PC. 1195 // Emit a temporary label to the streamer and refer to it. 1196 MCSymbol *Sym = Ctx.createTempSymbol(); 1197 Out.emitLabel(Sym); 1198 Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 1199 getContext()); 1200 EndLoc = FirstTokenLoc; 1201 return false; 1202 } 1203 } 1204 // Parse symbol variant 1205 std::pair<StringRef, StringRef> Split; 1206 if (!MAI.useParensForSymbolVariant()) { 1207 if (FirstTokenKind == AsmToken::String) { 1208 if (Lexer.is(AsmToken::At)) { 1209 Lex(); // eat @ 1210 SMLoc AtLoc = getLexer().getLoc(); 1211 StringRef VName; 1212 if (parseIdentifier(VName)) 1213 return Error(AtLoc, "expected symbol variant after '@'"); 1214 1215 Split = std::make_pair(Identifier, VName); 1216 } 1217 } else { 1218 Split = Identifier.split('@'); 1219 } 1220 } else if (Lexer.is(AsmToken::LParen)) { 1221 Lex(); // eat '('. 1222 StringRef VName; 1223 parseIdentifier(VName); 1224 if (parseRParen()) 1225 return true; 1226 Split = std::make_pair(Identifier, VName); 1227 } 1228 1229 EndLoc = SMLoc::getFromPointer(Identifier.end()); 1230 1231 // This is a symbol reference. 1232 StringRef SymbolName = Identifier; 1233 if (SymbolName.empty()) 1234 return Error(getLexer().getLoc(), "expected a symbol reference"); 1235 1236 MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; 1237 1238 // Lookup the symbol variant if used. 1239 if (!Split.second.empty()) { 1240 Variant = getTargetParser().getVariantKindForName(Split.second); 1241 if (Variant != MCSymbolRefExpr::VK_Invalid) { 1242 SymbolName = Split.first; 1243 } else if (MAI.doesAllowAtInName() && !MAI.useParensForSymbolVariant()) { 1244 Variant = MCSymbolRefExpr::VK_None; 1245 } else { 1246 return Error(SMLoc::getFromPointer(Split.second.begin()), 1247 "invalid variant '" + Split.second + "'"); 1248 } 1249 } 1250 1251 MCSymbol *Sym = getContext().getInlineAsmLabel(SymbolName); 1252 if (!Sym) 1253 Sym = getContext().getOrCreateSymbol( 1254 MAI.shouldEmitLabelsInUpperCase() ? SymbolName.upper() : SymbolName); 1255 1256 // If this is an absolute variable reference, substitute it now to preserve 1257 // semantics in the face of reassignment. 1258 if (Sym->isVariable()) { 1259 auto V = Sym->getVariableValue(/*SetUsed*/ false); 1260 bool DoInline = isa<MCConstantExpr>(V) && !Variant; 1261 if (auto TV = dyn_cast<MCTargetExpr>(V)) 1262 DoInline = TV->inlineAssignedExpr(); 1263 if (DoInline) { 1264 if (Variant) 1265 return Error(EndLoc, "unexpected modifier on variable reference"); 1266 Res = Sym->getVariableValue(/*SetUsed*/ false); 1267 return false; 1268 } 1269 } 1270 1271 // Otherwise create a symbol ref. 1272 Res = MCSymbolRefExpr::create(Sym, Variant, getContext(), FirstTokenLoc); 1273 return false; 1274 } 1275 case AsmToken::BigNum: 1276 return TokError("literal value out of range for directive"); 1277 case AsmToken::Integer: { 1278 SMLoc Loc = getTok().getLoc(); 1279 int64_t IntVal = getTok().getIntVal(); 1280 Res = MCConstantExpr::create(IntVal, getContext()); 1281 EndLoc = Lexer.getTok().getEndLoc(); 1282 Lex(); // Eat token. 1283 // Look for 'b' or 'f' following an Integer as a directional label 1284 if (Lexer.getKind() == AsmToken::Identifier) { 1285 StringRef IDVal = getTok().getString(); 1286 // Lookup the symbol variant if used. 1287 std::pair<StringRef, StringRef> Split = IDVal.split('@'); 1288 MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; 1289 if (Split.first.size() != IDVal.size()) { 1290 Variant = MCSymbolRefExpr::getVariantKindForName(Split.second); 1291 if (Variant == MCSymbolRefExpr::VK_Invalid) 1292 return TokError("invalid variant '" + Split.second + "'"); 1293 IDVal = Split.first; 1294 } 1295 if (IDVal == "f" || IDVal == "b") { 1296 MCSymbol *Sym = 1297 Ctx.getDirectionalLocalSymbol(IntVal, IDVal == "b"); 1298 Res = MCSymbolRefExpr::create(Sym, Variant, getContext()); 1299 if (IDVal == "b" && Sym->isUndefined()) 1300 return Error(Loc, "directional label undefined"); 1301 DirLabels.push_back(std::make_tuple(Loc, CppHashInfo, Sym)); 1302 EndLoc = Lexer.getTok().getEndLoc(); 1303 Lex(); // Eat identifier. 1304 } 1305 } 1306 return false; 1307 } 1308 case AsmToken::Real: { 1309 APFloat RealVal(APFloat::IEEEdouble(), getTok().getString()); 1310 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 1311 Res = MCConstantExpr::create(IntVal, getContext()); 1312 EndLoc = Lexer.getTok().getEndLoc(); 1313 Lex(); // Eat token. 1314 return false; 1315 } 1316 case AsmToken::Dot: { 1317 if (!MAI.getDotIsPC()) 1318 return TokError("cannot use . as current PC"); 1319 1320 // This is a '.' reference, which references the current PC. Emit a 1321 // temporary label to the streamer and refer to it. 1322 MCSymbol *Sym = Ctx.createTempSymbol(); 1323 Out.emitLabel(Sym); 1324 Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext()); 1325 EndLoc = Lexer.getTok().getEndLoc(); 1326 Lex(); // Eat identifier. 1327 return false; 1328 } 1329 case AsmToken::LParen: 1330 Lex(); // Eat the '('. 1331 return parseParenExpr(Res, EndLoc); 1332 case AsmToken::LBrac: 1333 if (!PlatformParser->HasBracketExpressions()) 1334 return TokError("brackets expression not supported on this target"); 1335 Lex(); // Eat the '['. 1336 return parseBracketExpr(Res, EndLoc); 1337 case AsmToken::Minus: 1338 Lex(); // Eat the operator. 1339 if (parsePrimaryExpr(Res, EndLoc, TypeInfo)) 1340 return true; 1341 Res = MCUnaryExpr::createMinus(Res, getContext(), FirstTokenLoc); 1342 return false; 1343 case AsmToken::Plus: 1344 Lex(); // Eat the operator. 1345 if (parsePrimaryExpr(Res, EndLoc, TypeInfo)) 1346 return true; 1347 Res = MCUnaryExpr::createPlus(Res, getContext(), FirstTokenLoc); 1348 return false; 1349 case AsmToken::Tilde: 1350 Lex(); // Eat the operator. 1351 if (parsePrimaryExpr(Res, EndLoc, TypeInfo)) 1352 return true; 1353 Res = MCUnaryExpr::createNot(Res, getContext(), FirstTokenLoc); 1354 return false; 1355 // MIPS unary expression operators. The lexer won't generate these tokens if 1356 // MCAsmInfo::HasMipsExpressions is false for the target. 1357 case AsmToken::PercentCall16: 1358 case AsmToken::PercentCall_Hi: 1359 case AsmToken::PercentCall_Lo: 1360 case AsmToken::PercentDtprel_Hi: 1361 case AsmToken::PercentDtprel_Lo: 1362 case AsmToken::PercentGot: 1363 case AsmToken::PercentGot_Disp: 1364 case AsmToken::PercentGot_Hi: 1365 case AsmToken::PercentGot_Lo: 1366 case AsmToken::PercentGot_Ofst: 1367 case AsmToken::PercentGot_Page: 1368 case AsmToken::PercentGottprel: 1369 case AsmToken::PercentGp_Rel: 1370 case AsmToken::PercentHi: 1371 case AsmToken::PercentHigher: 1372 case AsmToken::PercentHighest: 1373 case AsmToken::PercentLo: 1374 case AsmToken::PercentNeg: 1375 case AsmToken::PercentPcrel_Hi: 1376 case AsmToken::PercentPcrel_Lo: 1377 case AsmToken::PercentTlsgd: 1378 case AsmToken::PercentTlsldm: 1379 case AsmToken::PercentTprel_Hi: 1380 case AsmToken::PercentTprel_Lo: 1381 Lex(); // Eat the operator. 1382 if (Lexer.isNot(AsmToken::LParen)) 1383 return TokError("expected '(' after operator"); 1384 Lex(); // Eat the operator. 1385 if (parseExpression(Res, EndLoc)) 1386 return true; 1387 if (parseRParen()) 1388 return true; 1389 Res = getTargetParser().createTargetUnaryExpr(Res, FirstTokenKind, Ctx); 1390 return !Res; 1391 } 1392 } 1393 1394 bool AsmParser::parseExpression(const MCExpr *&Res) { 1395 SMLoc EndLoc; 1396 return parseExpression(Res, EndLoc); 1397 } 1398 1399 const MCExpr * 1400 AsmParser::applyModifierToExpr(const MCExpr *E, 1401 MCSymbolRefExpr::VariantKind Variant) { 1402 // Ask the target implementation about this expression first. 1403 const MCExpr *NewE = getTargetParser().applyModifierToExpr(E, Variant, Ctx); 1404 if (NewE) 1405 return NewE; 1406 // Recurse over the given expression, rebuilding it to apply the given variant 1407 // if there is exactly one symbol. 1408 switch (E->getKind()) { 1409 case MCExpr::Target: 1410 case MCExpr::Constant: 1411 return nullptr; 1412 1413 case MCExpr::SymbolRef: { 1414 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1415 1416 if (SRE->getKind() != MCSymbolRefExpr::VK_None) { 1417 TokError("invalid variant on expression '" + getTok().getIdentifier() + 1418 "' (already modified)"); 1419 return E; 1420 } 1421 1422 return MCSymbolRefExpr::create(&SRE->getSymbol(), Variant, getContext()); 1423 } 1424 1425 case MCExpr::Unary: { 1426 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1427 const MCExpr *Sub = applyModifierToExpr(UE->getSubExpr(), Variant); 1428 if (!Sub) 1429 return nullptr; 1430 return MCUnaryExpr::create(UE->getOpcode(), Sub, getContext()); 1431 } 1432 1433 case MCExpr::Binary: { 1434 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1435 const MCExpr *LHS = applyModifierToExpr(BE->getLHS(), Variant); 1436 const MCExpr *RHS = applyModifierToExpr(BE->getRHS(), Variant); 1437 1438 if (!LHS && !RHS) 1439 return nullptr; 1440 1441 if (!LHS) 1442 LHS = BE->getLHS(); 1443 if (!RHS) 1444 RHS = BE->getRHS(); 1445 1446 return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, getContext()); 1447 } 1448 } 1449 1450 llvm_unreachable("Invalid expression kind!"); 1451 } 1452 1453 /// This function checks if the next token is <string> type or arithmetic. 1454 /// string that begin with character '<' must end with character '>'. 1455 /// otherwise it is arithmetics. 1456 /// If the function returns a 'true' value, 1457 /// the End argument will be filled with the last location pointed to the '>' 1458 /// character. 1459 1460 /// There is a gap between the AltMacro's documentation and the single quote 1461 /// implementation. GCC does not fully support this feature and so we will not 1462 /// support it. 1463 /// TODO: Adding single quote as a string. 1464 static bool isAngleBracketString(SMLoc &StrLoc, SMLoc &EndLoc) { 1465 assert((StrLoc.getPointer() != nullptr) && 1466 "Argument to the function cannot be a NULL value"); 1467 const char *CharPtr = StrLoc.getPointer(); 1468 while ((*CharPtr != '>') && (*CharPtr != '\n') && (*CharPtr != '\r') && 1469 (*CharPtr != '\0')) { 1470 if (*CharPtr == '!') 1471 CharPtr++; 1472 CharPtr++; 1473 } 1474 if (*CharPtr == '>') { 1475 EndLoc = StrLoc.getFromPointer(CharPtr + 1); 1476 return true; 1477 } 1478 return false; 1479 } 1480 1481 /// creating a string without the escape characters '!'. 1482 static std::string angleBracketString(StringRef AltMacroStr) { 1483 std::string Res; 1484 for (size_t Pos = 0; Pos < AltMacroStr.size(); Pos++) { 1485 if (AltMacroStr[Pos] == '!') 1486 Pos++; 1487 Res += AltMacroStr[Pos]; 1488 } 1489 return Res; 1490 } 1491 1492 /// Parse an expression and return it. 1493 /// 1494 /// expr ::= expr &&,|| expr -> lowest. 1495 /// expr ::= expr |,^,&,! expr 1496 /// expr ::= expr ==,!=,<>,<,<=,>,>= expr 1497 /// expr ::= expr <<,>> expr 1498 /// expr ::= expr +,- expr 1499 /// expr ::= expr *,/,% expr -> highest. 1500 /// expr ::= primaryexpr 1501 /// 1502 bool AsmParser::parseExpression(const MCExpr *&Res, SMLoc &EndLoc) { 1503 // Parse the expression. 1504 Res = nullptr; 1505 if (getTargetParser().parsePrimaryExpr(Res, EndLoc) || 1506 parseBinOpRHS(1, Res, EndLoc)) 1507 return true; 1508 1509 // As a special case, we support 'a op b @ modifier' by rewriting the 1510 // expression to include the modifier. This is inefficient, but in general we 1511 // expect users to use 'a@modifier op b'. 1512 if (parseOptionalToken(AsmToken::At)) { 1513 if (Lexer.isNot(AsmToken::Identifier)) 1514 return TokError("unexpected symbol modifier following '@'"); 1515 1516 MCSymbolRefExpr::VariantKind Variant = 1517 MCSymbolRefExpr::getVariantKindForName(getTok().getIdentifier()); 1518 if (Variant == MCSymbolRefExpr::VK_Invalid) 1519 return TokError("invalid variant '" + getTok().getIdentifier() + "'"); 1520 1521 const MCExpr *ModifiedRes = applyModifierToExpr(Res, Variant); 1522 if (!ModifiedRes) { 1523 return TokError("invalid modifier '" + getTok().getIdentifier() + 1524 "' (no symbols present)"); 1525 } 1526 1527 Res = ModifiedRes; 1528 Lex(); 1529 } 1530 1531 // Try to constant fold it up front, if possible. Do not exploit 1532 // assembler here. 1533 int64_t Value; 1534 if (Res->evaluateAsAbsolute(Value)) 1535 Res = MCConstantExpr::create(Value, getContext()); 1536 1537 return false; 1538 } 1539 1540 bool AsmParser::parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) { 1541 Res = nullptr; 1542 return parseParenExpr(Res, EndLoc) || parseBinOpRHS(1, Res, EndLoc); 1543 } 1544 1545 bool AsmParser::parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res, 1546 SMLoc &EndLoc) { 1547 if (parseParenExpr(Res, EndLoc)) 1548 return true; 1549 1550 for (; ParenDepth > 0; --ParenDepth) { 1551 if (parseBinOpRHS(1, Res, EndLoc)) 1552 return true; 1553 1554 // We don't Lex() the last RParen. 1555 // This is the same behavior as parseParenExpression(). 1556 if (ParenDepth - 1 > 0) { 1557 EndLoc = getTok().getEndLoc(); 1558 if (parseRParen()) 1559 return true; 1560 } 1561 } 1562 return false; 1563 } 1564 1565 bool AsmParser::parseAbsoluteExpression(int64_t &Res) { 1566 const MCExpr *Expr; 1567 1568 SMLoc StartLoc = Lexer.getLoc(); 1569 if (parseExpression(Expr)) 1570 return true; 1571 1572 if (!Expr->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr())) 1573 return Error(StartLoc, "expected absolute expression"); 1574 1575 return false; 1576 } 1577 1578 static unsigned getDarwinBinOpPrecedence(AsmToken::TokenKind K, 1579 MCBinaryExpr::Opcode &Kind, 1580 bool ShouldUseLogicalShr) { 1581 switch (K) { 1582 default: 1583 return 0; // not a binop. 1584 1585 // Lowest Precedence: &&, || 1586 case AsmToken::AmpAmp: 1587 Kind = MCBinaryExpr::LAnd; 1588 return 1; 1589 case AsmToken::PipePipe: 1590 Kind = MCBinaryExpr::LOr; 1591 return 1; 1592 1593 // Low Precedence: |, &, ^ 1594 case AsmToken::Pipe: 1595 Kind = MCBinaryExpr::Or; 1596 return 2; 1597 case AsmToken::Caret: 1598 Kind = MCBinaryExpr::Xor; 1599 return 2; 1600 case AsmToken::Amp: 1601 Kind = MCBinaryExpr::And; 1602 return 2; 1603 1604 // Low Intermediate Precedence: ==, !=, <>, <, <=, >, >= 1605 case AsmToken::EqualEqual: 1606 Kind = MCBinaryExpr::EQ; 1607 return 3; 1608 case AsmToken::ExclaimEqual: 1609 case AsmToken::LessGreater: 1610 Kind = MCBinaryExpr::NE; 1611 return 3; 1612 case AsmToken::Less: 1613 Kind = MCBinaryExpr::LT; 1614 return 3; 1615 case AsmToken::LessEqual: 1616 Kind = MCBinaryExpr::LTE; 1617 return 3; 1618 case AsmToken::Greater: 1619 Kind = MCBinaryExpr::GT; 1620 return 3; 1621 case AsmToken::GreaterEqual: 1622 Kind = MCBinaryExpr::GTE; 1623 return 3; 1624 1625 // Intermediate Precedence: <<, >> 1626 case AsmToken::LessLess: 1627 Kind = MCBinaryExpr::Shl; 1628 return 4; 1629 case AsmToken::GreaterGreater: 1630 Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr; 1631 return 4; 1632 1633 // High Intermediate Precedence: +, - 1634 case AsmToken::Plus: 1635 Kind = MCBinaryExpr::Add; 1636 return 5; 1637 case AsmToken::Minus: 1638 Kind = MCBinaryExpr::Sub; 1639 return 5; 1640 1641 // Highest Precedence: *, /, % 1642 case AsmToken::Star: 1643 Kind = MCBinaryExpr::Mul; 1644 return 6; 1645 case AsmToken::Slash: 1646 Kind = MCBinaryExpr::Div; 1647 return 6; 1648 case AsmToken::Percent: 1649 Kind = MCBinaryExpr::Mod; 1650 return 6; 1651 } 1652 } 1653 1654 static unsigned getGNUBinOpPrecedence(const MCAsmInfo &MAI, 1655 AsmToken::TokenKind K, 1656 MCBinaryExpr::Opcode &Kind, 1657 bool ShouldUseLogicalShr) { 1658 switch (K) { 1659 default: 1660 return 0; // not a binop. 1661 1662 // Lowest Precedence: &&, || 1663 case AsmToken::AmpAmp: 1664 Kind = MCBinaryExpr::LAnd; 1665 return 2; 1666 case AsmToken::PipePipe: 1667 Kind = MCBinaryExpr::LOr; 1668 return 1; 1669 1670 // Low Precedence: ==, !=, <>, <, <=, >, >= 1671 case AsmToken::EqualEqual: 1672 Kind = MCBinaryExpr::EQ; 1673 return 3; 1674 case AsmToken::ExclaimEqual: 1675 case AsmToken::LessGreater: 1676 Kind = MCBinaryExpr::NE; 1677 return 3; 1678 case AsmToken::Less: 1679 Kind = MCBinaryExpr::LT; 1680 return 3; 1681 case AsmToken::LessEqual: 1682 Kind = MCBinaryExpr::LTE; 1683 return 3; 1684 case AsmToken::Greater: 1685 Kind = MCBinaryExpr::GT; 1686 return 3; 1687 case AsmToken::GreaterEqual: 1688 Kind = MCBinaryExpr::GTE; 1689 return 3; 1690 1691 // Low Intermediate Precedence: +, - 1692 case AsmToken::Plus: 1693 Kind = MCBinaryExpr::Add; 1694 return 4; 1695 case AsmToken::Minus: 1696 Kind = MCBinaryExpr::Sub; 1697 return 4; 1698 1699 // High Intermediate Precedence: |, !, &, ^ 1700 // 1701 case AsmToken::Pipe: 1702 Kind = MCBinaryExpr::Or; 1703 return 5; 1704 case AsmToken::Exclaim: 1705 // Hack to support ARM compatible aliases (implied 'sp' operand in 'srs*' 1706 // instructions like 'srsda #31!') and not parse ! as an infix operator. 1707 if (MAI.getCommentString() == "@") 1708 return 0; 1709 Kind = MCBinaryExpr::OrNot; 1710 return 5; 1711 case AsmToken::Caret: 1712 Kind = MCBinaryExpr::Xor; 1713 return 5; 1714 case AsmToken::Amp: 1715 Kind = MCBinaryExpr::And; 1716 return 5; 1717 1718 // Highest Precedence: *, /, %, <<, >> 1719 case AsmToken::Star: 1720 Kind = MCBinaryExpr::Mul; 1721 return 6; 1722 case AsmToken::Slash: 1723 Kind = MCBinaryExpr::Div; 1724 return 6; 1725 case AsmToken::Percent: 1726 Kind = MCBinaryExpr::Mod; 1727 return 6; 1728 case AsmToken::LessLess: 1729 Kind = MCBinaryExpr::Shl; 1730 return 6; 1731 case AsmToken::GreaterGreater: 1732 Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr; 1733 return 6; 1734 } 1735 } 1736 1737 unsigned AsmParser::getBinOpPrecedence(AsmToken::TokenKind K, 1738 MCBinaryExpr::Opcode &Kind) { 1739 bool ShouldUseLogicalShr = MAI.shouldUseLogicalShr(); 1740 return IsDarwin ? getDarwinBinOpPrecedence(K, Kind, ShouldUseLogicalShr) 1741 : getGNUBinOpPrecedence(MAI, K, Kind, ShouldUseLogicalShr); 1742 } 1743 1744 /// Parse all binary operators with precedence >= 'Precedence'. 1745 /// Res contains the LHS of the expression on input. 1746 bool AsmParser::parseBinOpRHS(unsigned Precedence, const MCExpr *&Res, 1747 SMLoc &EndLoc) { 1748 SMLoc StartLoc = Lexer.getLoc(); 1749 while (true) { 1750 MCBinaryExpr::Opcode Kind = MCBinaryExpr::Add; 1751 unsigned TokPrec = getBinOpPrecedence(Lexer.getKind(), Kind); 1752 1753 // If the next token is lower precedence than we are allowed to eat, return 1754 // successfully with what we ate already. 1755 if (TokPrec < Precedence) 1756 return false; 1757 1758 Lex(); 1759 1760 // Eat the next primary expression. 1761 const MCExpr *RHS; 1762 if (getTargetParser().parsePrimaryExpr(RHS, EndLoc)) 1763 return true; 1764 1765 // If BinOp binds less tightly with RHS than the operator after RHS, let 1766 // the pending operator take RHS as its LHS. 1767 MCBinaryExpr::Opcode Dummy; 1768 unsigned NextTokPrec = getBinOpPrecedence(Lexer.getKind(), Dummy); 1769 if (TokPrec < NextTokPrec && parseBinOpRHS(TokPrec + 1, RHS, EndLoc)) 1770 return true; 1771 1772 // Merge LHS and RHS according to operator. 1773 Res = MCBinaryExpr::create(Kind, Res, RHS, getContext(), StartLoc); 1774 } 1775 } 1776 1777 /// ParseStatement: 1778 /// ::= EndOfStatement 1779 /// ::= Label* Directive ...Operands... EndOfStatement 1780 /// ::= Label* Identifier OperandList* EndOfStatement 1781 bool AsmParser::parseStatement(ParseStatementInfo &Info, 1782 MCAsmParserSemaCallback *SI) { 1783 assert(!hasPendingError() && "parseStatement started with pending error"); 1784 // Eat initial spaces and comments 1785 while (Lexer.is(AsmToken::Space)) 1786 Lex(); 1787 if (Lexer.is(AsmToken::EndOfStatement)) { 1788 // if this is a line comment we can drop it safely 1789 if (getTok().getString().empty() || getTok().getString().front() == '\r' || 1790 getTok().getString().front() == '\n') 1791 Out.addBlankLine(); 1792 Lex(); 1793 return false; 1794 } 1795 // Statements always start with an identifier. 1796 AsmToken ID = getTok(); 1797 SMLoc IDLoc = ID.getLoc(); 1798 StringRef IDVal; 1799 int64_t LocalLabelVal = -1; 1800 StartTokLoc = ID.getLoc(); 1801 if (Lexer.is(AsmToken::HashDirective)) 1802 return parseCppHashLineFilenameComment(IDLoc, 1803 !isInsideMacroInstantiation()); 1804 1805 // Allow an integer followed by a ':' as a directional local label. 1806 if (Lexer.is(AsmToken::Integer)) { 1807 LocalLabelVal = getTok().getIntVal(); 1808 if (LocalLabelVal < 0) { 1809 if (!TheCondState.Ignore) { 1810 Lex(); // always eat a token 1811 return Error(IDLoc, "unexpected token at start of statement"); 1812 } 1813 IDVal = ""; 1814 } else { 1815 IDVal = getTok().getString(); 1816 Lex(); // Consume the integer token to be used as an identifier token. 1817 if (Lexer.getKind() != AsmToken::Colon) { 1818 if (!TheCondState.Ignore) { 1819 Lex(); // always eat a token 1820 return Error(IDLoc, "unexpected token at start of statement"); 1821 } 1822 } 1823 } 1824 } else if (Lexer.is(AsmToken::Dot)) { 1825 // Treat '.' as a valid identifier in this context. 1826 Lex(); 1827 IDVal = "."; 1828 } else if (Lexer.is(AsmToken::LCurly)) { 1829 // Treat '{' as a valid identifier in this context. 1830 Lex(); 1831 IDVal = "{"; 1832 1833 } else if (Lexer.is(AsmToken::RCurly)) { 1834 // Treat '}' as a valid identifier in this context. 1835 Lex(); 1836 IDVal = "}"; 1837 } else if (Lexer.is(AsmToken::Star) && 1838 getTargetParser().starIsStartOfStatement()) { 1839 // Accept '*' as a valid start of statement. 1840 Lex(); 1841 IDVal = "*"; 1842 } else if (parseIdentifier(IDVal)) { 1843 if (!TheCondState.Ignore) { 1844 Lex(); // always eat a token 1845 return Error(IDLoc, "unexpected token at start of statement"); 1846 } 1847 IDVal = ""; 1848 } 1849 1850 // Handle conditional assembly here before checking for skipping. We 1851 // have to do this so that .endif isn't skipped in a ".if 0" block for 1852 // example. 1853 StringMap<DirectiveKind>::const_iterator DirKindIt = 1854 DirectiveKindMap.find(IDVal.lower()); 1855 DirectiveKind DirKind = (DirKindIt == DirectiveKindMap.end()) 1856 ? DK_NO_DIRECTIVE 1857 : DirKindIt->getValue(); 1858 switch (DirKind) { 1859 default: 1860 break; 1861 case DK_IF: 1862 case DK_IFEQ: 1863 case DK_IFGE: 1864 case DK_IFGT: 1865 case DK_IFLE: 1866 case DK_IFLT: 1867 case DK_IFNE: 1868 return parseDirectiveIf(IDLoc, DirKind); 1869 case DK_IFB: 1870 return parseDirectiveIfb(IDLoc, true); 1871 case DK_IFNB: 1872 return parseDirectiveIfb(IDLoc, false); 1873 case DK_IFC: 1874 return parseDirectiveIfc(IDLoc, true); 1875 case DK_IFEQS: 1876 return parseDirectiveIfeqs(IDLoc, true); 1877 case DK_IFNC: 1878 return parseDirectiveIfc(IDLoc, false); 1879 case DK_IFNES: 1880 return parseDirectiveIfeqs(IDLoc, false); 1881 case DK_IFDEF: 1882 return parseDirectiveIfdef(IDLoc, true); 1883 case DK_IFNDEF: 1884 case DK_IFNOTDEF: 1885 return parseDirectiveIfdef(IDLoc, false); 1886 case DK_ELSEIF: 1887 return parseDirectiveElseIf(IDLoc); 1888 case DK_ELSE: 1889 return parseDirectiveElse(IDLoc); 1890 case DK_ENDIF: 1891 return parseDirectiveEndIf(IDLoc); 1892 } 1893 1894 // Ignore the statement if in the middle of inactive conditional 1895 // (e.g. ".if 0"). 