xref: /freebsd/contrib/llvm-project/llvm/lib/MC/MCParser/AsmParser.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===- AsmParser.cpp - Parser for Assembly Files --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This class implements a parser for assembly files similar to gas syntax.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/BinaryFormat/Dwarf.h"
25 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCCodeView.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDirectives.h"
30 #include "llvm/MC/MCDwarf.h"
31 #include "llvm/MC/MCExpr.h"
32 #include "llvm/MC/MCInstPrinter.h"
33 #include "llvm/MC/MCInstrDesc.h"
34 #include "llvm/MC/MCInstrInfo.h"
35 #include "llvm/MC/MCParser/AsmCond.h"
36 #include "llvm/MC/MCParser/AsmLexer.h"
37 #include "llvm/MC/MCParser/MCAsmLexer.h"
38 #include "llvm/MC/MCParser/MCAsmParser.h"
39 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
40 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
41 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
42 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
43 #include "llvm/MC/MCRegisterInfo.h"
44 #include "llvm/MC/MCSection.h"
45 #include "llvm/MC/MCStreamer.h"
46 #include "llvm/MC/MCSymbol.h"
47 #include "llvm/MC/MCSymbolMachO.h"
48 #include "llvm/MC/MCTargetOptions.h"
49 #include "llvm/MC/MCValue.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MD5.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/MemoryBuffer.h"
56 #include "llvm/Support/SMLoc.h"
57 #include "llvm/Support/SourceMgr.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cctype>
62 #include <climits>
63 #include <cstddef>
64 #include <cstdint>
65 #include <deque>
66 #include <memory>
67 #include <optional>
68 #include <sstream>
69 #include <string>
70 #include <tuple>
71 #include <utility>
72 #include <vector>
73 
74 using namespace llvm;
75 
76 MCAsmParserSemaCallback::~MCAsmParserSemaCallback() = default;
77 
78 namespace {
79 
80 /// Helper types for tracking macro definitions.
81 typedef std::vector<AsmToken> MCAsmMacroArgument;
82 typedef std::vector<MCAsmMacroArgument> MCAsmMacroArguments;
83 
84 /// Helper class for storing information about an active macro
85 /// instantiation.
86 struct MacroInstantiation {
87   /// The location of the instantiation.
88   SMLoc InstantiationLoc;
89 
90   /// The buffer where parsing should resume upon instantiation completion.
91   unsigned ExitBuffer;
92 
93   /// The location where parsing should resume upon instantiation completion.
94   SMLoc ExitLoc;
95 
96   /// The depth of TheCondStack at the start of the instantiation.
97   size_t CondStackDepth;
98 };
99 
100 struct ParseStatementInfo {
101   /// The parsed operands from the last parsed statement.
102   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> ParsedOperands;
103 
104   /// The opcode from the last parsed instruction.
105   unsigned Opcode = ~0U;
106 
107   /// Was there an error parsing the inline assembly?
108   bool ParseError = false;
109 
110   SmallVectorImpl<AsmRewrite> *AsmRewrites = nullptr;
111 
112   ParseStatementInfo() = delete;
113   ParseStatementInfo(SmallVectorImpl<AsmRewrite> *rewrites)
114     : AsmRewrites(rewrites) {}
115 };
116 
117 /// The concrete assembly parser instance.
118 class AsmParser : public MCAsmParser {
119 private:
120   AsmLexer Lexer;
121   MCContext &Ctx;
122   MCStreamer &Out;
123   const MCAsmInfo &MAI;
124   SourceMgr &SrcMgr;
125   SourceMgr::DiagHandlerTy SavedDiagHandler;
126   void *SavedDiagContext;
127   std::unique_ptr<MCAsmParserExtension> PlatformParser;
128   SMLoc StartTokLoc;
129   std::optional<SMLoc> CFIStartProcLoc;
130 
131   /// This is the current buffer index we're lexing from as managed by the
132   /// SourceMgr object.
133   unsigned CurBuffer;
134 
135   AsmCond TheCondState;
136   std::vector<AsmCond> TheCondStack;
137 
138   /// maps directive names to handler methods in parser
139   /// extensions. Extensions register themselves in this map by calling
140   /// addDirectiveHandler.
141   StringMap<ExtensionDirectiveHandler> ExtensionDirectiveMap;
142 
143   /// Stack of active macro instantiations.
144   std::vector<MacroInstantiation*> ActiveMacros;
145 
146   /// List of bodies of anonymous macros.
147   std::deque<MCAsmMacro> MacroLikeBodies;
148 
149   /// Boolean tracking whether macro substitution is enabled.
150   unsigned MacrosEnabledFlag : 1;
151 
152   /// Keeps track of how many .macro's have been instantiated.
153   unsigned NumOfMacroInstantiations;
154 
155   /// The values from the last parsed cpp hash file line comment if any.
156   struct CppHashInfoTy {
157     StringRef Filename;
158     int64_t LineNumber;
159     SMLoc Loc;
160     unsigned Buf;
161     CppHashInfoTy() : LineNumber(0), Buf(0) {}
162   };
163   CppHashInfoTy CppHashInfo;
164 
165   /// The filename from the first cpp hash file line comment, if any.
166   StringRef FirstCppHashFilename;
167 
168   /// List of forward directional labels for diagnosis at the end.
169   SmallVector<std::tuple<SMLoc, CppHashInfoTy, MCSymbol *>, 4> DirLabels;
170 
171   SmallSet<StringRef, 2> LTODiscardSymbols;
172 
173   /// AssemblerDialect. ~OU means unset value and use value provided by MAI.
174   unsigned AssemblerDialect = ~0U;
175 
176   /// is Darwin compatibility enabled?
177   bool IsDarwin = false;
178 
179   /// Are we parsing ms-style inline assembly?
180   bool ParsingMSInlineAsm = false;
181 
182   /// Did we already inform the user about inconsistent MD5 usage?
183   bool ReportedInconsistentMD5 = false;
184 
185   // Is alt macro mode enabled.
186   bool AltMacroMode = false;
187 
188 protected:
189   virtual bool parseStatement(ParseStatementInfo &Info,
190                               MCAsmParserSemaCallback *SI);
191 
192   /// This routine uses the target specific ParseInstruction function to
193   /// parse an instruction into Operands, and then call the target specific
194   /// MatchAndEmit function to match and emit the instruction.
195   bool parseAndMatchAndEmitTargetInstruction(ParseStatementInfo &Info,
196                                              StringRef IDVal, AsmToken ID,
197                                              SMLoc IDLoc);
198 
199   /// Should we emit DWARF describing this assembler source?  (Returns false if
200   /// the source has .file directives, which means we don't want to generate
201   /// info describing the assembler source itself.)
202   bool enabledGenDwarfForAssembly();
203 
204 public:
205   AsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out,
206             const MCAsmInfo &MAI, unsigned CB);
207   AsmParser(const AsmParser &) = delete;
208   AsmParser &operator=(const AsmParser &) = delete;
209   ~AsmParser() override;
210 
211   bool Run(bool NoInitialTextSection, bool NoFinalize = false) override;
212 
213   void addDirectiveHandler(StringRef Directive,
214                            ExtensionDirectiveHandler Handler) override {
215     ExtensionDirectiveMap[Directive] = Handler;
216   }
217 
218   void addAliasForDirective(StringRef Directive, StringRef Alias) override {
219     DirectiveKindMap[Directive.lower()] = DirectiveKindMap[Alias.lower()];
220   }
221 
222   /// @name MCAsmParser Interface
223   /// {
224 
225   SourceMgr &getSourceManager() override { return SrcMgr; }
226   MCAsmLexer &getLexer() override { return Lexer; }
227   MCContext &getContext() override { return Ctx; }
228   MCStreamer &getStreamer() override { return Out; }
229 
230   CodeViewContext &getCVContext() { return Ctx.getCVContext(); }
231 
232   unsigned getAssemblerDialect() override {
233     if (AssemblerDialect == ~0U)
234       return MAI.getAssemblerDialect();
235     else
236       return AssemblerDialect;
237   }
238   void setAssemblerDialect(unsigned i) override {
239     AssemblerDialect = i;
240   }
241 
242   void Note(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) override;
243   bool Warning(SMLoc L, const Twine &Msg,
244                SMRange Range = std::nullopt) override;
245   bool printError(SMLoc L, const Twine &Msg,
246                   SMRange Range = std::nullopt) override;
247 
248   const AsmToken &Lex() override;
249 
250   void setParsingMSInlineAsm(bool V) override {
251     ParsingMSInlineAsm = V;
252     // When parsing MS inline asm, we must lex 0b1101 and 0ABCH as binary and
253     // hex integer literals.
254     Lexer.setLexMasmIntegers(V);
255   }
256   bool isParsingMSInlineAsm() override { return ParsingMSInlineAsm; }
257 
258   bool discardLTOSymbol(StringRef Name) const override {
259     return LTODiscardSymbols.contains(Name);
260   }
261 
262   bool parseMSInlineAsm(std::string &AsmString, unsigned &NumOutputs,
263                         unsigned &NumInputs,
264                         SmallVectorImpl<std::pair<void *, bool>> &OpDecls,
265                         SmallVectorImpl<std::string> &Constraints,
266                         SmallVectorImpl<std::string> &Clobbers,
267                         const MCInstrInfo *MII, const MCInstPrinter *IP,
268                         MCAsmParserSemaCallback &SI) override;
269 
270   bool parseExpression(const MCExpr *&Res);
271   bool parseExpression(const MCExpr *&Res, SMLoc &EndLoc) override;
272   bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc,
273                         AsmTypeInfo *TypeInfo) override;
274   bool parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) override;
275   bool parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res,
276                              SMLoc &EndLoc) override;
277   bool parseAbsoluteExpression(int64_t &Res) override;
278 
279   /// Parse a floating point expression using the float \p Semantics
280   /// and set \p Res to the value.
281   bool parseRealValue(const fltSemantics &Semantics, APInt &Res);
282 
283   /// Parse an identifier or string (as a quoted identifier)
284   /// and set \p Res to the identifier contents.
285   bool parseIdentifier(StringRef &Res) override;
286   void eatToEndOfStatement() override;
287 
288   bool checkForValidSection() override;
289 
290   /// }
291 
292 private:
293   bool parseCurlyBlockScope(SmallVectorImpl<AsmRewrite>& AsmStrRewrites);
294   bool parseCppHashLineFilenameComment(SMLoc L, bool SaveLocInfo = true);
295 
296   void checkForBadMacro(SMLoc DirectiveLoc, StringRef Name, StringRef Body,
297                         ArrayRef<MCAsmMacroParameter> Parameters);
298   bool expandMacro(raw_svector_ostream &OS, StringRef Body,
299                    ArrayRef<MCAsmMacroParameter> Parameters,
300                    ArrayRef<MCAsmMacroArgument> A, bool EnableAtPseudoVariable,
301                    SMLoc L);
302 
303   /// Are macros enabled in the parser?
304   bool areMacrosEnabled() {return MacrosEnabledFlag;}
305 
306   /// Control a flag in the parser that enables or disables macros.
307   void setMacrosEnabled(bool Flag) {MacrosEnabledFlag = Flag;}
308 
309   /// Are we inside a macro instantiation?
310   bool isInsideMacroInstantiation() {return !ActiveMacros.empty();}
311 
312   /// Handle entry to macro instantiation.
313   ///
314   /// \param M The macro.
315   /// \param NameLoc Instantiation location.
316   bool handleMacroEntry(const MCAsmMacro *M, SMLoc NameLoc);
317 
318   /// Handle exit from macro instantiation.
319   void handleMacroExit();
320 
321   /// Extract AsmTokens for a macro argument.
322   bool parseMacroArgument(MCAsmMacroArgument &MA, bool Vararg);
323 
324   /// Parse all macro arguments for a given macro.
325   bool parseMacroArguments(const MCAsmMacro *M, MCAsmMacroArguments &A);
326 
327   void printMacroInstantiations();
328   void printMessage(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Msg,
329                     SMRange Range = std::nullopt) const {
330     ArrayRef<SMRange> Ranges(Range);
331     SrcMgr.PrintMessage(Loc, Kind, Msg, Ranges);
332   }
333   static void DiagHandler(const SMDiagnostic &Diag, void *Context);
334 
335   /// Enter the specified file. This returns true on failure.
336   bool enterIncludeFile(const std::string &Filename);
337 
338   /// Process the specified file for the .incbin directive.
339   /// This returns true on failure.
340   bool processIncbinFile(const std::string &Filename, int64_t Skip = 0,
341                          const MCExpr *Count = nullptr, SMLoc Loc = SMLoc());
342 
343   /// Reset the current lexer position to that given by \p Loc. The
344   /// current token is not set; clients should ensure Lex() is called
345   /// subsequently.
346   ///
347   /// \param InBuffer If not 0, should be the known buffer id that contains the
348   /// location.
349   void jumpToLoc(SMLoc Loc, unsigned InBuffer = 0);
350 
351   /// Parse up to the end of statement and a return the contents from the
352   /// current token until the end of the statement; the current token on exit
353   /// will be either the EndOfStatement or EOF.
354   StringRef parseStringToEndOfStatement() override;
355 
356   /// Parse until the end of a statement or a comma is encountered,
357   /// return the contents from the current token up to the end or comma.
358   StringRef parseStringToComma();
359 
360   enum class AssignmentKind {
361     Set,
362     Equiv,
363     Equal,
364     LTOSetConditional,
365   };
366 
367   bool parseAssignment(StringRef Name, AssignmentKind Kind);
368 
369   unsigned getBinOpPrecedence(AsmToken::TokenKind K,
370                               MCBinaryExpr::Opcode &Kind);
371 
372   bool parseBinOpRHS(unsigned Precedence, const MCExpr *&Res, SMLoc &EndLoc);
373   bool parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc);
374   bool parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc);
375 
376   bool parseRegisterOrRegisterNumber(int64_t &Register, SMLoc DirectiveLoc);
377 
378   bool parseCVFunctionId(int64_t &FunctionId, StringRef DirectiveName);
379   bool parseCVFileId(int64_t &FileId, StringRef DirectiveName);
380 
381   // Generic (target and platform independent) directive parsing.
382   enum DirectiveKind {
383     DK_NO_DIRECTIVE, // Placeholder
384     DK_SET,
385     DK_EQU,
386     DK_EQUIV,
387     DK_ASCII,
388     DK_ASCIZ,
389     DK_STRING,
390     DK_BYTE,
391     DK_SHORT,
392     DK_RELOC,
393     DK_VALUE,
394     DK_2BYTE,
395     DK_LONG,
396     DK_INT,
397     DK_4BYTE,
398     DK_QUAD,
399     DK_8BYTE,
400     DK_OCTA,
401     DK_DC,
402     DK_DC_A,
403     DK_DC_B,
404     DK_DC_D,
405     DK_DC_L,
406     DK_DC_S,
407     DK_DC_W,
408     DK_DC_X,
409     DK_DCB,
410     DK_DCB_B,
411     DK_DCB_D,
412     DK_DCB_L,
413     DK_DCB_S,
414     DK_DCB_W,
415     DK_DCB_X,
416     DK_DS,
417     DK_DS_B,
418     DK_DS_D,
419     DK_DS_L,
420     DK_DS_P,
421     DK_DS_S,
422     DK_DS_W,
423     DK_DS_X,
424     DK_SINGLE,
425     DK_FLOAT,
426     DK_DOUBLE,
427     DK_ALIGN,
428     DK_ALIGN32,
429     DK_BALIGN,
430     DK_BALIGNW,
431     DK_BALIGNL,
432     DK_P2ALIGN,
433     DK_P2ALIGNW,
434     DK_P2ALIGNL,
435     DK_ORG,
436     DK_FILL,
437     DK_ENDR,
438     DK_BUNDLE_ALIGN_MODE,
439     DK_BUNDLE_LOCK,
440     DK_BUNDLE_UNLOCK,
441     DK_ZERO,
442     DK_EXTERN,
443     DK_GLOBL,
444     DK_GLOBAL,
445     DK_LAZY_REFERENCE,
446     DK_NO_DEAD_STRIP,
447     DK_SYMBOL_RESOLVER,
448     DK_PRIVATE_EXTERN,
449     DK_REFERENCE,
450     DK_WEAK_DEFINITION,
451     DK_WEAK_REFERENCE,
452     DK_WEAK_DEF_CAN_BE_HIDDEN,
453     DK_COLD,
454     DK_COMM,
455     DK_COMMON,
456     DK_LCOMM,
457     DK_ABORT,
458     DK_INCLUDE,
459     DK_INCBIN,
460     DK_CODE16,
461     DK_CODE16GCC,
462     DK_REPT,
463     DK_IRP,
464     DK_IRPC,
465     DK_IF,
466     DK_IFEQ,
467     DK_IFGE,
468     DK_IFGT,
469     DK_IFLE,
470     DK_IFLT,
471     DK_IFNE,
472     DK_IFB,
473     DK_IFNB,
474     DK_IFC,
475     DK_IFEQS,
476     DK_IFNC,
477     DK_IFNES,
478     DK_IFDEF,
479     DK_IFNDEF,
480     DK_IFNOTDEF,
481     DK_ELSEIF,
482     DK_ELSE,
483     DK_ENDIF,
484     DK_SPACE,
485     DK_SKIP,
486     DK_FILE,
487     DK_LINE,
488     DK_LOC,
489     DK_STABS,
490     DK_CV_FILE,
491     DK_CV_FUNC_ID,
492     DK_CV_INLINE_SITE_ID,
493     DK_CV_LOC,
494     DK_CV_LINETABLE,
495     DK_CV_INLINE_LINETABLE,
496     DK_CV_DEF_RANGE,
497     DK_CV_STRINGTABLE,
498     DK_CV_STRING,
499     DK_CV_FILECHECKSUMS,
500     DK_CV_FILECHECKSUM_OFFSET,
501     DK_CV_FPO_DATA,
502     DK_CFI_SECTIONS,
503     DK_CFI_STARTPROC,
504     DK_CFI_ENDPROC,
505     DK_CFI_DEF_CFA,
506     DK_CFI_DEF_CFA_OFFSET,
507     DK_CFI_ADJUST_CFA_OFFSET,
508     DK_CFI_DEF_CFA_REGISTER,
509     DK_CFI_LLVM_DEF_ASPACE_CFA,
510     DK_CFI_OFFSET,
511     DK_CFI_REL_OFFSET,
512     DK_CFI_PERSONALITY,
513     DK_CFI_LSDA,
514     DK_CFI_REMEMBER_STATE,
515     DK_CFI_RESTORE_STATE,
516     DK_CFI_SAME_VALUE,
517     DK_CFI_RESTORE,
518     DK_CFI_ESCAPE,
519     DK_CFI_RETURN_COLUMN,
520     DK_CFI_SIGNAL_FRAME,
521     DK_CFI_UNDEFINED,
522     DK_CFI_REGISTER,
523     DK_CFI_WINDOW_SAVE,
524     DK_CFI_B_KEY_FRAME,
525     DK_MACROS_ON,
526     DK_MACROS_OFF,
527     DK_ALTMACRO,
528     DK_NOALTMACRO,
529     DK_MACRO,
530     DK_EXITM,
531     DK_ENDM,
532     DK_ENDMACRO,
533     DK_PURGEM,
534     DK_SLEB128,
535     DK_ULEB128,
536     DK_ERR,
537     DK_ERROR,
538     DK_WARNING,
539     DK_PRINT,
540     DK_ADDRSIG,
541     DK_ADDRSIG_SYM,
542     DK_PSEUDO_PROBE,
543     DK_LTO_DISCARD,
544     DK_LTO_SET_CONDITIONAL,
545     DK_CFI_MTE_TAGGED_FRAME,
546     DK_MEMTAG,
547     DK_END
548   };
549 
550   /// Maps directive name --> DirectiveKind enum, for
551   /// directives parsed by this class.
552   StringMap<DirectiveKind> DirectiveKindMap;
553 
554   // Codeview def_range type parsing.
555   enum CVDefRangeType {
556     CVDR_DEFRANGE = 0, // Placeholder
557     CVDR_DEFRANGE_REGISTER,
558     CVDR_DEFRANGE_FRAMEPOINTER_REL,
559     CVDR_DEFRANGE_SUBFIELD_REGISTER,
560     CVDR_DEFRANGE_REGISTER_REL
561   };
562 
563   /// Maps Codeview def_range types --> CVDefRangeType enum, for
564   /// Codeview def_range types parsed by this class.
565   StringMap<CVDefRangeType> CVDefRangeTypeMap;
566 
567   // ".ascii", ".asciz", ".string"
568   bool parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated);
569   bool parseDirectiveReloc(SMLoc DirectiveLoc); // ".reloc"
570   bool parseDirectiveValue(StringRef IDVal,
571                            unsigned Size);       // ".byte", ".long", ...
572   bool parseDirectiveOctaValue(StringRef IDVal); // ".octa", ...
573   bool parseDirectiveRealValue(StringRef IDVal,
574                                const fltSemantics &); // ".single", ...
575   bool parseDirectiveFill(); // ".fill"
576   bool parseDirectiveZero(); // ".zero"
577   // ".set", ".equ", ".equiv", ".lto_set_conditional"
578   bool parseDirectiveSet(StringRef IDVal, AssignmentKind Kind);
579   bool parseDirectiveOrg(); // ".org"
580   // ".align{,32}", ".p2align{,w,l}"
581   bool parseDirectiveAlign(bool IsPow2, unsigned ValueSize);
582 
583   // ".file", ".line", ".loc", ".stabs"
584   bool parseDirectiveFile(SMLoc DirectiveLoc);
585   bool parseDirectiveLine();
586   bool parseDirectiveLoc();
587   bool parseDirectiveStabs();
588 
589   // ".cv_file", ".cv_func_id", ".cv_inline_site_id", ".cv_loc", ".cv_linetable",
590   // ".cv_inline_linetable", ".cv_def_range", ".cv_string"
591   bool parseDirectiveCVFile();
592   bool parseDirectiveCVFuncId();
593   bool parseDirectiveCVInlineSiteId();
594   bool parseDirectiveCVLoc();
595   bool parseDirectiveCVLinetable();
596   bool parseDirectiveCVInlineLinetable();
597   bool parseDirectiveCVDefRange();
598   bool parseDirectiveCVString();
599   bool parseDirectiveCVStringTable();
600   bool parseDirectiveCVFileChecksums();
601   bool parseDirectiveCVFileChecksumOffset();
602   bool parseDirectiveCVFPOData();
603 
604   // .cfi directives
605   bool parseDirectiveCFIRegister(SMLoc DirectiveLoc);
606   bool parseDirectiveCFIWindowSave(SMLoc DirectiveLoc);
607   bool parseDirectiveCFISections();
608   bool parseDirectiveCFIStartProc();
609   bool parseDirectiveCFIEndProc();
610   bool parseDirectiveCFIDefCfaOffset(SMLoc DirectiveLoc);
611   bool parseDirectiveCFIDefCfa(SMLoc DirectiveLoc);
612   bool parseDirectiveCFIAdjustCfaOffset(SMLoc DirectiveLoc);
613   bool parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc);
614   bool parseDirectiveCFILLVMDefAspaceCfa(SMLoc DirectiveLoc);
615   bool parseDirectiveCFIOffset(SMLoc DirectiveLoc);
616   bool parseDirectiveCFIRelOffset(SMLoc DirectiveLoc);
617   bool parseDirectiveCFIPersonalityOrLsda(bool IsPersonality);
618   bool parseDirectiveCFIRememberState(SMLoc DirectiveLoc);
619   bool parseDirectiveCFIRestoreState(SMLoc DirectiveLoc);
620   bool parseDirectiveCFISameValue(SMLoc DirectiveLoc);
621   bool parseDirectiveCFIRestore(SMLoc DirectiveLoc);
622   bool parseDirectiveCFIEscape(SMLoc DirectiveLoc);
623   bool parseDirectiveCFIReturnColumn(SMLoc DirectiveLoc);
624   bool parseDirectiveCFISignalFrame(SMLoc DirectiveLoc);
625   bool parseDirectiveCFIUndefined(SMLoc DirectiveLoc);
626 
627   // macro directives
628   bool parseDirectivePurgeMacro(SMLoc DirectiveLoc);
629   bool parseDirectiveExitMacro(StringRef Directive);
630   bool parseDirectiveEndMacro(StringRef Directive);
631   bool parseDirectiveMacro(SMLoc DirectiveLoc);
632   bool parseDirectiveMacrosOnOff(StringRef Directive);
633   // alternate macro mode directives
634   bool parseDirectiveAltmacro(StringRef Directive);
635   // ".bundle_align_mode"
636   bool parseDirectiveBundleAlignMode();
637   // ".bundle_lock"
638   bool parseDirectiveBundleLock();
639   // ".bundle_unlock"
640   bool parseDirectiveBundleUnlock();
641 
642   // ".space", ".skip"
643   bool parseDirectiveSpace(StringRef IDVal);
644 
645   // ".dcb"
646   bool parseDirectiveDCB(StringRef IDVal, unsigned Size);
647   bool parseDirectiveRealDCB(StringRef IDVal, const fltSemantics &);
648   // ".ds"
649   bool parseDirectiveDS(StringRef IDVal, unsigned Size);
650 
651   // .sleb128 (Signed=true) and .uleb128 (Signed=false)
652   bool parseDirectiveLEB128(bool Signed);
653 
654   /// Parse a directive like ".globl" which
655   /// accepts a single symbol (which should be a label or an external).