1896 if (TheCondState.Ignore) { 1897 eatToEndOfStatement(); 1898 return false; 1899 } 1900 1901 // FIXME: Recurse on local labels? 1902 1903 // Check for a label. 1904 // ::= identifier ':' 1905 // ::= number ':' 1906 if (Lexer.is(AsmToken::Colon) && getTargetParser().isLabel(ID)) { 1907 if (checkForValidSection()) 1908 return true; 1909 1910 Lex(); // Consume the ':'. 1911 1912 // Diagnose attempt to use '.' as a label. 1913 if (IDVal == ".") 1914 return Error(IDLoc, "invalid use of pseudo-symbol '.' as a label"); 1915 1916 // Diagnose attempt to use a variable as a label. 1917 // 1918 // FIXME: Diagnostics. Note the location of the definition as a label. 1919 // FIXME: This doesn't diagnose assignment to a symbol which has been 1920 // implicitly marked as external. 1921 MCSymbol *Sym; 1922 if (LocalLabelVal == -1) { 1923 if (ParsingMSInlineAsm && SI) { 1924 StringRef RewrittenLabel = 1925 SI->LookupInlineAsmLabel(IDVal, getSourceManager(), IDLoc, true); 1926 assert(!RewrittenLabel.empty() && 1927 "We should have an internal name here."); 1928 Info.AsmRewrites->emplace_back(AOK_Label, IDLoc, IDVal.size(), 1929 RewrittenLabel); 1930 IDVal = RewrittenLabel; 1931 } 1932 Sym = getContext().getOrCreateSymbol(IDVal); 1933 } else 1934 Sym = Ctx.createDirectionalLocalSymbol(LocalLabelVal); 1935 // End of Labels should be treated as end of line for lexing 1936 // purposes but that information is not available to the Lexer who 1937 // does not understand Labels. This may cause us to see a Hash 1938 // here instead of a preprocessor line comment. 1939 if (getTok().is(AsmToken::Hash)) { 1940 StringRef CommentStr = parseStringToEndOfStatement(); 1941 Lexer.Lex(); 1942 Lexer.UnLex(AsmToken(AsmToken::EndOfStatement, CommentStr)); 1943 } 1944 1945 // Consume any end of statement token, if present, to avoid spurious 1946 // addBlankLine calls(). 1947 if (getTok().is(AsmToken::EndOfStatement)) { 1948 Lex(); 1949 } 1950 1951 if (MAI.hasSubsectionsViaSymbols() && CFIStartProcLoc && 1952 Sym->isExternal() && !cast<MCSymbolMachO>(Sym)->isAltEntry()) 1953 return Error(StartTokLoc, "non-private labels cannot appear between " 1954 ".cfi_startproc / .cfi_endproc pairs") && 1955 Error(*CFIStartProcLoc, "previous .cfi_startproc was here"); 1956 1957 if (discardLTOSymbol(IDVal)) 1958 return false; 1959 1960 getTargetParser().doBeforeLabelEmit(Sym, IDLoc); 1961 1962 // Emit the label. 1963 if (!getTargetParser().isParsingMSInlineAsm()) 1964 Out.emitLabel(Sym, IDLoc); 1965 1966 // If we are generating dwarf for assembly source files then gather the 1967 // info to make a dwarf label entry for this label if needed. 1968 if (enabledGenDwarfForAssembly()) 1969 MCGenDwarfLabelEntry::Make(Sym, &getStreamer(), getSourceManager(), 1970 IDLoc); 1971 1972 getTargetParser().onLabelParsed(Sym); 1973 1974 return false; 1975 } 1976 1977 // Check for an assignment statement. 1978 // ::= identifier '=' 1979 if (Lexer.is(AsmToken::Equal) && getTargetParser().equalIsAsmAssignment()) { 1980 Lex(); 1981 return parseAssignment(IDVal, AssignmentKind::Equal); 1982 } 1983 1984 // If macros are enabled, check to see if this is a macro instantiation. 1985 if (areMacrosEnabled()) 1986 if (MCAsmMacro *M = getContext().lookupMacro(IDVal)) 1987 return handleMacroEntry(M, IDLoc); 1988 1989 // Otherwise, we have a normal instruction or directive. 1990 1991 // Directives start with "." 1992 if (IDVal.starts_with(".") && IDVal != ".") { 1993 // There are several entities interested in parsing directives: 1994 // 1995 // 1. The target-specific assembly parser. Some directives are target 1996 // specific or may potentially behave differently on certain targets. 1997 // 2. Asm parser extensions. For example, platform-specific parsers 1998 // (like the ELF parser) register themselves as extensions. 1999 // 3. The generic directive parser implemented by this class. These are 2000 // all the directives that behave in a target and platform independent 2001 // manner, or at least have a default behavior that's shared between 2002 // all targets and platforms. 2003 2004 getTargetParser().flushPendingInstructions(getStreamer()); 2005 2006 ParseStatus TPDirectiveReturn = getTargetParser().parseDirective(ID); 2007 assert(TPDirectiveReturn.isFailure() == hasPendingError() && 2008 "Should only return Failure iff there was an error"); 2009 if (TPDirectiveReturn.isFailure()) 2010 return true; 2011 if (TPDirectiveReturn.isSuccess()) 2012 return false; 2013 2014 // Next, check the extension directive map to see if any extension has 2015 // registered itself to parse this directive. 2016 std::pair<MCAsmParserExtension *, DirectiveHandler> Handler = 2017 ExtensionDirectiveMap.lookup(IDVal); 2018 if (Handler.first) 2019 return (*Handler.second)(Handler.first, IDVal, IDLoc); 2020 2021 // Finally, if no one else is interested in this directive, it must be 2022 // generic and familiar to this class. 2023 switch (DirKind) { 2024 default: 2025 break; 2026 case DK_SET: 2027 case DK_EQU: 2028 return parseDirectiveSet(IDVal, AssignmentKind::Set); 2029 case DK_EQUIV: 2030 return parseDirectiveSet(IDVal, AssignmentKind::Equiv); 2031 case DK_LTO_SET_CONDITIONAL: 2032 return parseDirectiveSet(IDVal, AssignmentKind::LTOSetConditional); 2033 case DK_ASCII: 2034 return parseDirectiveAscii(IDVal, false); 2035 case DK_ASCIZ: 2036 case DK_STRING: 2037 return parseDirectiveAscii(IDVal, true); 2038 case DK_BYTE: 2039 case DK_DC_B: 2040 return parseDirectiveValue(IDVal, 1); 2041 case DK_DC: 2042 case DK_DC_W: 2043 case DK_SHORT: 2044 case DK_VALUE: 2045 case DK_2BYTE: 2046 return parseDirectiveValue(IDVal, 2); 2047 case DK_LONG: 2048 case DK_INT: 2049 case DK_4BYTE: 2050 case DK_DC_L: 2051 return parseDirectiveValue(IDVal, 4); 2052 case DK_QUAD: 2053 case DK_8BYTE: 2054 return parseDirectiveValue(IDVal, 8); 2055 case DK_DC_A: 2056 return parseDirectiveValue( 2057 IDVal, getContext().getAsmInfo()->getCodePointerSize()); 2058 case DK_OCTA: 2059 return parseDirectiveOctaValue(IDVal); 2060 case DK_SINGLE: 2061 case DK_FLOAT: 2062 case DK_DC_S: 2063 return parseDirectiveRealValue(IDVal, APFloat::IEEEsingle()); 2064 case DK_DOUBLE: 2065 case DK_DC_D: 2066 return parseDirectiveRealValue(IDVal, APFloat::IEEEdouble()); 2067 case DK_ALIGN: { 2068 bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes(); 2069 return parseDirectiveAlign(IsPow2, /*ExprSize=*/1); 2070 } 2071 case DK_ALIGN32: { 2072 bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes(); 2073 return parseDirectiveAlign(IsPow2, /*ExprSize=*/4); 2074 } 2075 case DK_BALIGN: 2076 return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/1); 2077 case DK_BALIGNW: 2078 return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/2); 2079 case DK_BALIGNL: 2080 return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/4); 2081 case DK_P2ALIGN: 2082 return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/1); 2083 case DK_P2ALIGNW: 2084 return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/2); 2085 case DK_P2ALIGNL: 2086 return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/4); 2087 case DK_ORG: 2088 return parseDirectiveOrg(); 2089 case DK_FILL: 2090 return parseDirectiveFill(); 2091 case DK_ZERO: 2092 return parseDirectiveZero(); 2093 case DK_EXTERN: 2094 eatToEndOfStatement(); // .extern is the default, ignore it. 2095 return false; 2096 case DK_GLOBL: 2097 case DK_GLOBAL: 2098 return parseDirectiveSymbolAttribute(MCSA_Global); 2099 case DK_LAZY_REFERENCE: 2100 return parseDirectiveSymbolAttribute(MCSA_LazyReference); 2101 case DK_NO_DEAD_STRIP: 2102 return parseDirectiveSymbolAttribute(MCSA_NoDeadStrip); 2103 case DK_SYMBOL_RESOLVER: 2104 return parseDirectiveSymbolAttribute(MCSA_SymbolResolver); 2105 case DK_PRIVATE_EXTERN: 2106 return parseDirectiveSymbolAttribute(MCSA_PrivateExtern); 2107 case DK_REFERENCE: 2108 return parseDirectiveSymbolAttribute(MCSA_Reference); 2109 case DK_WEAK_DEFINITION: 2110 return parseDirectiveSymbolAttribute(MCSA_WeakDefinition); 2111 case DK_WEAK_REFERENCE: 2112 return parseDirectiveSymbolAttribute(MCSA_WeakReference); 2113 case DK_WEAK_DEF_CAN_BE_HIDDEN: 2114 return parseDirectiveSymbolAttribute(MCSA_WeakDefAutoPrivate); 2115 case DK_COLD: 2116 return parseDirectiveSymbolAttribute(MCSA_Cold); 2117 case DK_COMM: 2118 case DK_COMMON: 2119 return parseDirectiveComm(/*IsLocal=*/false); 2120 case DK_LCOMM: 2121 return parseDirectiveComm(/*IsLocal=*/true); 2122 case DK_ABORT: 2123 return parseDirectiveAbort(IDLoc); 2124 case DK_INCLUDE: 2125 return parseDirectiveInclude(); 2126 case DK_INCBIN: 2127 return parseDirectiveIncbin(); 2128 case DK_CODE16: 2129 case DK_CODE16GCC: 2130 return TokError(Twine(IDVal) + 2131 " not currently supported for this target"); 2132 case DK_REPT: 2133 return parseDirectiveRept(IDLoc, IDVal); 2134 case DK_IRP: 2135 return parseDirectiveIrp(IDLoc); 2136 case DK_IRPC: 2137 return parseDirectiveIrpc(IDLoc); 2138 case DK_ENDR: 2139 return parseDirectiveEndr(IDLoc); 2140 case DK_BUNDLE_ALIGN_MODE: 2141 return parseDirectiveBundleAlignMode(); 2142 case DK_BUNDLE_LOCK: 2143 return parseDirectiveBundleLock(); 2144 case DK_BUNDLE_UNLOCK: 2145 return parseDirectiveBundleUnlock(); 2146 case DK_SLEB128: 2147 return parseDirectiveLEB128(true); 2148 case DK_ULEB128: 2149 return parseDirectiveLEB128(false); 2150 case DK_SPACE: 2151 case DK_SKIP: 2152 return parseDirectiveSpace(IDVal); 2153 case DK_FILE: 2154 return parseDirectiveFile(IDLoc); 2155 case DK_LINE: 2156 return parseDirectiveLine(); 2157 case DK_LOC: 2158 return parseDirectiveLoc(); 2159 case DK_STABS: 2160 return parseDirectiveStabs(); 2161 case DK_CV_FILE: 2162 return parseDirectiveCVFile(); 2163 case DK_CV_FUNC_ID: 2164 return parseDirectiveCVFuncId(); 2165 case DK_CV_INLINE_SITE_ID: 2166 return parseDirectiveCVInlineSiteId(); 2167 case DK_CV_LOC: 2168 return parseDirectiveCVLoc(); 2169 case DK_CV_LINETABLE: 2170 return parseDirectiveCVLinetable(); 2171 case DK_CV_INLINE_LINETABLE: 2172 return parseDirectiveCVInlineLinetable(); 2173 case DK_CV_DEF_RANGE: 2174 return parseDirectiveCVDefRange(); 2175 case DK_CV_STRING: 2176 return parseDirectiveCVString(); 2177 case DK_CV_STRINGTABLE: 2178 return parseDirectiveCVStringTable(); 2179 case DK_CV_FILECHECKSUMS: 2180 return parseDirectiveCVFileChecksums(); 2181 case DK_CV_FILECHECKSUM_OFFSET: 2182 return parseDirectiveCVFileChecksumOffset(); 2183 case DK_CV_FPO_DATA: 2184 return parseDirectiveCVFPOData(); 2185 case DK_CFI_SECTIONS: 2186 return parseDirectiveCFISections(); 2187 case DK_CFI_STARTPROC: 2188 return parseDirectiveCFIStartProc(); 2189 case DK_CFI_ENDPROC: 2190 return parseDirectiveCFIEndProc(); 2191 case DK_CFI_DEF_CFA: 2192 return parseDirectiveCFIDefCfa(IDLoc); 2193 case DK_CFI_DEF_CFA_OFFSET: 2194 return parseDirectiveCFIDefCfaOffset(IDLoc); 2195 case DK_CFI_ADJUST_CFA_OFFSET: 2196 return parseDirectiveCFIAdjustCfaOffset(IDLoc); 2197 case DK_CFI_DEF_CFA_REGISTER: 2198 return parseDirectiveCFIDefCfaRegister(IDLoc); 2199 case DK_CFI_LLVM_DEF_ASPACE_CFA: 2200 return parseDirectiveCFILLVMDefAspaceCfa(IDLoc); 2201 case DK_CFI_OFFSET: 2202 return parseDirectiveCFIOffset(IDLoc); 2203 case DK_CFI_REL_OFFSET: 2204 return parseDirectiveCFIRelOffset(IDLoc); 2205 case DK_CFI_PERSONALITY: 2206 return parseDirectiveCFIPersonalityOrLsda(true); 2207 case DK_CFI_LSDA: 2208 return parseDirectiveCFIPersonalityOrLsda(false); 2209 case DK_CFI_REMEMBER_STATE: 2210 return parseDirectiveCFIRememberState(IDLoc); 2211 case DK_CFI_RESTORE_STATE: 2212 return parseDirectiveCFIRestoreState(IDLoc); 2213 case DK_CFI_SAME_VALUE: 2214 return parseDirectiveCFISameValue(IDLoc); 2215 case DK_CFI_RESTORE: 2216 return parseDirectiveCFIRestore(IDLoc); 2217 case DK_CFI_ESCAPE: 2218 return parseDirectiveCFIEscape(IDLoc); 2219 case DK_CFI_RETURN_COLUMN: 2220 return parseDirectiveCFIReturnColumn(IDLoc); 2221 case DK_CFI_SIGNAL_FRAME: 2222 return parseDirectiveCFISignalFrame(IDLoc); 2223 case DK_CFI_UNDEFINED: 2224 return parseDirectiveCFIUndefined(IDLoc); 2225 case DK_CFI_REGISTER: 2226 return parseDirectiveCFIRegister(IDLoc); 2227 case DK_CFI_WINDOW_SAVE: 2228 return parseDirectiveCFIWindowSave(IDLoc); 2229 case DK_CFI_LABEL: 2230 return parseDirectiveCFILabel(IDLoc); 2231 case DK_MACROS_ON: 2232 case DK_MACROS_OFF: 2233 return parseDirectiveMacrosOnOff(IDVal); 2234 case DK_MACRO: 2235 return parseDirectiveMacro(IDLoc); 2236 case DK_ALTMACRO: 2237 case DK_NOALTMACRO: 2238 return parseDirectiveAltmacro(IDVal); 2239 case DK_EXITM: 2240 return parseDirectiveExitMacro(IDVal); 2241 case DK_ENDM: 2242 case DK_ENDMACRO: 2243 return parseDirectiveEndMacro(IDVal); 2244 case DK_PURGEM: 2245 return parseDirectivePurgeMacro(IDLoc); 2246 case DK_END: 2247 return parseDirectiveEnd(IDLoc); 2248 case DK_ERR: 2249 return parseDirectiveError(IDLoc, false); 2250 case DK_ERROR: 2251 return parseDirectiveError(IDLoc, true); 2252 case DK_WARNING: 2253 return parseDirectiveWarning(IDLoc); 2254 case DK_RELOC: 2255 return parseDirectiveReloc(IDLoc); 2256 case DK_DCB: 2257 case DK_DCB_W: 2258 return parseDirectiveDCB(IDVal, 2); 2259 case DK_DCB_B: 2260 return parseDirectiveDCB(IDVal, 1); 2261 case DK_DCB_D: 2262 return parseDirectiveRealDCB(IDVal, APFloat::IEEEdouble()); 2263 case DK_DCB_L: 2264 return parseDirectiveDCB(IDVal, 4); 2265 case DK_DCB_S: 2266 return parseDirectiveRealDCB(IDVal, APFloat::IEEEsingle()); 2267 case DK_DC_X: 2268 case DK_DCB_X: 2269 return TokError(Twine(IDVal) + 2270 " not currently supported for this target"); 2271 case DK_DS: 2272 case DK_DS_W: 2273 return parseDirectiveDS(IDVal, 2); 2274 case DK_DS_B: 2275 return parseDirectiveDS(IDVal, 1); 2276 case DK_DS_D: 2277 return parseDirectiveDS(IDVal, 8); 2278 case DK_DS_L: 2279 case DK_DS_S: 2280 return parseDirectiveDS(IDVal, 4); 2281 case DK_DS_P: 2282 case DK_DS_X: 2283 return parseDirectiveDS(IDVal, 12); 2284 case DK_PRINT: 2285 return parseDirectivePrint(IDLoc); 2286 case DK_ADDRSIG: 2287 return parseDirectiveAddrsig(); 2288 case DK_ADDRSIG_SYM: 2289 return parseDirectiveAddrsigSym(); 2290 case DK_PSEUDO_PROBE: 2291 return parseDirectivePseudoProbe(); 2292 case DK_LTO_DISCARD: 2293 return parseDirectiveLTODiscard(); 2294 case DK_MEMTAG: 2295 return parseDirectiveSymbolAttribute(MCSA_Memtag); 2296 } 2297 2298 return Error(IDLoc, "unknown directive"); 2299 } 2300 2301 // __asm _emit or __asm __emit 2302 if (ParsingMSInlineAsm && (IDVal == "_emit" || IDVal == "__emit" || 2303 IDVal == "_EMIT" || IDVal == "__EMIT")) 2304 return parseDirectiveMSEmit(IDLoc, Info, IDVal.size()); 2305 2306 // __asm align 2307 if (ParsingMSInlineAsm && (IDVal == "align" || IDVal == "ALIGN")) 2308 return parseDirectiveMSAlign(IDLoc, Info); 2309 2310 if (ParsingMSInlineAsm && (IDVal == "even" || IDVal == "EVEN")) 2311 Info.AsmRewrites->emplace_back(AOK_EVEN, IDLoc, 4); 2312 if (checkForValidSection()) 2313 return true; 2314 2315 return parseAndMatchAndEmitTargetInstruction(Info, IDVal, ID, IDLoc); 2316 } 2317 2318 bool AsmParser::parseAndMatchAndEmitTargetInstruction(ParseStatementInfo &Info, 2319 StringRef IDVal, 2320 AsmToken ID, 2321 SMLoc IDLoc) { 2322 // Canonicalize the opcode to lower case. 2323 std::string OpcodeStr = IDVal.lower(); 2324 ParseInstructionInfo IInfo(Info.AsmRewrites); 2325 bool ParseHadError = getTargetParser().ParseInstruction(IInfo, OpcodeStr, ID, 2326 Info.ParsedOperands); 2327 Info.ParseError = ParseHadError; 2328 2329 // Dump the parsed representation, if requested. 2330 if (getShowParsedOperands()) { 2331 SmallString<256> Str; 2332 raw_svector_ostream OS(Str); 2333 OS << "parsed instruction: ["; 2334 for (unsigned i = 0; i != Info.ParsedOperands.size(); ++i) { 2335 if (i != 0) 2336 OS << ", "; 2337 Info.ParsedOperands[i]->print(OS); 2338 } 2339 OS << "]"; 2340 2341 printMessage(IDLoc, SourceMgr::DK_Note, OS.str()); 2342 } 2343 2344 // Fail even if ParseInstruction erroneously returns false. 2345 if (hasPendingError() || ParseHadError) 2346 return true; 2347 2348 // If we are generating dwarf for the current section then generate a .loc 2349 // directive for the instruction. 2350 if (!ParseHadError && enabledGenDwarfForAssembly() && 2351 getContext().getGenDwarfSectionSyms().count( 2352 getStreamer().getCurrentSectionOnly())) { 2353 unsigned Line; 2354 if (ActiveMacros.empty()) 2355 Line = SrcMgr.FindLineNumber(IDLoc, CurBuffer); 2356 else 2357 Line = SrcMgr.FindLineNumber(ActiveMacros.front()->InstantiationLoc, 2358 ActiveMacros.front()->ExitBuffer); 2359 2360 // If we previously parsed a cpp hash file line comment then make sure the 2361 // current Dwarf File is for the CppHashFilename if not then emit the 2362 // Dwarf File table for it and adjust the line number for the .loc. 2363 if (!CppHashInfo.Filename.empty()) { 2364 unsigned FileNumber = getStreamer().emitDwarfFileDirective( 2365 0, StringRef(), CppHashInfo.Filename); 2366 getContext().setGenDwarfFileNumber(FileNumber); 2367 2368 unsigned CppHashLocLineNo = 2369 SrcMgr.FindLineNumber(CppHashInfo.Loc, CppHashInfo.Buf); 2370 Line = CppHashInfo.LineNumber - 1 + (Line - CppHashLocLineNo); 2371 } 2372 2373 getStreamer().emitDwarfLocDirective( 2374 getContext().getGenDwarfFileNumber(), Line, 0, 2375 DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0, 0, 0, 2376 StringRef()); 2377 } 2378 2379 // If parsing succeeded, match the instruction. 2380 if (!ParseHadError) { 2381 uint64_t ErrorInfo; 2382 if (getTargetParser().MatchAndEmitInstruction( 2383 IDLoc, Info.Opcode, Info.ParsedOperands, Out, ErrorInfo, 2384 getTargetParser().isParsingMSInlineAsm())) 2385 return true; 2386 } 2387 return false; 2388 } 2389 2390 // Parse and erase curly braces marking block start/end 2391 bool 2392 AsmParser::parseCurlyBlockScope(SmallVectorImpl<AsmRewrite> &AsmStrRewrites) { 2393 // Identify curly brace marking block start/end 2394 if (Lexer.isNot(AsmToken::LCurly) && Lexer.isNot(AsmToken::RCurly)) 2395 return false; 2396 2397 SMLoc StartLoc = Lexer.getLoc(); 2398 Lex(); // Eat the brace 2399 if (Lexer.is(AsmToken::EndOfStatement)) 2400 Lex(); // Eat EndOfStatement following the brace 2401 2402 // Erase the block start/end brace from the output asm string 2403 AsmStrRewrites.emplace_back(AOK_Skip, StartLoc, Lexer.getLoc().getPointer() - 2404 StartLoc.getPointer()); 2405 return true; 2406 } 2407 2408 /// parseCppHashLineFilenameComment as this: 2409 /// ::= # number "filename" 2410 bool AsmParser::parseCppHashLineFilenameComment(SMLoc L, bool SaveLocInfo) { 2411 Lex(); // Eat the hash token. 2412 // Lexer only ever emits HashDirective if it fully formed if it's 2413 // done the checking already so this is an internal error. 2414 assert(getTok().is(AsmToken::Integer) && 2415 "Lexing Cpp line comment: Expected Integer"); 2416 int64_t LineNumber = getTok().getIntVal(); 2417 Lex(); 2418 assert(getTok().is(AsmToken::String) && 2419 "Lexing Cpp line comment: Expected String"); 2420 StringRef Filename = getTok().getString(); 2421 Lex(); 2422 2423 if (!SaveLocInfo) 2424 return false; 2425 2426 // Get rid of the enclosing quotes. 2427 Filename = Filename.substr(1, Filename.size() - 2); 2428 2429 // Save the SMLoc, Filename and LineNumber for later use by diagnostics 2430 // and possibly DWARF file info. 2431 CppHashInfo.Loc = L; 2432 CppHashInfo.Filename = Filename; 2433 CppHashInfo.LineNumber = LineNumber; 2434 CppHashInfo.Buf = CurBuffer; 2435 if (FirstCppHashFilename.empty()) 2436 FirstCppHashFilename = Filename; 2437 return false; 2438 } 2439 2440 /// will use the last parsed cpp hash line filename comment 2441 /// for the Filename and LineNo if any in the diagnostic. 2442 void AsmParser::DiagHandler(const SMDiagnostic &Diag, void *Context) { 2443 auto *Parser = static_cast<AsmParser *>(Context); 2444 raw_ostream &OS = errs(); 2445 2446 const SourceMgr &DiagSrcMgr = *Diag.getSourceMgr(); 2447 SMLoc DiagLoc = Diag.getLoc(); 2448 unsigned DiagBuf = DiagSrcMgr.FindBufferContainingLoc(DiagLoc); 2449 unsigned CppHashBuf = 2450 Parser->SrcMgr.FindBufferContainingLoc(Parser->CppHashInfo.Loc); 2451 2452 // Like SourceMgr::printMessage() we need to print the include stack if any 2453 // before printing the message. 2454 unsigned DiagCurBuffer = DiagSrcMgr.FindBufferContainingLoc(DiagLoc); 2455 if (!Parser->SavedDiagHandler && DiagCurBuffer && 2456 DiagCurBuffer != DiagSrcMgr.getMainFileID()) { 2457 SMLoc ParentIncludeLoc = DiagSrcMgr.getParentIncludeLoc(DiagCurBuffer); 2458 DiagSrcMgr.PrintIncludeStack(ParentIncludeLoc, OS); 2459 } 2460 2461 // If we have not parsed a cpp hash line filename comment or the source 2462 // manager changed or buffer changed (like in a nested include) then just 2463 // print the normal diagnostic using its Filename and LineNo. 2464 if (!Parser->CppHashInfo.LineNumber || DiagBuf != CppHashBuf) { 2465 if (Parser->SavedDiagHandler) 2466 Parser->SavedDiagHandler(Diag, Parser->SavedDiagContext); 2467 else 2468 Parser->getContext().diagnose(Diag); 2469 return; 2470 } 2471 2472 // Use the CppHashFilename and calculate a line number based on the 2473 // CppHashInfo.Loc and CppHashInfo.LineNumber relative to this Diag's SMLoc 2474 // for the diagnostic. 2475 const std::string &Filename = std::string(Parser->CppHashInfo.Filename); 2476 2477 int DiagLocLineNo = DiagSrcMgr.FindLineNumber(DiagLoc, DiagBuf); 2478 int CppHashLocLineNo = 2479 Parser->SrcMgr.FindLineNumber(Parser->CppHashInfo.Loc, CppHashBuf); 2480 int LineNo = 2481 Parser->CppHashInfo.LineNumber - 1 + (DiagLocLineNo - CppHashLocLineNo); 2482 2483 SMDiagnostic NewDiag(*Diag.getSourceMgr(), Diag.getLoc(), Filename, LineNo, 2484 Diag.getColumnNo(), Diag.getKind(), Diag.getMessage(), 2485 Diag.getLineContents(), Diag.getRanges()); 2486 2487 if (Parser->SavedDiagHandler) 2488 Parser->SavedDiagHandler(Diag, Parser->SavedDiagContext); 2489 else 2490 Parser->getContext().diagnose(NewDiag); 2491 } 2492 2493 // FIXME: This is mostly duplicated from the function in AsmLexer.cpp. The 2494 // difference being that that function accepts '@' as part of identifiers and 2495 // we can't do that. AsmLexer.cpp should probably be changed to handle 2496 // '@' as a special case when needed. 2497 static bool isIdentifierChar(char c) { 2498 return isalnum(static_cast<unsigned char>(c)) || c == '_' || c == '$' || 2499 c == '.'; 2500 } 2501 2502 bool AsmParser::expandMacro(raw_svector_ostream &OS, MCAsmMacro &Macro, 2503 ArrayRef<MCAsmMacroParameter> Parameters, 2504 ArrayRef<MCAsmMacroArgument> A, 2505 bool EnableAtPseudoVariable) { 2506 unsigned NParameters = Parameters.size(); 2507 auto expandArg = [&](unsigned Index) { 2508 bool HasVararg = NParameters ? Parameters.back().Vararg : false; 2509 bool VarargParameter = HasVararg && Index == (NParameters - 1); 2510 for (const AsmToken &Token : A[Index]) 2511 // For altmacro mode, you can write '%expr'. 2512 // The prefix '%' evaluates the expression 'expr' 2513 // and uses the result as a string (e.g. replace %(1+2) with the 2514 // string "3"). 2515 // Here, we identify the integer token which is the result of the 2516 // absolute expression evaluation and replace it with its string 2517 // representation. 2518 if (AltMacroMode && Token.getString().front() == '%' && 2519 Token.is(AsmToken::Integer)) 2520 // Emit an integer value to the buffer. 2521 OS << Token.getIntVal(); 2522 // Only Token that was validated as a string and begins with '<' 2523 // is considered altMacroString!!! 2524 else if (AltMacroMode && Token.getString().front() == '<' && 2525 Token.is(AsmToken::String)) { 2526 OS << angleBracketString(Token.getStringContents()); 2527 } 2528 // We expect no quotes around the string's contents when 2529 // parsing for varargs. 2530 else if (Token.isNot(AsmToken::String) || VarargParameter) 2531 OS << Token.getString(); 2532 else 2533 OS << Token.getStringContents(); 2534 }; 2535 2536 // A macro without parameters is handled differently on Darwin: 2537 // gas accepts no arguments and does no substitutions 2538 StringRef Body = Macro.Body; 2539 size_t I = 0, End = Body.size(); 2540 while (I != End) { 2541 if (Body[I] == '\\' && I + 1 != End) { 2542 // Check for \@ and \+ pseudo variables. 2543 if (EnableAtPseudoVariable && Body[I + 1] == '@') { 2544 OS << NumOfMacroInstantiations; 2545 I += 2; 2546 continue; 2547 } 2548 if (Body[I + 1] == '+') { 2549 OS << Macro.Count; 2550 I += 2; 2551 continue; 2552 } 2553 if (Body[I + 1] == '(' && Body[I + 2] == ')') { 2554 I += 3; 2555 continue; 2556 } 2557 2558 size_t Pos = ++I; 2559 while (I != End && isIdentifierChar(Body[I])) 2560 ++I; 2561 StringRef Argument(Body.data() + Pos, I - Pos); 2562 if (AltMacroMode && I != End && Body[I] == '&') 2563 ++I; 2564 unsigned Index = 0; 2565 for (; Index < NParameters; ++Index) 2566 if (Parameters[Index].Name == Argument) 2567 break; 2568 if (Index == NParameters) 2569 OS << '\\' << Argument; 2570 else 2571 expandArg(Index); 2572 continue; 2573 } 2574 2575 // In Darwin mode, $ is used for macro expansion, not considered an 2576 // identifier char. 2577 if (Body[I] == '$' && I + 1 != End && IsDarwin && !NParameters) { 2578 // This macro has no parameters, look for $0, $1, etc. 2579 switch (Body[I + 1]) { 2580 // $$ => $ 2581 case '$': 2582 OS << '$'; 2583 I += 2; 2584 continue; 2585 // $n => number of arguments 2586 case 'n': 2587 OS << A.size(); 2588 I += 2; 2589 continue; 2590 default: { 2591 if (!isDigit(Body[I + 1])) 2592 break; 2593 // $[0-9] => argument 2594 // Missing arguments are ignored. 2595 unsigned Index = Body[I + 1] - '0'; 2596 if (Index < A.size()) 2597 for (const AsmToken &Token : A[Index]) 2598 OS << Token.getString(); 2599 I += 2; 2600 continue; 2601 } 2602 } 2603 } 2604 2605 if (!isIdentifierChar(Body[I]) || IsDarwin) { 2606 OS << Body[I++]; 2607 continue; 2608 } 2609 2610 const size_t Start = I; 2611 while (++I && isIdentifierChar(Body[I])) { 2612 } 2613 StringRef Token(Body.data() + Start, I - Start); 2614 if (AltMacroMode) { 2615 unsigned Index = 0; 2616 for (; Index != NParameters; ++Index) 2617 if (Parameters[Index].Name == Token) 2618 break; 2619 if (Index != NParameters) { 2620 expandArg(Index); 2621 if (I != End && Body[I] == '&') 2622 ++I; 2623 continue; 2624 } 2625 } 2626 OS << Token; 2627 } 2628 2629 ++Macro.Count; 2630 return false; 2631 } 2632 2633 static bool isOperator(AsmToken::TokenKind kind) { 2634 switch (kind) { 2635 default: 2636 return false; 2637 case AsmToken::Plus: 2638 case AsmToken::Minus: 2639 case AsmToken::Tilde: 2640 case AsmToken::Slash: 2641 case AsmToken::Star: 2642 case AsmToken::Dot: 2643 case AsmToken::Equal: 2644 case AsmToken::EqualEqual: 2645 case AsmToken::Pipe: 2646 case AsmToken::PipePipe: 2647 case AsmToken::Caret: 2648 case AsmToken::Amp: 2649 case AsmToken::AmpAmp: 2650 case AsmToken::Exclaim: 2651 case AsmToken::ExclaimEqual: 2652 case AsmToken::Less: 2653 case AsmToken::LessEqual: 2654 case AsmToken::LessLess: 2655 case AsmToken::LessGreater: 2656 case AsmToken::Greater: 2657 case AsmToken::GreaterEqual: 2658 case AsmToken::GreaterGreater: 2659 return true; 2660 } 2661 } 2662 2663 namespace { 2664 2665 class AsmLexerSkipSpaceRAII { 2666 public: 2667 AsmLexerSkipSpaceRAII(AsmLexer &Lexer, bool SkipSpace) : Lexer(Lexer) { 2668 Lexer.setSkipSpace(SkipSpace); 2669 } 2670 2671 ~AsmLexerSkipSpaceRAII() { 2672 Lexer.setSkipSpace(true); 2673 } 2674 2675 private: 2676 AsmLexer &Lexer; 2677 }; 2678 2679 } // end anonymous namespace 2680 2681 bool AsmParser::parseMacroArgument(MCAsmMacroArgument &MA, bool Vararg) { 2682 2683 if (Vararg) { 2684 if (Lexer.isNot(AsmToken::EndOfStatement)) { 2685 StringRef Str = parseStringToEndOfStatement(); 2686 MA.emplace_back(AsmToken::String, Str); 2687 } 2688 return false; 2689 } 2690 2691 unsigned ParenLevel = 0; 2692 2693 // Darwin doesn't use spaces to delmit arguments. 2694 AsmLexerSkipSpaceRAII ScopedSkipSpace(Lexer, IsDarwin); 2695 2696 bool SpaceEaten; 2697 2698 while (true) { 2699 SpaceEaten = false; 2700 if (Lexer.is(AsmToken::Eof) || Lexer.is(AsmToken::Equal)) 2701 return TokError("unexpected token in macro instantiation"); 2702 2703 if (ParenLevel == 0) { 2704 2705 if (Lexer.is(AsmToken::Comma)) 2706 break; 2707 2708 if (parseOptionalToken(AsmToken::Space)) 2709 SpaceEaten = true; 2710 2711 // Spaces can delimit parameters, but could also be part an expression. 2712 // If the token after a space is an operator, add the token and the next 2713 // one into this argument 2714 if (!IsDarwin) { 2715 if (isOperator(Lexer.getKind())) { 2716 MA.push_back(getTok()); 2717 Lexer.Lex(); 2718 2719 // Whitespace after an operator can be ignored. 2720 parseOptionalToken(AsmToken::Space); 2721 continue; 2722 } 2723 } 2724 if (SpaceEaten) 2725 break; 2726 } 2727 2728 // handleMacroEntry relies on not advancing the lexer here 2729 // to be able to fill in the remaining default parameter values 2730 if (Lexer.is(AsmToken::EndOfStatement)) 2731 break; 2732 2733 // Adjust the current parentheses level. 2734 if (Lexer.is(AsmToken::LParen)) 2735 ++ParenLevel; 2736 else if (Lexer.is(AsmToken::RParen) && ParenLevel) 2737 --ParenLevel; 2738 2739 // Append the token to the current argument list. 2740 MA.push_back(getTok()); 2741 Lexer.Lex(); 2742 } 2743 2744 if (ParenLevel != 0) 2745 return TokError("unbalanced parentheses in macro argument"); 2746 return false; 2747 } 2748 2749 // Parse the macro instantiation arguments. 2750 bool AsmParser::parseMacroArguments(const MCAsmMacro *M, 2751 MCAsmMacroArguments &A) { 2752 const unsigned NParameters = M ? M->Parameters.size() : 0; 2753 bool NamedParametersFound = false; 2754 SmallVector<SMLoc, 4> FALocs; 2755 2756 A.resize(NParameters); 2757 FALocs.resize(NParameters); 2758 2759 // Parse two kinds of macro invocations: 2760 // - macros defined without any parameters accept an arbitrary number of them 2761 // - macros defined with parameters accept at most that many of them 2762 bool HasVararg = NParameters ? M->Parameters.back().Vararg : false; 2763 for (unsigned Parameter = 0; !NParameters || Parameter < NParameters; 2764 ++Parameter) { 2765 SMLoc IDLoc = Lexer.getLoc(); 2766 MCAsmMacroParameter FA; 2767 2768 if (Lexer.is(AsmToken::Identifier) && Lexer.peekTok().is(AsmToken::Equal)) { 2769 if (parseIdentifier(FA.Name)) 2770 return Error(IDLoc, "invalid argument identifier for formal argument"); 2771 2772 if (Lexer.isNot(AsmToken::Equal)) 2773 return TokError("expected '=' after formal parameter identifier"); 2774 2775 Lex(); 2776 2777 NamedParametersFound = true; 2778 } 2779 bool Vararg = HasVararg && Parameter == (NParameters - 1); 2780 2781 if (NamedParametersFound && FA.Name.empty()) 2782 return Error(IDLoc, "cannot mix positional and keyword arguments"); 2783 2784 SMLoc StrLoc = Lexer.getLoc(); 2785 SMLoc EndLoc; 2786 if (AltMacroMode && Lexer.is(AsmToken::Percent)) { 2787 const MCExpr *AbsoluteExp; 2788 int64_t Value; 2789 /// Eat '%' 2790 Lex(); 2791 if (parseExpression(AbsoluteExp, EndLoc)) 2792 return false; 2793 if (!AbsoluteExp->evaluateAsAbsolute(Value, 2794 getStreamer().getAssemblerPtr())) 2795 return Error(StrLoc, "expected absolute expression"); 2796 const char *StrChar = StrLoc.getPointer(); 2797 const char *EndChar = EndLoc.getPointer(); 2798 AsmToken newToken(AsmToken::Integer, 2799 StringRef(StrChar, EndChar - StrChar), Value); 2800 FA.Value.push_back(newToken); 2801 } else if (AltMacroMode && Lexer.is(AsmToken::Less) && 2802 isAngleBracketString(StrLoc, EndLoc)) { 2803 const char *StrChar = StrLoc.getPointer(); 2804 const char *EndChar = EndLoc.getPointer(); 2805 jumpToLoc(EndLoc, CurBuffer); 2806 /// Eat from '<' to '>' 2807 Lex(); 2808 AsmToken newToken(AsmToken::String, 2809 StringRef(StrChar, EndChar - StrChar)); 2810 FA.Value.push_back(newToken); 2811 } else if(parseMacroArgument(FA.Value, Vararg)) 2812 return true; 2813 2814 unsigned PI = Parameter; 2815 if (!FA.Name.empty()) { 2816 unsigned FAI = 0; 2817 for (FAI = 0; FAI < NParameters; ++FAI) 2818 if (M->Parameters[FAI].Name == FA.Name) 2819 break; 2820 2821 if (FAI >= NParameters) { 2822 assert(M && "expected macro to be defined"); 2823 return Error(IDLoc, "parameter named '" + FA.Name + 2824 "' does not exist for macro '" + M->Name + "'"); 2825 } 2826 PI = FAI; 2827 } 2828 2829 if (!FA.Value.empty()) { 2830 if (A.size() <= PI) 2831 A.resize(PI + 1); 2832 A[PI] = FA.Value; 2833 2834 if (FALocs.size() <= PI) 2835 FALocs.resize(PI + 1); 2836 2837 FALocs[PI] = Lexer.getLoc(); 2838 } 2839 2840 // At the end of the statement, fill in remaining arguments that have 2841 // default values. If there aren't any, then the next argument is 2842 // required but missing 2843 if (Lexer.is(AsmToken::EndOfStatement)) { 2844 bool Failure = false; 2845 for (unsigned FAI = 0; FAI < NParameters; ++FAI) { 2846 if (A[FAI].empty()) { 2847 if (M->Parameters[FAI].Required) { 2848 Error(FALocs[FAI].isValid() ? FALocs[FAI] : Lexer.getLoc(), 2849 "missing value for required parameter " 2850 "'" + M->Parameters[FAI].Name + "' in macro '" + M->Name + "'"); 2851 Failure = true; 2852 } 2853 2854 if (!M->Parameters[FAI].Value.empty()) 2855 A[FAI] = M->Parameters[FAI].Value; 2856 } 2857 } 2858 return Failure; 2859 } 2860 2861 parseOptionalToken(AsmToken::Comma); 2862 } 2863 2864 return TokError("too many positional arguments"); 2865 } 2866 2867 bool AsmParser::handleMacroEntry(MCAsmMacro *M, SMLoc NameLoc) { 2868 // Arbitrarily limit macro nesting depth (default matches 'as'). We can 2869 // eliminate this, although we should protect against infinite loops. 2870 unsigned MaxNestingDepth = AsmMacroMaxNestingDepth; 2871 if (ActiveMacros.size() == MaxNestingDepth) { 2872 std::ostringstream MaxNestingDepthError; 2873 MaxNestingDepthError << "macros cannot be nested more than " 2874 << MaxNestingDepth << " levels deep." 2875 << " Use -asm-macro-max-nesting-depth to increase " 2876 "this limit."; 2877 return TokError(MaxNestingDepthError.str()); 2878 } 2879 2880 MCAsmMacroArguments A; 2881 if (parseMacroArguments(M, A)) 2882 return true; 2883 2884 // Macro instantiation is lexical, unfortunately. We construct a new buffer 2885 // to hold the macro body with substitutions. 2886 SmallString<256> Buf; 2887 raw_svector_ostream OS(Buf); 2888 2889 if ((!IsDarwin || M->Parameters.size()) && M->Parameters.size() != A.size()) 2890 return Error(getTok().getLoc(), "Wrong number of arguments"); 2891 if (expandMacro(OS, *M, M->Parameters, A, true)) 2892 return true; 2893 2894 // We include the .endmacro in the buffer as our cue to exit the macro 2895 // instantiation. 2896 OS << ".endmacro\n"; 2897 2898 std::unique_ptr<MemoryBuffer> Instantiation = 2899 MemoryBuffer::getMemBufferCopy(OS.str(), "<instantiation>"); 2900 2901 // Create the macro instantiation object and add to the current macro 2902 // instantiation stack. 2903 MacroInstantiation *MI = new MacroInstantiation{ 2904 NameLoc, CurBuffer, getTok().getLoc(), TheCondStack.size()}; 2905 ActiveMacros.push_back(MI); 2906 2907 ++NumOfMacroInstantiations; 2908 2909 // Jump to the macro instantiation and prime the lexer. 2910 CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc()); 2911 Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); 2912 Lex(); 2913 2914 return false; 2915 } 2916 2917 void AsmParser::handleMacroExit() { 2918 // Jump to the EndOfStatement we should return to, and consume it. 2919 jumpToLoc(ActiveMacros.back()->ExitLoc, ActiveMacros.back()->ExitBuffer); 2920 Lex(); 2921 // If .endm/.endr is followed by \n instead of a comment, consume it so that 2922 // we don't print an excess \n. 2923 if (getTok().is(AsmToken::EndOfStatement)) 2924 Lex(); 2925 2926 // Pop the instantiation entry. 2927 delete ActiveMacros.back(); 2928 ActiveMacros.pop_back(); 2929 } 2930 2931 bool AsmParser::parseAssignment(StringRef Name, AssignmentKind Kind) { 2932 MCSymbol *Sym; 2933 const MCExpr *Value; 2934 SMLoc ExprLoc = getTok().getLoc(); 2935 bool AllowRedef = 2936 Kind == AssignmentKind::Set || Kind == AssignmentKind::Equal; 2937 if (MCParserUtils::parseAssignmentExpression(Name, AllowRedef, *this, Sym, 2938 Value)) 2939 return true; 2940 2941 if (!Sym) { 2942 // In the case where we parse an expression starting with a '.', we will 2943 // not generate an error, nor will we create a symbol. In this case we 2944 // should just return out. 2945 return false; 2946 } 2947 2948 if (discardLTOSymbol(Name)) 2949 return false; 2950 2951 // Do the assignment. 2952 switch (Kind) { 2953 case AssignmentKind::Equal: 2954 Out.emitAssignment(Sym, Value); 2955 break; 2956 case AssignmentKind::Set: 2957 case AssignmentKind::Equiv: 2958 Out.emitAssignment(Sym, Value); 2959 Out.emitSymbolAttribute(Sym, MCSA_NoDeadStrip); 2960 break; 2961 case AssignmentKind::LTOSetConditional: 2962 if (Value->getKind() != MCExpr::SymbolRef) 2963 return Error(ExprLoc, "expected identifier"); 2964 2965 Out.emitConditionalAssignment(Sym, Value); 2966 break; 2967 } 2968 2969 return false; 2970 } 2971 2972 /// parseIdentifier: 2973 /// ::= identifier 2974 /// ::= string 2975 bool AsmParser::parseIdentifier(StringRef &Res) { 2976 // The assembler has relaxed rules for accepting identifiers, in particular we 2977 // allow things like '.globl $foo' and '.def @feat.00', which would normally be 2978 // separate tokens. At this level, we have already lexed so we cannot (currently) 2979 // handle this as a context dependent token, instead we detect adjacent tokens 2980 // and return the combined identifier. 2981 if (Lexer.is(AsmToken::Dollar) || Lexer.is(AsmToken::At)) { 2982 SMLoc PrefixLoc = getLexer().getLoc(); 2983 2984 // Consume the prefix character, and check for a following identifier. 2985 2986 AsmToken Buf[1]; 2987 Lexer.peekTokens(Buf, false); 2988 2989 if (Buf[0].isNot(AsmToken::Identifier) && Buf[0].isNot(AsmToken::Integer)) 2990 return true; 2991 2992 // We have a '$' or '@' followed by an identifier or integer token, make 2993 // sure they are adjacent. 2994 if (PrefixLoc.getPointer() + 1 != Buf[0].getLoc().getPointer()) 2995 return true; 2996 2997 // eat $ or @ 2998 Lexer.Lex(); // Lexer's Lex guarantees consecutive token. 2999 // Construct the joined identifier and consume the token. 3000 Res = StringRef(PrefixLoc.getPointer(), getTok().getString().size() + 1); 3001 Lex(); // Parser Lex to maintain invariants. 3002 return false; 3003 } 3004 3005 if (Lexer.isNot(AsmToken::Identifier) && Lexer.isNot(AsmToken::String)) 3006 return true; 3007 3008 Res = getTok().getIdentifier(); 3009 3010 Lex(); // Consume the identifier token. 3011 3012 return false; 3013 } 3014 3015 /// parseDirectiveSet: 3016 /// ::= .equ identifier ',' expression 3017 /// ::= .equiv identifier ',' expression 3018 /// ::= .set identifier ',' expression 3019 /// ::= .lto_set_conditional identifier ',' expression 3020 bool AsmParser::parseDirectiveSet(StringRef IDVal, AssignmentKind Kind) { 3021 StringRef Name; 3022 if (check(parseIdentifier(Name), "expected identifier") || parseComma() || 3023 parseAssignment(Name, Kind)) 3024 return true; 3025 return false; 3026 } 3027 3028 bool AsmParser::parseEscapedString(std::string &Data) { 3029 if (check(getTok().isNot(AsmToken::String), "expected string")) 3030 return true; 3031 3032 Data = ""; 3033 StringRef Str = getTok().getStringContents(); 3034 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 3035 if (Str[i] != '\\') { 3036 if (Str[i] == '\n') { 3037 SMLoc NewlineLoc = SMLoc::getFromPointer(Str.data() + i); 3038 if (Warning(NewlineLoc, "unterminated string; newline inserted")) 3039 return true; 3040 } 3041 Data += Str[i]; 3042 continue; 3043 } 3044 3045 // Recognize escaped characters. Note that this escape semantics currently 3046 // loosely follows Darwin 'as'. 3047 ++i; 3048 if (i == e) 3049 return TokError("unexpected backslash at end of string"); 3050 3051 // Recognize hex sequences similarly to GNU 'as'. 3052 if (Str[i] == 'x' || Str[i] == 'X') { 3053 size_t length = Str.size(); 3054 if (i + 1 >= length || !isHexDigit(Str[i + 1])) 3055 return TokError("invalid hexadecimal escape sequence"); 3056 3057 // Consume hex characters. GNU 'as' reads all hexadecimal characters and 3058 // then truncates to the lower 16 bits. Seems reasonable. 3059 unsigned Value = 0; 3060 while (i + 1 < length && isHexDigit(Str[i + 1])) 3061 Value = Value * 16 + hexDigitValue(Str[++i]); 3062 3063 Data += (unsigned char)(Value & 0xFF); 3064 continue; 3065 } 3066 3067 // Recognize octal sequences. 3068 if ((unsigned)(Str[i] - '0') <= 7) { 3069 // Consume up to three octal characters. 3070 unsigned Value = Str[i] - '0'; 3071 3072 if (i + 1 != e && ((unsigned)(Str[i + 1] - '0')) <= 7) { 3073 ++i; 3074 Value = Value * 8 + (Str[i] - '0'); 3075 3076 if (i + 1 != e && ((unsigned)(Str[i + 1] - '0')) <= 7) { 3077 ++i; 3078 Value = Value * 8 + (Str[i] - '0'); 3079 } 3080 } 3081 3082 if (Value > 255) 3083 return TokError("invalid octal escape sequence (out of range)"); 3084 3085 Data += (unsigned char)Value; 3086 continue; 3087 } 3088 3089 // Otherwise recognize individual escapes. 3090 switch (Str[i]) { 3091 default: 3092 // Just reject invalid escape sequences for now. 3093 return TokError("invalid escape sequence (unrecognized character)"); 3094 3095 case 'b': Data += '\b'; break; 3096 case 'f': Data += '\f'; break; 3097 case 'n': Data += '\n'; break; 3098 case 'r': Data += '\r'; break; 3099 case 't': Data += '\t'; break; 3100 case '"': Data += '"'; break; 3101 case '\\': Data += '\\'; break; 3102 } 3103 } 3104 3105 Lex(); 3106 return false; 3107 } 3108 3109 bool AsmParser::parseAngleBracketString(std::string &Data) { 3110 SMLoc EndLoc, StartLoc = getTok().getLoc(); 3111 if (isAngleBracketString(StartLoc, EndLoc)) { 3112 const char *StartChar = StartLoc.getPointer() + 1; 3113 const char *EndChar = EndLoc.getPointer() - 1; 3114 jumpToLoc(EndLoc, CurBuffer); 3115 /// Eat from '<' to '>' 3116 Lex(); 3117 3118 Data = angleBracketString(StringRef(StartChar, EndChar - StartChar)); 3119 return false; 3120 } 3121 return true; 3122 } 3123 3124 /// parseDirectiveAscii: 3125 // ::= .ascii [ "string"+ ( , "string"+ )* ] 3126 /// ::= ( .asciz | .string ) [ "string" ( , "string" )* ] 3127 bool AsmParser::parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated) { 3128 auto parseOp = [&]() -> bool { 3129 std::string Data; 3130 if (checkForValidSection()) 3131 return true; 3132 // Only support spaces as separators for .ascii directive for now. See the 3133 // discusssion at https://reviews.llvm.org/D91460 for more details. 3134 do { 3135 if (parseEscapedString(Data)) 3136 return true; 3137 getStreamer().emitBytes(Data); 3138 } while (!ZeroTerminated && getTok().is(AsmToken::String)); 3139 if (ZeroTerminated) 3140 getStreamer().emitBytes(StringRef("\0", 1)); 3141 return false; 3142 }; 3143 3144 return parseMany(parseOp); 3145 } 3146 3147 /// parseDirectiveReloc 3148 /// ::= .reloc expression , identifier [ , expression ] 3149 bool AsmParser::parseDirectiveReloc(SMLoc DirectiveLoc) { 3150 const MCExpr *Offset; 3151 const MCExpr *Expr = nullptr; 3152 SMLoc OffsetLoc = Lexer.getTok().getLoc(); 3153 3154 if (parseExpression(Offset)) 3155 return true; 3156 if (parseComma() || 3157 check(getTok().isNot(AsmToken::Identifier), "expected relocation name")) 3158 return true; 3159 3160 SMLoc NameLoc = Lexer.getTok().getLoc(); 3161 StringRef Name = Lexer.getTok().getIdentifier(); 3162 Lex(); 3163 3164 if (Lexer.is(AsmToken::Comma)) { 3165 Lex(); 3166 SMLoc ExprLoc = Lexer.getLoc(); 3167 if (parseExpression(Expr)) 3168 return true; 3169 3170 MCValue Value; 3171 if (!Expr->evaluateAsRelocatable(Value, nullptr, nullptr)) 3172 return Error(ExprLoc, "expression must be relocatable"); 3173 } 3174 3175 if (parseEOL()) 3176 return true; 3177 3178 const MCTargetAsmParser &MCT = getTargetParser(); 3179 const MCSubtargetInfo &STI = MCT.getSTI(); 3180 if (std::optional<std::pair<bool, std::string>> Err = 3181 getStreamer().emitRelocDirective(*Offset, Name, Expr, DirectiveLoc, 3182 STI)) 3183 return Error(Err->first ? NameLoc : OffsetLoc, Err->second); 3184 3185 return false; 3186 } 3187 3188 /// parseDirectiveValue 3189 /// ::= (.byte | .short | ... ) [ expression (, expression)* ] 3190 bool AsmParser::parseDirectiveValue(StringRef IDVal, unsigned Size) { 3191 auto parseOp = [&]() -> bool { 3192 const MCExpr *Value; 3193 SMLoc ExprLoc = getLexer().getLoc(); 3194 if (checkForValidSection() || parseExpression(Value)) 3195 return true; 3196 // Special case constant expressions to match code generator. 