656   bool parseDirectiveSymbolAttribute(MCSymbolAttr Attr);
657 
658   bool parseDirectiveComm(bool IsLocal); // ".comm" and ".lcomm"
659 
660   bool parseDirectiveAbort(); // ".abort"
661   bool parseDirectiveInclude(); // ".include"
662   bool parseDirectiveIncbin(); // ".incbin"
663 
664   // ".if", ".ifeq", ".ifge", ".ifgt" , ".ifle", ".iflt" or ".ifne"
665   bool parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind);
666   // ".ifb" or ".ifnb", depending on ExpectBlank.
667   bool parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank);
668   // ".ifc" or ".ifnc", depending on ExpectEqual.
669   bool parseDirectiveIfc(SMLoc DirectiveLoc, bool ExpectEqual);
670   // ".ifeqs" or ".ifnes", depending on ExpectEqual.
671   bool parseDirectiveIfeqs(SMLoc DirectiveLoc, bool ExpectEqual);
672   // ".ifdef" or ".ifndef", depending on expect_defined
673   bool parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined);
674   bool parseDirectiveElseIf(SMLoc DirectiveLoc); // ".elseif"
675   bool parseDirectiveElse(SMLoc DirectiveLoc); // ".else"
676   bool parseDirectiveEndIf(SMLoc DirectiveLoc); // .endif
677   bool parseEscapedString(std::string &Data) override;
678   bool parseAngleBracketString(std::string &Data) override;
679 
680   const MCExpr *applyModifierToExpr(const MCExpr *E,
681                                     MCSymbolRefExpr::VariantKind Variant);
682 
683   // Macro-like directives
684   MCAsmMacro *parseMacroLikeBody(SMLoc DirectiveLoc);
685   void instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc,
686                                 raw_svector_ostream &OS);
687   bool parseDirectiveRept(SMLoc DirectiveLoc, StringRef Directive);
688   bool parseDirectiveIrp(SMLoc DirectiveLoc);  // ".irp"
689   bool parseDirectiveIrpc(SMLoc DirectiveLoc); // ".irpc"
690   bool parseDirectiveEndr(SMLoc DirectiveLoc); // ".endr"
691 
692   // "_emit" or "__emit"
693   bool parseDirectiveMSEmit(SMLoc DirectiveLoc, ParseStatementInfo &Info,
694                             size_t Len);
695 
696   // "align"
697   bool parseDirectiveMSAlign(SMLoc DirectiveLoc, ParseStatementInfo &Info);
698 
699   // "end"
700   bool parseDirectiveEnd(SMLoc DirectiveLoc);
701 
702   // ".err" or ".error"
703   bool parseDirectiveError(SMLoc DirectiveLoc, bool WithMessage);
704 
705   // ".warning"
706   bool parseDirectiveWarning(SMLoc DirectiveLoc);
707 
708   // .print <double-quotes-string>
709   bool parseDirectivePrint(SMLoc DirectiveLoc);
710 
711   // .pseudoprobe
712   bool parseDirectivePseudoProbe();
713 
714   // ".lto_discard"
715   bool parseDirectiveLTODiscard();
716 
717   // Directives to support address-significance tables.
718   bool parseDirectiveAddrsig();
719   bool parseDirectiveAddrsigSym();
720 
721   void initializeDirectiveKindMap();
722   void initializeCVDefRangeTypeMap();
723 };
724 
725 class HLASMAsmParser final : public AsmParser {
726 private:
727   MCAsmLexer &Lexer;
728   MCStreamer &Out;
729 
730   void lexLeadingSpaces() {
731     while (Lexer.is(AsmToken::Space))
732       Lexer.Lex();
733   }
734 
735   bool parseAsHLASMLabel(ParseStatementInfo &Info, MCAsmParserSemaCallback *SI);
736   bool parseAsMachineInstruction(ParseStatementInfo &Info,
737                                  MCAsmParserSemaCallback *SI);
738 
739 public:
740   HLASMAsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out,
741                  const MCAsmInfo &MAI, unsigned CB = 0)
742       : AsmParser(SM, Ctx, Out, MAI, CB), Lexer(getLexer()), Out(Out) {
743     Lexer.setSkipSpace(false);
744     Lexer.setAllowHashInIdentifier(true);
745     Lexer.setLexHLASMIntegers(true);
746     Lexer.setLexHLASMStrings(true);
747   }
748 
749   ~HLASMAsmParser() { Lexer.setSkipSpace(true); }
750 
751   bool parseStatement(ParseStatementInfo &Info,
752                       MCAsmParserSemaCallback *SI) override;
753 };
754 
755 } // end anonymous namespace
756 
757 namespace llvm {
758 
759 extern cl::opt<unsigned> AsmMacroMaxNestingDepth;
760 
761 extern MCAsmParserExtension *createDarwinAsmParser();
762 extern MCAsmParserExtension *createELFAsmParser();
763 extern MCAsmParserExtension *createCOFFAsmParser();
764 extern MCAsmParserExtension *createGOFFAsmParser();
765 extern MCAsmParserExtension *createXCOFFAsmParser();
766 extern MCAsmParserExtension *createWasmAsmParser();
767 
768 } // end namespace llvm
769 
770 enum { DEFAULT_ADDRSPACE = 0 };
771 
772 AsmParser::AsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out,
773                      const MCAsmInfo &MAI, unsigned CB = 0)
774     : Lexer(MAI), Ctx(Ctx), Out(Out), MAI(MAI), SrcMgr(SM),
775       CurBuffer(CB ? CB : SM.getMainFileID()), MacrosEnabledFlag(true) {
776   HadError = false;
777   // Save the old handler.
778   SavedDiagHandler = SrcMgr.getDiagHandler();
779   SavedDiagContext = SrcMgr.getDiagContext();
780   // Set our own handler which calls the saved handler.
781   SrcMgr.setDiagHandler(DiagHandler, this);
782   Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
783   // Make MCStreamer aware of the StartTokLoc for locations in diagnostics.
784   Out.setStartTokLocPtr(&StartTokLoc);
785 
786   // Initialize the platform / file format parser.
787   switch (Ctx.getObjectFileType()) {
788   case MCContext::IsCOFF:
789     PlatformParser.reset(createCOFFAsmParser());
790     break;
791   case MCContext::IsMachO:
792     PlatformParser.reset(createDarwinAsmParser());
793     IsDarwin = true;
794     break;
795   case MCContext::IsELF:
796     PlatformParser.reset(createELFAsmParser());
797     break;
798   case MCContext::IsGOFF:
799     PlatformParser.reset(createGOFFAsmParser());
800     break;
801   case MCContext::IsSPIRV:
802     report_fatal_error(
803         "Need to implement createSPIRVAsmParser for SPIRV format.");
804     break;
805   case MCContext::IsWasm:
806     PlatformParser.reset(createWasmAsmParser());
807     break;
808   case MCContext::IsXCOFF:
809     PlatformParser.reset(createXCOFFAsmParser());
810     break;
811   case MCContext::IsDXContainer:
812     report_fatal_error("DXContainer is not supported yet");
813     break;
814   }
815 
816   PlatformParser->Initialize(*this);
817   initializeDirectiveKindMap();
818   initializeCVDefRangeTypeMap();
819 
820   NumOfMacroInstantiations = 0;
821 }
822 
823 AsmParser::~AsmParser() {
824   assert((HadError || ActiveMacros.empty()) &&
825          "Unexpected active macro instantiation!");
826 
827   // Remove MCStreamer's reference to the parser SMLoc.
828   Out.setStartTokLocPtr(nullptr);
829   // Restore the saved diagnostics handler and context for use during
830   // finalization.
831   SrcMgr.setDiagHandler(SavedDiagHandler, SavedDiagContext);
832 }
833 
834 void AsmParser::printMacroInstantiations() {
835   // Print the active macro instantiation stack.
836   for (std::vector<MacroInstantiation *>::const_reverse_iterator
837            it = ActiveMacros.rbegin(),
838            ie = ActiveMacros.rend();
839        it != ie; ++it)
840     printMessage((*it)->InstantiationLoc, SourceMgr::DK_Note,
841                  "while in macro instantiation");
842 }
843 
844 void AsmParser::Note(SMLoc L, const Twine &Msg, SMRange Range) {
845   printPendingErrors();
846   printMessage(L, SourceMgr::DK_Note, Msg, Range);
847   printMacroInstantiations();
848 }
849 
850 bool AsmParser::Warning(SMLoc L, const Twine &Msg, SMRange Range) {
851   if(getTargetParser().getTargetOptions().MCNoWarn)
852     return false;
853   if (getTargetParser().getTargetOptions().MCFatalWarnings)
854     return Error(L, Msg, Range);
855   printMessage(L, SourceMgr::DK_Warning, Msg, Range);
856   printMacroInstantiations();
857   return false;
858 }
859 
860 bool AsmParser::printError(SMLoc L, const Twine &Msg, SMRange Range) {
861   HadError = true;
862   printMessage(L, SourceMgr::DK_Error, Msg, Range);
863   printMacroInstantiations();
864   return true;
865 }
866 
867 bool AsmParser::enterIncludeFile(const std::string &Filename) {
868   std::string IncludedFile;
869   unsigned NewBuf =
870       SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile);
871   if (!NewBuf)
872     return true;
873 
874   CurBuffer = NewBuf;
875   Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
876   return false;
877 }
878 
879 /// Process the specified .incbin file by searching for it in the include paths
880 /// then just emitting the byte contents of the file to the streamer. This
881 /// returns true on failure.
882 bool AsmParser::processIncbinFile(const std::string &Filename, int64_t Skip,
883                                   const MCExpr *Count, SMLoc Loc) {
884   std::string IncludedFile;
885   unsigned NewBuf =
886       SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile);
887   if (!NewBuf)
888     return true;
889 
890   // Pick up the bytes from the file and emit them.
891   StringRef Bytes = SrcMgr.getMemoryBuffer(NewBuf)->getBuffer();
892   Bytes = Bytes.drop_front(Skip);
893   if (Count) {
894     int64_t Res;
895     if (!Count->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr()))
896       return Error(Loc, "expected absolute expression");
897     if (Res < 0)
898       return Warning(Loc, "negative count has no effect");
899     Bytes = Bytes.take_front(Res);
900   }
901   getStreamer().emitBytes(Bytes);
902   return false;
903 }
904 
905 void AsmParser::jumpToLoc(SMLoc Loc, unsigned InBuffer) {
906   CurBuffer = InBuffer ? InBuffer : SrcMgr.FindBufferContainingLoc(Loc);
907   Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer(),
908                   Loc.getPointer());
909 }
910 
911 const AsmToken &AsmParser::Lex() {
912   if (Lexer.getTok().is(AsmToken::Error))
913     Error(Lexer.getErrLoc(), Lexer.getErr());
914 
915   // if it's a end of statement with a comment in it
916   if (getTok().is(AsmToken::EndOfStatement)) {
917     // if this is a line comment output it.
918     if (!getTok().getString().empty() && getTok().getString().front() != '\n' &&
919         getTok().getString().front() != '\r' && MAI.preserveAsmComments())
920       Out.addExplicitComment(Twine(getTok().getString()));
921   }
922 
923   const AsmToken *tok = &Lexer.Lex();
924 
925   // Parse comments here to be deferred until end of next statement.
926   while (tok->is(AsmToken::Comment)) {
927     if (MAI.preserveAsmComments())
928       Out.addExplicitComment(Twine(tok->getString()));
929     tok = &Lexer.Lex();
930   }
931 
932   if (tok->is(AsmToken::Eof)) {
933     // If this is the end of an included file, pop the parent file off the
934     // include stack.
935     SMLoc ParentIncludeLoc = SrcMgr.getParentIncludeLoc(CurBuffer);
936     if (ParentIncludeLoc != SMLoc()) {
937       jumpToLoc(ParentIncludeLoc);
938       return Lex();
939     }
940   }
941 
942   return *tok;
943 }
944 
945 bool AsmParser::enabledGenDwarfForAssembly() {
946   // Check whether the user specified -g.
947   if (!getContext().getGenDwarfForAssembly())
948     return false;
949   // If we haven't encountered any .file directives (which would imply that
950   // the assembler source was produced with debug info already) then emit one
951   // describing the assembler source file itself.
952   if (getContext().getGenDwarfFileNumber() == 0) {
953     // Use the first #line directive for this, if any. It's preprocessed, so
954     // there is no checksum, and of course no source directive.
955     if (!FirstCppHashFilename.empty())
956       getContext().setMCLineTableRootFile(
957           /*CUID=*/0, getContext().getCompilationDir(), FirstCppHashFilename,
958           /*Cksum=*/std::nullopt, /*Source=*/std::nullopt);
959     const MCDwarfFile &RootFile =
960         getContext().getMCDwarfLineTable(/*CUID=*/0).getRootFile();
961     getContext().setGenDwarfFileNumber(getStreamer().emitDwarfFileDirective(
962         /*CUID=*/0, getContext().getCompilationDir(), RootFile.Name,
963         RootFile.Checksum, RootFile.Source));
964   }
965   return true;
966 }
967 
968 bool AsmParser::Run(bool NoInitialTextSection, bool NoFinalize) {
969   LTODiscardSymbols.clear();
970 
971   // Create the initial section, if requested.
972   if (!NoInitialTextSection)
973     Out.initSections(false, getTargetParser().getSTI());
974 
975   // Prime the lexer.
976   Lex();
977 
978   HadError = false;
979   AsmCond StartingCondState = TheCondState;
980   SmallVector<AsmRewrite, 4> AsmStrRewrites;
981 
982   // If we are generating dwarf for assembly source files save the initial text
983   // section.  (Don't use enabledGenDwarfForAssembly() here, as we aren't
984   // emitting any actual debug info yet and haven't had a chance to parse any
985   // embedded .file directives.)
986   if (getContext().getGenDwarfForAssembly()) {
987     MCSection *Sec = getStreamer().getCurrentSectionOnly();
988     if (!Sec->getBeginSymbol()) {
989       MCSymbol *SectionStartSym = getContext().createTempSymbol();
990       getStreamer().emitLabel(SectionStartSym);
991       Sec->setBeginSymbol(SectionStartSym);
992     }
993     bool InsertResult = getContext().addGenDwarfSection(Sec);
994     assert(InsertResult && ".text section should not have debug info yet");
995     (void)InsertResult;
996   }
997 
998   getTargetParser().onBeginOfFile();
999 
1000   // While we have input, parse each statement.
1001   while (Lexer.isNot(AsmToken::Eof)) {
1002     ParseStatementInfo Info(&AsmStrRewrites);
1003     bool Parsed = parseStatement(Info, nullptr);
1004 
1005     // If we have a Lexer Error we are on an Error Token. Load in Lexer Error
1006     // for printing ErrMsg via Lex() only if no (presumably better) parser error
1007     // exists.
1008     if (Parsed && !hasPendingError() && Lexer.getTok().is(AsmToken::Error)) {
1009       Lex();
1010     }
1011 
1012     // parseStatement returned true so may need to emit an error.
1013     printPendingErrors();
1014 
1015     // Skipping to the next line if needed.
1016     if (Parsed && !getLexer().isAtStartOfStatement())
1017       eatToEndOfStatement();
1018   }
1019 
1020   getTargetParser().onEndOfFile();
1021   printPendingErrors();
1022 
1023   // All errors should have been emitted.
1024   assert(!hasPendingError() && "unexpected error from parseStatement");
1025 
1026   getTargetParser().flushPendingInstructions(getStreamer());
1027 
1028   if (TheCondState.TheCond != StartingCondState.TheCond ||
1029       TheCondState.Ignore != StartingCondState.Ignore)
1030     printError(getTok().getLoc(), "unmatched .ifs or .elses");
1031   // Check to see there are no empty DwarfFile slots.
1032   const auto &LineTables = getContext().getMCDwarfLineTables();
1033   if (!LineTables.empty()) {
1034     unsigned Index = 0;
1035     for (const auto &File : LineTables.begin()->second.getMCDwarfFiles()) {
1036       if (File.Name.empty() && Index != 0)
1037         printError(getTok().getLoc(), "unassigned file number: " +
1038                                           Twine(Index) +
1039                                           " for .file directives");
1040       ++Index;
1041     }
1042   }
1043 
1044   // Check to see that all assembler local symbols were actually defined.
1045   // Targets that don't do subsections via symbols may not want this, though,
1046   // so conservatively exclude them. Only do this if we're finalizing, though,
1047   // as otherwise we won't necessarilly have seen everything yet.
1048   if (!NoFinalize) {
1049     if (MAI.hasSubsectionsViaSymbols()) {
1050       for (const auto &TableEntry : getContext().getSymbols()) {
1051         MCSymbol *Sym = TableEntry.getValue();
1052         // Variable symbols may not be marked as defined, so check those
1053         // explicitly. If we know it's a variable, we have a definition for
1054         // the purposes of this check.
1055         if (Sym->isTemporary() && !Sym->isVariable() && !Sym->isDefined())
1056           // FIXME: We would really like to refer back to where the symbol was
1057           // first referenced for a source location. We need to add something
1058           // to track that. Currently, we just point to the end of the file.
1059           printError(getTok().getLoc(), "assembler local symbol '" +
1060                                             Sym->getName() + "' not defined");
1061       }
1062     }
1063 
1064     // Temporary symbols like the ones for directional jumps don't go in the
1065     // symbol table. They also need to be diagnosed in all (final) cases.
1066     for (std::tuple<SMLoc, CppHashInfoTy, MCSymbol *> &LocSym : DirLabels) {
1067       if (std::get<2>(LocSym)->isUndefined()) {
1068         // Reset the state of any "# line file" directives we've seen to the
1069         // context as it was at the diagnostic site.
1070         CppHashInfo = std::get<1>(LocSym);
1071         printError(std::get<0>(LocSym), "directional label undefined");
1072       }
1073     }
1074   }
1075   // Finalize the output stream if there are no errors and if the client wants
1076   // us to.
1077   if (!HadError && !NoFinalize) {
1078     if (auto *TS = Out.getTargetStreamer())
1079       TS->emitConstantPools();
1080 
1081     Out.finish(Lexer.getLoc());
1082   }
1083 
1084   return HadError || getContext().hadError();
1085 }
1086 
1087 bool AsmParser::checkForValidSection() {
1088   if (!ParsingMSInlineAsm && !getStreamer().getCurrentSectionOnly()) {
1089     Out.initSections(false, getTargetParser().getSTI());
1090     return Error(getTok().getLoc(),
1091                  "expected section directive before assembly directive");
1092   }
1093   return false;
1094 }
1095 
1096 /// Throw away the rest of the line for testing purposes.
1097 void AsmParser::eatToEndOfStatement() {
1098   while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof))
1099     Lexer.Lex();
1100 
1101   // Eat EOL.
1102   if (Lexer.is(AsmToken::EndOfStatement))
1103     Lexer.Lex();
1104 }
1105 
1106 StringRef AsmParser::parseStringToEndOfStatement() {
1107   const char *Start = getTok().getLoc().getPointer();
1108 
1109   while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof))
1110     Lexer.Lex();
1111 
1112   const char *End = getTok().getLoc().getPointer();
1113   return StringRef(Start, End - Start);
1114 }
1115 
1116 StringRef AsmParser::parseStringToComma() {
1117   const char *Start = getTok().getLoc().getPointer();
1118 
1119   while (Lexer.isNot(AsmToken::EndOfStatement) &&
1120          Lexer.isNot(AsmToken::Comma) && Lexer.isNot(AsmToken::Eof))
1121     Lexer.Lex();
1122 
1123   const char *End = getTok().getLoc().getPointer();
1124   return StringRef(Start, End - Start);
1125 }
1126 
1127 /// Parse a paren expression and return it.
1128 /// NOTE: This assumes the leading '(' has already been consumed.
1129 ///
1130 /// parenexpr ::= expr)
1131 ///
1132 bool AsmParser::parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc) {
1133   if (parseExpression(Res))
1134     return true;
1135   EndLoc = Lexer.getTok().getEndLoc();
1136   return parseRParen();
1137 }
1138 
1139 /// Parse a bracket expression and return it.
1140 /// NOTE: This assumes the leading '[' has already been consumed.
1141 ///
1142 /// bracketexpr ::= expr]
1143 ///
1144 bool AsmParser::parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc) {
1145   if (parseExpression(Res))
1146     return true;
1147   EndLoc = getTok().getEndLoc();
1148   if (parseToken(AsmToken::RBrac, "expected ']' in brackets expression"))
1149     return true;
1150   return false;
1151 }
1152 
1153 /// Parse a primary expression and return it.
1154 ///  primaryexpr ::= (parenexpr
1155 ///  primaryexpr ::= symbol
1156 ///  primaryexpr ::= number
1157 ///  primaryexpr ::= '.'
1158 ///  primaryexpr ::= ~,+,- primaryexpr
1159 bool AsmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc,
1160                                  AsmTypeInfo *TypeInfo) {
1161   SMLoc FirstTokenLoc = getLexer().getLoc();
1162   AsmToken::TokenKind FirstTokenKind = Lexer.getKind();
1163   switch (FirstTokenKind) {
1164   default:
1165     return TokError("unknown token in expression");
1166   // If we have an error assume that we've already handled it.
1167   case AsmToken::Error:
1168     return true;
1169   case AsmToken::Exclaim:
1170     Lex(); // Eat the operator.
1171     if (parsePrimaryExpr(Res, EndLoc, TypeInfo))
1172       return true;
1173     Res = MCUnaryExpr::createLNot(Res, getContext(), FirstTokenLoc);
1174     return false;
1175   case AsmToken::Dollar:
1176   case AsmToken::Star:
1177   case AsmToken::At:
1178   case AsmToken::String:
1179   case AsmToken::Identifier: {
1180     StringRef Identifier;
1181     if (parseIdentifier(Identifier)) {
1182       // We may have failed but '$'|'*' may be a valid token in context of
1183       // the current PC.
1184       if (getTok().is(AsmToken::Dollar) || getTok().is(AsmToken::Star)) {
1185         bool ShouldGenerateTempSymbol = false;
1186         if ((getTok().is(AsmToken::Dollar) && MAI.getDollarIsPC()) ||
1187             (getTok().is(AsmToken::Star) && MAI.getStarIsPC()))
1188           ShouldGenerateTempSymbol = true;
1189 
1190         if (!ShouldGenerateTempSymbol)
1191           return Error(FirstTokenLoc, "invalid token in expression");
1192 
1193         // Eat the '$'|'*' token.
1194         Lex();
1195         // This is either a '$'|'*' reference, which references the current PC.
1196         // Emit a temporary label to the streamer and refer to it.
1197         MCSymbol *Sym = Ctx.createTempSymbol();
1198         Out.emitLabel(Sym);
1199         Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
1200                                       getContext());
1201         EndLoc = FirstTokenLoc;
1202         return false;
1203       }
1204     }
1205     // Parse symbol variant
1206     std::pair<StringRef, StringRef> Split;
1207     if (!MAI.useParensForSymbolVariant()) {
1208       if (FirstTokenKind == AsmToken::String) {
1209         if (Lexer.is(AsmToken::At)) {
1210           Lex(); // eat @
1211           SMLoc AtLoc = getLexer().getLoc();
1212           StringRef VName;
1213           if (parseIdentifier(VName))
1214             return Error(AtLoc, "expected symbol variant after '@'");
1215 
1216           Split = std::make_pair(Identifier, VName);
1217         }
1218       } else {
1219         Split = Identifier.split('@');
1220       }
1221     } else if (Lexer.is(AsmToken::LParen)) {
1222       Lex(); // eat '('.
1223       StringRef VName;
1224       parseIdentifier(VName);
1225       if (parseRParen())
1226         return true;
1227       Split = std::make_pair(Identifier, VName);
1228     }
1229 
1230     EndLoc = SMLoc::getFromPointer(Identifier.end());
1231 
1232     // This is a symbol reference.
1233     StringRef SymbolName = Identifier;
1234     if (SymbolName.empty())
1235       return Error(getLexer().getLoc(), "expected a symbol reference");
1236 
1237     MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
1238 
1239     // Lookup the symbol variant if used.
1240     if (!Split.second.empty()) {
1241       Variant = MCSymbolRefExpr::getVariantKindForName(Split.second);
1242       if (Variant != MCSymbolRefExpr::VK_Invalid) {
1243         SymbolName = Split.first;
1244       } else if (MAI.doesAllowAtInName() && !MAI.useParensForSymbolVariant()) {
1245         Variant = MCSymbolRefExpr::VK_None;
1246       } else {
1247         return Error(SMLoc::getFromPointer(Split.second.begin()),
1248                      "invalid variant '" + Split.second + "'");
1249       }
1250     }
1251 
1252     MCSymbol *Sym = getContext().getInlineAsmLabel(SymbolName);
1253     if (!Sym)
1254       Sym = getContext().getOrCreateSymbol(
1255           MAI.shouldEmitLabelsInUpperCase() ? SymbolName.upper() : SymbolName);
1256 
1257     // If this is an absolute variable reference, substitute it now to preserve
1258     // semantics in the face of reassignment.
1259     if (Sym->isVariable()) {
1260       auto V = Sym->getVariableValue(/*SetUsed*/ false);
1261       bool DoInline = isa<MCConstantExpr>(V) && !Variant;
1262       if (auto TV = dyn_cast<MCTargetExpr>(V))
1263         DoInline = TV->inlineAssignedExpr();
1264       if (DoInline) {
1265         if (Variant)
1266           return Error(EndLoc, "unexpected modifier on variable reference");
1267         Res = Sym->getVariableValue(/*SetUsed*/ false);
1268         return false;
1269       }
1270     }
1271 
1272     // Otherwise create a symbol ref.
1273     Res = MCSymbolRefExpr::create(Sym, Variant, getContext(), FirstTokenLoc);
1274     return false;
1275   }
1276   case AsmToken::BigNum:
1277     return TokError("literal value out of range for directive");
1278   case AsmToken::Integer: {
1279     SMLoc Loc = getTok().getLoc();
1280     int64_t IntVal = getTok().getIntVal();
1281     Res = MCConstantExpr::create(IntVal, getContext());
1282     EndLoc = Lexer.getTok().getEndLoc();
1283     Lex(); // Eat token.
1284     // Look for 'b' or 'f' following an Integer as a directional label
1285     if (Lexer.getKind() == AsmToken::Identifier) {
1286       StringRef IDVal = getTok().getString();
1287       // Lookup the symbol variant if used.
1288       std::pair<StringRef, StringRef> Split = IDVal.split('@');
1289       MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
1290       if (Split.first.size() != IDVal.size()) {
1291         Variant = MCSymbolRefExpr::getVariantKindForName(Split.second);
1292         if (Variant == MCSymbolRefExpr::VK_Invalid)
1293           return TokError("invalid variant '" + Split.second + "'");
1294         IDVal = Split.first;
1295       }
1296       if (IDVal == "f" || IDVal == "b") {
1297         MCSymbol *Sym =
1298             Ctx.getDirectionalLocalSymbol(IntVal, IDVal == "b");
1299         Res = MCSymbolRefExpr::create(Sym, Variant, getContext());
1300         if (IDVal == "b" && Sym->isUndefined())
1301           return Error(Loc, "directional label undefined");
1302         DirLabels.push_back(std::make_tuple(Loc, CppHashInfo, Sym));
1303         EndLoc = Lexer.getTok().getEndLoc();
1304         Lex(); // Eat identifier.
1305       }
1306     }
1307     return false;
1308   }
1309   case AsmToken::Real: {
1310     APFloat RealVal(APFloat::IEEEdouble(), getTok().getString());
1311     uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
1312     Res = MCConstantExpr::create(IntVal, getContext());
1313     EndLoc = Lexer.getTok().getEndLoc();
1314     Lex(); // Eat token.
1315     return false;
1316   }
1317   case AsmToken::Dot: {
1318     if (!MAI.getDotIsPC())
1319       return TokError("cannot use . as current PC");
1320 
1321     // This is a '.' reference, which references the current PC.  Emit a
1322     // temporary label to the streamer and refer to it.
1323     MCSymbol *Sym = Ctx.createTempSymbol();
1324     Out.emitLabel(Sym);
1325     Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
1326     EndLoc = Lexer.getTok().getEndLoc();
1327     Lex(); // Eat identifier.
1328     return false;
1329   }
1330   case AsmToken::LParen:
1331     Lex(); // Eat the '('.
1332     return parseParenExpr(Res, EndLoc);
1333   case AsmToken::LBrac:
1334     if (!PlatformParser->HasBracketExpressions())
1335       return TokError("brackets expression not supported on this target");
1336     Lex(); // Eat the '['.
1337     return parseBracketExpr(Res, EndLoc);
1338   case AsmToken::Minus:
1339     Lex(); // Eat the operator.
1340     if (parsePrimaryExpr(Res, EndLoc, TypeInfo))
1341       return true;
1342     Res = MCUnaryExpr::createMinus(Res, getContext(), FirstTokenLoc);
1343     return false;
1344   case AsmToken::Plus:
1345     Lex(); // Eat the operator.
1346     if (parsePrimaryExpr(Res, EndLoc, TypeInfo))
1347       return true;
1348     Res = MCUnaryExpr::createPlus(Res, getContext(), FirstTokenLoc);
1349     return false;
1350   case AsmToken::Tilde:
1351     Lex(); // Eat the operator.
1352     if (parsePrimaryExpr(Res, EndLoc, TypeInfo))
1353       return true;
1354     Res = MCUnaryExpr::createNot(Res, getContext(), FirstTokenLoc);
1355     return false;
1356   // MIPS unary expression operators. The lexer won't generate these tokens if
1357   // MCAsmInfo::HasMipsExpressions is false for the target.
1358   case AsmToken::PercentCall16:
1359   case AsmToken::PercentCall_Hi:
1360   case AsmToken::PercentCall_Lo:
1361   case AsmToken::PercentDtprel_Hi:
1362   case AsmToken::PercentDtprel_Lo:
1363   case AsmToken::PercentGot:
1364   case AsmToken::PercentGot_Disp:
1365   case AsmToken::PercentGot_Hi:
1366   case AsmToken::PercentGot_Lo:
1367   case AsmToken::PercentGot_Ofst:
1368   case AsmToken::PercentGot_Page:
1369   case AsmToken::PercentGottprel:
1370   case AsmToken::PercentGp_Rel:
1371   case AsmToken::PercentHi:
1372   case AsmToken::PercentHigher:
1373   case AsmToken::PercentHighest:
1374   case AsmToken::PercentLo:
1375   case AsmToken::PercentNeg:
1376   case AsmToken::PercentPcrel_Hi:
1377   case AsmToken::PercentPcrel_Lo:
1378   case AsmToken::PercentTlsgd:
1379   case AsmToken::PercentTlsldm:
1380   case AsmToken::PercentTprel_Hi:
1381   case AsmToken::PercentTprel_Lo:
1382     Lex(); // Eat the operator.
1383     if (Lexer.isNot(AsmToken::LParen))
1384       return TokError("expected '(' after operator");
1385     Lex(); // Eat the operator.
1386     if (parseExpression(Res, EndLoc))
1387       return true;
1388     if (parseRParen())
1389       return true;
1390     Res = getTargetParser().createTargetUnaryExpr(Res, FirstTokenKind, Ctx);
1391     return !Res;
1392   }
1393 }
1394 
1395 bool AsmParser::parseExpression(const MCExpr *&Res) {
1396   SMLoc EndLoc;
1397   return parseExpression(Res, EndLoc);
1398 }
1399 
1400 const MCExpr *
1401 AsmParser::applyModifierToExpr(const MCExpr *E,
1402                                MCSymbolRefExpr::VariantKind Variant) {
1403   // Ask the target implementation about this expression first.
1404   const MCExpr *NewE = getTargetParser().applyModifierToExpr(E, Variant, Ctx);
1405   if (NewE)
1406     return NewE;
1407   // Recurse over the given expression, rebuilding it to apply the given variant
1408   // if there is exactly one symbol.
1409   switch (E->getKind()) {
1410   case MCExpr::Target:
1411   case MCExpr::Constant:
1412     return nullptr;
1413 
1414   case MCExpr::SymbolRef: {
1415     const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
1416 
1417     if (SRE->getKind() != MCSymbolRefExpr::VK_None) {
1418       TokError("invalid variant on expression '" + getTok().getIdentifier() +
1419                "' (already modified)");
1420       return E;
1421     }
1422 
1423     return MCSymbolRefExpr::create(&SRE->getSymbol(), Variant, getContext());
1424   }
1425 
1426   case MCExpr::Unary: {
1427     const MCUnaryExpr *UE = cast<MCUnaryExpr>(E);
1428     const MCExpr *Sub = applyModifierToExpr(UE->getSubExpr(), Variant);
1429     if (!Sub)
1430       return nullptr;
1431     return MCUnaryExpr::create(UE->getOpcode(), Sub, getContext());
1432   }
1433 
1434   case MCExpr::Binary: {
1435     const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
1436     const MCExpr *LHS = applyModifierToExpr(BE->getLHS(), Variant);
1437     const MCExpr *RHS = applyModifierToExpr(BE->getRHS(), Variant);
1438 
1439     if (!LHS && !RHS)
1440       return nullptr;
1441 
1442     if (!LHS)
1443       LHS = BE->getLHS();
1444     if (!RHS)
1445       RHS = BE->getRHS();
1446 
1447     return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, getContext());
1448   }
1449   }
1450 
1451   llvm_unreachable("Invalid expression kind!");
1452 }
1453 
1454 /// This function checks if the next token is <string> type or arithmetic.
1455 /// string that begin with character '<' must end with character '>'.
1456 /// otherwise it is arithmetics.
1457 /// If the function returns a 'true' value,
1458 /// the End argument will be filled with the last location pointed to the '>'
1459 /// character.
1460 
1461 /// There is a gap between the AltMacro's documentation and the single quote
1462 /// implementation. GCC does not fully support this feature and so we will not
1463 /// support it.
1464 /// TODO: Adding single quote as a string.
1465 static bool isAngleBracketString(SMLoc &StrLoc, SMLoc &EndLoc) {
1466   assert((StrLoc.getPointer() != nullptr) &&
1467          "Argument to the function cannot be a NULL value");
1468   const char *CharPtr = StrLoc.getPointer();
1469   while ((*CharPtr != '>') && (*CharPtr != '\n') && (*CharPtr != '\r') &&
1470          (*CharPtr != '\0')) {
1471     if (*CharPtr == '!')
1472       CharPtr++;
1473     CharPtr++;
1474   }
1475   if (*CharPtr == '>') {
1476     EndLoc = StrLoc.getFromPointer(CharPtr + 1);
1477     return true;
1478   }
1479   return false;
1480 }
1481 
1482 /// creating a string without the escape characters '!'.
1483 static std::string angleBracketString(StringRef AltMacroStr) {
1484   std::string Res;
1485   for (size_t Pos = 0; Pos < AltMacroStr.size(); Pos++) {
1486     if (AltMacroStr[Pos] == '!')
1487       Pos++;
1488     Res += AltMacroStr[Pos];
1489   }
1490   return Res;
1491 }
1492 
1493 /// Parse an expression and return it.
1494 ///
1495 ///  expr ::= expr &&,|| expr               -> lowest.
1496 ///  expr ::= expr |,^,&,! expr
1497 ///  expr ::= expr ==,!=,<>,<,<=,>,>= expr
1498 ///  expr ::= expr <<,>> expr
1499 ///  expr ::= expr +,- expr
1500 ///  expr ::= expr *,/,% expr               -> highest.
1501 ///  expr ::= primaryexpr
1502 ///
1503 bool AsmParser::parseExpression(const MCExpr *&Res, SMLoc &EndLoc) {
1504   // Parse the expression.
1505   Res = nullptr;
1506   if (getTargetParser().parsePrimaryExpr(Res, EndLoc) ||
1507       parseBinOpRHS(1, Res, EndLoc))
1508     return true;
1509 
1510   // As a special case, we support 'a op b @ modifier' by rewriting the
1511   // expression to include the modifier. This is inefficient, but in general we
1512   // expect users to use 'a@modifier op b'.
1513   if (Lexer.getKind() == AsmToken::At) {
1514     Lex();
1515 
1516     if (Lexer.isNot(AsmToken::Identifier))
1517       return TokError("unexpected symbol modifier following '@'");
1518 
1519     MCSymbolRefExpr::VariantKind Variant =
1520         MCSymbolRefExpr::getVariantKindForName(getTok().getIdentifier());
1521     if (Variant == MCSymbolRefExpr::VK_Invalid)
1522       return TokError("invalid variant '" + getTok().getIdentifier() + "'");
1523 
1524     const MCExpr *ModifiedRes = applyModifierToExpr(Res, Variant);
1525     if (!ModifiedRes) {
1526       return TokError("invalid modifier '" + getTok().getIdentifier() +
1527                       "' (no symbols present)");
1528     }
1529 
1530     Res = ModifiedRes;
1531     Lex();
1532   }
1533 
1534   // Try to constant fold it up front, if possible. Do not exploit
1535   // assembler here.
1536   int64_t Value;
1537   if (Res->evaluateAsAbsolute(Value))
1538     Res = MCConstantExpr::create(Value, getContext());
1539 
1540   return false;
1541 }
1542 
1543 bool AsmParser::parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) {
1544   Res = nullptr;
1545   return parseParenExpr(Res, EndLoc) || parseBinOpRHS(1, Res, EndLoc);
1546 }
1547 
1548 bool AsmParser::parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res,
1549                                       SMLoc &EndLoc) {
1550   if (parseParenExpr(Res, EndLoc))
1551     return true;
1552 
1553   for (; ParenDepth > 0; --ParenDepth) {
1554     if (parseBinOpRHS(1, Res, EndLoc))
1555       return true;
1556 
1557     // We don't Lex() the last RParen.
1558     // This is the same behavior as parseParenExpression().
1559     if (ParenDepth - 1 > 0) {
1560       EndLoc = getTok().getEndLoc();
1561       if (parseRParen())
1562         return true;
1563     }
1564   }
1565   return false;
1566 }
1567 
1568 bool AsmParser::parseAbsoluteExpression(int64_t &Res) {
1569   const MCExpr *Expr;
1570 
1571   SMLoc StartLoc = Lexer.getLoc();
1572   if (parseExpression(Expr))
1573     return true;
1574 
1575   if (!Expr->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr()))
1576     return Error(StartLoc, "expected absolute expression");
1577 
1578   return false;
1579 }
1580 
1581 static unsigned getDarwinBinOpPrecedence(AsmToken::TokenKind K,
1582                                          MCBinaryExpr::Opcode &Kind,
1583                                          bool ShouldUseLogicalShr) {
1584   switch (K) {
1585   default:
1586     return 0; // not a binop.
1587 
1588   // Lowest Precedence: &&, ||
1589   case AsmToken::AmpAmp:
1590     Kind = MCBinaryExpr::LAnd;
1591     return 1;
1592   case AsmToken::PipePipe:
1593     Kind = MCBinaryExpr::LOr;
1594     return 1;
1595 
1596   // Low Precedence: |, &, ^
1597   case AsmToken::Pipe:
1598     Kind = MCBinaryExpr::Or;
1599     return 2;
1600   case AsmToken::Caret:
1601     Kind = MCBinaryExpr::Xor;
1602     return 2;
1603   case AsmToken::Amp:
1604     Kind = MCBinaryExpr::And;
1605     return 2;
1606 
1607   // Low Intermediate Precedence: ==, !=, <>, <, <=, >, >=
1608   case AsmToken::EqualEqual:
1609     Kind = MCBinaryExpr::EQ;
1610     return 3;
1611   case AsmToken::ExclaimEqual:
1612   case AsmToken::LessGreater:
1613     Kind = MCBinaryExpr::NE;
1614     return 3;
1615   case AsmToken::Less:
1616     Kind = MCBinaryExpr::LT;
1617     return 3;
1618   case AsmToken::LessEqual:
1619     Kind = MCBinaryExpr::LTE;
1620     return 3;
1621   case AsmToken::Greater:
1622     Kind = MCBinaryExpr::GT;
1623     return 3;
1624   case AsmToken::GreaterEqual:
1625     Kind = MCBinaryExpr::GTE;
1626     return 3;
1627 
1628   // Intermediate Precedence: <<, >>
1629   case AsmToken::LessLess:
1630     Kind = MCBinaryExpr::Shl;
1631     return 4;
1632   case AsmToken::GreaterGreater:
1633     Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr;
1634     return 4;
1635 
1636   // High Intermediate Precedence: +, -
1637   case AsmToken::Plus:
1638     Kind = MCBinaryExpr::Add;
1639     return 5;
1640   case AsmToken::Minus:
1641     Kind = MCBinaryExpr::Sub;
1642     return 5;
1643 
1644   // Highest Precedence: *, /, %
1645   case AsmToken::Star:
1646     Kind = MCBinaryExpr::Mul;
1647     return 6;
1648   case AsmToken::Slash:
1649     Kind = MCBinaryExpr::Div;
1650     return 6;
1651   case AsmToken::Percent:
1652     Kind = MCBinaryExpr::Mod;
1653     return 6;
1654   }
1655 }
1656 
1657 static unsigned getGNUBinOpPrecedence(const MCAsmInfo &MAI,
1658                                       AsmToken::TokenKind K,
1659                                       MCBinaryExpr::Opcode &Kind,
1660                                       bool ShouldUseLogicalShr) {
1661   switch (K) {
1662   default:
1663     return 0; // not a binop.
1664 
1665   // Lowest Precedence: &&, ||
1666   case AsmToken::AmpAmp:
1667     Kind = MCBinaryExpr::LAnd;
1668     return 2;
1669   case AsmToken::PipePipe:
1670     Kind = MCBinaryExpr::LOr;
1671     return 1;
1672 
1673   // Low Precedence: ==, !=, <>, <, <=, >, >=
1674   case AsmToken::EqualEqual:
1675     Kind = MCBinaryExpr::EQ;
1676     return 3;
1677   case AsmToken::ExclaimEqual:
1678   case AsmToken::LessGreater:
1679     Kind = MCBinaryExpr::NE;
1680     return 3;
1681   case AsmToken::Less:
1682     Kind = MCBinaryExpr::LT;
1683     return 3;
1684   case AsmToken::LessEqual:
1685     Kind = MCBinaryExpr::LTE;
1686     return 3;
1687   case AsmToken::Greater:
1688     Kind = MCBinaryExpr::GT;
1689     return 3;
1690   case AsmToken::GreaterEqual:
1691     Kind = MCBinaryExpr::GTE;
1692     return 3;
1693 
1694   // Low Intermediate Precedence: +, -
1695   case AsmToken::Plus:
1696     Kind = MCBinaryExpr::Add;
1697     return 4;
1698   case AsmToken::Minus:
1699     Kind = MCBinaryExpr::Sub;
1700     return 4;
1701 
1702   // High Intermediate Precedence: |, !, &, ^
1703   //
1704   case AsmToken::Pipe:
1705     Kind = MCBinaryExpr::Or;
1706     return 5;
1707   case AsmToken::Exclaim:
1708     // Hack to support ARM compatible aliases (implied 'sp' operand in 'srs*'
1709     // instructions like 'srsda #31!') and not parse ! as an infix operator.
1710     if (MAI.getCommentString() == "@")
1711       return 0;
1712     Kind = MCBinaryExpr::OrNot;
1713     return 5;
1714   case AsmToken::Caret:
1715     Kind = MCBinaryExpr::Xor;
1716     return 5;
1717   case AsmToken::Amp:
1718     Kind = MCBinaryExpr::And;
1719     return 5;
1720 
1721   // Highest Precedence: *, /, %, <<, >>
1722   case AsmToken::Star:
1723     Kind = MCBinaryExpr::Mul;
1724     return 6;
1725   case AsmToken::Slash:
1726     Kind = MCBinaryExpr::Div;
1727     return 6;
1728   case AsmToken::Percent:
1729     Kind = MCBinaryExpr::Mod;
1730     return 6;
1731   case AsmToken::LessLess:
1732     Kind = MCBinaryExpr::Shl;
1733     return 6;
1734   case AsmToken::GreaterGreater:
1735     Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr;
1736     return 6;
1737   }
1738 }
1739 
1740 unsigned AsmParser::getBinOpPrecedence(AsmToken::TokenKind K,
1741                                        MCBinaryExpr::Opcode &Kind) {
1742   bool ShouldUseLogicalShr = MAI.shouldUseLogicalShr();
1743   return IsDarwin ? getDarwinBinOpPrecedence(K, Kind, ShouldUseLogicalShr)
1744                   : getGNUBinOpPrecedence(MAI, K, Kind, ShouldUseLogicalShr);
1745 }
1746 
1747 /// Parse all binary operators with precedence >= 'Precedence'.
1748 /// Res contains the LHS of the expression on input.
1749 bool AsmParser::parseBinOpRHS(unsigned Precedence, const MCExpr *&Res,
1750                               SMLoc &EndLoc) {
1751   SMLoc StartLoc = Lexer.getLoc();
1752   while (true) {
1753     MCBinaryExpr::Opcode Kind = MCBinaryExpr::Add;
1754     unsigned TokPrec = getBinOpPrecedence(Lexer.getKind(), Kind);
1755 
1756     // If the next token is lower precedence than we are allowed to eat, return
1757     // successfully with what we ate already.
1758     if (TokPrec < Precedence)
1759       return false;
1760 
1761     Lex();
1762 
1763     // Eat the next primary expression.
1764     const MCExpr *RHS;
1765     if (getTargetParser().parsePrimaryExpr(RHS, EndLoc))
1766       return true;
1767 
1768     // If BinOp binds less tightly with RHS than the operator after RHS, let
1769     // the pending operator take RHS as its LHS.
1770     MCBinaryExpr::Opcode Dummy;
1771     unsigned NextTokPrec = getBinOpPrecedence(Lexer.getKind(), Dummy);
1772     if (TokPrec < NextTokPrec && parseBinOpRHS(TokPrec + 1, RHS, EndLoc))
1773       return true;
1774 
1775     // Merge LHS and RHS according to operator.
1776     Res = MCBinaryExpr::create(Kind, Res, RHS, getContext(), StartLoc);
1777   }
1778 }
1779 
1780 /// ParseStatement:
1781 ///   ::= EndOfStatement
1782 ///   ::= Label* Directive ...Operands... EndOfStatement
1783 ///   ::= Label* Identifier OperandList* EndOfStatement
1784 bool AsmParser::parseStatement(ParseStatementInfo &Info,
1785                                MCAsmParserSemaCallback *SI) {
1786   assert(!hasPendingError() && "parseStatement started with pending error");
1787   // Eat initial spaces and comments
1788   while (Lexer.is(AsmToken::Space))
1789     Lex();
1790   if (Lexer.is(AsmToken::EndOfStatement)) {
1791     // if this is a line comment we can drop it safely
1792     if (getTok().getString().empty() || getTok().getString().front() == '\r' ||
1793         getTok().getString().front() == '\n')
1794       Out.addBlankLine();
1795     Lex();
1796     return false;
1797   }
1798   // Statements always start with an identifier.
1799   AsmToken ID = getTok();
1800   SMLoc IDLoc = ID.getLoc();
1801   StringRef IDVal;
1802   int64_t LocalLabelVal = -1;
1803   StartTokLoc = ID.getLoc();
1804   if (Lexer.is(AsmToken::HashDirective))
1805     return parseCppHashLineFilenameComment(IDLoc,
1806                                            !isInsideMacroInstantiation());
1807 
1808   // Allow an integer followed by a ':' as a directional local label.
1809   if (Lexer.is(AsmToken::Integer)) {
1810     LocalLabelVal = getTok().getIntVal();
1811     if (LocalLabelVal < 0) {
1812       if (!TheCondState.Ignore) {
1813         Lex(); // always eat a token
1814         return Error(IDLoc, "unexpected token at start of statement");
1815       }
1816       IDVal = "";
1817     } else {
1818       IDVal = getTok().getString();
1819       Lex(); // Consume the integer token to be used as an identifier token.
1820       if (Lexer.getKind() != AsmToken::Colon) {
1821         if (!TheCondState.Ignore) {
1822           Lex(); // always eat a token
1823           return Error(IDLoc, "unexpected token at start of statement");
1824         }
1825       }
1826     }
1827   } else if (Lexer.is(AsmToken::Dot)) {
1828     // Treat '.' as a valid identifier in this context.
1829     Lex();
1830     IDVal = ".";
1831   } else if (Lexer.is(AsmToken::LCurly)) {
1832     // Treat '{' as a valid identifier in this context.
1833     Lex();
1834     IDVal = "{";
1835 
1836   } else if (Lexer.is(AsmToken::RCurly)) {
1837     // Treat '}' as a valid identifier in this context.
1838     Lex();
1839     IDVal = "}";
1840   } else if (Lexer.is(AsmToken::Star) &&
1841              getTargetParser().starIsStartOfStatement()) {
1842     // Accept '*' as a valid start of statement.
1843     Lex();
1844     IDVal = "*";
1845   } else if (parseIdentifier(IDVal)) {
1846     if (!TheCondState.Ignore) {
1847       Lex(); // always eat a token
1848       return Error(IDLoc, "unexpected token at start of statement");
1849     }
1850     IDVal = "";
1851   }
1852 
1853   // Handle conditional assembly here before checking for skipping.  We
1854   // have to do this so that .endif isn't skipped in a ".if 0" block for
1855   // example.