3197 if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) { 3198 assert(Size <= 8 && "Invalid size"); 3199 uint64_t IntValue = MCE->getValue(); 3200 if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue)) 3201 return Error(ExprLoc, "out of range literal value"); 3202 getStreamer().emitIntValue(IntValue, Size); 3203 } else 3204 getStreamer().emitValue(Value, Size, ExprLoc); 3205 return false; 3206 }; 3207 3208 return parseMany(parseOp); 3209 } 3210 3211 static bool parseHexOcta(AsmParser &Asm, uint64_t &hi, uint64_t &lo) { 3212 if (Asm.getTok().isNot(AsmToken::Integer) && 3213 Asm.getTok().isNot(AsmToken::BigNum)) 3214 return Asm.TokError("unknown token in expression"); 3215 SMLoc ExprLoc = Asm.getTok().getLoc(); 3216 APInt IntValue = Asm.getTok().getAPIntVal(); 3217 Asm.Lex(); 3218 if (!IntValue.isIntN(128)) 3219 return Asm.Error(ExprLoc, "out of range literal value"); 3220 if (!IntValue.isIntN(64)) { 3221 hi = IntValue.getHiBits(IntValue.getBitWidth() - 64).getZExtValue(); 3222 lo = IntValue.getLoBits(64).getZExtValue(); 3223 } else { 3224 hi = 0; 3225 lo = IntValue.getZExtValue(); 3226 } 3227 return false; 3228 } 3229 3230 /// ParseDirectiveOctaValue 3231 /// ::= .octa [ hexconstant (, hexconstant)* ] 3232 3233 bool AsmParser::parseDirectiveOctaValue(StringRef IDVal) { 3234 auto parseOp = [&]() -> bool { 3235 if (checkForValidSection()) 3236 return true; 3237 uint64_t hi, lo; 3238 if (parseHexOcta(*this, hi, lo)) 3239 return true; 3240 if (MAI.isLittleEndian()) { 3241 getStreamer().emitInt64(lo); 3242 getStreamer().emitInt64(hi); 3243 } else { 3244 getStreamer().emitInt64(hi); 3245 getStreamer().emitInt64(lo); 3246 } 3247 return false; 3248 }; 3249 3250 return parseMany(parseOp); 3251 } 3252 3253 bool AsmParser::parseRealValue(const fltSemantics &Semantics, APInt &Res) { 3254 // We don't truly support arithmetic on floating point expressions, so we 3255 // have to manually parse unary prefixes. 3256 bool IsNeg = false; 3257 if (getLexer().is(AsmToken::Minus)) { 3258 Lexer.Lex(); 3259 IsNeg = true; 3260 } else if (getLexer().is(AsmToken::Plus)) 3261 Lexer.Lex(); 3262 3263 if (Lexer.is(AsmToken::Error)) 3264 return TokError(Lexer.getErr()); 3265 if (Lexer.isNot(AsmToken::Integer) && Lexer.isNot(AsmToken::Real) && 3266 Lexer.isNot(AsmToken::Identifier)) 3267 return TokError("unexpected token in directive"); 3268 3269 // Convert to an APFloat. 3270 APFloat Value(Semantics); 3271 StringRef IDVal = getTok().getString(); 3272 if (getLexer().is(AsmToken::Identifier)) { 3273 if (!IDVal.compare_insensitive("infinity") || 3274 !IDVal.compare_insensitive("inf")) 3275 Value = APFloat::getInf(Semantics); 3276 else if (!IDVal.compare_insensitive("nan")) 3277 Value = APFloat::getNaN(Semantics, false, ~0); 3278 else 3279 return TokError("invalid floating point literal"); 3280 } else if (errorToBool( 3281 Value.convertFromString(IDVal, APFloat::rmNearestTiesToEven) 3282 .takeError())) 3283 return TokError("invalid floating point literal"); 3284 if (IsNeg) 3285 Value.changeSign(); 3286 3287 // Consume the numeric token. 3288 Lex(); 3289 3290 Res = Value.bitcastToAPInt(); 3291 3292 return false; 3293 } 3294 3295 /// parseDirectiveRealValue 3296 /// ::= (.single | .double) [ expression (, expression)* ] 3297 bool AsmParser::parseDirectiveRealValue(StringRef IDVal, 3298 const fltSemantics &Semantics) { 3299 auto parseOp = [&]() -> bool { 3300 APInt AsInt; 3301 if (checkForValidSection() || parseRealValue(Semantics, AsInt)) 3302 return true; 3303 getStreamer().emitIntValue(AsInt.getLimitedValue(), 3304 AsInt.getBitWidth() / 8); 3305 return false; 3306 }; 3307 3308 return parseMany(parseOp); 3309 } 3310 3311 /// parseDirectiveZero 3312 /// ::= .zero expression 3313 bool AsmParser::parseDirectiveZero() { 3314 SMLoc NumBytesLoc = Lexer.getLoc(); 3315 const MCExpr *NumBytes; 3316 if (checkForValidSection() || parseExpression(NumBytes)) 3317 return true; 3318 3319 int64_t Val = 0; 3320 if (getLexer().is(AsmToken::Comma)) { 3321 Lex(); 3322 if (parseAbsoluteExpression(Val)) 3323 return true; 3324 } 3325 3326 if (parseEOL()) 3327 return true; 3328 getStreamer().emitFill(*NumBytes, Val, NumBytesLoc); 3329 3330 return false; 3331 } 3332 3333 /// parseDirectiveFill 3334 /// ::= .fill expression [ , expression [ , expression ] ] 3335 bool AsmParser::parseDirectiveFill() { 3336 SMLoc NumValuesLoc = Lexer.getLoc(); 3337 const MCExpr *NumValues; 3338 if (checkForValidSection() || parseExpression(NumValues)) 3339 return true; 3340 3341 int64_t FillSize = 1; 3342 int64_t FillExpr = 0; 3343 3344 SMLoc SizeLoc, ExprLoc; 3345 3346 if (parseOptionalToken(AsmToken::Comma)) { 3347 SizeLoc = getTok().getLoc(); 3348 if (parseAbsoluteExpression(FillSize)) 3349 return true; 3350 if (parseOptionalToken(AsmToken::Comma)) { 3351 ExprLoc = getTok().getLoc(); 3352 if (parseAbsoluteExpression(FillExpr)) 3353 return true; 3354 } 3355 } 3356 if (parseEOL()) 3357 return true; 3358 3359 if (FillSize < 0) { 3360 Warning(SizeLoc, "'.fill' directive with negative size has no effect"); 3361 return false; 3362 } 3363 if (FillSize > 8) { 3364 Warning(SizeLoc, "'.fill' directive with size greater than 8 has been truncated to 8"); 3365 FillSize = 8; 3366 } 3367 3368 if (!isUInt<32>(FillExpr) && FillSize > 4) 3369 Warning(ExprLoc, "'.fill' directive pattern has been truncated to 32-bits"); 3370 3371 getStreamer().emitFill(*NumValues, FillSize, FillExpr, NumValuesLoc); 3372 3373 return false; 3374 } 3375 3376 /// parseDirectiveOrg 3377 /// ::= .org expression [ , expression ] 3378 bool AsmParser::parseDirectiveOrg() { 3379 const MCExpr *Offset; 3380 SMLoc OffsetLoc = Lexer.getLoc(); 3381 if (checkForValidSection() || parseExpression(Offset)) 3382 return true; 3383 3384 // Parse optional fill expression. 3385 int64_t FillExpr = 0; 3386 if (parseOptionalToken(AsmToken::Comma)) 3387 if (parseAbsoluteExpression(FillExpr)) 3388 return true; 3389 if (parseEOL()) 3390 return true; 3391 3392 getStreamer().emitValueToOffset(Offset, FillExpr, OffsetLoc); 3393 return false; 3394 } 3395 3396 /// parseDirectiveAlign 3397 /// ::= {.align, ...} expression [ , expression [ , expression ]] 3398 bool AsmParser::parseDirectiveAlign(bool IsPow2, unsigned ValueSize) { 3399 SMLoc AlignmentLoc = getLexer().getLoc(); 3400 int64_t Alignment; 3401 SMLoc MaxBytesLoc; 3402 bool HasFillExpr = false; 3403 int64_t FillExpr = 0; 3404 int64_t MaxBytesToFill = 0; 3405 SMLoc FillExprLoc; 3406 3407 auto parseAlign = [&]() -> bool { 3408 if (parseAbsoluteExpression(Alignment)) 3409 return true; 3410 if (parseOptionalToken(AsmToken::Comma)) { 3411 // The fill expression can be omitted while specifying a maximum number of 3412 // alignment bytes, e.g: 3413 // .align 3,,4 3414 if (getTok().isNot(AsmToken::Comma)) { 3415 HasFillExpr = true; 3416 if (parseTokenLoc(FillExprLoc) || parseAbsoluteExpression(FillExpr)) 3417 return true; 3418 } 3419 if (parseOptionalToken(AsmToken::Comma)) 3420 if (parseTokenLoc(MaxBytesLoc) || 3421 parseAbsoluteExpression(MaxBytesToFill)) 3422 return true; 3423 } 3424 return parseEOL(); 3425 }; 3426 3427 if (checkForValidSection()) 3428 return true; 3429 // Ignore empty '.p2align' directives for GNU-as compatibility 3430 if (IsPow2 && (ValueSize == 1) && getTok().is(AsmToken::EndOfStatement)) { 3431 Warning(AlignmentLoc, "p2align directive with no operand(s) is ignored"); 3432 return parseEOL(); 3433 } 3434 if (parseAlign()) 3435 return true; 3436 3437 // Always emit an alignment here even if we thrown an error. 3438 bool ReturnVal = false; 3439 3440 // Compute alignment in bytes. 3441 if (IsPow2) { 3442 // FIXME: Diagnose overflow. 3443 if (Alignment >= 32) { 3444 ReturnVal |= Error(AlignmentLoc, "invalid alignment value"); 3445 Alignment = 31; 3446 } 3447 3448 Alignment = 1ULL << Alignment; 3449 } else { 3450 // Reject alignments that aren't either a power of two or zero, 3451 // for gas compatibility. Alignment of zero is silently rounded 3452 // up to one. 3453 if (Alignment == 0) 3454 Alignment = 1; 3455 else if (!isPowerOf2_64(Alignment)) { 3456 ReturnVal |= Error(AlignmentLoc, "alignment must be a power of 2"); 3457 Alignment = llvm::bit_floor<uint64_t>(Alignment); 3458 } 3459 if (!isUInt<32>(Alignment)) { 3460 ReturnVal |= Error(AlignmentLoc, "alignment must be smaller than 2**32"); 3461 Alignment = 1u << 31; 3462 } 3463 } 3464 3465 if (HasFillExpr && FillExpr != 0) { 3466 MCSection *Sec = getStreamer().getCurrentSectionOnly(); 3467 if (Sec && Sec->isVirtualSection()) { 3468 ReturnVal |= 3469 Warning(FillExprLoc, "ignoring non-zero fill value in " + 3470 Sec->getVirtualSectionKind() + " section '" + 3471 Sec->getName() + "'"); 3472 FillExpr = 0; 3473 } 3474 } 3475 3476 // Diagnose non-sensical max bytes to align. 3477 if (MaxBytesLoc.isValid()) { 3478 if (MaxBytesToFill < 1) { 3479 ReturnVal |= Error(MaxBytesLoc, 3480 "alignment directive can never be satisfied in this " 3481 "many bytes, ignoring maximum bytes expression"); 3482 MaxBytesToFill = 0; 3483 } 3484 3485 if (MaxBytesToFill >= Alignment) { 3486 Warning(MaxBytesLoc, "maximum bytes expression exceeds alignment and " 3487 "has no effect"); 3488 MaxBytesToFill = 0; 3489 } 3490 } 3491 3492 // Check whether we should use optimal code alignment for this .align 3493 // directive. 3494 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 3495 assert(Section && "must have section to emit alignment"); 3496 bool useCodeAlign = Section->useCodeAlign(); 3497 if ((!HasFillExpr || Lexer.getMAI().getTextAlignFillValue() == FillExpr) && 3498 ValueSize == 1 && useCodeAlign) { 3499 getStreamer().emitCodeAlignment( 3500 Align(Alignment), &getTargetParser().getSTI(), MaxBytesToFill); 3501 } else { 3502 // FIXME: Target specific behavior about how the "extra" bytes are filled. 3503 getStreamer().emitValueToAlignment(Align(Alignment), FillExpr, ValueSize, 3504 MaxBytesToFill); 3505 } 3506 3507 return ReturnVal; 3508 } 3509 3510 /// parseDirectiveFile 3511 /// ::= .file filename 3512 /// ::= .file number [directory] filename [md5 checksum] [source source-text] 3513 bool AsmParser::parseDirectiveFile(SMLoc DirectiveLoc) { 3514 // FIXME: I'm not sure what this is. 3515 int64_t FileNumber = -1; 3516 if (getLexer().is(AsmToken::Integer)) { 3517 FileNumber = getTok().getIntVal(); 3518 Lex(); 3519 3520 if (FileNumber < 0) 3521 return TokError("negative file number"); 3522 } 3523 3524 std::string Path; 3525 3526 // Usually the directory and filename together, otherwise just the directory. 3527 // Allow the strings to have escaped octal character sequence. 3528 if (parseEscapedString(Path)) 3529 return true; 3530 3531 StringRef Directory; 3532 StringRef Filename; 3533 std::string FilenameData; 3534 if (getLexer().is(AsmToken::String)) { 3535 if (check(FileNumber == -1, 3536 "explicit path specified, but no file number") || 3537 parseEscapedString(FilenameData)) 3538 return true; 3539 Filename = FilenameData; 3540 Directory = Path; 3541 } else { 3542 Filename = Path; 3543 } 3544 3545 uint64_t MD5Hi, MD5Lo; 3546 bool HasMD5 = false; 3547 3548 std::optional<StringRef> Source; 3549 bool HasSource = false; 3550 std::string SourceString; 3551 3552 while (!parseOptionalToken(AsmToken::EndOfStatement)) { 3553 StringRef Keyword; 3554 if (check(getTok().isNot(AsmToken::Identifier), 3555 "unexpected token in '.file' directive") || 3556 parseIdentifier(Keyword)) 3557 return true; 3558 if (Keyword == "md5") { 3559 HasMD5 = true; 3560 if (check(FileNumber == -1, 3561 "MD5 checksum specified, but no file number") || 3562 parseHexOcta(*this, MD5Hi, MD5Lo)) 3563 return true; 3564 } else if (Keyword == "source") { 3565 HasSource = true; 3566 if (check(FileNumber == -1, 3567 "source specified, but no file number") || 3568 check(getTok().isNot(AsmToken::String), 3569 "unexpected token in '.file' directive") || 3570 parseEscapedString(SourceString)) 3571 return true; 3572 } else { 3573 return TokError("unexpected token in '.file' directive"); 3574 } 3575 } 3576 3577 if (FileNumber == -1) { 3578 // Ignore the directive if there is no number and the target doesn't support 3579 // numberless .file directives. This allows some portability of assembler 3580 // between different object file formats. 3581 if (getContext().getAsmInfo()->hasSingleParameterDotFile()) 3582 getStreamer().emitFileDirective(Filename); 3583 } else { 3584 // In case there is a -g option as well as debug info from directive .file, 3585 // we turn off the -g option, directly use the existing debug info instead. 3586 // Throw away any implicit file table for the assembler source. 3587 if (Ctx.getGenDwarfForAssembly()) { 3588 Ctx.getMCDwarfLineTable(0).resetFileTable(); 3589 Ctx.setGenDwarfForAssembly(false); 3590 } 3591 3592 std::optional<MD5::MD5Result> CKMem; 3593 if (HasMD5) { 3594 MD5::MD5Result Sum; 3595 for (unsigned i = 0; i != 8; ++i) { 3596 Sum[i] = uint8_t(MD5Hi >> ((7 - i) * 8)); 3597 Sum[i + 8] = uint8_t(MD5Lo >> ((7 - i) * 8)); 3598 } 3599 CKMem = Sum; 3600 } 3601 if (HasSource) { 3602 char *SourceBuf = static_cast<char *>(Ctx.allocate(SourceString.size())); 3603 memcpy(SourceBuf, SourceString.data(), SourceString.size()); 3604 Source = StringRef(SourceBuf, SourceString.size()); 3605 } 3606 if (FileNumber == 0) { 3607 // Upgrade to Version 5 for assembly actions like clang -c a.s. 3608 if (Ctx.getDwarfVersion() < 5) 3609 Ctx.setDwarfVersion(5); 3610 getStreamer().emitDwarfFile0Directive(Directory, Filename, CKMem, Source); 3611 } else { 3612 Expected<unsigned> FileNumOrErr = getStreamer().tryEmitDwarfFileDirective( 3613 FileNumber, Directory, Filename, CKMem, Source); 3614 if (!FileNumOrErr) 3615 return Error(DirectiveLoc, toString(FileNumOrErr.takeError())); 3616 } 3617 // Alert the user if there are some .file directives with MD5 and some not. 3618 // But only do that once. 3619 if (!ReportedInconsistentMD5 && !Ctx.isDwarfMD5UsageConsistent(0)) { 3620 ReportedInconsistentMD5 = true; 3621 return Warning(DirectiveLoc, "inconsistent use of MD5 checksums"); 3622 } 3623 } 3624 3625 return false; 3626 } 3627 3628 /// parseDirectiveLine 3629 /// ::= .line [number] 3630 bool AsmParser::parseDirectiveLine() { 3631 int64_t LineNumber; 3632 if (getLexer().is(AsmToken::Integer)) { 3633 if (parseIntToken(LineNumber, "unexpected token in '.line' directive")) 3634 return true; 3635 (void)LineNumber; 3636 // FIXME: Do something with the .line. 3637 } 3638 return parseEOL(); 3639 } 3640 3641 /// parseDirectiveLoc 3642 /// ::= .loc FileNumber [LineNumber] [ColumnPos] [basic_block] [prologue_end] 3643 /// [epilogue_begin] [is_stmt VALUE] [isa VALUE] 3644 /// The first number is a file number, must have been previously assigned with 3645 /// a .file directive, the second number is the line number and optionally the 3646 /// third number is a column position (zero if not specified). The remaining 3647 /// optional items are .loc sub-directives. 3648 bool AsmParser::parseDirectiveLoc() { 3649 int64_t FileNumber = 0, LineNumber = 0; 3650 SMLoc Loc = getTok().getLoc(); 3651 if (parseIntToken(FileNumber, "unexpected token in '.loc' directive") || 3652 check(FileNumber < 1 && Ctx.getDwarfVersion() < 5, Loc, 3653 "file number less than one in '.loc' directive") || 3654 check(!getContext().isValidDwarfFileNumber(FileNumber), Loc, 3655 "unassigned file number in '.loc' directive")) 3656 return true; 3657 3658 // optional 3659 if (getLexer().is(AsmToken::Integer)) { 3660 LineNumber = getTok().getIntVal(); 3661 if (LineNumber < 0) 3662 return TokError("line number less than zero in '.loc' directive"); 3663 Lex(); 3664 } 3665 3666 int64_t ColumnPos = 0; 3667 if (getLexer().is(AsmToken::Integer)) { 3668 ColumnPos = getTok().getIntVal(); 3669 if (ColumnPos < 0) 3670 return TokError("column position less than zero in '.loc' directive"); 3671 Lex(); 3672 } 3673 3674 auto PrevFlags = getContext().getCurrentDwarfLoc().getFlags(); 3675 unsigned Flags = PrevFlags & DWARF2_FLAG_IS_STMT; 3676 unsigned Isa = 0; 3677 int64_t Discriminator = 0; 3678 3679 auto parseLocOp = [&]() -> bool { 3680 StringRef Name; 3681 SMLoc Loc = getTok().getLoc(); 3682 if (parseIdentifier(Name)) 3683 return TokError("unexpected token in '.loc' directive"); 3684 3685 if (Name == "basic_block") 3686 Flags |= DWARF2_FLAG_BASIC_BLOCK; 3687 else if (Name == "prologue_end") 3688 Flags |= DWARF2_FLAG_PROLOGUE_END; 3689 else if (Name == "epilogue_begin") 3690 Flags |= DWARF2_FLAG_EPILOGUE_BEGIN; 3691 else if (Name == "is_stmt") { 3692 Loc = getTok().getLoc(); 3693 const MCExpr *Value; 3694 if (parseExpression(Value)) 3695 return true; 3696 // The expression must be the constant 0 or 1. 3697 if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) { 3698 int Value = MCE->getValue(); 3699 if (Value == 0) 3700 Flags &= ~DWARF2_FLAG_IS_STMT; 3701 else if (Value == 1) 3702 Flags |= DWARF2_FLAG_IS_STMT; 3703 else 3704 return Error(Loc, "is_stmt value not 0 or 1"); 3705 } else { 3706 return Error(Loc, "is_stmt value not the constant value of 0 or 1"); 3707 } 3708 } else if (Name == "isa") { 3709 Loc = getTok().getLoc(); 3710 const MCExpr *Value; 3711 if (parseExpression(Value)) 3712 return true; 3713 // The expression must be a constant greater or equal to 0. 3714 if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) { 3715 int Value = MCE->getValue(); 3716 if (Value < 0) 3717 return Error(Loc, "isa number less than zero"); 3718 Isa = Value; 3719 } else { 3720 return Error(Loc, "isa number not a constant value"); 3721 } 3722 } else if (Name == "discriminator") { 3723 if (parseAbsoluteExpression(Discriminator)) 3724 return true; 3725 } else { 3726 return Error(Loc, "unknown sub-directive in '.loc' directive"); 3727 } 3728 return false; 3729 }; 3730 3731 if (parseMany(parseLocOp, false /*hasComma*/)) 3732 return true; 3733 3734 getStreamer().emitDwarfLocDirective(FileNumber, LineNumber, ColumnPos, Flags, 3735 Isa, Discriminator, StringRef()); 3736 3737 return false; 3738 } 3739 3740 /// parseDirectiveStabs 3741 /// ::= .stabs string, number, number, number 3742 bool AsmParser::parseDirectiveStabs() { 3743 return TokError("unsupported directive '.stabs'"); 3744 } 3745 3746 /// parseDirectiveCVFile 3747 /// ::= .cv_file number filename [checksum] [checksumkind] 3748 bool AsmParser::parseDirectiveCVFile() { 3749 SMLoc FileNumberLoc = getTok().getLoc(); 3750 int64_t FileNumber; 3751 std::string Filename; 3752 std::string Checksum; 3753 int64_t ChecksumKind = 0; 3754 3755 if (parseIntToken(FileNumber, 3756 "expected file number in '.cv_file' directive") || 3757 check(FileNumber < 1, FileNumberLoc, "file number less than one") || 3758 check(getTok().isNot(AsmToken::String), 3759 "unexpected token in '.cv_file' directive") || 3760 parseEscapedString(Filename)) 3761 return true; 3762 if (!parseOptionalToken(AsmToken::EndOfStatement)) { 3763 if (check(getTok().isNot(AsmToken::String), 3764 "unexpected token in '.cv_file' directive") || 3765 parseEscapedString(Checksum) || 3766 parseIntToken(ChecksumKind, 3767 "expected checksum kind in '.cv_file' directive") || 3768 parseEOL()) 3769 return true; 3770 } 3771 3772 Checksum = fromHex(Checksum); 3773 void *CKMem = Ctx.allocate(Checksum.size(), 1); 3774 memcpy(CKMem, Checksum.data(), Checksum.size()); 3775 ArrayRef<uint8_t> ChecksumAsBytes(reinterpret_cast<const uint8_t *>(CKMem), 3776 Checksum.size()); 3777 3778 if (!getStreamer().emitCVFileDirective(FileNumber, Filename, ChecksumAsBytes, 3779 static_cast<uint8_t>(ChecksumKind))) 3780 return Error(FileNumberLoc, "file number already allocated"); 3781 3782 return false; 3783 } 3784 3785 bool AsmParser::parseCVFunctionId(int64_t &FunctionId, 3786 StringRef DirectiveName) { 3787 SMLoc Loc; 3788 return parseTokenLoc(Loc) || 3789 parseIntToken(FunctionId, "expected function id in '" + DirectiveName + 3790 "' directive") || 3791 check(FunctionId < 0 || FunctionId >= UINT_MAX, Loc, 3792 "expected function id within range [0, UINT_MAX)"); 3793 } 3794 3795 bool AsmParser::parseCVFileId(int64_t &FileNumber, StringRef DirectiveName) { 3796 SMLoc Loc; 3797 return parseTokenLoc(Loc) || 3798 parseIntToken(FileNumber, "expected integer in '" + DirectiveName + 3799 "' directive") || 3800 check(FileNumber < 1, Loc, "file number less than one in '" + 3801 DirectiveName + "' directive") || 3802 check(!getCVContext().isValidFileNumber(FileNumber), Loc, 3803 "unassigned file number in '" + DirectiveName + "' directive"); 3804 } 3805 3806 /// parseDirectiveCVFuncId 3807 /// ::= .cv_func_id FunctionId 3808 /// 3809 /// Introduces a function ID that can be used with .cv_loc. 3810 bool AsmParser::parseDirectiveCVFuncId() { 3811 SMLoc FunctionIdLoc = getTok().getLoc(); 3812 int64_t FunctionId; 3813 3814 if (parseCVFunctionId(FunctionId, ".cv_func_id") || parseEOL()) 3815 return true; 3816 3817 if (!getStreamer().emitCVFuncIdDirective(FunctionId)) 3818 return Error(FunctionIdLoc, "function id already allocated"); 3819 3820 return false; 3821 } 3822 3823 /// parseDirectiveCVInlineSiteId 3824 /// ::= .cv_inline_site_id FunctionId 3825 /// "within" IAFunc 3826 /// "inlined_at" IAFile IALine [IACol] 3827 /// 3828 /// Introduces a function ID that can be used with .cv_loc. Includes "inlined 3829 /// at" source location information for use in the line table of the caller, 3830 /// whether the caller is a real function or another inlined call site. 3831 bool AsmParser::parseDirectiveCVInlineSiteId() { 3832 SMLoc FunctionIdLoc = getTok().getLoc(); 3833 int64_t FunctionId; 3834 int64_t IAFunc; 3835 int64_t IAFile; 3836 int64_t IALine; 3837 int64_t IACol = 0; 3838 3839 // FunctionId 3840 if (parseCVFunctionId(FunctionId, ".cv_inline_site_id")) 3841 return true; 3842 3843 // "within" 3844 if (check((getLexer().isNot(AsmToken::Identifier) || 3845 getTok().getIdentifier() != "within"), 3846 "expected 'within' identifier in '.cv_inline_site_id' directive")) 3847 return true; 3848 Lex(); 3849 3850 // IAFunc 3851 if (parseCVFunctionId(IAFunc, ".cv_inline_site_id")) 3852 return true; 3853 3854 // "inlined_at" 3855 if (check((getLexer().isNot(AsmToken::Identifier) || 3856 getTok().getIdentifier() != "inlined_at"), 3857 "expected 'inlined_at' identifier in '.cv_inline_site_id' " 3858 "directive") ) 3859 return true; 3860 Lex(); 3861 3862 // IAFile IALine 3863 if (parseCVFileId(IAFile, ".cv_inline_site_id") || 3864 parseIntToken(IALine, "expected line number after 'inlined_at'")) 3865 return true; 3866 3867 // [IACol] 3868 if (getLexer().is(AsmToken::Integer)) { 3869 IACol = getTok().getIntVal(); 3870 Lex(); 3871 } 3872 3873 if (parseEOL()) 3874 return true; 3875 3876 if (!getStreamer().emitCVInlineSiteIdDirective(FunctionId, IAFunc, IAFile, 3877 IALine, IACol, FunctionIdLoc)) 3878 return Error(FunctionIdLoc, "function id already allocated"); 3879 3880 return false; 3881 } 3882 3883 /// parseDirectiveCVLoc 3884 /// ::= .cv_loc FunctionId FileNumber [LineNumber] [ColumnPos] [prologue_end] 3885 /// [is_stmt VALUE] 3886 /// The first number is a file number, must have been previously assigned with 3887 /// a .file directive, the second number is the line number and optionally the 3888 /// third number is a column position (zero if not specified). The remaining 3889 /// optional items are .loc sub-directives. 