1856   StringMap<DirectiveKind>::const_iterator DirKindIt =
1857       DirectiveKindMap.find(IDVal.lower());
1858   DirectiveKind DirKind = (DirKindIt == DirectiveKindMap.end())
1859                               ? DK_NO_DIRECTIVE
1860                               : DirKindIt->getValue();
1861   switch (DirKind) {
1862   default:
1863     break;
1864   case DK_IF:
1865   case DK_IFEQ:
1866   case DK_IFGE:
1867   case DK_IFGT:
1868   case DK_IFLE:
1869   case DK_IFLT:
1870   case DK_IFNE:
1871     return parseDirectiveIf(IDLoc, DirKind);
1872   case DK_IFB:
1873     return parseDirectiveIfb(IDLoc, true);
1874   case DK_IFNB:
1875     return parseDirectiveIfb(IDLoc, false);
1876   case DK_IFC:
1877     return parseDirectiveIfc(IDLoc, true);
1878   case DK_IFEQS:
1879     return parseDirectiveIfeqs(IDLoc, true);
1880   case DK_IFNC:
1881     return parseDirectiveIfc(IDLoc, false);
1882   case DK_IFNES:
1883     return parseDirectiveIfeqs(IDLoc, false);
1884   case DK_IFDEF:
1885     return parseDirectiveIfdef(IDLoc, true);
1886   case DK_IFNDEF:
1887   case DK_IFNOTDEF:
1888     return parseDirectiveIfdef(IDLoc, false);
1889   case DK_ELSEIF:
1890     return parseDirectiveElseIf(IDLoc);
1891   case DK_ELSE:
1892     return parseDirectiveElse(IDLoc);
1893   case DK_ENDIF:
1894     return parseDirectiveEndIf(IDLoc);
1895   }
1896 
1897   // Ignore the statement if in the middle of inactive conditional
1898   // (e.g. ".if 0").
1899   if (TheCondState.Ignore) {
1900     eatToEndOfStatement();
1901     return false;
1902   }
1903 
1904   // FIXME: Recurse on local labels?
1905 
1906   // Check for a label.
1907   //   ::= identifier ':'
1908   //   ::= number ':'
1909   if (Lexer.is(AsmToken::Colon) && getTargetParser().isLabel(ID)) {
1910     if (checkForValidSection())
1911       return true;
1912 
1913     Lex(); // Consume the ':'.
1914 
1915     // Diagnose attempt to use '.' as a label.
1916     if (IDVal == ".")
1917       return Error(IDLoc, "invalid use of pseudo-symbol '.' as a label");
1918 
1919     // Diagnose attempt to use a variable as a label.
1920     //
1921     // FIXME: Diagnostics. Note the location of the definition as a label.
1922     // FIXME: This doesn't diagnose assignment to a symbol which has been
1923     // implicitly marked as external.
1924     MCSymbol *Sym;
1925     if (LocalLabelVal == -1) {
1926       if (ParsingMSInlineAsm && SI) {
1927         StringRef RewrittenLabel =
1928             SI->LookupInlineAsmLabel(IDVal, getSourceManager(), IDLoc, true);
1929         assert(!RewrittenLabel.empty() &&
1930                "We should have an internal name here.");
1931         Info.AsmRewrites->emplace_back(AOK_Label, IDLoc, IDVal.size(),
1932                                        RewrittenLabel);
1933         IDVal = RewrittenLabel;
1934       }
1935       Sym = getContext().getOrCreateSymbol(IDVal);
1936     } else
1937       Sym = Ctx.createDirectionalLocalSymbol(LocalLabelVal);
1938     // End of Labels should be treated as end of line for lexing
1939     // purposes but that information is not available to the Lexer who
1940     // does not understand Labels. This may cause us to see a Hash
1941     // here instead of a preprocessor line comment.
1942     if (getTok().is(AsmToken::Hash)) {
1943       StringRef CommentStr = parseStringToEndOfStatement();
1944       Lexer.Lex();
1945       Lexer.UnLex(AsmToken(AsmToken::EndOfStatement, CommentStr));
1946     }
1947 
1948     // Consume any end of statement token, if present, to avoid spurious
1949     // addBlankLine calls().
1950     if (getTok().is(AsmToken::EndOfStatement)) {
1951       Lex();
1952     }
1953 
1954     if (MAI.hasSubsectionsViaSymbols() && CFIStartProcLoc &&
1955         Sym->isExternal() && !cast<MCSymbolMachO>(Sym)->isAltEntry())
1956       return Error(StartTokLoc, "non-private labels cannot appear between "
1957                                 ".cfi_startproc / .cfi_endproc pairs") &&
1958              Error(*CFIStartProcLoc, "previous .cfi_startproc was here");
1959 
1960     if (discardLTOSymbol(IDVal))
1961       return false;
1962 
1963     getTargetParser().doBeforeLabelEmit(Sym, IDLoc);
1964 
1965     // Emit the label.
1966     if (!getTargetParser().isParsingMSInlineAsm())
1967       Out.emitLabel(Sym, IDLoc);
1968 
1969     // If we are generating dwarf for assembly source files then gather the
1970     // info to make a dwarf label entry for this label if needed.
1971     if (enabledGenDwarfForAssembly())
1972       MCGenDwarfLabelEntry::Make(Sym, &getStreamer(), getSourceManager(),
1973                                  IDLoc);
1974 
1975     getTargetParser().onLabelParsed(Sym);
1976 
1977     return false;
1978   }
1979 
1980   // Check for an assignment statement.
1981   //   ::= identifier '='
1982   if (Lexer.is(AsmToken::Equal) && getTargetParser().equalIsAsmAssignment()) {
1983     Lex();
1984     return parseAssignment(IDVal, AssignmentKind::Equal);
1985   }
1986 
1987   // If macros are enabled, check to see if this is a macro instantiation.
1988   if (areMacrosEnabled())
1989     if (const MCAsmMacro *M = getContext().lookupMacro(IDVal)) {
1990       return handleMacroEntry(M, IDLoc);
1991     }
1992 
1993   // Otherwise, we have a normal instruction or directive.
1994 
1995   // Directives start with "."
1996   if (IDVal.starts_with(".") && IDVal != ".") {
1997     // There are several entities interested in parsing directives:
1998     //
1999     // 1. The target-specific assembly parser. Some directives are target
2000     //    specific or may potentially behave differently on certain targets.
2001     // 2. Asm parser extensions. For example, platform-specific parsers
2002     //    (like the ELF parser) register themselves as extensions.
2003     // 3. The generic directive parser implemented by this class. These are
2004     //    all the directives that behave in a target and platform independent
2005     //    manner, or at least have a default behavior that's shared between
2006     //    all targets and platforms.
2007 
2008     getTargetParser().flushPendingInstructions(getStreamer());
2009 
2010     ParseStatus TPDirectiveReturn = getTargetParser().parseDirective(ID);
2011     assert(TPDirectiveReturn.isFailure() == hasPendingError() &&
2012            "Should only return Failure iff there was an error");
2013     if (TPDirectiveReturn.isFailure())
2014       return true;
2015     if (TPDirectiveReturn.isSuccess())
2016       return false;
2017 
2018     // Next, check the extension directive map to see if any extension has
2019     // registered itself to parse this directive.
2020     std::pair<MCAsmParserExtension *, DirectiveHandler> Handler =
2021         ExtensionDirectiveMap.lookup(IDVal);
2022     if (Handler.first)
2023       return (*Handler.second)(Handler.first, IDVal, IDLoc);
2024 
2025     // Finally, if no one else is interested in this directive, it must be
2026     // generic and familiar to this class.
2027     switch (DirKind) {
2028     default:
2029       break;
2030     case DK_SET:
2031     case DK_EQU:
2032       return parseDirectiveSet(IDVal, AssignmentKind::Set);
2033     case DK_EQUIV:
2034       return parseDirectiveSet(IDVal, AssignmentKind::Equiv);
2035     case DK_LTO_SET_CONDITIONAL:
2036       return parseDirectiveSet(IDVal, AssignmentKind::LTOSetConditional);
2037     case DK_ASCII:
2038       return parseDirectiveAscii(IDVal, false);
2039     case DK_ASCIZ:
2040     case DK_STRING:
2041       return parseDirectiveAscii(IDVal, true);
2042     case DK_BYTE:
2043     case DK_DC_B:
2044       return parseDirectiveValue(IDVal, 1);
2045     case DK_DC:
2046     case DK_DC_W:
2047     case DK_SHORT:
2048     case DK_VALUE:
2049     case DK_2BYTE:
2050       return parseDirectiveValue(IDVal, 2);
2051     case DK_LONG:
2052     case DK_INT:
2053     case DK_4BYTE:
2054     case DK_DC_L:
2055       return parseDirectiveValue(IDVal, 4);
2056     case DK_QUAD:
2057     case DK_8BYTE:
2058       return parseDirectiveValue(IDVal, 8);
2059     case DK_DC_A:
2060       return parseDirectiveValue(
2061           IDVal, getContext().getAsmInfo()->getCodePointerSize());
2062     case DK_OCTA:
2063       return parseDirectiveOctaValue(IDVal);
2064     case DK_SINGLE:
2065     case DK_FLOAT:
2066     case DK_DC_S:
2067       return parseDirectiveRealValue(IDVal, APFloat::IEEEsingle());
2068     case DK_DOUBLE:
2069     case DK_DC_D:
2070       return parseDirectiveRealValue(IDVal, APFloat::IEEEdouble());
2071     case DK_ALIGN: {
2072       bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes();
2073       return parseDirectiveAlign(IsPow2, /*ExprSize=*/1);
2074     }
2075     case DK_ALIGN32: {
2076       bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes();
2077       return parseDirectiveAlign(IsPow2, /*ExprSize=*/4);
2078     }
2079     case DK_BALIGN:
2080       return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/1);
2081     case DK_BALIGNW:
2082       return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/2);
2083     case DK_BALIGNL:
2084       return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/4);
2085     case DK_P2ALIGN:
2086       return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/1);
2087     case DK_P2ALIGNW:
2088       return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/2);
2089     case DK_P2ALIGNL:
2090       return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/4);
2091     case DK_ORG:
2092       return parseDirectiveOrg();
2093     case DK_FILL:
2094       return parseDirectiveFill();
2095     case DK_ZERO:
2096       return parseDirectiveZero();
2097     case DK_EXTERN:
2098       eatToEndOfStatement(); // .extern is the default, ignore it.
2099       return false;
2100     case DK_GLOBL:
2101     case DK_GLOBAL:
2102       return parseDirectiveSymbolAttribute(MCSA_Global);
2103     case DK_LAZY_REFERENCE:
2104       return parseDirectiveSymbolAttribute(MCSA_LazyReference);
2105     case DK_NO_DEAD_STRIP:
2106       return parseDirectiveSymbolAttribute(MCSA_NoDeadStrip);
2107     case DK_SYMBOL_RESOLVER:
2108       return parseDirectiveSymbolAttribute(MCSA_SymbolResolver);
2109     case DK_PRIVATE_EXTERN:
2110       return parseDirectiveSymbolAttribute(MCSA_PrivateExtern);
2111     case DK_REFERENCE:
2112       return parseDirectiveSymbolAttribute(MCSA_Reference);
2113     case DK_WEAK_DEFINITION:
2114       return parseDirectiveSymbolAttribute(MCSA_WeakDefinition);
2115     case DK_WEAK_REFERENCE:
2116       return parseDirectiveSymbolAttribute(MCSA_WeakReference);
2117     case DK_WEAK_DEF_CAN_BE_HIDDEN:
2118       return parseDirectiveSymbolAttribute(MCSA_WeakDefAutoPrivate);
2119     case DK_COLD:
2120       return parseDirectiveSymbolAttribute(MCSA_Cold);
2121     case DK_COMM:
2122     case DK_COMMON:
2123       return parseDirectiveComm(/*IsLocal=*/false);
2124     case DK_LCOMM:
2125       return parseDirectiveComm(/*IsLocal=*/true);
2126     case DK_ABORT:
2127       return parseDirectiveAbort();
2128     case DK_INCLUDE:
2129       return parseDirectiveInclude();
2130     case DK_INCBIN:
2131       return parseDirectiveIncbin();
2132     case DK_CODE16:
2133     case DK_CODE16GCC:
2134       return TokError(Twine(IDVal) +
2135                       " not currently supported for this target");
2136     case DK_REPT:
2137       return parseDirectiveRept(IDLoc, IDVal);
2138     case DK_IRP:
2139       return parseDirectiveIrp(IDLoc);
2140     case DK_IRPC:
2141       return parseDirectiveIrpc(IDLoc);
2142     case DK_ENDR:
2143       return parseDirectiveEndr(IDLoc);
2144     case DK_BUNDLE_ALIGN_MODE:
2145       return parseDirectiveBundleAlignMode();
2146     case DK_BUNDLE_LOCK:
2147       return parseDirectiveBundleLock();
2148     case DK_BUNDLE_UNLOCK:
2149       return parseDirectiveBundleUnlock();
2150     case DK_SLEB128:
2151       return parseDirectiveLEB128(true);
2152     case DK_ULEB128:
2153       return parseDirectiveLEB128(false);
2154     case DK_SPACE:
2155     case DK_SKIP:
2156       return parseDirectiveSpace(IDVal);
2157     case DK_FILE:
2158       return parseDirectiveFile(IDLoc);
2159     case DK_LINE:
2160       return parseDirectiveLine();
2161     case DK_LOC:
2162       return parseDirectiveLoc();
2163     case DK_STABS:
2164       return parseDirectiveStabs();
2165     case DK_CV_FILE:
2166       return parseDirectiveCVFile();
2167     case DK_CV_FUNC_ID:
2168       return parseDirectiveCVFuncId();
2169     case DK_CV_INLINE_SITE_ID:
2170       return parseDirectiveCVInlineSiteId();
2171     case DK_CV_LOC:
2172       return parseDirectiveCVLoc();
2173     case DK_CV_LINETABLE:
2174       return parseDirectiveCVLinetable();
2175     case DK_CV_INLINE_LINETABLE:
2176       return parseDirectiveCVInlineLinetable();
2177     case DK_CV_DEF_RANGE:
2178       return parseDirectiveCVDefRange();
2179     case DK_CV_STRING:
2180       return parseDirectiveCVString();
2181     case DK_CV_STRINGTABLE:
2182       return parseDirectiveCVStringTable();
2183     case DK_CV_FILECHECKSUMS:
2184       return parseDirectiveCVFileChecksums();
2185     case DK_CV_FILECHECKSUM_OFFSET:
2186       return parseDirectiveCVFileChecksumOffset();
2187     case DK_CV_FPO_DATA:
2188       return parseDirectiveCVFPOData();
2189     case DK_CFI_SECTIONS:
2190       return parseDirectiveCFISections();
2191     case DK_CFI_STARTPROC:
2192       return parseDirectiveCFIStartProc();
2193     case DK_CFI_ENDPROC:
2194       return parseDirectiveCFIEndProc();
2195     case DK_CFI_DEF_CFA:
2196       return parseDirectiveCFIDefCfa(IDLoc);
2197     case DK_CFI_DEF_CFA_OFFSET:
2198       return parseDirectiveCFIDefCfaOffset(IDLoc);
2199     case DK_CFI_ADJUST_CFA_OFFSET:
2200       return parseDirectiveCFIAdjustCfaOffset(IDLoc);
2201     case DK_CFI_DEF_CFA_REGISTER:
2202       return parseDirectiveCFIDefCfaRegister(IDLoc);
2203     case DK_CFI_LLVM_DEF_ASPACE_CFA:
2204       return parseDirectiveCFILLVMDefAspaceCfa(IDLoc);
2205     case DK_CFI_OFFSET:
2206       return parseDirectiveCFIOffset(IDLoc);
2207     case DK_CFI_REL_OFFSET:
2208       return parseDirectiveCFIRelOffset(IDLoc);
2209     case DK_CFI_PERSONALITY:
2210       return parseDirectiveCFIPersonalityOrLsda(true);
2211     case DK_CFI_LSDA:
2212       return parseDirectiveCFIPersonalityOrLsda(false);
2213     case DK_CFI_REMEMBER_STATE:
2214       return parseDirectiveCFIRememberState(IDLoc);
2215     case DK_CFI_RESTORE_STATE:
2216       return parseDirectiveCFIRestoreState(IDLoc);
2217     case DK_CFI_SAME_VALUE:
2218       return parseDirectiveCFISameValue(IDLoc);
2219     case DK_CFI_RESTORE:
2220       return parseDirectiveCFIRestore(IDLoc);
2221     case DK_CFI_ESCAPE:
2222       return parseDirectiveCFIEscape(IDLoc);
2223     case DK_CFI_RETURN_COLUMN:
2224       return parseDirectiveCFIReturnColumn(IDLoc);
2225     case DK_CFI_SIGNAL_FRAME:
2226       return parseDirectiveCFISignalFrame(IDLoc);
2227     case DK_CFI_UNDEFINED:
2228       return parseDirectiveCFIUndefined(IDLoc);
2229     case DK_CFI_REGISTER:
2230       return parseDirectiveCFIRegister(IDLoc);
2231     case DK_CFI_WINDOW_SAVE:
2232       return parseDirectiveCFIWindowSave(IDLoc);
2233     case DK_MACROS_ON:
2234     case DK_MACROS_OFF:
2235       return parseDirectiveMacrosOnOff(IDVal);
2236     case DK_MACRO:
2237       return parseDirectiveMacro(IDLoc);
2238     case DK_ALTMACRO:
2239     case DK_NOALTMACRO:
2240       return parseDirectiveAltmacro(IDVal);
2241     case DK_EXITM:
2242       return parseDirectiveExitMacro(IDVal);
2243     case DK_ENDM:
2244     case DK_ENDMACRO:
2245       return parseDirectiveEndMacro(IDVal);
2246     case DK_PURGEM:
2247       return parseDirectivePurgeMacro(IDLoc);
2248     case DK_END:
2249       return parseDirectiveEnd(IDLoc);
2250     case DK_ERR:
2251       return parseDirectiveError(IDLoc, false);
2252     case DK_ERROR:
2253       return parseDirectiveError(IDLoc, true);
2254     case DK_WARNING:
2255       return parseDirectiveWarning(IDLoc);
2256     case DK_RELOC:
2257       return parseDirectiveReloc(IDLoc);
2258     case DK_DCB:
2259     case DK_DCB_W:
2260       return parseDirectiveDCB(IDVal, 2);
2261     case DK_DCB_B:
2262       return parseDirectiveDCB(IDVal, 1);
2263     case DK_DCB_D:
2264       return parseDirectiveRealDCB(IDVal, APFloat::IEEEdouble());
2265     case DK_DCB_L:
2266       return parseDirectiveDCB(IDVal, 4);
2267     case DK_DCB_S:
2268       return parseDirectiveRealDCB(IDVal, APFloat::IEEEsingle());
2269     case DK_DC_X:
2270     case DK_DCB_X:
2271       return TokError(Twine(IDVal) +
2272                       " not currently supported for this target");
2273     case DK_DS:
2274     case DK_DS_W:
2275       return parseDirectiveDS(IDVal, 2);
2276     case DK_DS_B:
2277       return parseDirectiveDS(IDVal, 1);
2278     case DK_DS_D:
2279       return parseDirectiveDS(IDVal, 8);
2280     case DK_DS_L:
2281     case DK_DS_S:
2282       return parseDirectiveDS(IDVal, 4);
2283     case DK_DS_P:
2284     case DK_DS_X:
2285       return parseDirectiveDS(IDVal, 12);
2286     case DK_PRINT:
2287       return parseDirectivePrint(IDLoc);
2288     case DK_ADDRSIG:
2289       return parseDirectiveAddrsig();
2290     case DK_ADDRSIG_SYM:
2291       return parseDirectiveAddrsigSym();
2292     case DK_PSEUDO_PROBE:
2293       return parseDirectivePseudoProbe();
2294     case DK_LTO_DISCARD:
2295       return parseDirectiveLTODiscard();
2296     case DK_MEMTAG:
2297       return parseDirectiveSymbolAttribute(MCSA_Memtag);
2298     }
2299 
2300     return Error(IDLoc, "unknown directive");
2301   }
2302 
2303   // __asm _emit or __asm __emit
2304   if (ParsingMSInlineAsm && (IDVal == "_emit" || IDVal == "__emit" ||
2305                              IDVal == "_EMIT" || IDVal == "__EMIT"))
2306     return parseDirectiveMSEmit(IDLoc, Info, IDVal.size());
2307 
2308   // __asm align
2309   if (ParsingMSInlineAsm && (IDVal == "align" || IDVal == "ALIGN"))
2310     return parseDirectiveMSAlign(IDLoc, Info);
2311 
2312   if (ParsingMSInlineAsm && (IDVal == "even" || IDVal == "EVEN"))
2313     Info.AsmRewrites->emplace_back(AOK_EVEN, IDLoc, 4);
2314   if (checkForValidSection())
2315     return true;
2316 
2317   return parseAndMatchAndEmitTargetInstruction(Info, IDVal, ID, IDLoc);
2318 }
2319 
2320 bool AsmParser::parseAndMatchAndEmitTargetInstruction(ParseStatementInfo &Info,
2321                                                       StringRef IDVal,
2322                                                       AsmToken ID,
2323                                                       SMLoc IDLoc) {
2324   // Canonicalize the opcode to lower case.
2325   std::string OpcodeStr = IDVal.lower();
2326   ParseInstructionInfo IInfo(Info.AsmRewrites);
2327   bool ParseHadError = getTargetParser().ParseInstruction(IInfo, OpcodeStr, ID,
2328                                                           Info.ParsedOperands);
2329   Info.ParseError = ParseHadError;
2330 
2331   // Dump the parsed representation, if requested.
2332   if (getShowParsedOperands()) {
2333     SmallString<256> Str;
2334     raw_svector_ostream OS(Str);
2335     OS << "parsed instruction: [";
2336     for (unsigned i = 0; i != Info.ParsedOperands.size(); ++i) {
2337       if (i != 0)
2338         OS << ", ";
2339       Info.ParsedOperands[i]->print(OS);
2340     }
2341     OS << "]";
2342 
2343     printMessage(IDLoc, SourceMgr::DK_Note, OS.str());
2344   }
2345 
2346   // Fail even if ParseInstruction erroneously returns false.
2347   if (hasPendingError() || ParseHadError)
2348     return true;
2349 
2350   // If we are generating dwarf for the current section then generate a .loc
2351   // directive for the instruction.
2352   if (!ParseHadError && enabledGenDwarfForAssembly() &&
2353       getContext().getGenDwarfSectionSyms().count(
2354           getStreamer().getCurrentSectionOnly())) {
2355     unsigned Line;
2356     if (ActiveMacros.empty())
2357       Line = SrcMgr.FindLineNumber(IDLoc, CurBuffer);
2358     else
2359       Line = SrcMgr.FindLineNumber(ActiveMacros.front()->InstantiationLoc,
2360                                    ActiveMacros.front()->ExitBuffer);
2361 
2362     // If we previously parsed a cpp hash file line comment then make sure the
2363     // current Dwarf File is for the CppHashFilename if not then emit the
2364     // Dwarf File table for it and adjust the line number for the .loc.
2365     if (!CppHashInfo.Filename.empty()) {
2366       unsigned FileNumber = getStreamer().emitDwarfFileDirective(
2367           0, StringRef(), CppHashInfo.Filename);
2368       getContext().setGenDwarfFileNumber(FileNumber);
2369 
2370       unsigned CppHashLocLineNo =
2371         SrcMgr.FindLineNumber(CppHashInfo.Loc, CppHashInfo.Buf);
2372       Line = CppHashInfo.LineNumber - 1 + (Line - CppHashLocLineNo);
2373     }
2374 
2375     getStreamer().emitDwarfLocDirective(
2376         getContext().getGenDwarfFileNumber(), Line, 0,
2377         DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0, 0, 0,
2378         StringRef());
2379   }
2380 
2381   // If parsing succeeded, match the instruction.
2382   if (!ParseHadError) {
2383     uint64_t ErrorInfo;
2384     if (getTargetParser().MatchAndEmitInstruction(
2385             IDLoc, Info.Opcode, Info.ParsedOperands, Out, ErrorInfo,
2386             getTargetParser().isParsingMSInlineAsm()))
2387       return true;
2388   }
2389   return false;
2390 }
2391 
2392 // Parse and erase curly braces marking block start/end
2393 bool
2394 AsmParser::parseCurlyBlockScope(SmallVectorImpl<AsmRewrite> &AsmStrRewrites) {
2395   // Identify curly brace marking block start/end
2396   if (Lexer.isNot(AsmToken::LCurly) && Lexer.isNot(AsmToken::RCurly))
2397     return false;
2398 
2399   SMLoc StartLoc = Lexer.getLoc();
2400   Lex(); // Eat the brace
2401   if (Lexer.is(AsmToken::EndOfStatement))
2402     Lex(); // Eat EndOfStatement following the brace
2403 
2404   // Erase the block start/end brace from the output asm string
2405   AsmStrRewrites.emplace_back(AOK_Skip, StartLoc, Lexer.getLoc().getPointer() -
2406                                                   StartLoc.getPointer());
2407   return true;
2408 }
2409 
2410 /// parseCppHashLineFilenameComment as this:
2411 ///   ::= # number "filename"
2412 bool AsmParser::parseCppHashLineFilenameComment(SMLoc L, bool SaveLocInfo) {
2413   Lex(); // Eat the hash token.
2414   // Lexer only ever emits HashDirective if it fully formed if it's
2415   // done the checking already so this is an internal error.
2416   assert(getTok().is(AsmToken::Integer) &&
2417          "Lexing Cpp line comment: Expected Integer");
2418   int64_t LineNumber = getTok().getIntVal();
2419   Lex();
2420   assert(getTok().is(AsmToken::String) &&
2421          "Lexing Cpp line comment: Expected String");
2422   StringRef Filename = getTok().getString();
2423   Lex();
2424 
2425   if (!SaveLocInfo)
2426     return false;
2427 
2428   // Get rid of the enclosing quotes.