3890 bool AsmParser::parseDirectiveCVLoc() { 3891 SMLoc DirectiveLoc = getTok().getLoc(); 3892 int64_t FunctionId, FileNumber; 3893 if (parseCVFunctionId(FunctionId, ".cv_loc") || 3894 parseCVFileId(FileNumber, ".cv_loc")) 3895 return true; 3896 3897 int64_t LineNumber = 0; 3898 if (getLexer().is(AsmToken::Integer)) { 3899 LineNumber = getTok().getIntVal(); 3900 if (LineNumber < 0) 3901 return TokError("line number less than zero in '.cv_loc' directive"); 3902 Lex(); 3903 } 3904 3905 int64_t ColumnPos = 0; 3906 if (getLexer().is(AsmToken::Integer)) { 3907 ColumnPos = getTok().getIntVal(); 3908 if (ColumnPos < 0) 3909 return TokError("column position less than zero in '.cv_loc' directive"); 3910 Lex(); 3911 } 3912 3913 bool PrologueEnd = false; 3914 uint64_t IsStmt = 0; 3915 3916 auto parseOp = [&]() -> bool { 3917 StringRef Name; 3918 SMLoc Loc = getTok().getLoc(); 3919 if (parseIdentifier(Name)) 3920 return TokError("unexpected token in '.cv_loc' directive"); 3921 if (Name == "prologue_end") 3922 PrologueEnd = true; 3923 else if (Name == "is_stmt") { 3924 Loc = getTok().getLoc(); 3925 const MCExpr *Value; 3926 if (parseExpression(Value)) 3927 return true; 3928 // The expression must be the constant 0 or 1. 3929 IsStmt = ~0ULL; 3930 if (const auto *MCE = dyn_cast<MCConstantExpr>(Value)) 3931 IsStmt = MCE->getValue(); 3932 3933 if (IsStmt > 1) 3934 return Error(Loc, "is_stmt value not 0 or 1"); 3935 } else { 3936 return Error(Loc, "unknown sub-directive in '.cv_loc' directive"); 3937 } 3938 return false; 3939 }; 3940 3941 if (parseMany(parseOp, false /*hasComma*/)) 3942 return true; 3943 3944 getStreamer().emitCVLocDirective(FunctionId, FileNumber, LineNumber, 3945 ColumnPos, PrologueEnd, IsStmt, StringRef(), 3946 DirectiveLoc); 3947 return false; 3948 } 3949 3950 /// parseDirectiveCVLinetable 3951 /// ::= .cv_linetable FunctionId, FnStart, FnEnd 3952 bool AsmParser::parseDirectiveCVLinetable() { 3953 int64_t FunctionId; 3954 StringRef FnStartName, FnEndName; 3955 SMLoc Loc = getTok().getLoc(); 3956 if (parseCVFunctionId(FunctionId, ".cv_linetable") || parseComma() || 3957 parseTokenLoc(Loc) || 3958 check(parseIdentifier(FnStartName), Loc, 3959 "expected identifier in directive") || 3960 parseComma() || parseTokenLoc(Loc) || 3961 check(parseIdentifier(FnEndName), Loc, 3962 "expected identifier in directive")) 3963 return true; 3964 3965 MCSymbol *FnStartSym = getContext().getOrCreateSymbol(FnStartName); 3966 MCSymbol *FnEndSym = getContext().getOrCreateSymbol(FnEndName); 3967 3968 getStreamer().emitCVLinetableDirective(FunctionId, FnStartSym, FnEndSym); 3969 return false; 3970 } 3971 3972 /// parseDirectiveCVInlineLinetable 3973 /// ::= .cv_inline_linetable PrimaryFunctionId FileId LineNum FnStart FnEnd 3974 bool AsmParser::parseDirectiveCVInlineLinetable() { 3975 int64_t PrimaryFunctionId, SourceFileId, SourceLineNum; 3976 StringRef FnStartName, FnEndName; 3977 SMLoc Loc = getTok().getLoc(); 3978 if (parseCVFunctionId(PrimaryFunctionId, ".cv_inline_linetable") || 3979 parseTokenLoc(Loc) || 3980 parseIntToken( 3981 SourceFileId, 3982 "expected SourceField in '.cv_inline_linetable' directive") || 3983 check(SourceFileId <= 0, Loc, 3984 "File id less than zero in '.cv_inline_linetable' directive") || 3985 parseTokenLoc(Loc) || 3986 parseIntToken( 3987 SourceLineNum, 3988 "expected SourceLineNum in '.cv_inline_linetable' directive") || 3989 check(SourceLineNum < 0, Loc, 3990 "Line number less than zero in '.cv_inline_linetable' directive") || 3991 parseTokenLoc(Loc) || check(parseIdentifier(FnStartName), Loc, 3992 "expected identifier in directive") || 3993 parseTokenLoc(Loc) || check(parseIdentifier(FnEndName), Loc, 3994 "expected identifier in directive")) 3995 return true; 3996 3997 if (parseEOL()) 3998 return true; 3999 4000 MCSymbol *FnStartSym = getContext().getOrCreateSymbol(FnStartName); 4001 MCSymbol *FnEndSym = getContext().getOrCreateSymbol(FnEndName); 4002 getStreamer().emitCVInlineLinetableDirective(PrimaryFunctionId, SourceFileId, 4003 SourceLineNum, FnStartSym, 4004 FnEndSym); 4005 return false; 4006 } 4007 4008 void AsmParser::initializeCVDefRangeTypeMap() { 4009 CVDefRangeTypeMap["reg"] = CVDR_DEFRANGE_REGISTER; 4010 CVDefRangeTypeMap["frame_ptr_rel"] = CVDR_DEFRANGE_FRAMEPOINTER_REL; 4011 CVDefRangeTypeMap["subfield_reg"] = CVDR_DEFRANGE_SUBFIELD_REGISTER; 4012 CVDefRangeTypeMap["reg_rel"] = CVDR_DEFRANGE_REGISTER_REL; 4013 } 4014 4015 /// parseDirectiveCVDefRange 4016 /// ::= .cv_def_range RangeStart RangeEnd (GapStart GapEnd)*, bytes* 4017 bool AsmParser::parseDirectiveCVDefRange() { 4018 SMLoc Loc; 4019 std::vector<std::pair<const MCSymbol *, const MCSymbol *>> Ranges; 4020 while (getLexer().is(AsmToken::Identifier)) { 4021 Loc = getLexer().getLoc(); 4022 StringRef GapStartName; 4023 if (parseIdentifier(GapStartName)) 4024 return Error(Loc, "expected identifier in directive"); 4025 MCSymbol *GapStartSym = getContext().getOrCreateSymbol(GapStartName); 4026 4027 Loc = getLexer().getLoc(); 4028 StringRef GapEndName; 4029 if (parseIdentifier(GapEndName)) 4030 return Error(Loc, "expected identifier in directive"); 4031 MCSymbol *GapEndSym = getContext().getOrCreateSymbol(GapEndName); 4032 4033 Ranges.push_back({GapStartSym, GapEndSym}); 4034 } 4035 4036 StringRef CVDefRangeTypeStr; 4037 if (parseToken( 4038 AsmToken::Comma, 4039 "expected comma before def_range type in .cv_def_range directive") || 4040 parseIdentifier(CVDefRangeTypeStr)) 4041 return Error(Loc, "expected def_range type in directive"); 4042 4043 StringMap<CVDefRangeType>::const_iterator CVTypeIt = 4044 CVDefRangeTypeMap.find(CVDefRangeTypeStr); 4045 CVDefRangeType CVDRType = (CVTypeIt == CVDefRangeTypeMap.end()) 4046 ? CVDR_DEFRANGE 4047 : CVTypeIt->getValue(); 4048 switch (CVDRType) { 4049 case CVDR_DEFRANGE_REGISTER: { 4050 int64_t DRRegister; 4051 if (parseToken(AsmToken::Comma, "expected comma before register number in " 4052 ".cv_def_range directive") || 4053 parseAbsoluteExpression(DRRegister)) 4054 return Error(Loc, "expected register number"); 4055 4056 codeview::DefRangeRegisterHeader DRHdr; 4057 DRHdr.Register = DRRegister; 4058 DRHdr.MayHaveNoName = 0; 4059 getStreamer().emitCVDefRangeDirective(Ranges, DRHdr); 4060 break; 4061 } 4062 case CVDR_DEFRANGE_FRAMEPOINTER_REL: { 4063 int64_t DROffset; 4064 if (parseToken(AsmToken::Comma, 4065 "expected comma before offset in .cv_def_range directive") || 4066 parseAbsoluteExpression(DROffset)) 4067 return Error(Loc, "expected offset value"); 4068 4069 codeview::DefRangeFramePointerRelHeader DRHdr; 4070 DRHdr.Offset = DROffset; 4071 getStreamer().emitCVDefRangeDirective(Ranges, DRHdr); 4072 break; 4073 } 4074 case CVDR_DEFRANGE_SUBFIELD_REGISTER: { 4075 int64_t DRRegister; 4076 int64_t DROffsetInParent; 4077 if (parseToken(AsmToken::Comma, "expected comma before register number in " 4078 ".cv_def_range directive") || 4079 parseAbsoluteExpression(DRRegister)) 4080 return Error(Loc, "expected register number"); 4081 if (parseToken(AsmToken::Comma, 4082 "expected comma before offset in .cv_def_range directive") || 4083 parseAbsoluteExpression(DROffsetInParent)) 4084 return Error(Loc, "expected offset value"); 4085 4086 codeview::DefRangeSubfieldRegisterHeader DRHdr; 4087 DRHdr.Register = DRRegister; 4088 DRHdr.MayHaveNoName = 0; 4089 DRHdr.OffsetInParent = DROffsetInParent; 4090 getStreamer().emitCVDefRangeDirective(Ranges, DRHdr); 4091 break; 4092 } 4093 case CVDR_DEFRANGE_REGISTER_REL: { 4094 int64_t DRRegister; 4095 int64_t DRFlags; 4096 int64_t DRBasePointerOffset; 4097 if (parseToken(AsmToken::Comma, "expected comma before register number in " 4098 ".cv_def_range directive") || 4099 parseAbsoluteExpression(DRRegister)) 4100 return Error(Loc, "expected register value"); 4101 if (parseToken( 4102 AsmToken::Comma, 4103 "expected comma before flag value in .cv_def_range directive") || 4104 parseAbsoluteExpression(DRFlags)) 4105 return Error(Loc, "expected flag value"); 4106 if (parseToken(AsmToken::Comma, "expected comma before base pointer offset " 4107 "in .cv_def_range directive") || 4108 parseAbsoluteExpression(DRBasePointerOffset)) 4109 return Error(Loc, "expected base pointer offset value"); 4110 4111 codeview::DefRangeRegisterRelHeader DRHdr; 4112 DRHdr.Register = DRRegister; 4113 DRHdr.Flags = DRFlags; 4114 DRHdr.BasePointerOffset = DRBasePointerOffset; 4115 getStreamer().emitCVDefRangeDirective(Ranges, DRHdr); 4116 break; 4117 } 4118 default: 4119 return Error(Loc, "unexpected def_range type in .cv_def_range directive"); 4120 } 4121 return true; 4122 } 4123 4124 /// parseDirectiveCVString 4125 /// ::= .cv_stringtable "string" 4126 bool AsmParser::parseDirectiveCVString() { 4127 std::string Data; 4128 if (checkForValidSection() || parseEscapedString(Data)) 4129 return true; 4130 4131 // Put the string in the table and emit the offset. 4132 std::pair<StringRef, unsigned> Insertion = 4133 getCVContext().addToStringTable(Data); 4134 getStreamer().emitInt32(Insertion.second); 4135 return false; 4136 } 4137 4138 /// parseDirectiveCVStringTable 4139 /// ::= .cv_stringtable 4140 bool AsmParser::parseDirectiveCVStringTable() { 4141 getStreamer().emitCVStringTableDirective(); 4142 return false; 4143 } 4144 4145 /// parseDirectiveCVFileChecksums 4146 /// ::= .cv_filechecksums 4147 bool AsmParser::parseDirectiveCVFileChecksums() { 4148 getStreamer().emitCVFileChecksumsDirective(); 4149 return false; 4150 } 4151 4152 /// parseDirectiveCVFileChecksumOffset 4153 /// ::= .cv_filechecksumoffset fileno 4154 bool AsmParser::parseDirectiveCVFileChecksumOffset() { 4155 int64_t FileNo; 4156 if (parseIntToken(FileNo, "expected identifier in directive")) 4157 return true; 4158 if (parseEOL()) 4159 return true; 4160 getStreamer().emitCVFileChecksumOffsetDirective(FileNo); 4161 return false; 4162 } 4163 4164 /// parseDirectiveCVFPOData 4165 /// ::= .cv_fpo_data procsym 4166 bool AsmParser::parseDirectiveCVFPOData() { 4167 SMLoc DirLoc = getLexer().getLoc(); 4168 StringRef ProcName; 4169 if (parseIdentifier(ProcName)) 4170 return TokError("expected symbol name"); 4171 if (parseEOL()) 4172 return true; 4173 MCSymbol *ProcSym = getContext().getOrCreateSymbol(ProcName); 4174 getStreamer().emitCVFPOData(ProcSym, DirLoc); 4175 return false; 4176 } 4177 4178 /// parseDirectiveCFISections 4179 /// ::= .cfi_sections section [, section] 4180 bool AsmParser::parseDirectiveCFISections() { 4181 StringRef Name; 4182 bool EH = false; 4183 bool Debug = false; 4184 4185 if (!parseOptionalToken(AsmToken::EndOfStatement)) { 4186 for (;;) { 4187 if (parseIdentifier(Name)) 4188 return TokError("expected .eh_frame or .debug_frame"); 4189 if (Name == ".eh_frame") 4190 EH = true; 4191 else if (Name == ".debug_frame") 4192 Debug = true; 4193 if (parseOptionalToken(AsmToken::EndOfStatement)) 4194 break; 4195 if (parseComma()) 4196 return true; 4197 } 4198 } 4199 getStreamer().emitCFISections(EH, Debug); 4200 return false; 4201 } 4202 4203 /// parseDirectiveCFIStartProc 4204 /// ::= .cfi_startproc [simple] 4205 bool AsmParser::parseDirectiveCFIStartProc() { 4206 CFIStartProcLoc = StartTokLoc; 4207 4208 StringRef Simple; 4209 if (!parseOptionalToken(AsmToken::EndOfStatement)) { 4210 if (check(parseIdentifier(Simple) || Simple != "simple", 4211 "unexpected token") || 4212 parseEOL()) 4213 return true; 4214 } 4215 4216 // TODO(kristina): Deal with a corner case of incorrect diagnostic context 4217 // being produced if this directive is emitted as part of preprocessor macro 4218 // expansion which can *ONLY* happen if Clang's cc1as is the API consumer. 4219 // Tools like llvm-mc on the other hand are not affected by it, and report 4220 // correct context information. 4221 getStreamer().emitCFIStartProc(!Simple.empty(), Lexer.getLoc()); 4222 return false; 4223 } 4224 4225 /// parseDirectiveCFIEndProc 4226 /// ::= .cfi_endproc 4227 bool AsmParser::parseDirectiveCFIEndProc() { 4228 CFIStartProcLoc = std::nullopt; 4229 4230 if (parseEOL()) 4231 return true; 4232 4233 getStreamer().emitCFIEndProc(); 4234 return false; 4235 } 4236 4237 /// parse register name or number. 4238 bool AsmParser::parseRegisterOrRegisterNumber(int64_t &Register, 4239 SMLoc DirectiveLoc) { 4240 MCRegister RegNo; 4241 4242 if (getLexer().isNot(AsmToken::Integer)) { 4243 if (getTargetParser().parseRegister(RegNo, DirectiveLoc, DirectiveLoc)) 4244 return true; 4245 Register = getContext().getRegisterInfo()->getDwarfRegNum(RegNo, true); 4246 } else 4247 return parseAbsoluteExpression(Register); 4248 4249 return false; 4250 } 4251 4252 /// parseDirectiveCFIDefCfa 4253 /// ::= .cfi_def_cfa register, offset 4254 bool AsmParser::parseDirectiveCFIDefCfa(SMLoc DirectiveLoc) { 4255 int64_t Register = 0, Offset = 0; 4256 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() || 4257 parseAbsoluteExpression(Offset) || parseEOL()) 4258 return true; 4259 4260 getStreamer().emitCFIDefCfa(Register, Offset, DirectiveLoc); 4261 return false; 4262 } 4263 4264 /// parseDirectiveCFIDefCfaOffset 4265 /// ::= .cfi_def_cfa_offset offset 4266 bool AsmParser::parseDirectiveCFIDefCfaOffset(SMLoc DirectiveLoc) { 4267 int64_t Offset = 0; 4268 if (parseAbsoluteExpression(Offset) || parseEOL()) 4269 return true; 4270 4271 getStreamer().emitCFIDefCfaOffset(Offset, DirectiveLoc); 4272 return false; 4273 } 4274 4275 /// parseDirectiveCFIRegister 4276 /// ::= .cfi_register register, register 4277 bool AsmParser::parseDirectiveCFIRegister(SMLoc DirectiveLoc) { 4278 int64_t Register1 = 0, Register2 = 0; 4279 if (parseRegisterOrRegisterNumber(Register1, DirectiveLoc) || parseComma() || 4280 parseRegisterOrRegisterNumber(Register2, DirectiveLoc) || parseEOL()) 4281 return true; 4282 4283 getStreamer().emitCFIRegister(Register1, Register2, DirectiveLoc); 4284 return false; 4285 } 4286 4287 /// parseDirectiveCFIWindowSave 4288 /// ::= .cfi_window_save 4289 bool AsmParser::parseDirectiveCFIWindowSave(SMLoc DirectiveLoc) { 4290 if (parseEOL()) 4291 return true; 4292 getStreamer().emitCFIWindowSave(DirectiveLoc); 4293 return false; 4294 } 4295 4296 /// parseDirectiveCFIAdjustCfaOffset 4297 /// ::= .cfi_adjust_cfa_offset adjustment 4298 bool AsmParser::parseDirectiveCFIAdjustCfaOffset(SMLoc DirectiveLoc) { 4299 int64_t Adjustment = 0; 4300 if (parseAbsoluteExpression(Adjustment) || parseEOL()) 4301 return true; 4302 4303 getStreamer().emitCFIAdjustCfaOffset(Adjustment, DirectiveLoc); 4304 return false; 4305 } 4306 4307 /// parseDirectiveCFIDefCfaRegister 4308 /// ::= .cfi_def_cfa_register register 4309 bool AsmParser::parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc) { 4310 int64_t Register = 0; 4311 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL()) 4312 return true; 4313 4314 getStreamer().emitCFIDefCfaRegister(Register, DirectiveLoc); 4315 return false; 4316 } 4317 4318 /// parseDirectiveCFILLVMDefAspaceCfa 4319 /// ::= .cfi_llvm_def_aspace_cfa register, offset, address_space 4320 bool AsmParser::parseDirectiveCFILLVMDefAspaceCfa(SMLoc DirectiveLoc) { 4321 int64_t Register = 0, Offset = 0, AddressSpace = 0; 4322 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() || 4323 parseAbsoluteExpression(Offset) || parseComma() || 4324 parseAbsoluteExpression(AddressSpace) || parseEOL()) 4325 return true; 4326 4327 getStreamer().emitCFILLVMDefAspaceCfa(Register, Offset, AddressSpace, 4328 DirectiveLoc); 4329 return false; 4330 } 4331 4332 /// parseDirectiveCFIOffset 4333 /// ::= .cfi_offset register, offset 4334 bool AsmParser::parseDirectiveCFIOffset(SMLoc DirectiveLoc) { 4335 int64_t Register = 0; 4336 int64_t Offset = 0; 4337 4338 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() || 4339 parseAbsoluteExpression(Offset) || parseEOL()) 4340 return true; 4341 4342 getStreamer().emitCFIOffset(Register, Offset, DirectiveLoc); 4343 return false; 4344 } 4345 4346 /// parseDirectiveCFIRelOffset 4347 /// ::= .cfi_rel_offset register, offset 4348 bool AsmParser::parseDirectiveCFIRelOffset(SMLoc DirectiveLoc) { 4349 int64_t Register = 0, Offset = 0; 4350 4351 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() || 4352 parseAbsoluteExpression(Offset) || parseEOL()) 4353 return true; 4354 4355 getStreamer().emitCFIRelOffset(Register, Offset, DirectiveLoc); 4356 return false; 4357 } 4358 4359 static bool isValidEncoding(int64_t Encoding) { 4360 if (Encoding & ~0xff) 4361 return false; 4362 4363 if (Encoding == dwarf::DW_EH_PE_omit) 4364 return true; 4365 4366 const unsigned Format = Encoding & 0xf; 4367 if (Format != dwarf::DW_EH_PE_absptr && Format != dwarf::DW_EH_PE_udata2 && 4368 Format != dwarf::DW_EH_PE_udata4 && Format != dwarf::DW_EH_PE_udata8 && 4369 Format != dwarf::DW_EH_PE_sdata2 && Format != dwarf::DW_EH_PE_sdata4 && 4370 Format != dwarf::DW_EH_PE_sdata8 && Format != dwarf::DW_EH_PE_signed) 4371 return false; 4372 4373 const unsigned Application = Encoding & 0x70; 4374 if (Application != dwarf::DW_EH_PE_absptr && 4375 Application != dwarf::DW_EH_PE_pcrel) 4376 return false; 4377 4378 return true; 4379 } 4380 4381 /// parseDirectiveCFIPersonalityOrLsda 4382 /// IsPersonality true for cfi_personality, false for cfi_lsda 4383 /// ::= .cfi_personality encoding, [symbol_name] 4384 /// ::= .cfi_lsda encoding, [symbol_name] 4385 bool AsmParser::parseDirectiveCFIPersonalityOrLsda(bool IsPersonality) { 4386 int64_t Encoding = 0; 4387 if (parseAbsoluteExpression(Encoding)) 4388 return true; 4389 if (Encoding == dwarf::DW_EH_PE_omit) 4390 return false; 4391 4392 StringRef Name; 4393 if (check(!isValidEncoding(Encoding), "unsupported encoding.") || 4394 parseComma() || 4395 check(parseIdentifier(Name), "expected identifier in directive") || 4396 parseEOL()) 4397 return true; 4398 4399 MCSymbol *Sym = getContext().getOrCreateSymbol(Name); 4400 4401 if (IsPersonality) 4402 getStreamer().emitCFIPersonality(Sym, Encoding); 4403 else 4404 getStreamer().emitCFILsda(Sym, Encoding); 4405 return false; 4406 } 4407 4408 /// parseDirectiveCFIRememberState 4409 /// ::= .cfi_remember_state 4410 bool AsmParser::parseDirectiveCFIRememberState(SMLoc DirectiveLoc) { 4411 if (parseEOL()) 4412 return true; 4413 getStreamer().emitCFIRememberState(DirectiveLoc); 4414 return false; 4415 } 4416 4417 /// parseDirectiveCFIRestoreState 4418 /// ::= .cfi_remember_state 4419 bool AsmParser::parseDirectiveCFIRestoreState(SMLoc DirectiveLoc) { 4420 if (parseEOL()) 4421 return true; 4422 getStreamer().emitCFIRestoreState(DirectiveLoc); 4423 return false; 4424 } 4425 4426 /// parseDirectiveCFISameValue 4427 /// ::= .cfi_same_value register 4428 bool AsmParser::parseDirectiveCFISameValue(SMLoc DirectiveLoc) { 4429 int64_t Register = 0; 4430 4431 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL()) 4432 return true; 4433 4434 getStreamer().emitCFISameValue(Register, DirectiveLoc); 4435 return false; 4436 } 4437 4438 /// parseDirectiveCFIRestore 4439 /// ::= .cfi_restore register 4440 bool AsmParser::parseDirectiveCFIRestore(SMLoc DirectiveLoc) { 4441 int64_t Register = 0; 4442 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL()) 4443 return true; 4444 4445 getStreamer().emitCFIRestore(Register, DirectiveLoc); 4446 return false; 4447 } 4448 4449 /// parseDirectiveCFIEscape 4450 /// ::= .cfi_escape expression[,...] 4451 bool AsmParser::parseDirectiveCFIEscape(SMLoc DirectiveLoc) { 4452 std::string Values; 4453 int64_t CurrValue; 4454 if (parseAbsoluteExpression(CurrValue)) 4455 return true; 4456 4457 Values.push_back((uint8_t)CurrValue); 4458 4459 while (getLexer().is(AsmToken::Comma)) { 4460 Lex(); 4461 4462 if (parseAbsoluteExpression(CurrValue)) 4463 return true; 4464 4465 Values.push_back((uint8_t)CurrValue); 4466 } 4467 4468 getStreamer().emitCFIEscape(Values, DirectiveLoc); 4469 return false; 4470 } 4471 4472 /// parseDirectiveCFIReturnColumn 4473 /// ::= .cfi_return_column register 4474 bool AsmParser::parseDirectiveCFIReturnColumn(SMLoc DirectiveLoc) { 4475 int64_t Register = 0; 4476 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL()) 4477 return true; 4478 getStreamer().emitCFIReturnColumn(Register); 4479 return false; 4480 } 4481 4482 /// parseDirectiveCFISignalFrame 4483 /// ::= .cfi_signal_frame 4484 bool AsmParser::parseDirectiveCFISignalFrame(SMLoc DirectiveLoc) { 4485 if (parseEOL()) 4486 return true; 4487 4488 getStreamer().emitCFISignalFrame(); 4489 return false; 4490 } 4491 4492 /// parseDirectiveCFIUndefined 4493 /// ::= .cfi_undefined register 4494 bool AsmParser::parseDirectiveCFIUndefined(SMLoc DirectiveLoc) { 4495 int64_t Register = 0; 4496 4497 if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL()) 4498 return true; 4499 4500 getStreamer().emitCFIUndefined(Register, DirectiveLoc); 4501 return false; 4502 } 4503 4504 /// parseDirectiveCFILabel 4505 /// ::= .cfi_label label 4506 bool AsmParser::parseDirectiveCFILabel(SMLoc Loc) { 4507 StringRef Name; 4508 Loc = Lexer.getLoc(); 4509 if (parseIdentifier(Name)) 4510 return TokError("expected identifier"); 4511 if (parseEOL()) 4512 return true; 4513 getStreamer().emitCFILabelDirective(Loc, Name); 4514 return false; 4515 } 4516 4517 /// parseDirectiveAltmacro 4518 /// ::= .altmacro 4519 /// ::= .noaltmacro 4520 bool AsmParser::parseDirectiveAltmacro(StringRef Directive) { 4521 if (parseEOL()) 4522 return true; 4523 AltMacroMode = (Directive == ".altmacro"); 4524 return false; 4525 } 4526 4527 /// parseDirectiveMacrosOnOff 4528 /// ::= .macros_on 4529 /// ::= .macros_off 4530 bool AsmParser::parseDirectiveMacrosOnOff(StringRef Directive) { 4531 if (parseEOL()) 4532 return true; 4533 setMacrosEnabled(Directive == ".macros_on"); 4534 return false; 4535 } 4536 4537 /// parseDirectiveMacro 4538 /// ::= .macro name[,] [parameters] 4539 bool AsmParser::parseDirectiveMacro(SMLoc DirectiveLoc) { 4540 StringRef Name; 4541 if (parseIdentifier(Name)) 4542 return TokError("expected identifier in '.macro' directive"); 4543 4544 if (getLexer().is(AsmToken::Comma)) 4545 Lex(); 4546 4547 MCAsmMacroParameters Parameters; 4548 while (getLexer().isNot(AsmToken::EndOfStatement)) { 4549 4550 if (!Parameters.empty() && Parameters.back().Vararg) 4551 return Error(Lexer.getLoc(), "vararg parameter '" + 4552 Parameters.back().Name + 4553 "' should be the last parameter"); 4554 4555 MCAsmMacroParameter Parameter; 4556 if (parseIdentifier(Parameter.Name)) 4557 return TokError("expected identifier in '.macro' directive"); 4558 4559 // Emit an error if two (or more) named parameters share the same name 4560 for (const MCAsmMacroParameter& CurrParam : Parameters) 4561 if (CurrParam.Name == Parameter.Name) 4562 return TokError("macro '" + Name + "' has multiple parameters" 4563 " named '" + Parameter.Name + "'"); 4564 4565 if (Lexer.is(AsmToken::Colon)) { 4566 Lex(); // consume ':' 4567 4568 SMLoc QualLoc; 4569 StringRef Qualifier; 4570 4571 QualLoc = Lexer.getLoc(); 4572 if (parseIdentifier(Qualifier)) 4573 return Error(QualLoc, "missing parameter qualifier for " 4574 "'" + Parameter.Name + "' in macro '" + Name + "'"); 4575 4576 if (Qualifier == "req") 4577 Parameter.Required = true; 4578 else if (Qualifier == "vararg") 4579 Parameter.Vararg = true; 4580 else 4581 return Error(QualLoc, Qualifier + " is not a valid parameter qualifier " 4582 "for '" + Parameter.Name + "' in macro '" + Name + "'"); 4583 } 4584 4585 if (getLexer().is(AsmToken::Equal)) { 4586 Lex(); 4587 4588 SMLoc ParamLoc; 4589 4590 ParamLoc = Lexer.getLoc(); 4591 if (parseMacroArgument(Parameter.Value, /*Vararg=*/false )) 4592 return true; 4593 4594 if (Parameter.Required) 4595 Warning(ParamLoc, "pointless default value for required parameter " 4596 "'" + Parameter.Name + "' in macro '" + Name + "'"); 4597 } 4598 4599 Parameters.push_back(std::move(Parameter)); 4600 4601 if (getLexer().is(AsmToken::Comma)) 4602 Lex(); 4603 } 4604 4605 // Eat just the end of statement. 4606 Lexer.Lex(); 4607 4608 // Consuming deferred text, so use Lexer.Lex to ignore Lexing Errors 4609 AsmToken EndToken, StartToken = getTok(); 4610 unsigned MacroDepth = 0; 4611 // Lex the macro definition. 4612 while (true) { 4613 // Ignore Lexing errors in macros. 4614 while (Lexer.is(AsmToken::Error)) { 4615 Lexer.Lex(); 4616 } 4617 4618 // Check whether we have reached the end of the file. 4619 if (getLexer().is(AsmToken::Eof)) 4620 return Error(DirectiveLoc, "no matching '.endmacro' in definition"); 4621 4622 // Otherwise, check whether we have reach the .endmacro or the start of a 4623 // preprocessor line marker. 4624 if (getLexer().is(AsmToken::Identifier)) { 4625 if (getTok().getIdentifier() == ".endm" || 4626 getTok().getIdentifier() == ".endmacro") { 4627 if (MacroDepth == 0) { // Outermost macro. 4628 EndToken = getTok(); 4629 Lexer.Lex(); 4630 if (getLexer().isNot(AsmToken::EndOfStatement)) 4631 return TokError("unexpected token in '" + EndToken.getIdentifier() + 4632 "' directive"); 4633 break; 4634 } else { 4635 // Otherwise we just found the end of an inner macro. 4636 --MacroDepth; 4637 } 4638 } else if (getTok().getIdentifier() == ".macro") { 4639 // We allow nested macros. Those aren't instantiated until the outermost 4640 // macro is expanded so just ignore them for now. 4641 ++MacroDepth; 4642 } 4643 } else if (Lexer.is(AsmToken::HashDirective)) { 4644 (void)parseCppHashLineFilenameComment(getLexer().getLoc()); 4645 } 4646 4647 // Otherwise, scan til the end of the statement. 4648 eatToEndOfStatement(); 4649 } 4650 4651 if (getContext().lookupMacro(Name)) { 4652 return Error(DirectiveLoc, "macro '" + Name + "' is already defined"); 4653 } 4654 4655 const char *BodyStart = StartToken.getLoc().getPointer(); 4656 const char *BodyEnd = EndToken.getLoc().getPointer(); 4657 StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart); 4658 checkForBadMacro(DirectiveLoc, Name, Body, Parameters); 4659 MCAsmMacro Macro(Name, Body, std::move(Parameters)); 4660 DEBUG_WITH_TYPE("asm-macros", dbgs() << "Defining new macro:\n"; 4661 Macro.dump()); 4662 getContext().defineMacro(Name, std::move(Macro)); 4663 return false; 4664 } 4665 4666 /// checkForBadMacro 4667 /// 4668 /// With the support added for named parameters there may be code out there that 4669 /// is transitioning from positional parameters. In versions of gas that did 4670 /// not support named parameters they would be ignored on the macro definition. 4671 /// But to support both styles of parameters this is not possible so if a macro 4672 /// definition has named parameters but does not use them and has what appears 4673 /// to be positional parameters, strings like $1, $2, ... and $n, then issue a 4674 /// warning that the positional parameter found in body which have no effect. 4675 /// Hoping the developer will either remove the named parameters from the macro 4676 /// definition so the positional parameters get used if that was what was 4677 /// intended or change the macro to use the named parameters. It is possible 4678 /// this warning will trigger when the none of the named parameters are used 4679 /// and the strings like $1 are infact to simply to be passed trough unchanged. 4680 void AsmParser::checkForBadMacro(SMLoc DirectiveLoc, StringRef Name, 4681 StringRef Body, 4682 ArrayRef<MCAsmMacroParameter> Parameters) { 4683 // If this macro is not defined with named parameters the warning we are 4684 // checking for here doesn't apply. 4685 unsigned NParameters = Parameters.size(); 4686 if (NParameters == 0) 4687 return; 4688 4689 bool NamedParametersFound = false; 4690 bool PositionalParametersFound = false; 4691 4692 // Look at the body of the macro for use of both the named parameters and what 4693 // are likely to be positional parameters. This is what expandMacro() is 4694 // doing when it finds the parameters in the body. 4695 while (!Body.empty()) { 4696 // Scan for the next possible parameter. 4697 std::size_t End = Body.size(), Pos = 0; 4698 for (; Pos != End; ++Pos) { 4699 // Check for a substitution or escape. 4700 // This macro is defined with parameters, look for \foo, \bar, etc. 4701 if (Body[Pos] == '\\' && Pos + 1 != End) 4702 break; 4703 4704 // This macro should have parameters, but look for $0, $1, ..., $n too. 4705 if (Body[Pos] != '$' || Pos + 1 == End) 4706 continue; 4707 char Next = Body[Pos + 1]; 4708 if (Next == '$' || Next == 'n' || 4709 isdigit(static_cast<unsigned char>(Next))) 4710 break; 4711 } 4712 4713 // Check if we reached the end. 4714 if (Pos == End) 4715 break; 4716 4717 if (Body[Pos] == '$') { 4718 switch (Body[Pos + 1]) { 4719 // $$ => $ 4720 case '$': 4721 break; 4722 4723 // $n => number of arguments 4724 case 'n': 4725 PositionalParametersFound = true; 4726 break; 4727 4728 // $[0-9] => argument 4729 default: { 4730 PositionalParametersFound = true; 4731 break; 4732 } 4733 } 4734 Pos += 2; 4735 } else { 4736 unsigned I = Pos + 1; 4737 while (isIdentifierChar(Body[I]) && I + 1 != End) 4738 ++I; 4739 4740 const char *Begin = Body.data() + Pos + 1; 4741 StringRef Argument(Begin, I - (Pos + 1)); 4742 unsigned Index = 0; 4743 for (; Index < NParameters; ++Index) 4744 if (Parameters[Index].Name == Argument) 4745 break; 4746 4747 if (Index == NParameters) { 4748 if (Body[Pos + 1] == '(' && Body[Pos + 2] == ')') 4749 Pos += 3; 4750 else { 4751 Pos = I; 4752 } 4753 } else { 4754 NamedParametersFound = true; 4755 Pos += 1 + Argument.size(); 4756 } 4757 } 4758 // Update the scan point. 4759 Body = Body.substr(Pos); 4760 } 4761 4762 if (!NamedParametersFound && PositionalParametersFound) 4763 Warning(DirectiveLoc, "macro defined with named parameters which are not " 4764 "used in macro body, possible positional parameter " 4765 "found in body which will have no effect"); 4766 } 4767 4768 /// parseDirectiveExitMacro 4769 /// ::= .exitm 4770 bool AsmParser::parseDirectiveExitMacro(StringRef Directive) { 4771 if (parseEOL()) 4772 return true; 4773 4774 if (!isInsideMacroInstantiation()) 4775 return TokError("unexpected '" + Directive + "' in file, " 4776 "no current macro definition"); 4777 4778 // Exit all conditionals that are active in the current macro. 4779 while (TheCondStack.size() != ActiveMacros.back()->CondStackDepth) { 4780 TheCondState = TheCondStack.back(); 4781 TheCondStack.pop_back(); 4782 } 4783 4784 handleMacroExit(); 4785 return false; 4786 } 4787 4788 /// parseDirectiveEndMacro 4789 /// ::= .endm 4790 /// ::= .endmacro 4791 bool AsmParser::parseDirectiveEndMacro(StringRef Directive) { 4792 if (getLexer().isNot(AsmToken::EndOfStatement)) 4793 return TokError("unexpected token in '" + Directive + "' directive"); 4794 4795 // If we are inside a macro instantiation, terminate the current 4796 // instantiation. 4797 if (isInsideMacroInstantiation()) { 4798 handleMacroExit(); 4799 return false; 4800 } 4801 4802 // Otherwise, this .endmacro is a stray entry in the file; well formed 4803 // .endmacro directives are handled during the macro definition parsing. 4804 return TokError("unexpected '" + Directive + "' in file, " 4805 "no current macro definition"); 4806 } 4807 4808 /// parseDirectivePurgeMacro 4809 /// ::= .purgem name 4810 bool AsmParser::parseDirectivePurgeMacro(SMLoc DirectiveLoc) { 4811 StringRef Name; 4812 SMLoc Loc; 4813 if (parseTokenLoc(Loc) || 4814 check(parseIdentifier(Name), Loc, 4815 "expected identifier in '.purgem' directive") || 4816 parseEOL()) 4817 return true; 4818 4819 if (!getContext().lookupMacro(Name)) 4820 return Error(DirectiveLoc, "macro '" + Name + "' is not defined"); 4821 4822 getContext().undefineMacro(Name); 4823 DEBUG_WITH_TYPE("asm-macros", dbgs() 4824 << "Un-defining macro: " << Name << "\n"); 4825 return false; 4826 } 4827 4828 /// parseDirectiveBundleAlignMode 4829 /// ::= {.bundle_align_mode} expression 4830 bool AsmParser::parseDirectiveBundleAlignMode() { 4831 // Expect a single argument: an expression that evaluates to a constant 4832 // in the inclusive range 0-30. 4833 SMLoc ExprLoc = getLexer().getLoc(); 4834 int64_t AlignSizePow2; 4835 if (checkForValidSection() || parseAbsoluteExpression(AlignSizePow2) || 4836 parseEOL() || 4837 check(AlignSizePow2 < 0 || AlignSizePow2 > 30, ExprLoc, 4838 "invalid bundle alignment size (expected between 0 and 30)")) 4839 return true; 4840 4841 getStreamer().emitBundleAlignMode(Align(1ULL << AlignSizePow2)); 4842 return false; 4843 } 4844 4845 /// parseDirectiveBundleLock 4846 /// ::= {.bundle_lock} [align_to_end] 4847 bool AsmParser::parseDirectiveBundleLock() { 4848 if (checkForValidSection()) 4849 return true; 4850 bool AlignToEnd = false; 4851 4852 StringRef Option; 4853 SMLoc Loc = getTok().getLoc(); 4854 const char *kInvalidOptionError = 4855 "invalid option for '.bundle_lock' directive"; 4856 4857 if (!parseOptionalToken(AsmToken::EndOfStatement)) { 4858 if (check(parseIdentifier(Option), Loc, kInvalidOptionError) || 4859 check(Option != "align_to_end", Loc, kInvalidOptionError) || parseEOL()) 4860 return true; 4861 AlignToEnd = true; 4862 } 4863 4864 getStreamer().emitBundleLock(AlignToEnd); 4865 return false; 4866 } 4867 4868 /// parseDirectiveBundleLock 4869 /// ::= {.bundle_lock} 4870 bool AsmParser::parseDirectiveBundleUnlock() { 4871 if (checkForValidSection() || parseEOL()) 4872 return true; 4873 4874 getStreamer().emitBundleUnlock(); 4875 return false; 4876 } 4877 4878 /// parseDirectiveSpace 4879 /// ::= (.skip | .space) expression [ , expression ] 4880 bool AsmParser::parseDirectiveSpace(StringRef IDVal) { 4881 SMLoc NumBytesLoc = Lexer.getLoc(); 4882 const MCExpr *NumBytes; 4883 if (checkForValidSection() || parseExpression(NumBytes)) 4884 return true; 4885 4886 int64_t FillExpr = 0; 4887 if (parseOptionalToken(AsmToken::Comma)) 4888 if (parseAbsoluteExpression(FillExpr)) 4889 return true; 4890 if (parseEOL()) 4891 return true; 4892 4893 // FIXME: Sometimes the fill expr is 'nop' if it isn't supplied, instead of 0. 4894 getStreamer().emitFill(*NumBytes, FillExpr, NumBytesLoc); 4895 4896 return false; 4897 } 4898 4899 /// parseDirectiveDCB 4900 /// ::= .dcb.{b, l, w} expression, expression 4901 bool AsmParser::parseDirectiveDCB(StringRef IDVal, unsigned Size) { 4902 SMLoc NumValuesLoc = Lexer.getLoc(); 4903 int64_t NumValues; 4904 if (checkForValidSection() || parseAbsoluteExpression(NumValues)) 4905 return true; 4906 4907 if (NumValues < 0) { 4908 Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect"); 4909 return false; 4910 } 4911 4912 if (parseComma()) 4913 return true; 4914 4915 const MCExpr *Value; 4916 SMLoc ExprLoc = getLexer().getLoc(); 4917 if (parseExpression(Value)) 4918 return true; 4919 4920 // Special case constant expressions to match code generator. 4921 if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) { 4922 assert(Size <= 8 && "Invalid size"); 4923 uint64_t IntValue = MCE->getValue(); 4924 if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue)) 4925 return Error(ExprLoc, "literal value out of range for directive"); 4926 for (uint64_t i = 0, e = NumValues; i != e; ++i) 4927 getStreamer().emitIntValue(IntValue, Size); 4928 } else { 4929 for (uint64_t i = 0, e = NumValues; i != e; ++i) 4930 getStreamer().emitValue(Value, Size, ExprLoc); 4931 } 4932 4933 return parseEOL(); 4934 } 4935 4936 /// parseDirectiveRealDCB 4937 /// ::= .dcb.{d, s} expression, expression 4938 bool AsmParser::parseDirectiveRealDCB(StringRef IDVal, const fltSemantics &Semantics) { 4939 SMLoc NumValuesLoc = Lexer.getLoc(); 4940 int64_t NumValues; 4941 if (checkForValidSection() || parseAbsoluteExpression(NumValues)) 4942 return true; 4943 4944 if (NumValues < 0) { 4945 Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect"); 4946 return false; 4947 } 4948 4949 if (parseComma()) 4950 return true; 4951 4952 APInt AsInt; 4953 if (parseRealValue(Semantics, AsInt) || parseEOL()) 4954 return true; 4955 4956 for (uint64_t i = 0, e = NumValues; i != e; ++i) 4957 getStreamer().emitIntValue(AsInt.getLimitedValue(), 4958 AsInt.getBitWidth() / 8); 4959 4960 return false; 4961 } 4962 4963 /// parseDirectiveDS 4964 /// ::= .ds.{b, d, l, p, s, w, x} expression 4965 bool AsmParser::parseDirectiveDS(StringRef IDVal, unsigned Size) { 4966 SMLoc NumValuesLoc = Lexer.getLoc(); 4967 int64_t NumValues; 4968 if (checkForValidSection() || parseAbsoluteExpression(NumValues) || 4969 parseEOL()) 4970 return true; 4971 4972 if (NumValues < 0) { 4973 Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect"); 4974 return false; 4975 } 4976 4977 for (uint64_t i = 0, e = NumValues; i != e; ++i) 4978 getStreamer().emitFill(Size, 0); 4979 4980 return false; 4981 } 4982 4983 /// parseDirectiveLEB128 4984 /// ::= (.sleb128 | .uleb128) [ expression (, expression)* ] 4985 bool AsmParser::parseDirectiveLEB128(bool Signed) { 4986 if (checkForValidSection()) 4987 return true; 4988 4989 auto parseOp = [&]() -> bool { 4990 const MCExpr *Value; 4991 if (parseExpression(Value)) 4992 return true; 4993 if (Signed) 4994 getStreamer().emitSLEB128Value(Value); 4995 else 4996 getStreamer().emitULEB128Value(Value); 4997 return false; 4998 }; 4999 5000 return parseMany(parseOp); 5001 } 5002 5003 /// parseDirectiveSymbolAttribute 5004 /// ::= { ".globl", ".weak", ... } [ identifier ( , identifier )* ] 5005 bool AsmParser::parseDirectiveSymbolAttribute(MCSymbolAttr Attr) { 5006 auto parseOp = [&]() -> bool { 5007 StringRef Name; 5008 SMLoc Loc = getTok().getLoc(); 5009 if (parseIdentifier(Name)) 5010 return Error(Loc, "expected identifier"); 5011 5012 if (discardLTOSymbol(Name)) 5013 return false; 5014 5015 MCSymbol *Sym = getContext().getOrCreateSymbol(Name); 5016 5017 // Assembler local symbols don't make any sense here, except for directives 5018 // that the symbol should be tagged. 5019 if (Sym->isTemporary() && Attr != MCSA_Memtag) 5020 return Error(Loc, "non-local symbol required"); 5021 5022 if (!getStreamer().emitSymbolAttribute(Sym, Attr)) 5023 return Error(Loc, "unable to emit symbol attribute"); 5024 return false; 5025 }; 5026 5027 return parseMany(parseOp); 5028 } 5029 5030 /// parseDirectiveComm 5031 /// ::= ( .comm | .lcomm ) identifier , size_expression [ , align_expression ] 5032 bool AsmParser::parseDirectiveComm(bool IsLocal) { 5033 if (checkForValidSection()) 5034 return true; 5035 5036 SMLoc IDLoc = getLexer().getLoc(); 5037 StringRef Name; 5038 if (parseIdentifier(Name)) 5039 return TokError("expected identifier in directive"); 5040 5041 // Handle the identifier as the key symbol. 5042 MCSymbol *Sym = getContext().getOrCreateSymbol(Name); 5043 5044 if (parseComma()) 5045 return true; 5046 5047 int64_t Size; 5048 SMLoc SizeLoc = getLexer().getLoc(); 5049 if (parseAbsoluteExpression(Size)) 5050 return true; 5051 5052 int64_t Pow2Alignment = 0; 5053 SMLoc Pow2AlignmentLoc; 5054 if (getLexer().is(AsmToken::Comma)) { 5055 Lex(); 5056 Pow2AlignmentLoc = getLexer().getLoc(); 5057 if (parseAbsoluteExpression(Pow2Alignment)) 5058 return true; 5059 5060 LCOMM::LCOMMType LCOMM = Lexer.getMAI().getLCOMMDirectiveAlignmentType(); 5061 if (IsLocal && LCOMM == LCOMM::NoAlignment) 5062 return Error(Pow2AlignmentLoc, "alignment not supported on this target"); 5063 5064 // If this target takes alignments in bytes (not log) validate and convert. 5065 if ((!IsLocal && Lexer.getMAI().getCOMMDirectiveAlignmentIsInBytes()) || 5066 (IsLocal && LCOMM == LCOMM::ByteAlignment)) { 5067 if (!isPowerOf2_64(Pow2Alignment)) 5068 return Error(Pow2AlignmentLoc, "alignment must be a power of 2"); 5069 Pow2Alignment = Log2_64(Pow2Alignment); 5070 } 5071 } 5072 5073 if (parseEOL()) 5074 return true; 5075 5076 // NOTE: a size of zero for a .comm should create a undefined symbol 5077 // but a size of .lcomm creates a bss symbol of size zero. 5078 if (Size < 0) 5079 return Error(SizeLoc, "size must be non-negative"); 5080 5081 Sym->redefineIfPossible(); 5082 if (!Sym->isUndefined()) 5083 return Error(IDLoc, "invalid symbol redefinition"); 5084 5085 // Create the Symbol as a common or local common with Size and Pow2Alignment 5086 if (IsLocal) { 5087 getStreamer().emitLocalCommonSymbol(Sym, Size, 5088 Align(1ULL << Pow2Alignment)); 5089 return false; 5090 } 5091 5092 getStreamer().emitCommonSymbol(Sym, Size, Align(1ULL << Pow2Alignment)); 5093 return false; 5094 } 5095 5096 /// parseDirectiveAbort 5097 /// ::= .abort [... message ...] 5098 bool AsmParser::parseDirectiveAbort(SMLoc DirectiveLoc) { 5099 StringRef Str = parseStringToEndOfStatement(); 5100 if (parseEOL()) 5101 return true; 5102 5103 if (Str.empty()) 5104 return Error(DirectiveLoc, ".abort detected. Assembly stopping"); 5105 5106 // FIXME: Actually abort assembly here. 5107 return Error(DirectiveLoc, 5108 ".abort '" + Str + "' detected. Assembly stopping"); 5109 } 5110 5111 /// parseDirectiveInclude 5112 /// ::= .include "filename" 5113 bool AsmParser::parseDirectiveInclude() { 5114 // Allow the strings to have escaped octal character sequence. 5115 std::string Filename; 5116 SMLoc IncludeLoc = getTok().getLoc(); 5117 5118 if (check(getTok().isNot(AsmToken::String), 5119 "expected string in '.include' directive") || 5120 parseEscapedString(Filename) || 5121 check(getTok().isNot(AsmToken::EndOfStatement), 5122 "unexpected token in '.include' directive") || 5123 // Attempt to switch the lexer to the included file before consuming the 5124 // end of statement to avoid losing it when we switch. 5125 check(enterIncludeFile(Filename), IncludeLoc, 5126 "Could not find include file '" + Filename + "'")) 5127 return true; 5128 5129 return false; 5130 } 5131 5132 /// parseDirectiveIncbin 5133 /// ::= .incbin "filename" [ , skip [ , count ] ] 5134 bool AsmParser::parseDirectiveIncbin() { 5135 // Allow the strings to have escaped octal character sequence. 