2429   Filename = Filename.substr(1, Filename.size() - 2);
2430 
2431   // Save the SMLoc, Filename and LineNumber for later use by diagnostics
2432   // and possibly DWARF file info.
2433   CppHashInfo.Loc = L;
2434   CppHashInfo.Filename = Filename;
2435   CppHashInfo.LineNumber = LineNumber;
2436   CppHashInfo.Buf = CurBuffer;
2437   if (FirstCppHashFilename.empty())
2438     FirstCppHashFilename = Filename;
2439   return false;
2440 }
2441 
2442 /// will use the last parsed cpp hash line filename comment
2443 /// for the Filename and LineNo if any in the diagnostic.
2444 void AsmParser::DiagHandler(const SMDiagnostic &Diag, void *Context) {
2445   auto *Parser = static_cast<AsmParser *>(Context);
2446   raw_ostream &OS = errs();
2447 
2448   const SourceMgr &DiagSrcMgr = *Diag.getSourceMgr();
2449   SMLoc DiagLoc = Diag.getLoc();
2450   unsigned DiagBuf = DiagSrcMgr.FindBufferContainingLoc(DiagLoc);
2451   unsigned CppHashBuf =
2452       Parser->SrcMgr.FindBufferContainingLoc(Parser->CppHashInfo.Loc);
2453 
2454   // Like SourceMgr::printMessage() we need to print the include stack if any
2455   // before printing the message.
2456   unsigned DiagCurBuffer = DiagSrcMgr.FindBufferContainingLoc(DiagLoc);
2457   if (!Parser->SavedDiagHandler && DiagCurBuffer &&
2458       DiagCurBuffer != DiagSrcMgr.getMainFileID()) {
2459     SMLoc ParentIncludeLoc = DiagSrcMgr.getParentIncludeLoc(DiagCurBuffer);
2460     DiagSrcMgr.PrintIncludeStack(ParentIncludeLoc, OS);
2461   }
2462 
2463   // If we have not parsed a cpp hash line filename comment or the source
2464   // manager changed or buffer changed (like in a nested include) then just
2465   // print the normal diagnostic using its Filename and LineNo.
2466   if (!Parser->CppHashInfo.LineNumber || DiagBuf != CppHashBuf) {
2467     if (Parser->SavedDiagHandler)
2468       Parser->SavedDiagHandler(Diag, Parser->SavedDiagContext);
2469     else
2470       Parser->getContext().diagnose(Diag);
2471     return;
2472   }
2473 
2474   // Use the CppHashFilename and calculate a line number based on the
2475   // CppHashInfo.Loc and CppHashInfo.LineNumber relative to this Diag's SMLoc
2476   // for the diagnostic.
2477   const std::string &Filename = std::string(Parser->CppHashInfo.Filename);
2478 
2479   int DiagLocLineNo = DiagSrcMgr.FindLineNumber(DiagLoc, DiagBuf);
2480   int CppHashLocLineNo =
2481       Parser->SrcMgr.FindLineNumber(Parser->CppHashInfo.Loc, CppHashBuf);
2482   int LineNo =
2483       Parser->CppHashInfo.LineNumber - 1 + (DiagLocLineNo - CppHashLocLineNo);
2484 
2485   SMDiagnostic NewDiag(*Diag.getSourceMgr(), Diag.getLoc(), Filename, LineNo,
2486                        Diag.getColumnNo(), Diag.getKind(), Diag.getMessage(),
2487                        Diag.getLineContents(), Diag.getRanges());
2488 
2489   if (Parser->SavedDiagHandler)
2490     Parser->SavedDiagHandler(Diag, Parser->SavedDiagContext);
2491   else
2492     Parser->getContext().diagnose(NewDiag);
2493 }
2494 
2495 // FIXME: This is mostly duplicated from the function in AsmLexer.cpp. The
2496 // difference being that that function accepts '@' as part of identifiers and
2497 // we can't do that. AsmLexer.cpp should probably be changed to handle
2498 // '@' as a special case when needed.
2499 static bool isIdentifierChar(char c) {
2500   return isalnum(static_cast<unsigned char>(c)) || c == '_' || c == '$' ||
2501          c == '.';
2502 }
2503 
2504 bool AsmParser::expandMacro(raw_svector_ostream &OS, StringRef Body,
2505                             ArrayRef<MCAsmMacroParameter> Parameters,
2506                             ArrayRef<MCAsmMacroArgument> A,
2507                             bool EnableAtPseudoVariable, SMLoc L) {
2508   unsigned NParameters = Parameters.size();
2509   bool HasVararg = NParameters ? Parameters.back().Vararg : false;
2510   if ((!IsDarwin || NParameters != 0) && NParameters != A.size())
2511     return Error(L, "Wrong number of arguments");
2512 
2513   // A macro without parameters is handled differently on Darwin:
2514   // gas accepts no arguments and does no substitutions
2515   while (!Body.empty()) {
2516     // Scan for the next substitution.
2517     std::size_t End = Body.size(), Pos = 0;
2518     for (; Pos != End; ++Pos) {
2519       // Check for a substitution or escape.
2520       if (IsDarwin && !NParameters) {
2521         // This macro has no parameters, look for $0, $1, etc.
2522         if (Body[Pos] != '$' || Pos + 1 == End)
2523           continue;
2524 
2525         char Next = Body[Pos + 1];
2526         if (Next == '$' || Next == 'n' ||
2527             isdigit(static_cast<unsigned char>(Next)))
2528           break;
2529       } else {
2530         // This macro has parameters, look for \foo, \bar, etc.
2531         if (Body[Pos] == '\\' && Pos + 1 != End)
2532           break;
2533       }
2534     }
2535 
2536     // Add the prefix.
2537     OS << Body.slice(0, Pos);
2538 
2539     // Check if we reached the end.
2540     if (Pos == End)
2541       break;
2542 
2543     if (IsDarwin && !NParameters) {
2544       switch (Body[Pos + 1]) {
2545       // $$ => $
2546       case '$':
2547         OS << '$';
2548         break;
2549 
2550       // $n => number of arguments
2551       case 'n':
2552         OS << A.size();
2553         break;
2554 
2555       // $[0-9] => argument
2556       default: {
2557         // Missing arguments are ignored.
2558         unsigned Index = Body[Pos + 1] - '0';
2559         if (Index >= A.size())
2560           break;
2561 
2562         // Otherwise substitute with the token values, with spaces eliminated.
2563         for (const AsmToken &Token : A[Index])
2564           OS << Token.getString();
2565         break;
2566       }
2567       }
2568       Pos += 2;
2569     } else {
2570       unsigned I = Pos + 1;
2571 
2572       // Check for the \@ pseudo-variable.
2573       if (EnableAtPseudoVariable && Body[I] == '@' && I + 1 != End)
2574         ++I;
2575       else
2576         while (isIdentifierChar(Body[I]) && I + 1 != End)
2577           ++I;
2578 
2579       const char *Begin = Body.data() + Pos + 1;
2580       StringRef Argument(Begin, I - (Pos + 1));
2581       unsigned Index = 0;
2582 
2583       if (Argument == "@") {
2584         OS << NumOfMacroInstantiations;
2585         Pos += 2;
2586       } else {
2587         for (; Index < NParameters; ++Index)
2588           if (Parameters[Index].Name == Argument)
2589             break;
2590 
2591         if (Index == NParameters) {
2592           if (Body[Pos + 1] == '(' && Body[Pos + 2] == ')')
2593             Pos += 3;
2594           else {
2595             OS << '\\' << Argument;
2596             Pos = I;
2597           }
2598         } else {
2599           bool VarargParameter = HasVararg && Index == (NParameters - 1);
2600           for (const AsmToken &Token : A[Index])
2601             // For altmacro mode, you can write '%expr'.
2602             // The prefix '%' evaluates the expression 'expr'
2603             // and uses the result as a string (e.g. replace %(1+2) with the
2604             // string "3").
2605             // Here, we identify the integer token which is the result of the
2606             // absolute expression evaluation and replace it with its string
2607             // representation.
2608             if (AltMacroMode && Token.getString().front() == '%' &&
2609                 Token.is(AsmToken::Integer))
2610               // Emit an integer value to the buffer.
2611               OS << Token.getIntVal();
2612             // Only Token that was validated as a string and begins with '<'
2613             // is considered altMacroString!!!
2614             else if (AltMacroMode && Token.getString().front() == '<' &&
2615                      Token.is(AsmToken::String)) {
2616               OS << angleBracketString(Token.getStringContents());
2617             }
2618             // We expect no quotes around the string's contents when
2619             // parsing for varargs.
2620             else if (Token.isNot(AsmToken::String) || VarargParameter)
2621               OS << Token.getString();
2622             else
2623               OS << Token.getStringContents();
2624 
2625           Pos += 1 + Argument.size();
2626         }
2627       }
2628     }
2629     // Update the scan point.
2630     Body = Body.substr(Pos);
2631   }
2632 
2633   return false;
2634 }
2635 
2636 static bool isOperator(AsmToken::TokenKind kind) {
2637   switch (kind) {
2638   default:
2639     return false;
2640   case AsmToken::Plus:
2641   case AsmToken::Minus:
2642   case AsmToken::Tilde:
2643   case AsmToken::Slash:
2644   case AsmToken::Star:
2645   case AsmToken::Dot:
2646   case AsmToken::Equal:
2647   case AsmToken::EqualEqual:
2648   case AsmToken::Pipe:
2649   case AsmToken::PipePipe:
2650   case AsmToken::Caret:
2651   case AsmToken::Amp:
2652   case AsmToken::AmpAmp:
2653   case AsmToken::Exclaim:
2654   case AsmToken::ExclaimEqual:
2655   case AsmToken::Less:
2656   case AsmToken::LessEqual:
2657   case AsmToken::LessLess:
2658   case AsmToken::LessGreater:
2659   case AsmToken::Greater:
2660   case AsmToken::GreaterEqual:
2661   case AsmToken::GreaterGreater:
2662     return true;
2663   }
2664 }
2665 
2666 namespace {
2667 
2668 class AsmLexerSkipSpaceRAII {
2669 public:
2670   AsmLexerSkipSpaceRAII(AsmLexer &Lexer, bool SkipSpace) : Lexer(Lexer) {
2671     Lexer.setSkipSpace(SkipSpace);
2672   }
2673 
2674   ~AsmLexerSkipSpaceRAII() {
2675     Lexer.setSkipSpace(true);
2676   }
2677 
2678 private:
2679   AsmLexer &Lexer;
2680 };
2681 
2682 } // end anonymous namespace
2683 
2684 bool AsmParser::parseMacroArgument(MCAsmMacroArgument &MA, bool Vararg) {
2685 
2686   if (Vararg) {
2687     if (Lexer.isNot(AsmToken::EndOfStatement)) {
2688       StringRef Str = parseStringToEndOfStatement();
2689       MA.emplace_back(AsmToken::String, Str);
2690     }
2691     return false;
2692   }
2693 
2694   unsigned ParenLevel = 0;
2695 
2696   // Darwin doesn't use spaces to delmit arguments.
2697   AsmLexerSkipSpaceRAII ScopedSkipSpace(Lexer, IsDarwin);
2698 
2699   bool SpaceEaten;
2700 
2701   while (true) {
2702     SpaceEaten = false;
2703     if (Lexer.is(AsmToken::Eof) || Lexer.is(AsmToken::Equal))
2704       return TokError("unexpected token in macro instantiation");
2705 
2706     if (ParenLevel == 0) {
2707 
2708       if (Lexer.is(AsmToken::Comma))
2709         break;
2710 
2711       if (Lexer.is(AsmToken::Space)) {
2712         SpaceEaten = true;
2713         Lexer.Lex(); // Eat spaces
2714       }
2715 
2716       // Spaces can delimit parameters, but could also be part an expression.
2717       // If the token after a space is an operator, add the token and the next
2718       // one into this argument
2719       if (!IsDarwin) {
2720         if (isOperator(Lexer.getKind())) {
2721           MA.push_back(getTok());
2722           Lexer.Lex();
2723 
2724           // Whitespace after an operator can be ignored.
2725           if (Lexer.is(AsmToken::Space))
2726             Lexer.Lex();
2727 
2728           continue;
2729         }
2730       }
2731       if (SpaceEaten)
2732         break;
2733     }
2734 
2735     // handleMacroEntry relies on not advancing the lexer here
2736     // to be able to fill in the remaining default parameter values
2737     if (Lexer.is(AsmToken::EndOfStatement))
2738       break;
2739 
2740     // Adjust the current parentheses level.
2741     if (Lexer.is(AsmToken::LParen))
2742       ++ParenLevel;
2743     else if (Lexer.is(AsmToken::RParen) && ParenLevel)
2744       --ParenLevel;
2745 
2746     // Append the token to the current argument list.
2747     MA.push_back(getTok());
2748     Lexer.Lex();
2749   }
2750 
2751   if (ParenLevel != 0)
2752     return TokError("unbalanced parentheses in macro argument");
2753   return false;
2754 }
2755 
2756 // Parse the macro instantiation arguments.
2757 bool AsmParser::parseMacroArguments(const MCAsmMacro *M,
2758                                     MCAsmMacroArguments &A) {
2759   const unsigned NParameters = M ? M->Parameters.size() : 0;
2760   bool NamedParametersFound = false;
2761   SmallVector<SMLoc, 4> FALocs;
2762 
2763   A.resize(NParameters);
2764   FALocs.resize(NParameters);
2765 
2766   // Parse two kinds of macro invocations:
2767   // - macros defined without any parameters accept an arbitrary number of them
2768   // - macros defined with parameters accept at most that many of them
2769   bool HasVararg = NParameters ? M->Parameters.back().Vararg : false;
2770   for (unsigned Parameter = 0; !NParameters || Parameter < NParameters;
2771        ++Parameter) {
2772     SMLoc IDLoc = Lexer.getLoc();
2773     MCAsmMacroParameter FA;
2774 
2775     if (Lexer.is(AsmToken::Identifier) && Lexer.peekTok().is(AsmToken::Equal)) {
2776       if (parseIdentifier(FA.Name))
2777         return Error(IDLoc, "invalid argument identifier for formal argument");
2778 
2779       if (Lexer.isNot(AsmToken::Equal))
2780         return TokError("expected '=' after formal parameter identifier");
2781 
2782       Lex();
2783 
2784       NamedParametersFound = true;
2785     }
2786     bool Vararg = HasVararg && Parameter == (NParameters - 1);
2787 
2788     if (NamedParametersFound && FA.Name.empty())
2789       return Error(IDLoc, "cannot mix positional and keyword arguments");
2790 
2791     SMLoc StrLoc = Lexer.getLoc();
2792     SMLoc EndLoc;
2793     if (AltMacroMode && Lexer.is(AsmToken::Percent)) {
2794       const MCExpr *AbsoluteExp;
2795       int64_t Value;
2796       /// Eat '%'
2797       Lex();
2798       if (parseExpression(AbsoluteExp, EndLoc))
2799         return false;
2800       if (!AbsoluteExp->evaluateAsAbsolute(Value,
2801                                            getStreamer().getAssemblerPtr()))
2802         return Error(StrLoc, "expected absolute expression");
2803       const char *StrChar = StrLoc.getPointer();
2804       const char *EndChar = EndLoc.getPointer();
2805       AsmToken newToken(AsmToken::Integer,
2806                         StringRef(StrChar, EndChar - StrChar), Value);
2807       FA.Value.push_back(newToken);
2808     } else if (AltMacroMode && Lexer.is(AsmToken::Less) &&
2809                isAngleBracketString(StrLoc, EndLoc)) {
2810       const char *StrChar = StrLoc.getPointer();
2811       const char *EndChar = EndLoc.getPointer();
2812       jumpToLoc(EndLoc, CurBuffer);
2813       /// Eat from '<' to '>'
2814       Lex();
2815       AsmToken newToken(AsmToken::String,
2816                         StringRef(StrChar, EndChar - StrChar));
2817       FA.Value.push_back(newToken);
2818     } else if(parseMacroArgument(FA.Value, Vararg))
2819       return true;
2820 
2821     unsigned PI = Parameter;
2822     if (!FA.Name.empty()) {
2823       unsigned FAI = 0;
2824       for (FAI = 0; FAI < NParameters; ++FAI)
2825         if (M->Parameters[FAI].Name == FA.Name)
2826           break;
2827 
2828       if (FAI >= NParameters) {
2829         assert(M && "expected macro to be defined");
2830         return Error(IDLoc, "parameter named '" + FA.Name +
2831                                 "' does not exist for macro '" + M->Name + "'");
2832       }
2833       PI = FAI;
2834     }
2835 
2836     if (!FA.Value.empty()) {
2837       if (A.size() <= PI)
2838         A.resize(PI + 1);
2839       A[PI] = FA.Value;
2840 
2841       if (FALocs.size() <= PI)
2842         FALocs.resize(PI + 1);
2843 
2844       FALocs[PI] = Lexer.getLoc();
2845     }
2846 
2847     // At the end of the statement, fill in remaining arguments that have
2848     // default values. If there aren't any, then the next argument is
2849     // required but missing
2850     if (Lexer.is(AsmToken::EndOfStatement)) {
2851       bool Failure = false;
2852       for (unsigned FAI = 0; FAI < NParameters; ++FAI) {
2853         if (A[FAI].empty()) {
2854           if (M->Parameters[FAI].Required) {
2855             Error(FALocs[FAI].isValid() ? FALocs[FAI] : Lexer.getLoc(),
2856                   "missing value for required parameter "
2857                   "'" + M->Parameters[FAI].Name + "' in macro '" + M->Name + "'");
2858             Failure = true;
2859           }
2860 
2861           if (!M->Parameters[FAI].Value.empty())
2862             A[FAI] = M->Parameters[FAI].Value;
2863         }
2864       }
2865       return Failure;
2866     }
2867 
2868     if (Lexer.is(AsmToken::Comma))
2869       Lex();
2870   }
2871 
2872   return TokError("too many positional arguments");
2873 }
2874 
2875 bool AsmParser::handleMacroEntry(const MCAsmMacro *M, SMLoc NameLoc) {
2876   // Arbitrarily limit macro nesting depth (default matches 'as'). We can
2877   // eliminate this, although we should protect against infinite loops.
2878   unsigned MaxNestingDepth = AsmMacroMaxNestingDepth;
2879   if (ActiveMacros.size() == MaxNestingDepth) {
2880     std::ostringstream MaxNestingDepthError;
2881     MaxNestingDepthError << "macros cannot be nested more than "
2882                          << MaxNestingDepth << " levels deep."
2883                          << " Use -asm-macro-max-nesting-depth to increase "
2884                             "this limit.";
2885     return TokError(MaxNestingDepthError.str());
2886   }
2887 
2888   MCAsmMacroArguments A;
2889   if (parseMacroArguments(M, A))
2890     return true;
2891 
2892   // Macro instantiation is lexical, unfortunately. We construct a new buffer
2893   // to hold the macro body with substitutions.
2894   SmallString<256> Buf;
2895   StringRef Body = M->Body;
2896   raw_svector_ostream OS(Buf);
2897 
2898   if (expandMacro(OS, Body, M->Parameters, A, true, getTok().getLoc()))
2899     return true;
2900 
2901   // We include the .endmacro in the buffer as our cue to exit the macro
2902   // instantiation.
2903   OS << ".endmacro\n";
2904 
2905   std::unique_ptr<MemoryBuffer> Instantiation =
2906       MemoryBuffer::getMemBufferCopy(OS.str(), "<instantiation>");
2907 
2908   // Create the macro instantiation object and add to the current macro
2909   // instantiation stack.
2910   MacroInstantiation *MI = new MacroInstantiation{
2911       NameLoc, CurBuffer, getTok().getLoc(), TheCondStack.size()};
2912   ActiveMacros.push_back(MI);
2913 
2914   ++NumOfMacroInstantiations;
2915 
2916   // Jump to the macro instantiation and prime the lexer.
2917   CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc());
2918   Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
2919   Lex();
2920 
2921   return false;
2922 }
2923 
2924 void AsmParser::handleMacroExit() {
2925   // Jump to the EndOfStatement we should return to, and consume it.
2926   jumpToLoc(ActiveMacros.back()->ExitLoc, ActiveMacros.back()->ExitBuffer);
2927   Lex();
2928 
2929   // Pop the instantiation entry.
2930   delete ActiveMacros.back();
2931   ActiveMacros.pop_back();
2932 }
2933 
2934 bool AsmParser::parseAssignment(StringRef Name, AssignmentKind Kind) {
2935   MCSymbol *Sym;
2936   const MCExpr *Value;
2937   SMLoc ExprLoc = getTok().getLoc();
2938   bool AllowRedef =
2939       Kind == AssignmentKind::Set || Kind == AssignmentKind::Equal;
2940   if (MCParserUtils::parseAssignmentExpression(Name, AllowRedef, *this, Sym,
2941                                                Value))
2942     return true;
2943 
2944   if (!Sym) {
2945     // In the case where we parse an expression starting with a '.', we will
2946     // not generate an error, nor will we create a symbol.  In this case we
2947     // should just return out.
2948     return false;
2949   }
2950 
2951   if (discardLTOSymbol(Name))
2952     return false;
2953 
2954   // Do the assignment.
2955   switch (Kind) {
2956   case AssignmentKind::Equal:
2957     Out.emitAssignment(Sym, Value);
2958     break;
2959   case AssignmentKind::Set:
2960   case AssignmentKind::Equiv:
2961     Out.emitAssignment(Sym, Value);
2962     Out.emitSymbolAttribute(Sym, MCSA_NoDeadStrip);
2963     break;
2964   case AssignmentKind::LTOSetConditional:
2965     if (Value->getKind() != MCExpr::SymbolRef)
2966       return Error(ExprLoc, "expected identifier");
2967 
2968     Out.emitConditionalAssignment(Sym, Value);
2969     break;
2970   }
2971 
2972   return false;
2973 }
2974 
2975 /// parseIdentifier:
2976 ///   ::= identifier
2977 ///   ::= string
2978 bool AsmParser::parseIdentifier(StringRef &Res) {
2979   // The assembler has relaxed rules for accepting identifiers, in particular we
2980   // allow things like '.globl $foo' and '.def @feat.00', which would normally be
2981   // separate tokens. At this level, we have already lexed so we cannot (currently)
2982   // handle this as a context dependent token, instead we detect adjacent tokens
2983   // and return the combined identifier.
2984   if (Lexer.is(AsmToken::Dollar) || Lexer.is(AsmToken::At)) {
2985     SMLoc PrefixLoc = getLexer().getLoc();
2986 
2987     // Consume the prefix character, and check for a following identifier.
2988 
2989     AsmToken Buf[1];
2990     Lexer.peekTokens(Buf, false);
2991 
2992     if (Buf[0].isNot(AsmToken::Identifier) && Buf[0].isNot(AsmToken::Integer))
2993       return true;
2994 
2995     // We have a '$' or '@' followed by an identifier or integer token, make
2996     // sure they are adjacent.
2997     if (PrefixLoc.getPointer() + 1 != Buf[0].getLoc().getPointer())
2998       return true;
2999 
3000     // eat $ or @
3001     Lexer.Lex(); // Lexer's Lex guarantees consecutive token.
3002     // Construct the joined identifier and consume the token.
3003     Res = StringRef(PrefixLoc.getPointer(), getTok().getString().size() + 1);
3004     Lex(); // Parser Lex to maintain invariants.
3005     return false;
3006   }
3007 
3008   if (Lexer.isNot(AsmToken::Identifier) && Lexer.isNot(AsmToken::String))
3009     return true;
3010 
3011   Res = getTok().getIdentifier();
3012 
3013   Lex(); // Consume the identifier token.
3014 
3015   return false;
3016 }
3017 
3018 /// parseDirectiveSet:
3019 ///   ::= .equ identifier ',' expression
3020 ///   ::= .equiv identifier ',' expression
3021 ///   ::= .set identifier ',' expression
3022 ///   ::= .lto_set_conditional identifier ',' expression
3023 bool AsmParser::parseDirectiveSet(StringRef IDVal, AssignmentKind Kind) {
3024   StringRef Name;
3025   if (check(parseIdentifier(Name), "expected identifier") || parseComma() ||
3026       parseAssignment(Name, Kind))
3027     return true;
3028   return false;
3029 }
3030 
3031 bool AsmParser::parseEscapedString(std::string &Data) {
3032   if (check(getTok().isNot(AsmToken::String), "expected string"))
3033     return true;
3034 
3035   Data = "";
3036   StringRef Str = getTok().getStringContents();
3037   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
3038     if (Str[i] != '\\') {
3039       Data += Str[i];
3040       continue;
3041     }
3042 
3043     // Recognize escaped characters. Note that this escape semantics currently
3044     // loosely follows Darwin 'as'.
3045     ++i;
3046     if (i == e)
3047       return TokError("unexpected backslash at end of string");
3048 
3049     // Recognize hex sequences similarly to GNU 'as'.
3050     if (Str[i] == 'x' || Str[i] == 'X') {
3051       size_t length = Str.size();
3052       if (i + 1 >= length || !isHexDigit(Str[i + 1]))
3053         return TokError("invalid hexadecimal escape sequence");
3054 
3055       // Consume hex characters. GNU 'as' reads all hexadecimal characters and
3056       // then truncates to the lower 16 bits. Seems reasonable.