5136 std::string Filename; 5137 SMLoc IncbinLoc = getTok().getLoc(); 5138 if (check(getTok().isNot(AsmToken::String), 5139 "expected string in '.incbin' directive") || 5140 parseEscapedString(Filename)) 5141 return true; 5142 5143 int64_t Skip = 0; 5144 const MCExpr *Count = nullptr; 5145 SMLoc SkipLoc, CountLoc; 5146 if (parseOptionalToken(AsmToken::Comma)) { 5147 // The skip expression can be omitted while specifying the count, e.g: 5148 // .incbin "filename",,4 5149 if (getTok().isNot(AsmToken::Comma)) { 5150 if (parseTokenLoc(SkipLoc) || parseAbsoluteExpression(Skip)) 5151 return true; 5152 } 5153 if (parseOptionalToken(AsmToken::Comma)) { 5154 CountLoc = getTok().getLoc(); 5155 if (parseExpression(Count)) 5156 return true; 5157 } 5158 } 5159 5160 if (parseEOL()) 5161 return true; 5162 5163 if (check(Skip < 0, SkipLoc, "skip is negative")) 5164 return true; 5165 5166 // Attempt to process the included file. 5167 if (processIncbinFile(Filename, Skip, Count, CountLoc)) 5168 return Error(IncbinLoc, "Could not find incbin file '" + Filename + "'"); 5169 return false; 5170 } 5171 5172 /// parseDirectiveIf 5173 /// ::= .if{,eq,ge,gt,le,lt,ne} expression 5174 bool AsmParser::parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind) { 5175 TheCondStack.push_back(TheCondState); 5176 TheCondState.TheCond = AsmCond::IfCond; 5177 if (TheCondState.Ignore) { 5178 eatToEndOfStatement(); 5179 } else { 5180 int64_t ExprValue; 5181 if (parseAbsoluteExpression(ExprValue) || parseEOL()) 5182 return true; 5183 5184 switch (DirKind) { 5185 default: 5186 llvm_unreachable("unsupported directive"); 5187 case DK_IF: 5188 case DK_IFNE: 5189 break; 5190 case DK_IFEQ: 5191 ExprValue = ExprValue == 0; 5192 break; 5193 case DK_IFGE: 5194 ExprValue = ExprValue >= 0; 5195 break; 5196 case DK_IFGT: 5197 ExprValue = ExprValue > 0; 5198 break; 5199 case DK_IFLE: 5200 ExprValue = ExprValue <= 0; 5201 break; 5202 case DK_IFLT: 5203 ExprValue = ExprValue < 0; 5204 break; 5205 } 5206 5207 TheCondState.CondMet = ExprValue; 5208 TheCondState.Ignore = !TheCondState.CondMet; 5209 } 5210 5211 return false; 5212 } 5213 5214 /// parseDirectiveIfb 5215 /// ::= .ifb string 5216 bool AsmParser::parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank) { 5217 TheCondStack.push_back(TheCondState); 5218 TheCondState.TheCond = AsmCond::IfCond; 5219 5220 if (TheCondState.Ignore) { 5221 eatToEndOfStatement(); 5222 } else { 5223 StringRef Str = parseStringToEndOfStatement(); 5224 5225 if (parseEOL()) 5226 return true; 5227 5228 TheCondState.CondMet = ExpectBlank == Str.empty(); 5229 TheCondState.Ignore = !TheCondState.CondMet; 5230 } 5231 5232 return false; 5233 } 5234 5235 /// parseDirectiveIfc 5236 /// ::= .ifc string1, string2 5237 /// ::= .ifnc string1, string2 5238 bool AsmParser::parseDirectiveIfc(SMLoc DirectiveLoc, bool ExpectEqual) { 5239 TheCondStack.push_back(TheCondState); 5240 TheCondState.TheCond = AsmCond::IfCond; 5241 5242 if (TheCondState.Ignore) { 5243 eatToEndOfStatement(); 5244 } else { 5245 StringRef Str1 = parseStringToComma(); 5246 5247 if (parseComma()) 5248 return true; 5249 5250 StringRef Str2 = parseStringToEndOfStatement(); 5251 5252 if (parseEOL()) 5253 return true; 5254 5255 TheCondState.CondMet = ExpectEqual == (Str1.trim() == Str2.trim()); 5256 TheCondState.Ignore = !TheCondState.CondMet; 5257 } 5258 5259 return false; 5260 } 5261 5262 /// parseDirectiveIfeqs 5263 /// ::= .ifeqs string1, string2 5264 bool AsmParser::parseDirectiveIfeqs(SMLoc DirectiveLoc, bool ExpectEqual) { 5265 if (Lexer.isNot(AsmToken::String)) { 5266 if (ExpectEqual) 5267 return TokError("expected string parameter for '.ifeqs' directive"); 5268 return TokError("expected string parameter for '.ifnes' directive"); 5269 } 5270 5271 StringRef String1 = getTok().getStringContents(); 5272 Lex(); 5273 5274 if (Lexer.isNot(AsmToken::Comma)) { 5275 if (ExpectEqual) 5276 return TokError( 5277 "expected comma after first string for '.ifeqs' directive"); 5278 return TokError("expected comma after first string for '.ifnes' directive"); 5279 } 5280 5281 Lex(); 5282 5283 if (Lexer.isNot(AsmToken::String)) { 5284 if (ExpectEqual) 5285 return TokError("expected string parameter for '.ifeqs' directive"); 5286 return TokError("expected string parameter for '.ifnes' directive"); 5287 } 5288 5289 StringRef String2 = getTok().getStringContents(); 5290 Lex(); 5291 5292 TheCondStack.push_back(TheCondState); 5293 TheCondState.TheCond = AsmCond::IfCond; 5294 TheCondState.CondMet = ExpectEqual == (String1 == String2); 5295 TheCondState.Ignore = !TheCondState.CondMet; 5296 5297 return false; 5298 } 5299 5300 /// parseDirectiveIfdef 5301 /// ::= .ifdef symbol 5302 bool AsmParser::parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined) { 5303 StringRef Name; 5304 TheCondStack.push_back(TheCondState); 5305 TheCondState.TheCond = AsmCond::IfCond; 5306 5307 if (TheCondState.Ignore) { 5308 eatToEndOfStatement(); 5309 } else { 5310 if (check(parseIdentifier(Name), "expected identifier after '.ifdef'") || 5311 parseEOL()) 5312 return true; 5313 5314 MCSymbol *Sym = getContext().lookupSymbol(Name); 5315 5316 if (expect_defined) 5317 TheCondState.CondMet = (Sym && !Sym->isUndefined(false)); 5318 else 5319 TheCondState.CondMet = (!Sym || Sym->isUndefined(false)); 5320 TheCondState.Ignore = !TheCondState.CondMet; 5321 } 5322 5323 return false; 5324 } 5325 5326 /// parseDirectiveElseIf 5327 /// ::= .elseif expression 5328 bool AsmParser::parseDirectiveElseIf(SMLoc DirectiveLoc) { 5329 if (TheCondState.TheCond != AsmCond::IfCond && 5330 TheCondState.TheCond != AsmCond::ElseIfCond) 5331 return Error(DirectiveLoc, "Encountered a .elseif that doesn't follow an" 5332 " .if or an .elseif"); 5333 TheCondState.TheCond = AsmCond::ElseIfCond; 5334 5335 bool LastIgnoreState = false; 5336 if (!TheCondStack.empty()) 5337 LastIgnoreState = TheCondStack.back().Ignore; 5338 if (LastIgnoreState || TheCondState.CondMet) { 5339 TheCondState.Ignore = true; 5340 eatToEndOfStatement(); 5341 } else { 5342 int64_t ExprValue; 5343 if (parseAbsoluteExpression(ExprValue)) 5344 return true; 5345 5346 if (parseEOL()) 5347 return true; 5348 5349 TheCondState.CondMet = ExprValue; 5350 TheCondState.Ignore = !TheCondState.CondMet; 5351 } 5352 5353 return false; 5354 } 5355 5356 /// parseDirectiveElse 5357 /// ::= .else 5358 bool AsmParser::parseDirectiveElse(SMLoc DirectiveLoc) { 5359 if (parseEOL()) 5360 return true; 5361 5362 if (TheCondState.TheCond != AsmCond::IfCond && 5363 TheCondState.TheCond != AsmCond::ElseIfCond) 5364 return Error(DirectiveLoc, "Encountered a .else that doesn't follow " 5365 " an .if or an .elseif"); 5366 TheCondState.TheCond = AsmCond::ElseCond; 5367 bool LastIgnoreState = false; 5368 if (!TheCondStack.empty()) 5369 LastIgnoreState = TheCondStack.back().Ignore; 5370 if (LastIgnoreState || TheCondState.CondMet) 5371 TheCondState.Ignore = true; 5372 else 5373 TheCondState.Ignore = false; 5374 5375 return false; 5376 } 5377 5378 /// parseDirectiveEnd 5379 /// ::= .end 5380 bool AsmParser::parseDirectiveEnd(SMLoc DirectiveLoc) { 5381 if (parseEOL()) 5382 return true; 5383 5384 while (Lexer.isNot(AsmToken::Eof)) 5385 Lexer.Lex(); 5386 5387 return false; 5388 } 5389 5390 /// parseDirectiveError 5391 /// ::= .err 5392 /// ::= .error [string] 5393 bool AsmParser::parseDirectiveError(SMLoc L, bool WithMessage) { 5394 if (!TheCondStack.empty()) { 5395 if (TheCondStack.back().Ignore) { 5396 eatToEndOfStatement(); 5397 return false; 5398 } 5399 } 5400 5401 if (!WithMessage) 5402 return Error(L, ".err encountered"); 5403 5404 StringRef Message = ".error directive invoked in source file"; 5405 if (Lexer.isNot(AsmToken::EndOfStatement)) { 5406 if (Lexer.isNot(AsmToken::String)) 5407 return TokError(".error argument must be a string"); 5408 5409 Message = getTok().getStringContents(); 5410 Lex(); 5411 } 5412 5413 return Error(L, Message); 5414 } 5415 5416 /// parseDirectiveWarning 5417 /// ::= .warning [string] 5418 bool AsmParser::parseDirectiveWarning(SMLoc L) { 5419 if (!TheCondStack.empty()) { 5420 if (TheCondStack.back().Ignore) { 5421 eatToEndOfStatement(); 5422 return false; 5423 } 5424 } 5425 5426 StringRef Message = ".warning directive invoked in source file"; 5427 5428 if (!parseOptionalToken(AsmToken::EndOfStatement)) { 5429 if (Lexer.isNot(AsmToken::String)) 5430 return TokError(".warning argument must be a string"); 5431 5432 Message = getTok().getStringContents(); 5433 Lex(); 5434 if (parseEOL()) 5435 return true; 5436 } 5437 5438 return Warning(L, Message); 5439 } 5440 5441 /// parseDirectiveEndIf 5442 /// ::= .endif 5443 bool AsmParser::parseDirectiveEndIf(SMLoc DirectiveLoc) { 5444 if (parseEOL()) 5445 return true; 5446 5447 if ((TheCondState.TheCond == AsmCond::NoCond) || TheCondStack.empty()) 5448 return Error(DirectiveLoc, "Encountered a .endif that doesn't follow " 5449 "an .if or .else"); 5450 if (!TheCondStack.empty()) { 5451 TheCondState = TheCondStack.back(); 5452 TheCondStack.pop_back(); 5453 } 5454 5455 return false; 5456 } 5457 5458 void AsmParser::initializeDirectiveKindMap() { 5459 /* Lookup will be done with the directive 5460 * converted to lower case, so all these 5461 * keys should be lower case. 5462 * (target specific directives are handled 5463 * elsewhere) 5464 */ 5465 DirectiveKindMap[".set"] = DK_SET; 5466 DirectiveKindMap[".equ"] = DK_EQU; 5467 DirectiveKindMap[".equiv"] = DK_EQUIV; 5468 DirectiveKindMap[".ascii"] = DK_ASCII; 5469 DirectiveKindMap[".asciz"] = DK_ASCIZ; 5470 DirectiveKindMap[".string"] = DK_STRING; 5471 DirectiveKindMap[".byte"] = DK_BYTE; 5472 DirectiveKindMap[".short"] = DK_SHORT; 5473 DirectiveKindMap[".value"] = DK_VALUE; 5474 DirectiveKindMap[".2byte"] = DK_2BYTE; 5475 DirectiveKindMap[".long"] = DK_LONG; 5476 DirectiveKindMap[".int"] = DK_INT; 5477 DirectiveKindMap[".4byte"] = DK_4BYTE; 5478 DirectiveKindMap[".quad"] = DK_QUAD; 5479 DirectiveKindMap[".8byte"] = DK_8BYTE; 5480 DirectiveKindMap[".octa"] = DK_OCTA; 5481 DirectiveKindMap[".single"] = DK_SINGLE; 5482 DirectiveKindMap[".float"] = DK_FLOAT; 5483 DirectiveKindMap[".double"] = DK_DOUBLE; 5484 DirectiveKindMap[".align"] = DK_ALIGN; 5485 DirectiveKindMap[".align32"] = DK_ALIGN32; 5486 DirectiveKindMap[".balign"] = DK_BALIGN; 5487 DirectiveKindMap[".balignw"] = DK_BALIGNW; 5488 DirectiveKindMap[".balignl"] = DK_BALIGNL; 5489 DirectiveKindMap[".p2align"] = DK_P2ALIGN; 5490 DirectiveKindMap[".p2alignw"] = DK_P2ALIGNW; 5491 DirectiveKindMap[".p2alignl"] = DK_P2ALIGNL; 5492 DirectiveKindMap[".org"] = DK_ORG; 5493 DirectiveKindMap[".fill"] = DK_FILL; 5494 DirectiveKindMap[".zero"] = DK_ZERO; 5495 DirectiveKindMap[".extern"] = DK_EXTERN; 5496 DirectiveKindMap[".globl"] = DK_GLOBL; 5497 DirectiveKindMap[".global"] = DK_GLOBAL; 5498 DirectiveKindMap[".lazy_reference"] = DK_LAZY_REFERENCE; 5499 DirectiveKindMap[".no_dead_strip"] = DK_NO_DEAD_STRIP; 5500 DirectiveKindMap[".symbol_resolver"] = DK_SYMBOL_RESOLVER; 5501 DirectiveKindMap[".private_extern"] = DK_PRIVATE_EXTERN; 5502 DirectiveKindMap[".reference"] = DK_REFERENCE; 5503 DirectiveKindMap[".weak_definition"] = DK_WEAK_DEFINITION; 5504 DirectiveKindMap[".weak_reference"] = DK_WEAK_REFERENCE; 5505 DirectiveKindMap[".weak_def_can_be_hidden"] = DK_WEAK_DEF_CAN_BE_HIDDEN; 5506 DirectiveKindMap[".cold"] = DK_COLD; 5507 DirectiveKindMap[".comm"] = DK_COMM; 5508 DirectiveKindMap[".common"] = DK_COMMON; 5509 DirectiveKindMap[".lcomm"] = DK_LCOMM; 5510 DirectiveKindMap[".abort"] = DK_ABORT; 5511 DirectiveKindMap[".include"] = DK_INCLUDE; 5512 DirectiveKindMap[".incbin"] = DK_INCBIN; 5513 DirectiveKindMap[".code16"] = DK_CODE16; 5514 DirectiveKindMap[".code16gcc"] = DK_CODE16GCC; 5515 DirectiveKindMap[".rept"] = DK_REPT; 5516 DirectiveKindMap[".rep"] = DK_REPT; 5517 DirectiveKindMap[".irp"] = DK_IRP; 5518 DirectiveKindMap[".irpc"] = DK_IRPC; 5519 DirectiveKindMap[".endr"] = DK_ENDR; 5520 DirectiveKindMap[".bundle_align_mode"] = DK_BUNDLE_ALIGN_MODE; 5521 DirectiveKindMap[".bundle_lock"] = DK_BUNDLE_LOCK; 5522 DirectiveKindMap[".bundle_unlock"] = DK_BUNDLE_UNLOCK; 5523 DirectiveKindMap[".if"] = DK_IF; 5524 DirectiveKindMap[".ifeq"] = DK_IFEQ; 5525 DirectiveKindMap[".ifge"] = DK_IFGE; 5526 DirectiveKindMap[".ifgt"] = DK_IFGT; 5527 DirectiveKindMap[".ifle"] = DK_IFLE; 5528 DirectiveKindMap[".iflt"] = DK_IFLT; 5529 DirectiveKindMap[".ifne"] = DK_IFNE; 5530 DirectiveKindMap[".ifb"] = DK_IFB; 5531 DirectiveKindMap[".ifnb"] = DK_IFNB; 5532 DirectiveKindMap[".ifc"] = DK_IFC; 5533 DirectiveKindMap[".ifeqs"] = DK_IFEQS; 5534 DirectiveKindMap[".ifnc"] = DK_IFNC; 5535 DirectiveKindMap[".ifnes"] = DK_IFNES; 5536 DirectiveKindMap[".ifdef"] = DK_IFDEF; 5537 DirectiveKindMap[".ifndef"] = DK_IFNDEF; 5538 DirectiveKindMap[".ifnotdef"] = DK_IFNOTDEF; 5539 DirectiveKindMap[".elseif"] = DK_ELSEIF; 5540 DirectiveKindMap[".else"] = DK_ELSE; 5541 DirectiveKindMap[".end"] = DK_END; 5542 DirectiveKindMap[".endif"] = DK_ENDIF; 5543 DirectiveKindMap[".skip"] = DK_SKIP; 5544 DirectiveKindMap[".space"] = DK_SPACE; 5545 DirectiveKindMap[".file"] = DK_FILE; 5546 DirectiveKindMap[".line"] = DK_LINE; 5547 DirectiveKindMap[".loc"] = DK_LOC; 5548 DirectiveKindMap[".stabs"] = DK_STABS; 5549 DirectiveKindMap[".cv_file"] = DK_CV_FILE; 5550 DirectiveKindMap[".cv_func_id"] = DK_CV_FUNC_ID; 5551 DirectiveKindMap[".cv_loc"] = DK_CV_LOC; 5552 DirectiveKindMap[".cv_linetable"] = DK_CV_LINETABLE; 5553 DirectiveKindMap[".cv_inline_linetable"] = DK_CV_INLINE_LINETABLE; 5554 DirectiveKindMap[".cv_inline_site_id"] = DK_CV_INLINE_SITE_ID; 5555 DirectiveKindMap[".cv_def_range"] = DK_CV_DEF_RANGE; 5556 DirectiveKindMap[".cv_string"] = DK_CV_STRING; 5557 DirectiveKindMap[".cv_stringtable"] = DK_CV_STRINGTABLE; 5558 DirectiveKindMap[".cv_filechecksums"] = DK_CV_FILECHECKSUMS; 5559 DirectiveKindMap[".cv_filechecksumoffset"] = DK_CV_FILECHECKSUM_OFFSET; 5560 DirectiveKindMap[".cv_fpo_data"] = DK_CV_FPO_DATA; 5561 DirectiveKindMap[".sleb128"] = DK_SLEB128; 5562 DirectiveKindMap[".uleb128"] = DK_ULEB128; 5563 DirectiveKindMap[".cfi_sections"] = DK_CFI_SECTIONS; 5564 DirectiveKindMap[".cfi_startproc"] = DK_CFI_STARTPROC; 5565 DirectiveKindMap[".cfi_endproc"] = DK_CFI_ENDPROC; 5566 DirectiveKindMap[".cfi_def_cfa"] = DK_CFI_DEF_CFA; 5567 DirectiveKindMap[".cfi_def_cfa_offset"] = DK_CFI_DEF_CFA_OFFSET; 5568 DirectiveKindMap[".cfi_adjust_cfa_offset"] = DK_CFI_ADJUST_CFA_OFFSET; 5569 DirectiveKindMap[".cfi_def_cfa_register"] = DK_CFI_DEF_CFA_REGISTER; 5570 DirectiveKindMap[".cfi_llvm_def_aspace_cfa"] = DK_CFI_LLVM_DEF_ASPACE_CFA; 5571 DirectiveKindMap[".cfi_offset"] = DK_CFI_OFFSET; 5572 DirectiveKindMap[".cfi_rel_offset"] = DK_CFI_REL_OFFSET; 5573 DirectiveKindMap[".cfi_personality"] = DK_CFI_PERSONALITY; 5574 DirectiveKindMap[".cfi_lsda"] = DK_CFI_LSDA; 5575 DirectiveKindMap[".cfi_remember_state"] = DK_CFI_REMEMBER_STATE; 5576 DirectiveKindMap[".cfi_restore_state"] = DK_CFI_RESTORE_STATE; 5577 DirectiveKindMap[".cfi_same_value"] = DK_CFI_SAME_VALUE; 5578 DirectiveKindMap[".cfi_restore"] = DK_CFI_RESTORE; 5579 DirectiveKindMap[".cfi_escape"] = DK_CFI_ESCAPE; 5580 DirectiveKindMap[".cfi_return_column"] = DK_CFI_RETURN_COLUMN; 5581 DirectiveKindMap[".cfi_signal_frame"] = DK_CFI_SIGNAL_FRAME; 5582 DirectiveKindMap[".cfi_undefined"] = DK_CFI_UNDEFINED; 5583 DirectiveKindMap[".cfi_register"] = DK_CFI_REGISTER; 5584 DirectiveKindMap[".cfi_window_save"] = DK_CFI_WINDOW_SAVE; 5585 DirectiveKindMap[".cfi_label"] = DK_CFI_LABEL; 5586 DirectiveKindMap[".cfi_b_key_frame"] = DK_CFI_B_KEY_FRAME; 5587 DirectiveKindMap[".cfi_mte_tagged_frame"] = DK_CFI_MTE_TAGGED_FRAME; 5588 DirectiveKindMap[".macros_on"] = DK_MACROS_ON; 5589 DirectiveKindMap[".macros_off"] = DK_MACROS_OFF; 5590 DirectiveKindMap[".macro"] = DK_MACRO; 5591 DirectiveKindMap[".exitm"] = DK_EXITM; 5592 DirectiveKindMap[".endm"] = DK_ENDM; 5593 DirectiveKindMap[".endmacro"] = DK_ENDMACRO; 5594 DirectiveKindMap[".purgem"] = DK_PURGEM; 5595 DirectiveKindMap[".err"] = DK_ERR; 5596 DirectiveKindMap[".error"] = DK_ERROR; 5597 DirectiveKindMap[".warning"] = DK_WARNING; 5598 DirectiveKindMap[".altmacro"] = DK_ALTMACRO; 5599 DirectiveKindMap[".noaltmacro"] = DK_NOALTMACRO; 5600 DirectiveKindMap[".reloc"] = DK_RELOC; 5601 DirectiveKindMap[".dc"] = DK_DC; 5602 DirectiveKindMap[".dc.a"] = DK_DC_A; 5603 DirectiveKindMap[".dc.b"] = DK_DC_B; 5604 DirectiveKindMap[".dc.d"] = DK_DC_D; 5605 DirectiveKindMap[".dc.l"] = DK_DC_L; 5606 DirectiveKindMap[".dc.s"] = DK_DC_S; 5607 DirectiveKindMap[".dc.w"] = DK_DC_W; 5608 DirectiveKindMap[".dc.x"] = DK_DC_X; 5609 DirectiveKindMap[".dcb"] = DK_DCB; 5610 DirectiveKindMap[".dcb.b"] = DK_DCB_B; 5611 DirectiveKindMap[".dcb.d"] = DK_DCB_D; 5612 DirectiveKindMap[".dcb.l"] = DK_DCB_L; 5613 DirectiveKindMap[".dcb.s"] = DK_DCB_S; 5614 DirectiveKindMap[".dcb.w"] = DK_DCB_W; 5615 DirectiveKindMap[".dcb.x"] = DK_DCB_X; 5616 DirectiveKindMap[".ds"] = DK_DS; 5617 DirectiveKindMap[".ds.b"] = DK_DS_B; 5618 DirectiveKindMap[".ds.d"] = DK_DS_D; 5619 DirectiveKindMap[".ds.l"] = DK_DS_L; 5620 DirectiveKindMap[".ds.p"] = DK_DS_P; 5621 DirectiveKindMap[".ds.s"] = DK_DS_S; 5622 DirectiveKindMap[".ds.w"] = DK_DS_W; 5623 DirectiveKindMap[".ds.x"] = DK_DS_X; 5624 DirectiveKindMap[".print"] = DK_PRINT; 5625 DirectiveKindMap[".addrsig"] = DK_ADDRSIG; 5626 DirectiveKindMap[".addrsig_sym"] = DK_ADDRSIG_SYM; 5627 DirectiveKindMap[".pseudoprobe"] = DK_PSEUDO_PROBE; 5628 DirectiveKindMap[".lto_discard"] = DK_LTO_DISCARD; 5629 DirectiveKindMap[".lto_set_conditional"] = DK_LTO_SET_CONDITIONAL; 5630 DirectiveKindMap[".memtag"] = DK_MEMTAG; 5631 } 5632 5633 MCAsmMacro *AsmParser::parseMacroLikeBody(SMLoc DirectiveLoc) { 5634 AsmToken EndToken, StartToken = getTok(); 5635 5636 unsigned NestLevel = 0; 5637 while (true) { 5638 // Check whether we have reached the end of the file. 5639 if (getLexer().is(AsmToken::Eof)) { 5640 printError(DirectiveLoc, "no matching '.endr' in definition"); 5641 return nullptr; 5642 } 5643 5644 if (Lexer.is(AsmToken::Identifier)) { 5645 StringRef Ident = getTok().getIdentifier(); 5646 if (Ident == ".rep" || Ident == ".rept" || Ident == ".irp" || 5647 Ident == ".irpc") { 5648 ++NestLevel; 5649 } else if (Ident == ".endr") { 5650 if (NestLevel == 0) { 5651 EndToken = getTok(); 5652 Lex(); 5653 if (Lexer.is(AsmToken::EndOfStatement)) 5654 break; 5655 printError(getTok().getLoc(), "expected newline"); 5656 return nullptr; 5657 } 5658 --NestLevel; 5659 } 5660 } 5661 5662 // Otherwise, scan till the end of the statement. 5663 eatToEndOfStatement(); 5664 } 5665 5666 const char *BodyStart = StartToken.getLoc().getPointer(); 5667 const char *BodyEnd = EndToken.getLoc().getPointer(); 5668 StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart); 5669 5670 // We Are Anonymous. 5671 MacroLikeBodies.emplace_back(StringRef(), Body, MCAsmMacroParameters()); 5672 return &MacroLikeBodies.back(); 5673 } 5674 5675 void AsmParser::instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc, 5676 raw_svector_ostream &OS) { 5677 OS << ".endr\n"; 5678 5679 std::unique_ptr<MemoryBuffer> Instantiation = 5680 MemoryBuffer::getMemBufferCopy(OS.str(), "<instantiation>"); 5681 5682 // Create the macro instantiation object and add to the current macro 5683 // instantiation stack. 5684 MacroInstantiation *MI = new MacroInstantiation{ 5685 DirectiveLoc, CurBuffer, getTok().getLoc(), TheCondStack.size()}; 5686 ActiveMacros.push_back(MI); 5687 5688 // Jump to the macro instantiation and prime the lexer. 5689 CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc()); 5690 Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); 5691 Lex(); 5692 } 5693 5694 /// parseDirectiveRept 5695 /// ::= .rep | .rept count 5696 bool AsmParser::parseDirectiveRept(SMLoc DirectiveLoc, StringRef Dir) { 5697 const MCExpr *CountExpr; 5698 SMLoc CountLoc = getTok().getLoc(); 5699 if (parseExpression(CountExpr)) 5700 return true; 5701 5702 int64_t Count; 5703 if (!CountExpr->evaluateAsAbsolute(Count, getStreamer().getAssemblerPtr())) { 5704 return Error(CountLoc, "unexpected token in '" + Dir + "' directive"); 5705 } 5706 5707 if (check(Count < 0, CountLoc, "Count is negative") || parseEOL()) 5708 return true; 5709 5710 // Lex the rept definition. 5711 MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc); 5712 if (!M) 5713 return true; 5714 5715 // Macro instantiation is lexical, unfortunately. We construct a new buffer 5716 // to hold the macro body with substitutions. 5717 SmallString<256> Buf; 5718 raw_svector_ostream OS(Buf); 5719 while (Count--) { 5720 // Note that the AtPseudoVariable is disabled for instantiations of .rep(t). 5721 if (expandMacro(OS, *M, std::nullopt, std::nullopt, false)) 5722 return true; 5723 } 5724 instantiateMacroLikeBody(M, DirectiveLoc, OS); 5725 5726 return false; 5727 } 5728 5729 /// parseDirectiveIrp 5730 /// ::= .irp symbol,values 5731 bool AsmParser::parseDirectiveIrp(SMLoc DirectiveLoc) { 5732 MCAsmMacroParameter Parameter; 5733 MCAsmMacroArguments A; 5734 if (check(parseIdentifier(Parameter.Name), 5735 "expected identifier in '.irp' directive") || 5736 parseComma() || parseMacroArguments(nullptr, A) || parseEOL()) 5737 return true; 5738 5739 // Lex the irp definition. 5740 MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc); 5741 if (!M) 5742 return true; 5743 5744 // Macro instantiation is lexical, unfortunately. We construct a new buffer 5745 // to hold the macro body with substitutions. 5746 SmallString<256> Buf; 5747 raw_svector_ostream OS(Buf); 5748 5749 for (const MCAsmMacroArgument &Arg : A) { 5750 // Note that the AtPseudoVariable is enabled for instantiations of .irp. 5751 // This is undocumented, but GAS seems to support it. 5752 if (expandMacro(OS, *M, Parameter, Arg, true)) 5753 return true; 5754 } 5755 5756 instantiateMacroLikeBody(M, DirectiveLoc, OS); 5757 5758 return false; 5759 } 5760 5761 /// parseDirectiveIrpc 5762 /// ::= .irpc symbol,values 5763 bool AsmParser::parseDirectiveIrpc(SMLoc DirectiveLoc) { 5764 MCAsmMacroParameter Parameter; 5765 MCAsmMacroArguments A; 5766 5767 if (check(parseIdentifier(Parameter.Name), 5768 "expected identifier in '.irpc' directive") || 5769 parseComma() || parseMacroArguments(nullptr, A)) 5770 return true; 5771 5772 if (A.size() != 1 || A.front().size() != 1) 5773 return TokError("unexpected token in '.irpc' directive"); 5774 if (parseEOL()) 5775 return true; 5776 5777 // Lex the irpc definition. 5778 MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc); 5779 if (!M) 5780 return true; 5781 5782 // Macro instantiation is lexical, unfortunately. We construct a new buffer 5783 // to hold the macro body with substitutions. 5784 SmallString<256> Buf; 5785 raw_svector_ostream OS(Buf); 5786 5787 StringRef Values = A.front().front().getString(); 5788 for (std::size_t I = 0, End = Values.size(); I != End; ++I) { 5789 MCAsmMacroArgument Arg; 5790 Arg.emplace_back(AsmToken::Identifier, Values.slice(I, I + 1)); 5791 5792 // Note that the AtPseudoVariable is enabled for instantiations of .irpc. 5793 // This is undocumented, but GAS seems to support it. 5794 if (expandMacro(OS, *M, Parameter, Arg, true)) 5795 return true; 5796 } 5797 5798 instantiateMacroLikeBody(M, DirectiveLoc, OS); 5799 5800 return false; 5801 } 5802 5803 bool AsmParser::parseDirectiveEndr(SMLoc DirectiveLoc) { 5804 if (ActiveMacros.empty()) 5805 return TokError("unmatched '.endr' directive"); 5806 5807 // The only .repl that should get here are the ones created by 5808 // instantiateMacroLikeBody. 