3057       unsigned Value = 0;
3058       while (i + 1 < length && isHexDigit(Str[i + 1]))
3059         Value = Value * 16 + hexDigitValue(Str[++i]);
3060 
3061       Data += (unsigned char)(Value & 0xFF);
3062       continue;
3063     }
3064 
3065     // Recognize octal sequences.
3066     if ((unsigned)(Str[i] - '0') <= 7) {
3067       // Consume up to three octal characters.
3068       unsigned Value = Str[i] - '0';
3069 
3070       if (i + 1 != e && ((unsigned)(Str[i + 1] - '0')) <= 7) {
3071         ++i;
3072         Value = Value * 8 + (Str[i] - '0');
3073 
3074         if (i + 1 != e && ((unsigned)(Str[i + 1] - '0')) <= 7) {
3075           ++i;
3076           Value = Value * 8 + (Str[i] - '0');
3077         }
3078       }
3079 
3080       if (Value > 255)
3081         return TokError("invalid octal escape sequence (out of range)");
3082 
3083       Data += (unsigned char)Value;
3084       continue;
3085     }
3086 
3087     // Otherwise recognize individual escapes.
3088     switch (Str[i]) {
3089     default:
3090       // Just reject invalid escape sequences for now.
3091       return TokError("invalid escape sequence (unrecognized character)");
3092 
3093     case 'b': Data += '\b'; break;
3094     case 'f': Data += '\f'; break;
3095     case 'n': Data += '\n'; break;
3096     case 'r': Data += '\r'; break;
3097     case 't': Data += '\t'; break;
3098     case '"': Data += '"'; break;
3099     case '\\': Data += '\\'; break;
3100     }
3101   }
3102 
3103   Lex();
3104   return false;
3105 }
3106 
3107 bool AsmParser::parseAngleBracketString(std::string &Data) {
3108   SMLoc EndLoc, StartLoc = getTok().getLoc();
3109   if (isAngleBracketString(StartLoc, EndLoc)) {
3110     const char *StartChar = StartLoc.getPointer() + 1;
3111     const char *EndChar = EndLoc.getPointer() - 1;
3112     jumpToLoc(EndLoc, CurBuffer);
3113     /// Eat from '<' to '>'
3114     Lex();
3115 
3116     Data = angleBracketString(StringRef(StartChar, EndChar - StartChar));
3117     return false;
3118   }
3119   return true;
3120 }
3121 
3122 /// parseDirectiveAscii:
3123 //    ::= .ascii [ "string"+ ( , "string"+ )* ]
3124 ///   ::= ( .asciz | .string ) [ "string" ( , "string" )* ]
3125 bool AsmParser::parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated) {
3126   auto parseOp = [&]() -> bool {
3127     std::string Data;
3128     if (checkForValidSection())
3129       return true;
3130     // Only support spaces as separators for .ascii directive for now. See the
3131     // discusssion at https://reviews.llvm.org/D91460 for more details.
3132     do {
3133       if (parseEscapedString(Data))
3134         return true;
3135       getStreamer().emitBytes(Data);
3136     } while (!ZeroTerminated && getTok().is(AsmToken::String));
3137     if (ZeroTerminated)
3138       getStreamer().emitBytes(StringRef("\0", 1));
3139     return false;
3140   };
3141 
3142   return parseMany(parseOp);
3143 }
3144 
3145 /// parseDirectiveReloc
3146 ///  ::= .reloc expression , identifier [ , expression ]
3147 bool AsmParser::parseDirectiveReloc(SMLoc DirectiveLoc) {
3148   const MCExpr *Offset;
3149   const MCExpr *Expr = nullptr;
3150   SMLoc OffsetLoc = Lexer.getTok().getLoc();
3151 
3152   if (parseExpression(Offset))
3153     return true;
3154   if (parseComma() ||
3155       check(getTok().isNot(AsmToken::Identifier), "expected relocation name"))
3156     return true;
3157 
3158   SMLoc NameLoc = Lexer.getTok().getLoc();
3159   StringRef Name = Lexer.getTok().getIdentifier();
3160   Lex();
3161 
3162   if (Lexer.is(AsmToken::Comma)) {
3163     Lex();
3164     SMLoc ExprLoc = Lexer.getLoc();
3165     if (parseExpression(Expr))
3166       return true;
3167 
3168     MCValue Value;
3169     if (!Expr->evaluateAsRelocatable(Value, nullptr, nullptr))
3170       return Error(ExprLoc, "expression must be relocatable");
3171   }
3172 
3173   if (parseEOL())
3174     return true;
3175 
3176   const MCTargetAsmParser &MCT = getTargetParser();
3177   const MCSubtargetInfo &STI = MCT.getSTI();
3178   if (std::optional<std::pair<bool, std::string>> Err =
3179           getStreamer().emitRelocDirective(*Offset, Name, Expr, DirectiveLoc,
3180                                            STI))
3181     return Error(Err->first ? NameLoc : OffsetLoc, Err->second);
3182 
3183   return false;
3184 }
3185 
3186 /// parseDirectiveValue
3187 ///  ::= (.byte | .short | ... ) [ expression (, expression)* ]
3188 bool AsmParser::parseDirectiveValue(StringRef IDVal, unsigned Size) {
3189   auto parseOp = [&]() -> bool {
3190     const MCExpr *Value;
3191     SMLoc ExprLoc = getLexer().getLoc();
3192     if (checkForValidSection() || parseExpression(Value))
3193       return true;
3194     // Special case constant expressions to match code generator.
3195     if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
3196       assert(Size <= 8 && "Invalid size");
3197       uint64_t IntValue = MCE->getValue();
3198       if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue))
3199         return Error(ExprLoc, "out of range literal value");
3200       getStreamer().emitIntValue(IntValue, Size);
3201     } else
3202       getStreamer().emitValue(Value, Size, ExprLoc);
3203     return false;
3204   };
3205 
3206   return parseMany(parseOp);
3207 }
3208 
3209 static bool parseHexOcta(AsmParser &Asm, uint64_t &hi, uint64_t &lo) {
3210   if (Asm.getTok().isNot(AsmToken::Integer) &&
3211       Asm.getTok().isNot(AsmToken::BigNum))
3212     return Asm.TokError("unknown token in expression");
3213   SMLoc ExprLoc = Asm.getTok().getLoc();
3214   APInt IntValue = Asm.getTok().getAPIntVal();
3215   Asm.Lex();
3216   if (!IntValue.isIntN(128))
3217     return Asm.Error(ExprLoc, "out of range literal value");
3218   if (!IntValue.isIntN(64)) {
3219     hi = IntValue.getHiBits(IntValue.getBitWidth() - 64).getZExtValue();
3220     lo = IntValue.getLoBits(64).getZExtValue();
3221   } else {
3222     hi = 0;
3223     lo = IntValue.getZExtValue();
3224   }
3225   return false;
3226 }
3227 
3228 /// ParseDirectiveOctaValue
3229 ///  ::= .octa [ hexconstant (, hexconstant)* ]
3230 
3231 bool AsmParser::parseDirectiveOctaValue(StringRef IDVal) {
3232   auto parseOp = [&]() -> bool {
3233     if (checkForValidSection())
3234       return true;
3235     uint64_t hi, lo;
3236     if (parseHexOcta(*this, hi, lo))
3237       return true;
3238     if (MAI.isLittleEndian()) {
3239       getStreamer().emitInt64(lo);
3240       getStreamer().emitInt64(hi);
3241     } else {
3242       getStreamer().emitInt64(hi);
3243       getStreamer().emitInt64(lo);
3244     }
3245     return false;
3246   };
3247 
3248   return parseMany(parseOp);
3249 }
3250 
3251 bool AsmParser::parseRealValue(const fltSemantics &Semantics, APInt &Res) {
3252   // We don't truly support arithmetic on floating point expressions, so we
3253   // have to manually parse unary prefixes.
3254   bool IsNeg = false;
3255   if (getLexer().is(AsmToken::Minus)) {
3256     Lexer.Lex();
3257     IsNeg = true;
3258   } else if (getLexer().is(AsmToken::Plus))
3259     Lexer.Lex();
3260 
3261   if (Lexer.is(AsmToken::Error))
3262     return TokError(Lexer.getErr());
3263   if (Lexer.isNot(AsmToken::Integer) && Lexer.isNot(AsmToken::Real) &&
3264       Lexer.isNot(AsmToken::Identifier))
3265     return TokError("unexpected token in directive");
3266 
3267   // Convert to an APFloat.
3268   APFloat Value(Semantics);
3269   StringRef IDVal = getTok().getString();
3270   if (getLexer().is(AsmToken::Identifier)) {
3271     if (!IDVal.compare_insensitive("infinity") ||
3272         !IDVal.compare_insensitive("inf"))
3273       Value = APFloat::getInf(Semantics);
3274     else if (!IDVal.compare_insensitive("nan"))
3275       Value = APFloat::getNaN(Semantics, false, ~0);
3276     else
3277       return TokError("invalid floating point literal");
3278   } else if (errorToBool(
3279                  Value.convertFromString(IDVal, APFloat::rmNearestTiesToEven)
3280                      .takeError()))
3281     return TokError("invalid floating point literal");
3282   if (IsNeg)
3283     Value.changeSign();
3284 
3285   // Consume the numeric token.
3286   Lex();
3287 
3288   Res = Value.bitcastToAPInt();
3289 
3290   return false;
3291 }
3292 
3293 /// parseDirectiveRealValue
3294 ///  ::= (.single | .double) [ expression (, expression)* ]
3295 bool AsmParser::parseDirectiveRealValue(StringRef IDVal,
3296                                         const fltSemantics &Semantics) {
3297   auto parseOp = [&]() -> bool {
3298     APInt AsInt;
3299     if (checkForValidSection() || parseRealValue(Semantics, AsInt))
3300       return true;
3301     getStreamer().emitIntValue(AsInt.getLimitedValue(),
3302                                AsInt.getBitWidth() / 8);
3303     return false;
3304   };
3305 
3306   return parseMany(parseOp);
3307 }
3308 
3309 /// parseDirectiveZero
3310 ///  ::= .zero expression
3311 bool AsmParser::parseDirectiveZero() {
3312   SMLoc NumBytesLoc = Lexer.getLoc();
3313   const MCExpr *NumBytes;
3314   if (checkForValidSection() || parseExpression(NumBytes))
3315     return true;
3316 
3317   int64_t Val = 0;
3318   if (getLexer().is(AsmToken::Comma)) {
3319     Lex();
3320     if (parseAbsoluteExpression(Val))
3321       return true;
3322   }
3323 
3324   if (parseEOL())
3325     return true;
3326   getStreamer().emitFill(*NumBytes, Val, NumBytesLoc);
3327 
3328   return false;
3329 }
3330 
3331 /// parseDirectiveFill
3332 ///  ::= .fill expression [ , expression [ , expression ] ]
3333 bool AsmParser::parseDirectiveFill() {
3334   SMLoc NumValuesLoc = Lexer.getLoc();
3335   const MCExpr *NumValues;
3336   if (checkForValidSection() || parseExpression(NumValues))
3337     return true;
3338 
3339   int64_t FillSize = 1;
3340   int64_t FillExpr = 0;
3341 
3342   SMLoc SizeLoc, ExprLoc;
3343 
3344   if (parseOptionalToken(AsmToken::Comma)) {
3345     SizeLoc = getTok().getLoc();
3346     if (parseAbsoluteExpression(FillSize))
3347       return true;
3348     if (parseOptionalToken(AsmToken::Comma)) {
3349       ExprLoc = getTok().getLoc();
3350       if (parseAbsoluteExpression(FillExpr))
3351         return true;
3352     }
3353   }
3354   if (parseEOL())
3355     return true;
3356 
3357   if (FillSize < 0) {
3358     Warning(SizeLoc, "'.fill' directive with negative size has no effect");
3359     return false;
3360   }
3361   if (FillSize > 8) {
3362     Warning(SizeLoc, "'.fill' directive with size greater than 8 has been truncated to 8");
3363     FillSize = 8;
3364   }
3365 
3366   if (!isUInt<32>(FillExpr) && FillSize > 4)
3367     Warning(ExprLoc, "'.fill' directive pattern has been truncated to 32-bits");
3368 
3369   getStreamer().emitFill(*NumValues, FillSize, FillExpr, NumValuesLoc);
3370 
3371   return false;
3372 }
3373 
3374 /// parseDirectiveOrg
3375 ///  ::= .org expression [ , expression ]
3376 bool AsmParser::parseDirectiveOrg() {
3377   const MCExpr *Offset;
3378   SMLoc OffsetLoc = Lexer.getLoc();
3379   if (checkForValidSection() || parseExpression(Offset))
3380     return true;
3381 
3382   // Parse optional fill expression.
3383   int64_t FillExpr = 0;
3384   if (parseOptionalToken(AsmToken::Comma))
3385     if (parseAbsoluteExpression(FillExpr))
3386       return true;
3387   if (parseEOL())
3388     return true;
3389 
3390   getStreamer().emitValueToOffset(Offset, FillExpr, OffsetLoc);
3391   return false;
3392 }
3393 
3394 /// parseDirectiveAlign
3395 ///  ::= {.align, ...} expression [ , expression [ , expression ]]
3396 bool AsmParser::parseDirectiveAlign(bool IsPow2, unsigned ValueSize) {
3397   SMLoc AlignmentLoc = getLexer().getLoc();
3398   int64_t Alignment;
3399   SMLoc MaxBytesLoc;
3400   bool HasFillExpr = false;
3401   int64_t FillExpr = 0;
3402   int64_t MaxBytesToFill = 0;
3403   SMLoc FillExprLoc;
3404 
3405   auto parseAlign = [&]() -> bool {
3406     if (parseAbsoluteExpression(Alignment))
3407       return true;
3408     if (parseOptionalToken(AsmToken::Comma)) {
3409       // The fill expression can be omitted while specifying a maximum number of
3410       // alignment bytes, e.g:
3411       //  .align 3,,4
3412       if (getTok().isNot(AsmToken::Comma)) {
3413         HasFillExpr = true;
3414         if (parseTokenLoc(FillExprLoc) || parseAbsoluteExpression(FillExpr))
3415           return true;
3416       }
3417       if (parseOptionalToken(AsmToken::Comma))
3418         if (parseTokenLoc(MaxBytesLoc) ||
3419             parseAbsoluteExpression(MaxBytesToFill))
3420           return true;
3421     }
3422     return parseEOL();
3423   };
3424 
3425   if (checkForValidSection())
3426     return true;
3427   // Ignore empty '.p2align' directives for GNU-as compatibility
3428   if (IsPow2 && (ValueSize == 1) && getTok().is(AsmToken::EndOfStatement)) {
3429     Warning(AlignmentLoc, "p2align directive with no operand(s) is ignored");
3430     return parseEOL();
3431   }
3432   if (parseAlign())
3433     return true;
3434 
3435   // Always emit an alignment here even if we thrown an error.
3436   bool ReturnVal = false;
3437 
3438   // Compute alignment in bytes.
3439   if (IsPow2) {
3440     // FIXME: Diagnose overflow.
3441     if (Alignment >= 32) {
3442       ReturnVal |= Error(AlignmentLoc, "invalid alignment value");
3443       Alignment = 31;
3444     }
3445 
3446     Alignment = 1ULL << Alignment;
3447   } else {
3448     // Reject alignments that aren't either a power of two or zero,
3449     // for gas compatibility. Alignment of zero is silently rounded
3450     // up to one.
3451     if (Alignment == 0)
3452       Alignment = 1;
3453     else if (!isPowerOf2_64(Alignment)) {
3454       ReturnVal |= Error(AlignmentLoc, "alignment must be a power of 2");
3455       Alignment = llvm::bit_floor<uint64_t>(Alignment);
3456     }
3457     if (!isUInt<32>(Alignment)) {
3458       ReturnVal |= Error(AlignmentLoc, "alignment must be smaller than 2**32");
3459       Alignment = 1u << 31;
3460     }
3461   }
3462 
3463   if (HasFillExpr && FillExpr != 0) {
3464     MCSection *Sec = getStreamer().getCurrentSectionOnly();
3465     if (Sec && Sec->isVirtualSection()) {
3466       ReturnVal |=
3467           Warning(FillExprLoc, "ignoring non-zero fill value in " +
3468                                    Sec->getVirtualSectionKind() + " section '" +
3469                                    Sec->getName() + "'");
3470       FillExpr = 0;
3471     }
3472   }
3473 
3474   // Diagnose non-sensical max bytes to align.
3475   if (MaxBytesLoc.isValid()) {
3476     if (MaxBytesToFill < 1) {
3477       ReturnVal |= Error(MaxBytesLoc,
3478                          "alignment directive can never be satisfied in this "
3479                          "many bytes, ignoring maximum bytes expression");
3480       MaxBytesToFill = 0;
3481     }
3482 
3483     if (MaxBytesToFill >= Alignment) {
3484       Warning(MaxBytesLoc, "maximum bytes expression exceeds alignment and "
3485                            "has no effect");
3486       MaxBytesToFill = 0;
3487     }
3488   }
3489 
3490   // Check whether we should use optimal code alignment for this .align
3491   // directive.
3492   const MCSection *Section = getStreamer().getCurrentSectionOnly();
3493   assert(Section && "must have section to emit alignment");
3494   bool useCodeAlign = Section->useCodeAlign();
3495   if ((!HasFillExpr || Lexer.getMAI().getTextAlignFillValue() == FillExpr) &&
3496       ValueSize == 1 && useCodeAlign) {
3497     getStreamer().emitCodeAlignment(
3498         Align(Alignment), &getTargetParser().getSTI(), MaxBytesToFill);
3499   } else {
3500     // FIXME: Target specific behavior about how the "extra" bytes are filled.
3501     getStreamer().emitValueToAlignment(Align(Alignment), FillExpr, ValueSize,
3502                                        MaxBytesToFill);
3503   }
3504 
3505   return ReturnVal;
3506 }
3507 
3508 /// parseDirectiveFile
3509 /// ::= .file filename
3510 /// ::= .file number [directory] filename [md5 checksum] [source source-text]
3511 bool AsmParser::parseDirectiveFile(SMLoc DirectiveLoc) {
3512   // FIXME: I'm not sure what this is.
3513   int64_t FileNumber = -1;
3514   if (getLexer().is(AsmToken::Integer)) {
3515     FileNumber = getTok().getIntVal();
3516     Lex();
3517 
3518     if (FileNumber < 0)
3519       return TokError("negative file number");
3520   }
3521 
3522   std::string Path;
3523 
3524   // Usually the directory and filename together, otherwise just the directory.
3525   // Allow the strings to have escaped octal character sequence.
3526   if (parseEscapedString(Path))
3527     return true;
3528 
3529   StringRef Directory;
3530   StringRef Filename;
3531   std::string FilenameData;
3532   if (getLexer().is(AsmToken::String)) {
3533     if (check(FileNumber == -1,
3534               "explicit path specified, but no file number") ||
3535         parseEscapedString(FilenameData))
3536       return true;
3537     Filename = FilenameData;
3538     Directory = Path;
3539   } else {
3540     Filename = Path;
3541   }
3542 
3543   uint64_t MD5Hi, MD5Lo;
3544   bool HasMD5 = false;
3545 
3546   std::optional<StringRef> Source;
3547   bool HasSource = false;
3548   std::string SourceString;
3549 
3550   while (!parseOptionalToken(AsmToken::EndOfStatement)) {
3551     StringRef Keyword;
3552     if (check(getTok().isNot(AsmToken::Identifier),
3553               "unexpected token in '.file' directive") ||
3554         parseIdentifier(Keyword))
3555       return true;
3556     if (Keyword == "md5") {
3557       HasMD5 = true;
3558       if (check(FileNumber == -1,
3559                 "MD5 checksum specified, but no file number") ||
3560           parseHexOcta(*this, MD5Hi, MD5Lo))
3561         return true;
3562     } else if (Keyword == "source") {
3563       HasSource = true;
3564       if (check(FileNumber == -1,
3565                 "source specified, but no file number") ||
3566           check(getTok().isNot(AsmToken::String),
3567                 "unexpected token in '.file' directive") ||
3568           parseEscapedString(SourceString))
3569         return true;
3570     } else {
3571       return TokError("unexpected token in '.file' directive");
3572     }
3573   }
3574 
3575   if (FileNumber == -1) {
3576     // Ignore the directive if there is no number and the target doesn't support
3577     // numberless .file directives. This allows some portability of assembler
3578     // between different object file formats.
3579     if (getContext().getAsmInfo()->hasSingleParameterDotFile())
3580       getStreamer().emitFileDirective(Filename);
3581   } else {
3582     // In case there is a -g option as well as debug info from directive .file,
3583     // we turn off the -g option, directly use the existing debug info instead.
3584     // Throw away any implicit file table for the assembler source.
3585     if (Ctx.getGenDwarfForAssembly()) {
3586       Ctx.getMCDwarfLineTable(0).resetFileTable();
3587       Ctx.setGenDwarfForAssembly(false);
3588     }
3589 
3590     std::optional<MD5::MD5Result> CKMem;
3591     if (HasMD5) {
3592       MD5::MD5Result Sum;
3593       for (unsigned i = 0; i != 8; ++i) {
3594         Sum[i] = uint8_t(MD5Hi >> ((7 - i) * 8));
3595         Sum[i + 8] = uint8_t(MD5Lo >> ((7 - i) * 8));
3596       }
3597       CKMem = Sum;
3598     }
3599     if (HasSource) {
3600       char *SourceBuf = static_cast<char *>(Ctx.allocate(SourceString.size()));
3601       memcpy(SourceBuf, SourceString.data(), SourceString.size());
3602       Source = StringRef(SourceBuf, SourceString.size());
3603     }
3604     if (FileNumber == 0) {
3605       // Upgrade to Version 5 for assembly actions like clang -c a.s.
3606       if (Ctx.getDwarfVersion() < 5)
3607         Ctx.setDwarfVersion(5);
3608       getStreamer().emitDwarfFile0Directive(Directory, Filename, CKMem, Source);
3609     } else {
3610       Expected<unsigned> FileNumOrErr = getStreamer().tryEmitDwarfFileDirective(
3611           FileNumber, Directory, Filename, CKMem, Source);
3612       if (!FileNumOrErr)
3613         return Error(DirectiveLoc, toString(FileNumOrErr.takeError()));
3614     }
3615     // Alert the user if there are some .file directives with MD5 and some not.
3616     // But only do that once.
3617     if (!ReportedInconsistentMD5 && !Ctx.isDwarfMD5UsageConsistent(0)) {
3618       ReportedInconsistentMD5 = true;
3619       return Warning(DirectiveLoc, "inconsistent use of MD5 checksums");
3620     }
3621   }
3622 
3623   return false;
3624 }
3625 
3626 /// parseDirectiveLine
3627 /// ::= .line [number]
3628 bool AsmParser::parseDirectiveLine() {
3629   int64_t LineNumber;
3630   if (getLexer().is(AsmToken::Integer)) {
3631     if (parseIntToken(LineNumber, "unexpected token in '.line' directive"))
3632       return true;
3633     (void)LineNumber;
3634     // FIXME: Do something with the .line.
3635   }
3636   return parseEOL();
3637 }
3638 
3639 /// parseDirectiveLoc
3640 /// ::= .loc FileNumber [LineNumber] [ColumnPos] [basic_block] [prologue_end]
3641 ///                                [epilogue_begin] [is_stmt VALUE] [isa VALUE]
3642 /// The first number is a file number, must have been previously assigned with
3643 /// a .file directive, the second number is the line number and optionally the
3644 /// third number is a column position (zero if not specified).  The remaining
3645 /// optional items are .loc sub-directives.
3646 bool AsmParser::parseDirectiveLoc() {
3647   int64_t FileNumber = 0, LineNumber = 0;
3648   SMLoc Loc = getTok().getLoc();
3649   if (parseIntToken(FileNumber, "unexpected token in '.loc' directive") ||
3650       check(FileNumber < 1 && Ctx.getDwarfVersion() < 5, Loc,
3651             "file number less than one in '.loc' directive") ||
3652       check(!getContext().isValidDwarfFileNumber(FileNumber), Loc,
3653             "unassigned file number in '.loc' directive"))
3654     return true;
3655 
3656   // optional
3657   if (getLexer().is(AsmToken::Integer)) {
3658     LineNumber = getTok().getIntVal();
3659     if (LineNumber < 0)
3660       return TokError("line number less than zero in '.loc' directive");
3661     Lex();
3662   }
3663 
3664   int64_t ColumnPos = 0;
3665   if (getLexer().is(AsmToken::Integer)) {
3666     ColumnPos = getTok().getIntVal();
3667     if (ColumnPos < 0)
3668       return TokError("column position less than zero in '.loc' directive");
3669     Lex();
3670   }
3671 
3672   auto PrevFlags = getContext().getCurrentDwarfLoc().getFlags();
3673   unsigned Flags = PrevFlags & DWARF2_FLAG_IS_STMT;
3674   unsigned Isa = 0;
3675   int64_t Discriminator = 0;
3676 
3677   auto parseLocOp = [&]() -> bool {
3678     StringRef Name;
3679     SMLoc Loc = getTok().getLoc();
3680     if (parseIdentifier(Name))
3681       return TokError("unexpected token in '.loc' directive");
3682 
3683     if (Name == "basic_block")
3684       Flags |= DWARF2_FLAG_BASIC_BLOCK;
3685     else if (Name == "prologue_end")
3686       Flags |= DWARF2_FLAG_PROLOGUE_END;
3687     else if (Name == "epilogue_begin")
3688       Flags |= DWARF2_FLAG_EPILOGUE_BEGIN;
3689     else if (Name == "is_stmt") {
3690       Loc = getTok().getLoc();
3691       const MCExpr *Value;
3692       if (parseExpression(Value))
3693         return true;
3694       // The expression must be the constant 0 or 1.
3695       if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
3696         int Value = MCE->getValue();
3697         if (Value == 0)
3698           Flags &= ~DWARF2_FLAG_IS_STMT;
3699         else if (Value == 1)
3700           Flags |= DWARF2_FLAG_IS_STMT;
3701         else
3702           return Error(Loc, "is_stmt value not 0 or 1");
3703       } else {
3704         return Error(Loc, "is_stmt value not the constant value of 0 or 1");
3705       }
3706     } else if (Name == "isa") {
3707       Loc = getTok().getLoc();
3708       const MCExpr *Value;
3709       if (parseExpression(Value))
3710         return true;
3711       // The expression must be a constant greater or equal to 0.
3712       if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
3713         int Value = MCE->getValue();
3714         if (Value < 0)
3715           return Error(Loc, "isa number less than zero");
3716         Isa = Value;
3717       } else {
3718         return Error(Loc, "isa number not a constant value");
3719       }
3720     } else if (Name == "discriminator") {
3721       if (parseAbsoluteExpression(Discriminator))
3722         return true;
3723     } else {
3724       return Error(Loc, "unknown sub-directive in '.loc' directive");
3725     }
3726     return false;
3727   };
3728 
3729   if (parseMany(parseLocOp, false /*hasComma*/))
3730     return true;
3731 
3732   getStreamer().emitDwarfLocDirective(FileNumber, LineNumber, ColumnPos, Flags,
3733                                       Isa, Discriminator, StringRef());
3734 
3735   return false;
3736 }
3737 
3738 /// parseDirectiveStabs
3739 /// ::= .stabs string, number, number, number
3740 bool AsmParser::parseDirectiveStabs() {
3741   return TokError("unsupported directive '.stabs'");
3742 }
3743 
3744 /// parseDirectiveCVFile
3745 /// ::= .cv_file number filename [checksum] [checksumkind]
3746 bool AsmParser::parseDirectiveCVFile() {
3747   SMLoc FileNumberLoc = getTok().getLoc();
3748   int64_t FileNumber;
3749   std::string Filename;
3750   std::string Checksum;
3751   int64_t ChecksumKind = 0;
3752 
3753   if (parseIntToken(FileNumber,
3754                     "expected file number in '.cv_file' directive") ||
3755       check(FileNumber < 1, FileNumberLoc, "file number less than one") ||
3756       check(getTok().isNot(AsmToken::String),
3757             "unexpected token in '.cv_file' directive") ||
3758       parseEscapedString(Filename))
3759     return true;
3760   if (!parseOptionalToken(AsmToken::EndOfStatement)) {
3761     if (check(getTok().isNot(AsmToken::String),
3762               "unexpected token in '.cv_file' directive") ||
3763         parseEscapedString(Checksum) ||
3764         parseIntToken(ChecksumKind,
3765                       "expected checksum kind in '.cv_file' directive") ||
3766         parseEOL())
3767       return true;
3768   }
3769 
3770   Checksum = fromHex(Checksum);
3771   void *CKMem = Ctx.allocate(Checksum.size(), 1);
3772   memcpy(CKMem, Checksum.data(), Checksum.size());
3773   ArrayRef<uint8_t> ChecksumAsBytes(reinterpret_cast<const uint8_t *>(CKMem),
3774                                     Checksum.size());
3775 
3776   if (!getStreamer().emitCVFileDirective(FileNumber, Filename, ChecksumAsBytes,
3777                                          static_cast<uint8_t>(ChecksumKind)))
3778     return Error(FileNumberLoc, "file number already allocated");
3779 
3780   return false;
3781 }
3782 
3783 bool AsmParser::parseCVFunctionId(int64_t &FunctionId,
3784                                   StringRef DirectiveName) {
3785   SMLoc Loc;
3786   return parseTokenLoc(Loc) ||
3787          parseIntToken(FunctionId, "expected function id in '" + DirectiveName +
3788                                        "' directive") ||
3789          check(FunctionId < 0 || FunctionId >= UINT_MAX, Loc,
3790                "expected function id within range [0, UINT_MAX)");
3791 }
3792 
3793 bool AsmParser::parseCVFileId(int64_t &FileNumber, StringRef DirectiveName) {
3794   SMLoc Loc;
3795   return parseTokenLoc(Loc) ||
3796          parseIntToken(FileNumber, "expected integer in '" + DirectiveName +
3797                                        "' directive") ||
3798          check(FileNumber < 1, Loc, "file number less than one in '" +
3799                                         DirectiveName + "' directive") ||
3800          check(!getCVContext().isValidFileNumber(FileNumber), Loc,
3801                "unassigned file number in '" + DirectiveName + "' directive");
3802 }
3803 
3804 /// parseDirectiveCVFuncId
3805 /// ::= .cv_func_id FunctionId
3806 ///
3807 /// Introduces a function ID that can be used with .cv_loc.
3808 bool AsmParser::parseDirectiveCVFuncId() {
3809   SMLoc FunctionIdLoc = getTok().getLoc();
3810   int64_t FunctionId;
3811 
3812   if (parseCVFunctionId(FunctionId, ".cv_func_id") || parseEOL())
3813     return true;
3814 
3815   if (!getStreamer().emitCVFuncIdDirective(FunctionId))
3816     return Error(FunctionIdLoc, "function id already allocated");
3817 
3818   return false;
3819 }
3820 
3821 /// parseDirectiveCVInlineSiteId
3822 /// ::= .cv_inline_site_id FunctionId
3823 ///         "within" IAFunc
3824 ///         "inlined_at" IAFile IALine [IACol]
3825 ///
3826 /// Introduces a function ID that can be used with .cv_loc. Includes "inlined
3827 /// at" source location information for use in the line table of the caller,
3828 /// whether the caller is a real function or another inlined call site.
3829 bool AsmParser::parseDirectiveCVInlineSiteId() {
3830   SMLoc FunctionIdLoc = getTok().getLoc();
3831   int64_t FunctionId;
3832   int64_t IAFunc;
3833   int64_t IAFile;
3834   int64_t IALine;
3835   int64_t IACol = 0;
3836 
3837   // FunctionId
3838   if (parseCVFunctionId(FunctionId, ".cv_inline_site_id"))
3839     return true;
3840 
3841   // "within"
3842   if (check((getLexer().isNot(AsmToken::Identifier) ||
3843              getTok().getIdentifier() != "within"),
3844             "expected 'within' identifier in '.cv_inline_site_id' directive"))
3845     return true;
3846   Lex();
3847 
3848   // IAFunc
3849   if (parseCVFunctionId(IAFunc, ".cv_inline_site_id"))
3850     return true;
3851 
3852   // "inlined_at"
3853   if (check((getLexer().isNot(AsmToken::Identifier) ||
3854              getTok().getIdentifier() != "inlined_at"),
3855             "expected 'inlined_at' identifier in '.cv_inline_site_id' "
3856             "directive") )
3857     return true;
3858   Lex();
3859 
3860   // IAFile IALine
3861   if (parseCVFileId(IAFile, ".cv_inline_site_id") ||
3862       parseIntToken(IALine, "expected line number after 'inlined_at'"))
3863     return true;
3864 
3865   // [IACol]
3866   if (getLexer().is(AsmToken::Integer)) {
3867     IACol = getTok().getIntVal();
3868     Lex();
3869   }
3870 
3871   if (parseEOL())
3872     return true;
3873 
3874   if (!getStreamer().emitCVInlineSiteIdDirective(FunctionId, IAFunc, IAFile,
3875                                                  IALine, IACol, FunctionIdLoc))
3876     return Error(FunctionIdLoc, "function id already allocated");
3877 
3878   return false;
3879 }
3880 
3881 /// parseDirectiveCVLoc
3882 /// ::= .cv_loc FunctionId FileNumber [LineNumber] [ColumnPos] [prologue_end]
3883 ///                                [is_stmt VALUE]
3884 /// The first number is a file number, must have been previously assigned with
3885 /// a .file directive, the second number is the line number and optionally the
3886 /// third number is a column position (zero if not specified).  The remaining
3887 /// optional items are .loc sub-directives.
3888 bool AsmParser::parseDirectiveCVLoc() {
3889   SMLoc DirectiveLoc = getTok().getLoc();
3890   int64_t FunctionId, FileNumber;
3891   if (parseCVFunctionId(FunctionId, ".cv_loc") ||
3892       parseCVFileId(FileNumber, ".cv_loc"))
3893     return true;
3894 
3895   int64_t LineNumber = 0;
3896   if (getLexer().is(AsmToken::Integer)) {
3897     LineNumber = getTok().getIntVal();
3898     if (LineNumber < 0)
3899       return TokError("line number less than zero in '.cv_loc' directive");
3900     Lex();
3901   }
3902 
3903   int64_t ColumnPos = 0;
3904   if (getLexer().is(AsmToken::Integer)) {
3905     ColumnPos = getTok().getIntVal();
3906     if (ColumnPos < 0)
3907       return TokError("column position less than zero in '.cv_loc' directive");
3908     Lex();
3909   }
3910 
3911   bool PrologueEnd = false;
3912   uint64_t IsStmt = 0;
3913 
3914   auto parseOp = [&]() -> bool {
3915     StringRef Name;
3916     SMLoc Loc = getTok().getLoc();
3917     if (parseIdentifier(Name))
3918       return TokError("unexpected token in '.cv_loc' directive");
3919     if (Name == "prologue_end")
3920       PrologueEnd = true;
3921     else if (Name == "is_stmt") {
3922       Loc = getTok().getLoc();
3923       const MCExpr *Value;
3924       if (parseExpression(Value))
3925         return true;
3926       // The expression must be the constant 0 or 1.
3927       IsStmt = ~0ULL;
3928       if (const auto *MCE = dyn_cast<MCConstantExpr>(Value))
3929         IsStmt = MCE->getValue();
3930 
3931       if (IsStmt > 1)
3932         return Error(Loc, "is_stmt value not 0 or 1");
3933     } else {
3934       return Error(Loc, "unknown sub-directive in '.cv_loc' directive");
3935     }
3936     return false;
3937   };
3938 
3939   if (parseMany(parseOp, false /*hasComma*/))
3940     return true;
3941 
3942   getStreamer().emitCVLocDirective(FunctionId, FileNumber, LineNumber,
3943                                    ColumnPos, PrologueEnd, IsStmt, StringRef(),
3944                                    DirectiveLoc);
3945   return false;
3946 }
3947 
3948 /// parseDirectiveCVLinetable
3949 /// ::= .cv_linetable FunctionId, FnStart, FnEnd
3950 bool AsmParser::parseDirectiveCVLinetable() {
3951   int64_t FunctionId;
3952   StringRef FnStartName, FnEndName;
3953   SMLoc Loc = getTok().getLoc();
3954   if (parseCVFunctionId(FunctionId, ".cv_linetable") || parseComma() ||
3955       parseTokenLoc(Loc) ||
3956       check(parseIdentifier(FnStartName), Loc,
3957             "expected identifier in directive") ||
3958       parseComma() || parseTokenLoc(Loc) ||
3959       check(parseIdentifier(FnEndName), Loc,
3960             "expected identifier in directive"))
3961     return true;
3962 
3963   MCSymbol *FnStartSym = getContext().getOrCreateSymbol(FnStartName);
3964   MCSymbol *FnEndSym = getContext().getOrCreateSymbol(FnEndName);
3965 
3966   getStreamer().emitCVLinetableDirective(FunctionId, FnStartSym, FnEndSym);
3967   return false;
3968 }
3969 
3970 /// parseDirectiveCVInlineLinetable
3971 /// ::= .cv_inline_linetable PrimaryFunctionId FileId LineNum FnStart FnEnd
3972 bool AsmParser::parseDirectiveCVInlineLinetable() {
3973   int64_t PrimaryFunctionId, SourceFileId, SourceLineNum;
3974   StringRef FnStartName, FnEndName;
3975   SMLoc Loc = getTok().getLoc();
3976   if (parseCVFunctionId(PrimaryFunctionId, ".cv_inline_linetable") ||
3977       parseTokenLoc(Loc) ||
3978       parseIntToken(
3979           SourceFileId,
3980           "expected SourceField in '.cv_inline_linetable' directive") ||
3981       check(SourceFileId <= 0, Loc,
3982             "File id less than zero in '.cv_inline_linetable' directive") ||
3983       parseTokenLoc(Loc) ||
3984       parseIntToken(
3985           SourceLineNum,
3986           "expected SourceLineNum in '.cv_inline_linetable' directive") ||
3987       check(SourceLineNum < 0, Loc,
3988             "Line number less than zero in '.cv_inline_linetable' directive") ||
3989       parseTokenLoc(Loc) || check(parseIdentifier(FnStartName), Loc,
3990                                   "expected identifier in directive") ||
3991       parseTokenLoc(Loc) || check(parseIdentifier(FnEndName), Loc,
3992                                   "expected identifier in directive"))
3993     return true;
3994 
3995   if (parseEOL())
3996     return true;
3997 
3998   MCSymbol *FnStartSym = getContext().getOrCreateSymbol(FnStartName);
3999   MCSymbol *FnEndSym = getContext().getOrCreateSymbol(FnEndName);
4000   getStreamer().emitCVInlineLinetableDirective(PrimaryFunctionId, SourceFileId,
4001                                                SourceLineNum, FnStartSym,
4002                                                FnEndSym);
4003   return false;
4004 }
4005 
4006 void AsmParser::initializeCVDefRangeTypeMap() {
4007   CVDefRangeTypeMap["reg"] = CVDR_DEFRANGE_REGISTER;
4008   CVDefRangeTypeMap["frame_ptr_rel"] = CVDR_DEFRANGE_FRAMEPOINTER_REL;
4009   CVDefRangeTypeMap["subfield_reg"] = CVDR_DEFRANGE_SUBFIELD_REGISTER;
4010   CVDefRangeTypeMap["reg_rel"] = CVDR_DEFRANGE_REGISTER_REL;
4011 }
4012 
4013 /// parseDirectiveCVDefRange
4014 /// ::= .cv_def_range RangeStart RangeEnd (GapStart GapEnd)*, bytes*
4015 bool AsmParser::parseDirectiveCVDefRange() {
4016   SMLoc Loc;
4017   std::vector<std::pair<const MCSymbol *, const MCSymbol *>> Ranges;
4018   while (getLexer().is(AsmToken::Identifier)) {
4019     Loc = getLexer().getLoc();
4020     StringRef GapStartName;
4021     if (parseIdentifier(GapStartName))
4022       return Error(Loc, "expected identifier in directive");
4023     MCSymbol *GapStartSym = getContext().getOrCreateSymbol(GapStartName);
4024 
4025     Loc = getLexer().getLoc();
4026     StringRef GapEndName;
4027     if (parseIdentifier(GapEndName))
4028       return Error(Loc, "expected identifier in directive");
4029     MCSymbol *GapEndSym = getContext().getOrCreateSymbol(GapEndName);
4030 
4031     Ranges.push_back({GapStartSym, GapEndSym});
4032   }
4033 
4034   StringRef CVDefRangeTypeStr;
4035   if (parseToken(
4036           AsmToken::Comma,
4037           "expected comma before def_range type in .cv_def_range directive") ||
4038       parseIdentifier(CVDefRangeTypeStr))
4039     return Error(Loc, "expected def_range type in directive");
4040 
4041   StringMap<CVDefRangeType>::const_iterator CVTypeIt =
4042       CVDefRangeTypeMap.find(CVDefRangeTypeStr);
4043   CVDefRangeType CVDRType = (CVTypeIt == CVDefRangeTypeMap.end())
4044                                 ? CVDR_DEFRANGE
4045                                 : CVTypeIt->getValue();
4046   switch (CVDRType) {
4047   case CVDR_DEFRANGE_REGISTER: {
4048     int64_t DRRegister;
4049     if (parseToken(AsmToken::Comma, "expected comma before register number in "
4050                                     ".cv_def_range directive") ||
4051         parseAbsoluteExpression(DRRegister))
4052       return Error(Loc, "expected register number");
4053 
4054     codeview::DefRangeRegisterHeader DRHdr;
4055     DRHdr.Register = DRRegister;
4056     DRHdr.MayHaveNoName = 0;
4057     getStreamer().emitCVDefRangeDirective(Ranges, DRHdr);
4058     break;
4059   }
4060   case CVDR_DEFRANGE_FRAMEPOINTER_REL: {
4061     int64_t DROffset;
4062     if (parseToken(AsmToken::Comma,
4063                    "expected comma before offset in .cv_def_range directive") ||
4064         parseAbsoluteExpression(DROffset))
4065       return Error(Loc, "expected offset value");
4066 
4067     codeview::DefRangeFramePointerRelHeader DRHdr;
4068     DRHdr.Offset = DROffset;
4069     getStreamer().emitCVDefRangeDirective(Ranges, DRHdr);
4070     break;
4071   }
4072   case CVDR_DEFRANGE_SUBFIELD_REGISTER: {
4073     int64_t DRRegister;
4074     int64_t DROffsetInParent;
4075     if (parseToken(AsmToken::Comma, "expected comma before register number in "
4076                                     ".cv_def_range directive") ||
4077         parseAbsoluteExpression(DRRegister))
4078       return Error(Loc, "expected register number");
4079     if (parseToken(AsmToken::Comma,
4080                    "expected comma before offset in .cv_def_range directive") ||
4081         parseAbsoluteExpression(DROffsetInParent))
4082       return Error(Loc, "expected offset value");
4083 
4084     codeview::DefRangeSubfieldRegisterHeader DRHdr;
4085     DRHdr.Register = DRRegister;
4086     DRHdr.MayHaveNoName = 0;
4087     DRHdr.OffsetInParent = DROffsetInParent;
4088     getStreamer().emitCVDefRangeDirective(Ranges, DRHdr);
4089     break;
4090   }
4091   case CVDR_DEFRANGE_REGISTER_REL: {
4092     int64_t DRRegister;
4093     int64_t DRFlags;
4094     int64_t DRBasePointerOffset;
4095     if (parseToken(AsmToken::Comma, "expected comma before register number in "
4096                                     ".cv_def_range directive") ||
4097         parseAbsoluteExpression(DRRegister))
4098       return Error(Loc, "expected register value");
4099     if (parseToken(
4100             AsmToken::Comma,
4101             "expected comma before flag value in .cv_def_range directive") ||
4102         parseAbsoluteExpression(DRFlags))
4103       return Error(Loc, "expected flag value");
4104     if (parseToken(AsmToken::Comma, "expected comma before base pointer offset "
4105                                     "in .cv_def_range directive") ||
4106         parseAbsoluteExpression(DRBasePointerOffset))
4107       return Error(Loc, "expected base pointer offset value");
4108 
4109     codeview::DefRangeRegisterRelHeader DRHdr;
4110     DRHdr.Register = DRRegister;
4111     DRHdr.Flags = DRFlags;
4112     DRHdr.BasePointerOffset = DRBasePointerOffset;
4113     getStreamer().emitCVDefRangeDirective(Ranges, DRHdr);
4114     break;
4115   }
4116   default:
4117     return Error(Loc, "unexpected def_range type in .cv_def_range directive");
4118   }
4119   return true;
4120 }
4121 
4122 /// parseDirectiveCVString
4123 /// ::= .cv_stringtable "string"
4124 bool AsmParser::parseDirectiveCVString() {
4125   std::string Data;
4126   if (checkForValidSection() || parseEscapedString(Data))
4127     return true;
4128 
4129   // Put the string in the table and emit the offset.
4130   std::pair<StringRef, unsigned> Insertion =
4131       getCVContext().addToStringTable(Data);
4132   getStreamer().emitInt32(Insertion.second);
4133   return false;
4134 }
4135 
4136 /// parseDirectiveCVStringTable
4137 /// ::= .cv_stringtable
4138 bool AsmParser::parseDirectiveCVStringTable() {
4139   getStreamer().emitCVStringTableDirective();
4140   return false;
4141 }
4142 
4143 /// parseDirectiveCVFileChecksums
4144 /// ::= .cv_filechecksums
4145 bool AsmParser::parseDirectiveCVFileChecksums() {
4146   getStreamer().emitCVFileChecksumsDirective();
4147   return false;
4148 }
4149 
4150 /// parseDirectiveCVFileChecksumOffset
4151 /// ::= .cv_filechecksumoffset fileno
4152 bool AsmParser::parseDirectiveCVFileChecksumOffset() {
4153   int64_t FileNo;
4154   if (parseIntToken(FileNo, "expected identifier in directive"))
4155     return true;
4156   if (parseEOL())
4157     return true;
4158   getStreamer().emitCVFileChecksumOffsetDirective(FileNo);
4159   return false;
4160 }
4161 
4162 /// parseDirectiveCVFPOData
4163 /// ::= .cv_fpo_data procsym
4164 bool AsmParser::parseDirectiveCVFPOData() {
4165   SMLoc DirLoc = getLexer().getLoc();
4166   StringRef ProcName;
4167   if (parseIdentifier(ProcName))
4168     return TokError("expected symbol name");
4169   if (parseEOL())
4170     return true;
4171   MCSymbol *ProcSym = getContext().getOrCreateSymbol(ProcName);
4172   getStreamer().emitCVFPOData(ProcSym, DirLoc);
4173   return false;
4174 }
4175 
4176 /// parseDirectiveCFISections
4177 /// ::= .cfi_sections section [, section]
4178 bool AsmParser::parseDirectiveCFISections() {
4179   StringRef Name;
4180   bool EH = false;
4181   bool Debug = false;
4182 
4183   if (!parseOptionalToken(AsmToken::EndOfStatement)) {
4184     for (;;) {
4185       if (parseIdentifier(Name))
4186         return TokError("expected .eh_frame or .debug_frame");
4187       if (Name == ".eh_frame")
4188         EH = true;
4189       else if (Name == ".debug_frame")
4190         Debug = true;
4191       if (parseOptionalToken(AsmToken::EndOfStatement))
4192         break;
4193       if (parseComma())
4194         return true;
4195     }
4196   }
4197   getStreamer().emitCFISections(EH, Debug);
4198   return false;
4199 }
4200 
4201 /// parseDirectiveCFIStartProc
4202 /// ::= .cfi_startproc [simple]
4203 bool AsmParser::parseDirectiveCFIStartProc() {
4204   CFIStartProcLoc = StartTokLoc;
4205 
4206   StringRef Simple;
4207   if (!parseOptionalToken(AsmToken::EndOfStatement)) {
4208     if (check(parseIdentifier(Simple) || Simple != "simple",
4209               "unexpected token") ||
4210         parseEOL())
4211       return true;
4212   }
4213 
4214   // TODO(kristina): Deal with a corner case of incorrect diagnostic context
4215   // being produced if this directive is emitted as part of preprocessor macro
4216   // expansion which can *ONLY* happen if Clang's cc1as is the API consumer.
4217   // Tools like llvm-mc on the other hand are not affected by it, and report
4218   // correct context information.
4219   getStreamer().emitCFIStartProc(!Simple.empty(), Lexer.getLoc());
4220   return false;
4221 }
4222 
4223 /// parseDirectiveCFIEndProc
4224 /// ::= .cfi_endproc
4225 bool AsmParser::parseDirectiveCFIEndProc() {
4226   CFIStartProcLoc = std::nullopt;
4227 
4228   if (parseEOL())
4229     return true;
4230 
4231   getStreamer().emitCFIEndProc();
4232   return false;
4233 }
4234 
4235 /// parse register name or number.