5809 assert(getLexer().is(AsmToken::EndOfStatement)); 5810 5811 handleMacroExit(); 5812 return false; 5813 } 5814 5815 bool AsmParser::parseDirectiveMSEmit(SMLoc IDLoc, ParseStatementInfo &Info, 5816 size_t Len) { 5817 const MCExpr *Value; 5818 SMLoc ExprLoc = getLexer().getLoc(); 5819 if (parseExpression(Value)) 5820 return true; 5821 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value); 5822 if (!MCE) 5823 return Error(ExprLoc, "unexpected expression in _emit"); 5824 uint64_t IntValue = MCE->getValue(); 5825 if (!isUInt<8>(IntValue) && !isInt<8>(IntValue)) 5826 return Error(ExprLoc, "literal value out of range for directive"); 5827 5828 Info.AsmRewrites->emplace_back(AOK_Emit, IDLoc, Len); 5829 return false; 5830 } 5831 5832 bool AsmParser::parseDirectiveMSAlign(SMLoc IDLoc, ParseStatementInfo &Info) { 5833 const MCExpr *Value; 5834 SMLoc ExprLoc = getLexer().getLoc(); 5835 if (parseExpression(Value)) 5836 return true; 5837 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value); 5838 if (!MCE) 5839 return Error(ExprLoc, "unexpected expression in align"); 5840 uint64_t IntValue = MCE->getValue(); 5841 if (!isPowerOf2_64(IntValue)) 5842 return Error(ExprLoc, "literal value not a power of two greater then zero"); 5843 5844 Info.AsmRewrites->emplace_back(AOK_Align, IDLoc, 5, Log2_64(IntValue)); 5845 return false; 5846 } 5847 5848 bool AsmParser::parseDirectivePrint(SMLoc DirectiveLoc) { 5849 const AsmToken StrTok = getTok(); 5850 Lex(); 5851 if (StrTok.isNot(AsmToken::String) || StrTok.getString().front() != '"') 5852 return Error(DirectiveLoc, "expected double quoted string after .print"); 5853 if (parseEOL()) 5854 return true; 5855 llvm::outs() << StrTok.getStringContents() << '\n'; 5856 return false; 5857 } 5858 5859 bool AsmParser::parseDirectiveAddrsig() { 5860 if (parseEOL()) 5861 return true; 5862 getStreamer().emitAddrsig(); 5863 return false; 5864 } 5865 5866 bool AsmParser::parseDirectiveAddrsigSym() { 5867 StringRef Name; 5868 if (check(parseIdentifier(Name), "expected identifier") || parseEOL()) 5869 return true; 5870 MCSymbol *Sym = getContext().getOrCreateSymbol(Name); 5871 getStreamer().emitAddrsigSym(Sym); 5872 return false; 5873 } 5874 5875 bool AsmParser::parseDirectivePseudoProbe() { 5876 int64_t Guid; 5877 int64_t Index; 5878 int64_t Type; 5879 int64_t Attr; 5880 int64_t Discriminator = 0; 5881 5882 if (parseIntToken(Guid, "unexpected token in '.pseudoprobe' directive")) 5883 return true; 5884 5885 if (parseIntToken(Index, "unexpected token in '.pseudoprobe' directive")) 5886 return true; 5887 5888 if (parseIntToken(Type, "unexpected token in '.pseudoprobe' directive")) 5889 return true; 5890 5891 if (parseIntToken(Attr, "unexpected token in '.pseudoprobe' directive")) 5892 return true; 5893 5894 if (hasDiscriminator(Attr)) { 5895 if (parseIntToken(Discriminator, 5896 "unexpected token in '.pseudoprobe' directive")) 5897 return true; 5898 } 5899 5900 // Parse inline stack like @ GUID:11:12 @ GUID:1:11 @ GUID:3:21 5901 MCPseudoProbeInlineStack InlineStack; 5902 5903 while (getLexer().is(AsmToken::At)) { 5904 // eat @ 5905 Lex(); 5906 5907 int64_t CallerGuid = 0; 5908 if (getLexer().is(AsmToken::Integer)) { 5909 if (parseIntToken(CallerGuid, 5910 "unexpected token in '.pseudoprobe' directive")) 5911 return true; 5912 } 5913 5914 // eat colon 5915 if (getLexer().is(AsmToken::Colon)) 5916 Lex(); 5917 5918 int64_t CallerProbeId = 0; 5919 if (getLexer().is(AsmToken::Integer)) { 5920 if (parseIntToken(CallerProbeId, 5921 "unexpected token in '.pseudoprobe' directive")) 5922 return true; 5923 } 5924 5925 InlineSite Site(CallerGuid, CallerProbeId); 5926 InlineStack.push_back(Site); 5927 } 5928 5929 // Parse function entry name 5930 StringRef FnName; 5931 if (parseIdentifier(FnName)) 5932 return Error(getLexer().getLoc(), "unexpected token in '.pseudoprobe' directive"); 5933 MCSymbol *FnSym = getContext().lookupSymbol(FnName); 5934 5935 if (parseEOL()) 5936 return true; 5937 5938 getStreamer().emitPseudoProbe(Guid, Index, Type, Attr, Discriminator, 5939 InlineStack, FnSym); 5940 return false; 5941 } 5942 5943 /// parseDirectiveLTODiscard 5944 /// ::= ".lto_discard" [ identifier ( , identifier )* ] 5945 /// The LTO library emits this directive to discard non-prevailing symbols. 5946 /// We ignore symbol assignments and attribute changes for the specified 5947 /// symbols. 5948 bool AsmParser::parseDirectiveLTODiscard() { 5949 auto ParseOp = [&]() -> bool { 5950 StringRef Name; 5951 SMLoc Loc = getTok().getLoc(); 5952 if (parseIdentifier(Name)) 5953 return Error(Loc, "expected identifier"); 5954 LTODiscardSymbols.insert(Name); 5955 return false; 5956 }; 5957 5958 LTODiscardSymbols.clear(); 5959 return parseMany(ParseOp); 5960 } 5961 5962 // We are comparing pointers, but the pointers are relative to a single string. 5963 // Thus, this should always be deterministic. 5964 static int rewritesSort(const AsmRewrite *AsmRewriteA, 5965 const AsmRewrite *AsmRewriteB) { 5966 if (AsmRewriteA->Loc.getPointer() < AsmRewriteB->Loc.getPointer()) 5967 return -1; 5968 if (AsmRewriteB->Loc.getPointer() < AsmRewriteA->Loc.getPointer()) 5969 return 1; 5970 5971 // It's possible to have a SizeDirective, Imm/ImmPrefix and an Input/Output 5972 // rewrite to the same location. Make sure the SizeDirective rewrite is 5973 // performed first, then the Imm/ImmPrefix and finally the Input/Output. This 5974 // ensures the sort algorithm is stable. 5975 if (AsmRewritePrecedence[AsmRewriteA->Kind] > 5976 AsmRewritePrecedence[AsmRewriteB->Kind]) 5977 return -1; 5978 5979 if (AsmRewritePrecedence[AsmRewriteA->Kind] < 5980 AsmRewritePrecedence[AsmRewriteB->Kind]) 5981 return 1; 5982 llvm_unreachable("Unstable rewrite sort."); 5983 } 5984 5985 bool AsmParser::parseMSInlineAsm( 5986 std::string &AsmString, unsigned &NumOutputs, unsigned &NumInputs, 5987 SmallVectorImpl<std::pair<void *, bool>> &OpDecls, 5988 SmallVectorImpl<std::string> &Constraints, 5989 SmallVectorImpl<std::string> &Clobbers, const MCInstrInfo *MII, 5990 const MCInstPrinter *IP, MCAsmParserSemaCallback &SI) { 5991 SmallVector<void *, 4> InputDecls; 5992 SmallVector<void *, 4> OutputDecls; 5993 SmallVector<bool, 4> InputDeclsAddressOf; 5994 SmallVector<bool, 4> OutputDeclsAddressOf; 5995 SmallVector<std::string, 4> InputConstraints; 5996 SmallVector<std::string, 4> OutputConstraints; 5997 SmallVector<unsigned, 4> ClobberRegs; 5998 5999 SmallVector<AsmRewrite, 4> AsmStrRewrites; 6000 6001 // Prime the lexer. 6002 Lex(); 6003 6004 // While we have input, parse each statement. 6005 unsigned InputIdx = 0; 6006 unsigned OutputIdx = 0; 6007 while (getLexer().isNot(AsmToken::Eof)) { 6008 // Parse curly braces marking block start/end 6009 if (parseCurlyBlockScope(AsmStrRewrites)) 6010 continue; 6011 6012 ParseStatementInfo Info(&AsmStrRewrites); 6013 bool StatementErr = parseStatement(Info, &SI); 6014 6015 if (StatementErr || Info.ParseError) { 6016 // Emit pending errors if any exist. 6017 printPendingErrors(); 6018 return true; 6019 } 6020 6021 // No pending error should exist here. 6022 assert(!hasPendingError() && "unexpected error from parseStatement"); 6023 6024 if (Info.Opcode == ~0U) 6025 continue; 6026 6027 const MCInstrDesc &Desc = MII->get(Info.Opcode); 6028 6029 // Build the list of clobbers, outputs and inputs. 6030 for (unsigned i = 1, e = Info.ParsedOperands.size(); i != e; ++i) { 6031 MCParsedAsmOperand &Operand = *Info.ParsedOperands[i]; 6032 6033 // Register operand. 6034 if (Operand.isReg() && !Operand.needAddressOf() && 6035 !getTargetParser().OmitRegisterFromClobberLists(Operand.getReg())) { 6036 unsigned NumDefs = Desc.getNumDefs(); 6037 // Clobber. 6038 if (NumDefs && Operand.getMCOperandNum() < NumDefs) 6039 ClobberRegs.push_back(Operand.getReg()); 6040 continue; 6041 } 6042 6043 // Expr/Input or Output. 6044 StringRef SymName = Operand.getSymName(); 6045 if (SymName.empty()) 6046 continue; 6047 6048 void *OpDecl = Operand.getOpDecl(); 6049 if (!OpDecl) 6050 continue; 6051 6052 StringRef Constraint = Operand.getConstraint(); 6053 if (Operand.isImm()) { 6054 // Offset as immediate 6055 if (Operand.isOffsetOfLocal()) 6056 Constraint = "r"; 6057 else 6058 Constraint = "i"; 6059 } 6060 6061 bool isOutput = (i == 1) && Desc.mayStore(); 6062 bool Restricted = Operand.isMemUseUpRegs(); 6063 SMLoc Start = SMLoc::getFromPointer(SymName.data()); 6064 if (isOutput) { 6065 ++InputIdx; 6066 OutputDecls.push_back(OpDecl); 6067 OutputDeclsAddressOf.push_back(Operand.needAddressOf()); 6068 OutputConstraints.push_back(("=" + Constraint).str()); 6069 AsmStrRewrites.emplace_back(AOK_Output, Start, SymName.size(), 0, 6070 Restricted); 6071 } else { 6072 InputDecls.push_back(OpDecl); 6073 InputDeclsAddressOf.push_back(Operand.needAddressOf()); 6074 InputConstraints.push_back(Constraint.str()); 6075 if (Desc.operands()[i - 1].isBranchTarget()) 6076 AsmStrRewrites.emplace_back(AOK_CallInput, Start, SymName.size(), 0, 6077 Restricted); 6078 else 6079 AsmStrRewrites.emplace_back(AOK_Input, Start, SymName.size(), 0, 6080 Restricted); 6081 } 6082 } 6083 6084 // Consider implicit defs to be clobbers. Think of cpuid and push. 6085 llvm::append_range(ClobberRegs, Desc.implicit_defs()); 6086 } 6087 6088 // Set the number of Outputs and Inputs. 6089 NumOutputs = OutputDecls.size(); 6090 NumInputs = InputDecls.size(); 6091 6092 // Set the unique clobbers. 6093 array_pod_sort(ClobberRegs.begin(), ClobberRegs.end()); 6094 ClobberRegs.erase(llvm::unique(ClobberRegs), ClobberRegs.end()); 6095 Clobbers.assign(ClobberRegs.size(), std::string()); 6096 for (unsigned I = 0, E = ClobberRegs.size(); I != E; ++I) { 6097 raw_string_ostream OS(Clobbers[I]); 6098 IP->printRegName(OS, ClobberRegs[I]); 6099 } 6100 6101 // Merge the various outputs and inputs. Output are expected first. 6102 if (NumOutputs || NumInputs) { 6103 unsigned NumExprs = NumOutputs + NumInputs; 6104 OpDecls.resize(NumExprs); 6105 Constraints.resize(NumExprs); 6106 for (unsigned i = 0; i < NumOutputs; ++i) { 6107 OpDecls[i] = std::make_pair(OutputDecls[i], OutputDeclsAddressOf[i]); 6108 Constraints[i] = OutputConstraints[i]; 6109 } 6110 for (unsigned i = 0, j = NumOutputs; i < NumInputs; ++i, ++j) { 6111 OpDecls[j] = std::make_pair(InputDecls[i], InputDeclsAddressOf[i]); 6112 Constraints[j] = InputConstraints[i]; 6113 } 6114 } 6115 6116 // Build the IR assembly string. 6117 std::string AsmStringIR; 6118 raw_string_ostream OS(AsmStringIR); 6119 StringRef ASMString = 6120 SrcMgr.getMemoryBuffer(SrcMgr.getMainFileID())->getBuffer(); 6121 const char *AsmStart = ASMString.begin(); 6122 const char *AsmEnd = ASMString.end(); 6123 array_pod_sort(AsmStrRewrites.begin(), AsmStrRewrites.end(), rewritesSort); 6124 for (auto I = AsmStrRewrites.begin(), E = AsmStrRewrites.end(); I != E; ++I) { 6125 const AsmRewrite &AR = *I; 6126 // Check if this has already been covered by another rewrite... 6127 if (AR.Done) 6128 continue; 6129 AsmRewriteKind Kind = AR.Kind; 6130 6131 const char *Loc = AR.Loc.getPointer(); 6132 assert(Loc >= AsmStart && "Expected Loc to be at or after Start!"); 6133 6134 // Emit everything up to the immediate/expression. 6135 if (unsigned Len = Loc - AsmStart) 6136 OS << StringRef(AsmStart, Len); 6137 6138 // Skip the original expression. 6139 if (Kind == AOK_Skip) { 6140 AsmStart = Loc + AR.Len; 6141 continue; 6142 } 6143 6144 unsigned AdditionalSkip = 0; 6145 // Rewrite expressions in $N notation. 6146 switch (Kind) { 6147 default: 6148 break; 6149 case AOK_IntelExpr: 6150 assert(AR.IntelExp.isValid() && "cannot write invalid intel expression"); 6151 if (AR.IntelExp.NeedBracs) 6152 OS << "["; 6153 if (AR.IntelExp.hasBaseReg()) 6154 OS << AR.IntelExp.BaseReg; 6155 if (AR.IntelExp.hasIndexReg()) 6156 OS << (AR.IntelExp.hasBaseReg() ? " + " : "") 6157 << AR.IntelExp.IndexReg; 6158 if (AR.IntelExp.Scale > 1) 6159 OS << " * $$" << AR.IntelExp.Scale; 6160 if (AR.IntelExp.hasOffset()) { 6161 if (AR.IntelExp.hasRegs()) 6162 OS << " + "; 6163 // Fuse this rewrite with a rewrite of the offset name, if present. 6164 StringRef OffsetName = AR.IntelExp.OffsetName; 6165 SMLoc OffsetLoc = SMLoc::getFromPointer(AR.IntelExp.OffsetName.data()); 6166 size_t OffsetLen = OffsetName.size(); 6167 auto rewrite_it = std::find_if( 6168 I, AsmStrRewrites.end(), [&](const AsmRewrite &FusingAR) { 6169 return FusingAR.Loc == OffsetLoc && FusingAR.Len == OffsetLen && 6170 (FusingAR.Kind == AOK_Input || 6171 FusingAR.Kind == AOK_CallInput); 6172 }); 6173 if (rewrite_it == AsmStrRewrites.end()) { 6174 OS << "offset " << OffsetName; 6175 } else if (rewrite_it->Kind == AOK_CallInput) { 6176 OS << "${" << InputIdx++ << ":P}"; 6177 rewrite_it->Done = true; 6178 } else { 6179 OS << '$' << InputIdx++; 6180 rewrite_it->Done = true; 6181 } 6182 } 6183 if (AR.IntelExp.Imm || AR.IntelExp.emitImm()) 6184 OS << (AR.IntelExp.emitImm() ? "$$" : " + $$") << AR.IntelExp.Imm; 6185 if (AR.IntelExp.NeedBracs) 6186 OS << "]"; 6187 break; 6188 case AOK_Label: 6189 OS << Ctx.getAsmInfo()->getPrivateLabelPrefix() << AR.Label; 6190 break; 6191 case AOK_Input: 6192 if (AR.IntelExpRestricted) 6193 OS << "${" << InputIdx++ << ":P}"; 6194 else 6195 OS << '$' << InputIdx++; 6196 break; 6197 case AOK_CallInput: 6198 OS << "${" << InputIdx++ << ":P}"; 6199 break; 6200 case AOK_Output: 6201 if (AR.IntelExpRestricted) 6202 OS << "${" << OutputIdx++ << ":P}"; 6203 else 6204 OS << '$' << OutputIdx++; 6205 break; 6206 case AOK_SizeDirective: 6207 switch (AR.Val) { 6208 default: break; 6209 case 8: OS << "byte ptr "; break; 6210 case 16: OS << "word ptr "; break; 6211 case 32: OS << "dword ptr "; break; 6212 case 64: OS << "qword ptr "; break; 6213 case 80: OS << "xword ptr "; break; 6214 case 128: OS << "xmmword ptr "; break; 6215 case 256: OS << "ymmword ptr "; break; 6216 } 6217 break; 6218 case AOK_Emit: 6219 OS << ".byte"; 6220 break; 6221 case AOK_Align: { 6222 // MS alignment directives are measured in bytes. If the native assembler 6223 // measures alignment in bytes, we can pass it straight through. 6224 OS << ".align"; 6225 if (getContext().getAsmInfo()->getAlignmentIsInBytes()) 6226 break; 6227 6228 // Alignment is in log2 form, so print that instead and skip the original 6229 // immediate. 6230 unsigned Val = AR.Val; 6231 OS << ' ' << Val; 6232 assert(Val < 10 && "Expected alignment less then 2^10."); 6233 AdditionalSkip = (Val < 4) ? 2 : Val < 7 ? 3 : 4; 6234 break; 6235 } 6236 case AOK_EVEN: 6237 OS << ".even"; 6238 break; 6239 case AOK_EndOfStatement: 6240 OS << "\n\t"; 6241 break; 6242 } 6243 6244 // Skip the original expression. 6245 AsmStart = Loc + AR.Len + AdditionalSkip; 6246 } 6247 6248 // Emit the remainder of the asm string. 6249 if (AsmStart != AsmEnd) 6250 OS << StringRef(AsmStart, AsmEnd - AsmStart); 6251 6252 AsmString = AsmStringIR; 6253 return false; 6254 } 6255 6256 bool HLASMAsmParser::parseAsHLASMLabel(ParseStatementInfo &Info, 6257 MCAsmParserSemaCallback *SI) { 6258 AsmToken LabelTok = getTok(); 6259 SMLoc LabelLoc = LabelTok.getLoc(); 6260 StringRef LabelVal; 6261 6262 if (parseIdentifier(LabelVal)) 6263 return Error(LabelLoc, "The HLASM Label has to be an Identifier"); 6264 6265 // We have validated whether the token is an Identifier. 6266 // Now we have to validate whether the token is a 6267 // valid HLASM Label. 6268 if (!getTargetParser().isLabel(LabelTok) || checkForValidSection()) 6269 return true; 6270 6271 // Lex leading spaces to get to the next operand. 6272 lexLeadingSpaces(); 6273 6274 // We shouldn't emit the label if there is nothing else after the label. 6275 // i.e asm("<token>\n") 6276 if (getTok().is(AsmToken::EndOfStatement)) 6277 return Error(LabelLoc, 6278 "Cannot have just a label for an HLASM inline asm statement"); 6279 6280 MCSymbol *Sym = getContext().getOrCreateSymbol( 6281 getContext().getAsmInfo()->shouldEmitLabelsInUpperCase() 6282 ? LabelVal.upper() 6283 : LabelVal); 6284 6285 getTargetParser().doBeforeLabelEmit(Sym, LabelLoc); 6286 6287 // Emit the label. 6288 Out.emitLabel(Sym, LabelLoc); 6289 6290 // If we are generating dwarf for assembly source files then gather the 6291 // info to make a dwarf label entry for this label if needed. 6292 if (enabledGenDwarfForAssembly()) 6293 MCGenDwarfLabelEntry::Make(Sym, &getStreamer(), getSourceManager(), 6294 LabelLoc); 6295 6296 getTargetParser().onLabelParsed(Sym); 6297 6298 return false; 6299 } 6300 6301 bool HLASMAsmParser::parseAsMachineInstruction(ParseStatementInfo &Info, 6302 MCAsmParserSemaCallback *SI) { 6303 AsmToken OperationEntryTok = Lexer.getTok(); 6304 SMLoc OperationEntryLoc = OperationEntryTok.getLoc(); 6305 StringRef OperationEntryVal; 6306 6307 // Attempt to parse the first token as an Identifier 6308 if (parseIdentifier(OperationEntryVal)) 6309 return Error(OperationEntryLoc, "unexpected token at start of statement"); 6310 6311 // Once we've parsed the operation entry successfully, lex 6312 // any spaces to get to the OperandEntries. 6313 lexLeadingSpaces(); 6314 6315 return parseAndMatchAndEmitTargetInstruction( 6316 Info, OperationEntryVal, OperationEntryTok, OperationEntryLoc); 6317 } 6318 6319 bool HLASMAsmParser::parseStatement(ParseStatementInfo &Info, 6320 MCAsmParserSemaCallback *SI) { 6321 assert(!hasPendingError() && "parseStatement started with pending error"); 6322 6323 // Should the first token be interpreted as a HLASM Label. 6324 bool ShouldParseAsHLASMLabel = false; 6325 6326 // If a Name Entry exists, it should occur at the very 6327 // start of the string. In this case, we should parse the 6328 // first non-space token as a Label. 6329 // If the Name entry is missing (i.e. there's some other 6330 // token), then we attempt to parse the first non-space 6331 // token as a Machine Instruction. 6332 if (getTok().isNot(AsmToken::Space)) 6333 ShouldParseAsHLASMLabel = true; 6334 6335 // If we have an EndOfStatement (which includes the target's comment 6336 // string) we can appropriately lex it early on) 6337 if (Lexer.is(AsmToken::EndOfStatement)) { 6338 // if this is a line comment we can drop it safely 6339 if (getTok().getString().empty() || getTok().getString().front() == '\r' || 6340 getTok().getString().front() == '\n') 6341 Out.addBlankLine(); 6342 Lex(); 6343 return false; 6344 } 6345 6346 // We have established how to parse the inline asm statement. 6347 // Now we can safely lex any leading spaces to get to the 6348 // first token. 6349 lexLeadingSpaces(); 6350 6351 // If we see a new line or carriage return as the first operand, 6352 // after lexing leading spaces, emit the new line and lex the 6353 // EndOfStatement token. 6354 if (Lexer.is(AsmToken::EndOfStatement)) { 6355 if (getTok().getString().front() == '\n' || 6356 getTok().getString().front() == '\r') { 6357 Out.addBlankLine(); 6358 Lex(); 6359 return false; 6360 } 6361 } 6362 6363 // Handle the label first if we have to before processing the rest 6364 // of the tokens as a machine instruction. 6365 if (ShouldParseAsHLASMLabel) { 6366 // If there were any errors while handling and emitting the label, 6367 // early return. 6368 if (parseAsHLASMLabel(Info, SI)) { 6369 // If we know we've failed in parsing, simply eat until end of the 6370 // statement. This ensures that we don't process any other statements. 6371 eatToEndOfStatement(); 6372 return true; 6373 } 6374 } 6375 6376 return parseAsMachineInstruction(Info, SI); 6377 } 6378 6379 namespace llvm { 6380 namespace MCParserUtils { 6381 6382 /// Returns whether the given symbol is used anywhere in the given expression, 6383 /// or subexpressions. 6384 static bool isSymbolUsedInExpression(const MCSymbol *Sym, const MCExpr *Value) { 6385 switch (Value->getKind()) { 6386 case MCExpr::Binary: { 6387 const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Value); 6388 return isSymbolUsedInExpression(Sym, BE->getLHS()) || 6389 isSymbolUsedInExpression(Sym, BE->getRHS()); 6390 } 6391 case MCExpr::Target: 6392 case MCExpr::Constant: 6393 return false; 6394 case MCExpr::SymbolRef: { 6395 const MCSymbol &S = 6396 static_cast<const MCSymbolRefExpr *>(Value)->getSymbol(); 6397 if (S.isVariable() && !S.isWeakExternal()) 6398 return isSymbolUsedInExpression(Sym, S.getVariableValue()); 6399 return &S == Sym; 6400 } 6401 case MCExpr::Unary: 6402 return isSymbolUsedInExpression( 6403 Sym, static_cast<const MCUnaryExpr *>(Value)->getSubExpr()); 6404 } 6405 6406 llvm_unreachable("Unknown expr kind!"); 6407 } 6408 6409 bool parseAssignmentExpression(StringRef Name, bool allow_redef, 6410 MCAsmParser &Parser, MCSymbol *&Sym, 6411 const MCExpr *&Value) { 6412 6413 // FIXME: Use better location, we should use proper tokens. 6414 SMLoc EqualLoc = Parser.getTok().getLoc(); 6415 if (Parser.parseExpression(Value)) 6416 return Parser.TokError("missing expression"); 6417 6418 // Note: we don't count b as used in "a = b". This is to allow 6419 // a = b 6420 // b = c 6421 6422 if (Parser.parseEOL()) 6423 return true; 6424 6425 // Validate that the LHS is allowed to be a variable (either it has not been 6426 // used as a symbol, or it is an absolute symbol). 6427 Sym = Parser.getContext().lookupSymbol(Name); 6428 if (Sym) { 6429 // Diagnose assignment to a label. 6430 // 6431 // FIXME: Diagnostics. Note the location of the definition as a label. 6432 // FIXME: Diagnose assignment to protected identifier (e.g., register name). 6433 if (isSymbolUsedInExpression(Sym, Value)) 6434 return Parser.Error(EqualLoc, "Recursive use of '" + Name + "'"); 6435 else if (Sym->isUndefined(/*SetUsed*/ false) && !Sym->isUsed() && 6436 !Sym->isVariable()) 6437 ; // Allow redefinitions of undefined symbols only used in directives. 6438 else if (Sym->isVariable() && !Sym->isUsed() && allow_redef) 6439 ; // Allow redefinitions of variables that haven't yet been used. 6440 else if (!Sym->isUndefined() && (!Sym->isVariable() || !allow_redef)) 6441 return Parser.Error(EqualLoc, "redefinition of '" + Name + "'"); 6442 else if (!Sym->isVariable()) 6443 return Parser.Error(EqualLoc, "invalid assignment to '" + Name + "'"); 6444 else if (!isa<MCConstantExpr>(Sym->getVariableValue())) 6445 return Parser.Error(EqualLoc, 6446 "invalid reassignment of non-absolute variable '" + 6447 Name + "'"); 6448 } else if (Name == ".") { 6449 Parser.getStreamer().emitValueToOffset(Value, 0, EqualLoc); 6450 return false; 6451 } else 6452 Sym = Parser.getContext().getOrCreateSymbol(Name); 6453 6454 Sym->setRedefinable(allow_redef); 6455 6456 return false; 6457 } 6458 6459 } // end namespace MCParserUtils 6460 } // end namespace llvm 6461 6462 /// Create an MCAsmParser instance. 6463 MCAsmParser *llvm::createMCAsmParser(SourceMgr &SM, MCContext &C, 6464 MCStreamer &Out, const MCAsmInfo &MAI, 6465 unsigned CB) { 6466 if (C.getTargetTriple().isSystemZ() && C.getTargetTriple().isOSzOS()) 6467 return new HLASMAsmParser(SM, C, Out, MAI, CB); 6468 6469 return new AsmParser(SM, C, Out, MAI, CB); 6470 } 6471