4236 bool AsmParser::parseRegisterOrRegisterNumber(int64_t &Register,
4237                                               SMLoc DirectiveLoc) {
4238   MCRegister RegNo;
4239 
4240   if (getLexer().isNot(AsmToken::Integer)) {
4241     if (getTargetParser().parseRegister(RegNo, DirectiveLoc, DirectiveLoc))
4242       return true;
4243     Register = getContext().getRegisterInfo()->getDwarfRegNum(RegNo, true);
4244   } else
4245     return parseAbsoluteExpression(Register);
4246 
4247   return false;
4248 }
4249 
4250 /// parseDirectiveCFIDefCfa
4251 /// ::= .cfi_def_cfa register,  offset
4252 bool AsmParser::parseDirectiveCFIDefCfa(SMLoc DirectiveLoc) {
4253   int64_t Register = 0, Offset = 0;
4254   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() ||
4255       parseAbsoluteExpression(Offset) || parseEOL())
4256     return true;
4257 
4258   getStreamer().emitCFIDefCfa(Register, Offset, DirectiveLoc);
4259   return false;
4260 }
4261 
4262 /// parseDirectiveCFIDefCfaOffset
4263 /// ::= .cfi_def_cfa_offset offset
4264 bool AsmParser::parseDirectiveCFIDefCfaOffset(SMLoc DirectiveLoc) {
4265   int64_t Offset = 0;
4266   if (parseAbsoluteExpression(Offset) || parseEOL())
4267     return true;
4268 
4269   getStreamer().emitCFIDefCfaOffset(Offset, DirectiveLoc);
4270   return false;
4271 }
4272 
4273 /// parseDirectiveCFIRegister
4274 /// ::= .cfi_register register, register
4275 bool AsmParser::parseDirectiveCFIRegister(SMLoc DirectiveLoc) {
4276   int64_t Register1 = 0, Register2 = 0;
4277   if (parseRegisterOrRegisterNumber(Register1, DirectiveLoc) || parseComma() ||
4278       parseRegisterOrRegisterNumber(Register2, DirectiveLoc) || parseEOL())
4279     return true;
4280 
4281   getStreamer().emitCFIRegister(Register1, Register2, DirectiveLoc);
4282   return false;
4283 }
4284 
4285 /// parseDirectiveCFIWindowSave
4286 /// ::= .cfi_window_save
4287 bool AsmParser::parseDirectiveCFIWindowSave(SMLoc DirectiveLoc) {
4288   if (parseEOL())
4289     return true;
4290   getStreamer().emitCFIWindowSave(DirectiveLoc);
4291   return false;
4292 }
4293 
4294 /// parseDirectiveCFIAdjustCfaOffset
4295 /// ::= .cfi_adjust_cfa_offset adjustment
4296 bool AsmParser::parseDirectiveCFIAdjustCfaOffset(SMLoc DirectiveLoc) {
4297   int64_t Adjustment = 0;
4298   if (parseAbsoluteExpression(Adjustment) || parseEOL())
4299     return true;
4300 
4301   getStreamer().emitCFIAdjustCfaOffset(Adjustment, DirectiveLoc);
4302   return false;
4303 }
4304 
4305 /// parseDirectiveCFIDefCfaRegister
4306 /// ::= .cfi_def_cfa_register register
4307 bool AsmParser::parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc) {
4308   int64_t Register = 0;
4309   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL())
4310     return true;
4311 
4312   getStreamer().emitCFIDefCfaRegister(Register, DirectiveLoc);
4313   return false;
4314 }
4315 
4316 /// parseDirectiveCFILLVMDefAspaceCfa
4317 /// ::= .cfi_llvm_def_aspace_cfa register, offset, address_space
4318 bool AsmParser::parseDirectiveCFILLVMDefAspaceCfa(SMLoc DirectiveLoc) {
4319   int64_t Register = 0, Offset = 0, AddressSpace = 0;
4320   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() ||
4321       parseAbsoluteExpression(Offset) || parseComma() ||
4322       parseAbsoluteExpression(AddressSpace) || parseEOL())
4323     return true;
4324 
4325   getStreamer().emitCFILLVMDefAspaceCfa(Register, Offset, AddressSpace,
4326                                         DirectiveLoc);
4327   return false;
4328 }
4329 
4330 /// parseDirectiveCFIOffset
4331 /// ::= .cfi_offset register, offset
4332 bool AsmParser::parseDirectiveCFIOffset(SMLoc DirectiveLoc) {
4333   int64_t Register = 0;
4334   int64_t Offset = 0;
4335 
4336   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() ||
4337       parseAbsoluteExpression(Offset) || parseEOL())
4338     return true;
4339 
4340   getStreamer().emitCFIOffset(Register, Offset, DirectiveLoc);
4341   return false;
4342 }
4343 
4344 /// parseDirectiveCFIRelOffset
4345 /// ::= .cfi_rel_offset register, offset
4346 bool AsmParser::parseDirectiveCFIRelOffset(SMLoc DirectiveLoc) {
4347   int64_t Register = 0, Offset = 0;
4348 
4349   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() ||
4350       parseAbsoluteExpression(Offset) || parseEOL())
4351     return true;
4352 
4353   getStreamer().emitCFIRelOffset(Register, Offset, DirectiveLoc);
4354   return false;
4355 }
4356 
4357 static bool isValidEncoding(int64_t Encoding) {
4358   if (Encoding & ~0xff)
4359     return false;
4360 
4361   if (Encoding == dwarf::DW_EH_PE_omit)
4362     return true;
4363 
4364   const unsigned Format = Encoding & 0xf;
4365   if (Format != dwarf::DW_EH_PE_absptr && Format != dwarf::DW_EH_PE_udata2 &&
4366       Format != dwarf::DW_EH_PE_udata4 && Format != dwarf::DW_EH_PE_udata8 &&
4367       Format != dwarf::DW_EH_PE_sdata2 && Format != dwarf::DW_EH_PE_sdata4 &&
4368       Format != dwarf::DW_EH_PE_sdata8 && Format != dwarf::DW_EH_PE_signed)
4369     return false;
4370 
4371   const unsigned Application = Encoding & 0x70;
4372   if (Application != dwarf::DW_EH_PE_absptr &&
4373       Application != dwarf::DW_EH_PE_pcrel)
4374     return false;
4375 
4376   return true;
4377 }
4378 
4379 /// parseDirectiveCFIPersonalityOrLsda
4380 /// IsPersonality true for cfi_personality, false for cfi_lsda
4381 /// ::= .cfi_personality encoding, [symbol_name]
4382 /// ::= .cfi_lsda encoding, [symbol_name]
4383 bool AsmParser::parseDirectiveCFIPersonalityOrLsda(bool IsPersonality) {
4384   int64_t Encoding = 0;
4385   if (parseAbsoluteExpression(Encoding))
4386     return true;
4387   if (Encoding == dwarf::DW_EH_PE_omit)
4388     return false;
4389 
4390   StringRef Name;
4391   if (check(!isValidEncoding(Encoding), "unsupported encoding.") ||
4392       parseComma() ||
4393       check(parseIdentifier(Name), "expected identifier in directive") ||
4394       parseEOL())
4395     return true;
4396 
4397   MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
4398 
4399   if (IsPersonality)
4400     getStreamer().emitCFIPersonality(Sym, Encoding);
4401   else
4402     getStreamer().emitCFILsda(Sym, Encoding);
4403   return false;
4404 }
4405 
4406 /// parseDirectiveCFIRememberState
4407 /// ::= .cfi_remember_state
4408 bool AsmParser::parseDirectiveCFIRememberState(SMLoc DirectiveLoc) {
4409   if (parseEOL())
4410     return true;
4411   getStreamer().emitCFIRememberState(DirectiveLoc);
4412   return false;
4413 }
4414 
4415 /// parseDirectiveCFIRestoreState
4416 /// ::= .cfi_remember_state
4417 bool AsmParser::parseDirectiveCFIRestoreState(SMLoc DirectiveLoc) {
4418   if (parseEOL())
4419     return true;
4420   getStreamer().emitCFIRestoreState(DirectiveLoc);
4421   return false;
4422 }
4423 
4424 /// parseDirectiveCFISameValue
4425 /// ::= .cfi_same_value register
4426 bool AsmParser::parseDirectiveCFISameValue(SMLoc DirectiveLoc) {
4427   int64_t Register = 0;
4428 
4429   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL())
4430     return true;
4431 
4432   getStreamer().emitCFISameValue(Register, DirectiveLoc);
4433   return false;
4434 }
4435 
4436 /// parseDirectiveCFIRestore
4437 /// ::= .cfi_restore register
4438 bool AsmParser::parseDirectiveCFIRestore(SMLoc DirectiveLoc) {
4439   int64_t Register = 0;
4440   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL())
4441     return true;
4442 
4443   getStreamer().emitCFIRestore(Register, DirectiveLoc);
4444   return false;
4445 }
4446 
4447 /// parseDirectiveCFIEscape
4448 /// ::= .cfi_escape expression[,...]
4449 bool AsmParser::parseDirectiveCFIEscape(SMLoc DirectiveLoc) {
4450   std::string Values;
4451   int64_t CurrValue;
4452   if (parseAbsoluteExpression(CurrValue))
4453     return true;
4454 
4455   Values.push_back((uint8_t)CurrValue);
4456 
4457   while (getLexer().is(AsmToken::Comma)) {
4458     Lex();
4459 
4460     if (parseAbsoluteExpression(CurrValue))
4461       return true;
4462 
4463     Values.push_back((uint8_t)CurrValue);
4464   }
4465 
4466   getStreamer().emitCFIEscape(Values, DirectiveLoc);
4467   return false;
4468 }
4469 
4470 /// parseDirectiveCFIReturnColumn
4471 /// ::= .cfi_return_column register
4472 bool AsmParser::parseDirectiveCFIReturnColumn(SMLoc DirectiveLoc) {
4473   int64_t Register = 0;
4474   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL())
4475     return true;
4476   getStreamer().emitCFIReturnColumn(Register);
4477   return false;
4478 }
4479 
4480 /// parseDirectiveCFISignalFrame
4481 /// ::= .cfi_signal_frame
4482 bool AsmParser::parseDirectiveCFISignalFrame(SMLoc DirectiveLoc) {
4483   if (parseEOL())
4484     return true;
4485 
4486   getStreamer().emitCFISignalFrame();
4487   return false;
4488 }
4489 
4490 /// parseDirectiveCFIUndefined
4491 /// ::= .cfi_undefined register
4492 bool AsmParser::parseDirectiveCFIUndefined(SMLoc DirectiveLoc) {
4493   int64_t Register = 0;
4494 
4495   if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL())
4496     return true;
4497 
4498   getStreamer().emitCFIUndefined(Register, DirectiveLoc);
4499   return false;
4500 }
4501 
4502 /// parseDirectiveAltmacro
4503 /// ::= .altmacro
4504 /// ::= .noaltmacro
4505 bool AsmParser::parseDirectiveAltmacro(StringRef Directive) {
4506   if (parseEOL())
4507     return true;
4508   AltMacroMode = (Directive == ".altmacro");
4509   return false;
4510 }
4511 
4512 /// parseDirectiveMacrosOnOff
4513 /// ::= .macros_on
4514 /// ::= .macros_off
4515 bool AsmParser::parseDirectiveMacrosOnOff(StringRef Directive) {
4516   if (parseEOL())
4517     return true;
4518   setMacrosEnabled(Directive == ".macros_on");
4519   return false;
4520 }
4521 
4522 /// parseDirectiveMacro
4523 /// ::= .macro name[,] [parameters]
4524 bool AsmParser::parseDirectiveMacro(SMLoc DirectiveLoc) {
4525   StringRef Name;
4526   if (parseIdentifier(Name))
4527     return TokError("expected identifier in '.macro' directive");
4528 
4529   if (getLexer().is(AsmToken::Comma))
4530     Lex();
4531 
4532   MCAsmMacroParameters Parameters;
4533   while (getLexer().isNot(AsmToken::EndOfStatement)) {
4534 
4535     if (!Parameters.empty() && Parameters.back().Vararg)
4536       return Error(Lexer.getLoc(), "vararg parameter '" +
4537                                        Parameters.back().Name +
4538                                        "' should be the last parameter");
4539 
4540     MCAsmMacroParameter Parameter;
4541     if (parseIdentifier(Parameter.Name))
4542       return TokError("expected identifier in '.macro' directive");
4543 
4544     // Emit an error if two (or more) named parameters share the same name
4545     for (const MCAsmMacroParameter& CurrParam : Parameters)
4546       if (CurrParam.Name.equals(Parameter.Name))
4547         return TokError("macro '" + Name + "' has multiple parameters"
4548                         " named '" + Parameter.Name + "'");
4549 
4550     if (Lexer.is(AsmToken::Colon)) {
4551       Lex();  // consume ':'
4552 
4553       SMLoc QualLoc;
4554       StringRef Qualifier;
4555 
4556       QualLoc = Lexer.getLoc();
4557       if (parseIdentifier(Qualifier))
4558         return Error(QualLoc, "missing parameter qualifier for "
4559                      "'" + Parameter.Name + "' in macro '" + Name + "'");
4560 
4561       if (Qualifier == "req")
4562         Parameter.Required = true;
4563       else if (Qualifier == "vararg")
4564         Parameter.Vararg = true;
4565       else
4566         return Error(QualLoc, Qualifier + " is not a valid parameter qualifier "
4567                      "for '" + Parameter.Name + "' in macro '" + Name + "'");
4568     }
4569 
4570     if (getLexer().is(AsmToken::Equal)) {
4571       Lex();
4572 
4573       SMLoc ParamLoc;
4574 
4575       ParamLoc = Lexer.getLoc();
4576       if (parseMacroArgument(Parameter.Value, /*Vararg=*/false ))
4577         return true;
4578 
4579       if (Parameter.Required)
4580         Warning(ParamLoc, "pointless default value for required parameter "
4581                 "'" + Parameter.Name + "' in macro '" + Name + "'");
4582     }
4583 
4584     Parameters.push_back(std::move(Parameter));
4585 
4586     if (getLexer().is(AsmToken::Comma))
4587       Lex();
4588   }
4589 
4590   // Eat just the end of statement.
4591   Lexer.Lex();
4592 
4593   // Consuming deferred text, so use Lexer.Lex to ignore Lexing Errors
4594   AsmToken EndToken, StartToken = getTok();
4595   unsigned MacroDepth = 0;
4596   // Lex the macro definition.
4597   while (true) {
4598     // Ignore Lexing errors in macros.
4599     while (Lexer.is(AsmToken::Error)) {
4600       Lexer.Lex();
4601     }
4602 
4603     // Check whether we have reached the end of the file.
4604     if (getLexer().is(AsmToken::Eof))
4605       return Error(DirectiveLoc, "no matching '.endmacro' in definition");
4606 
4607     // Otherwise, check whether we have reach the .endmacro or the start of a
4608     // preprocessor line marker.
4609     if (getLexer().is(AsmToken::Identifier)) {
4610       if (getTok().getIdentifier() == ".endm" ||
4611           getTok().getIdentifier() == ".endmacro") {
4612         if (MacroDepth == 0) { // Outermost macro.
4613           EndToken = getTok();
4614           Lexer.Lex();
4615           if (getLexer().isNot(AsmToken::EndOfStatement))
4616             return TokError("unexpected token in '" + EndToken.getIdentifier() +
4617                             "' directive");
4618           break;
4619         } else {
4620           // Otherwise we just found the end of an inner macro.
4621           --MacroDepth;
4622         }
4623       } else if (getTok().getIdentifier() == ".macro") {
4624         // We allow nested macros. Those aren't instantiated until the outermost
4625         // macro is expanded so just ignore them for now.
4626         ++MacroDepth;
4627       }
4628     } else if (Lexer.is(AsmToken::HashDirective)) {
4629       (void)parseCppHashLineFilenameComment(getLexer().getLoc());
4630     }
4631 
4632     // Otherwise, scan til the end of the statement.
4633     eatToEndOfStatement();
4634   }
4635 
4636   if (getContext().lookupMacro(Name)) {
4637     return Error(DirectiveLoc, "macro '" + Name + "' is already defined");
4638   }
4639 
4640   const char *BodyStart = StartToken.getLoc().getPointer();
4641   const char *BodyEnd = EndToken.getLoc().getPointer();
4642   StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart);
4643   checkForBadMacro(DirectiveLoc, Name, Body, Parameters);
4644   MCAsmMacro Macro(Name, Body, std::move(Parameters));
4645   DEBUG_WITH_TYPE("asm-macros", dbgs() << "Defining new macro:\n";
4646                   Macro.dump());
4647   getContext().defineMacro(Name, std::move(Macro));
4648   return false;
4649 }
4650 
4651 /// checkForBadMacro
4652 ///
4653 /// With the support added for named parameters there may be code out there that
4654 /// is transitioning from positional parameters.  In versions of gas that did
4655 /// not support named parameters they would be ignored on the macro definition.
4656 /// But to support both styles of parameters this is not possible so if a macro
4657 /// definition has named parameters but does not use them and has what appears
4658 /// to be positional parameters, strings like $1, $2, ... and $n, then issue a
4659 /// warning that the positional parameter found in body which have no effect.
4660 /// Hoping the developer will either remove the named parameters from the macro
4661 /// definition so the positional parameters get used if that was what was
4662 /// intended or change the macro to use the named parameters.  It is possible
4663 /// this warning will trigger when the none of the named parameters are used
4664 /// and the strings like $1 are infact to simply to be passed trough unchanged.
4665 void AsmParser::checkForBadMacro(SMLoc DirectiveLoc, StringRef Name,
4666                                  StringRef Body,
4667                                  ArrayRef<MCAsmMacroParameter> Parameters) {
4668   // If this macro is not defined with named parameters the warning we are
4669   // checking for here doesn't apply.
4670   unsigned NParameters = Parameters.size();
4671   if (NParameters == 0)
4672     return;
4673 
4674   bool NamedParametersFound = false;
4675   bool PositionalParametersFound = false;
4676 
4677   // Look at the body of the macro for use of both the named parameters and what
4678   // are likely to be positional parameters.  This is what expandMacro() is
4679   // doing when it finds the parameters in the body.
4680   while (!Body.empty()) {
4681     // Scan for the next possible parameter.
4682     std::size_t End = Body.size(), Pos = 0;
4683     for (; Pos != End; ++Pos) {
4684       // Check for a substitution or escape.
4685       // This macro is defined with parameters, look for \foo, \bar, etc.
4686       if (Body[Pos] == '\\' && Pos + 1 != End)
4687         break;
4688 
4689       // This macro should have parameters, but look for $0, $1, ..., $n too.
4690       if (Body[Pos] != '$' || Pos + 1 == End)
4691         continue;
4692       char Next = Body[Pos + 1];
4693       if (Next == '$' || Next == 'n' ||
4694           isdigit(static_cast<unsigned char>(Next)))
4695         break;
4696     }
4697 
4698     // Check if we reached the end.
4699     if (Pos == End)
4700       break;
4701 
4702     if (Body[Pos] == '$') {
4703       switch (Body[Pos + 1]) {
4704       // $$ => $
4705       case '$':
4706         break;
4707 
4708       // $n => number of arguments
4709       case 'n':
4710         PositionalParametersFound = true;
4711         break;
4712 
4713       // $[0-9] => argument
4714       default: {
4715         PositionalParametersFound = true;
4716         break;
4717       }
4718       }
4719       Pos += 2;
4720     } else {
4721       unsigned I = Pos + 1;
4722       while (isIdentifierChar(Body[I]) && I + 1 != End)
4723         ++I;
4724 
4725       const char *Begin = Body.data() + Pos + 1;
4726       StringRef Argument(Begin, I - (Pos + 1));
4727       unsigned Index = 0;
4728       for (; Index < NParameters; ++Index)
4729         if (Parameters[Index].Name == Argument)
4730           break;
4731 
4732       if (Index == NParameters) {
4733         if (Body[Pos + 1] == '(' && Body[Pos + 2] == ')')
4734           Pos += 3;
4735         else {
4736           Pos = I;
4737         }
4738       } else {
4739         NamedParametersFound = true;
4740         Pos += 1 + Argument.size();
4741       }
4742     }
4743     // Update the scan point.
4744     Body = Body.substr(Pos);
4745   }
4746 
4747   if (!NamedParametersFound && PositionalParametersFound)
4748     Warning(DirectiveLoc, "macro defined with named parameters which are not "
4749                           "used in macro body, possible positional parameter "
4750                           "found in body which will have no effect");
4751 }
4752 
4753 /// parseDirectiveExitMacro
4754 /// ::= .exitm
4755 bool AsmParser::parseDirectiveExitMacro(StringRef Directive) {
4756   if (parseEOL())
4757     return true;
4758 
4759   if (!isInsideMacroInstantiation())
4760     return TokError("unexpected '" + Directive + "' in file, "
4761                                                  "no current macro definition");
4762 
4763   // Exit all conditionals that are active in the current macro.
4764   while (TheCondStack.size() != ActiveMacros.back()->CondStackDepth) {
4765     TheCondState = TheCondStack.back();
4766     TheCondStack.pop_back();
4767   }
4768 
4769   handleMacroExit();
4770   return false;
4771 }
4772 
4773 /// parseDirectiveEndMacro
4774 /// ::= .endm
4775 /// ::= .endmacro
4776 bool AsmParser::parseDirectiveEndMacro(StringRef Directive) {
4777   if (getLexer().isNot(AsmToken::EndOfStatement))
4778     return TokError("unexpected token in '" + Directive + "' directive");
4779 
4780   // If we are inside a macro instantiation, terminate the current
4781   // instantiation.
4782   if (isInsideMacroInstantiation()) {
4783     handleMacroExit();
4784     return false;
4785   }
4786 
4787   // Otherwise, this .endmacro is a stray entry in the file; well formed
4788   // .endmacro directives are handled during the macro definition parsing.
4789   return TokError("unexpected '" + Directive + "' in file, "
4790                                                "no current macro definition");
4791 }
4792 
4793 /// parseDirectivePurgeMacro
4794 /// ::= .purgem name
4795 bool AsmParser::parseDirectivePurgeMacro(SMLoc DirectiveLoc) {
4796   StringRef Name;
4797   SMLoc Loc;
4798   if (parseTokenLoc(Loc) ||
4799       check(parseIdentifier(Name), Loc,
4800             "expected identifier in '.purgem' directive") ||
4801       parseEOL())
4802     return true;
4803 
4804   if (!getContext().lookupMacro(Name))
4805     return Error(DirectiveLoc, "macro '" + Name + "' is not defined");
4806 
4807   getContext().undefineMacro(Name);
4808   DEBUG_WITH_TYPE("asm-macros", dbgs()
4809                                     << "Un-defining macro: " << Name << "\n");
4810   return false;
4811 }
4812 
4813 /// parseDirectiveBundleAlignMode
4814 /// ::= {.bundle_align_mode} expression
4815 bool AsmParser::parseDirectiveBundleAlignMode() {
4816   // Expect a single argument: an expression that evaluates to a constant
4817   // in the inclusive range 0-30.
4818   SMLoc ExprLoc = getLexer().getLoc();
4819   int64_t AlignSizePow2;
4820   if (checkForValidSection() || parseAbsoluteExpression(AlignSizePow2) ||
4821       parseEOL() ||
4822       check(AlignSizePow2 < 0 || AlignSizePow2 > 30, ExprLoc,
4823             "invalid bundle alignment size (expected between 0 and 30)"))
4824     return true;
4825 
4826   getStreamer().emitBundleAlignMode(Align(1ULL << AlignSizePow2));
4827   return false;
4828 }
4829 
4830 /// parseDirectiveBundleLock
4831 /// ::= {.bundle_lock} [align_to_end]
4832 bool AsmParser::parseDirectiveBundleLock() {
4833   if (checkForValidSection())
4834     return true;
4835   bool AlignToEnd = false;
4836 
4837   StringRef Option;
4838   SMLoc Loc = getTok().getLoc();
4839   const char *kInvalidOptionError =
4840       "invalid option for '.bundle_lock' directive";
4841 
4842   if (!parseOptionalToken(AsmToken::EndOfStatement)) {
4843     if (check(parseIdentifier(Option), Loc, kInvalidOptionError) ||
4844         check(Option != "align_to_end", Loc, kInvalidOptionError) || parseEOL())
4845       return true;
4846     AlignToEnd = true;
4847   }
4848 
4849   getStreamer().emitBundleLock(AlignToEnd);
4850   return false;
4851 }
4852 
4853 /// parseDirectiveBundleLock
4854 /// ::= {.bundle_lock}
4855 bool AsmParser::parseDirectiveBundleUnlock() {
4856   if (checkForValidSection() || parseEOL())
4857     return true;
4858 
4859   getStreamer().emitBundleUnlock();
4860   return false;
4861 }
4862 
4863 /// parseDirectiveSpace
4864 /// ::= (.skip | .space) expression [ , expression ]
4865 bool AsmParser::parseDirectiveSpace(StringRef IDVal) {
4866   SMLoc NumBytesLoc = Lexer.getLoc();
4867   const MCExpr *NumBytes;
4868   if (checkForValidSection() || parseExpression(NumBytes))
4869     return true;
4870 
4871   int64_t FillExpr = 0;
4872   if (parseOptionalToken(AsmToken::Comma))
4873     if (parseAbsoluteExpression(FillExpr))
4874       return true;
4875   if (parseEOL())
4876     return true;
4877 
4878   // FIXME: Sometimes the fill expr is 'nop' if it isn't supplied, instead of 0.
4879   getStreamer().emitFill(*NumBytes, FillExpr, NumBytesLoc);
4880 
4881   return false;
4882 }
4883 
4884 /// parseDirectiveDCB
4885 /// ::= .dcb.{b, l, w} expression, expression
4886 bool AsmParser::parseDirectiveDCB(StringRef IDVal, unsigned Size) {
4887   SMLoc NumValuesLoc = Lexer.getLoc();
4888   int64_t NumValues;
4889   if (checkForValidSection() || parseAbsoluteExpression(NumValues))
4890     return true;
4891 
4892   if (NumValues < 0) {
4893     Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect");
4894     return false;
4895   }
4896 
4897   if (parseComma())
4898     return true;
4899 
4900   const MCExpr *Value;
4901   SMLoc ExprLoc = getLexer().getLoc();
4902   if (parseExpression(Value))
4903     return true;
4904 
4905   // Special case constant expressions to match code generator.
4906   if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
4907     assert(Size <= 8 && "Invalid size");
4908     uint64_t IntValue = MCE->getValue();
4909     if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue))
4910       return Error(ExprLoc, "literal value out of range for directive");
4911     for (uint64_t i = 0, e = NumValues; i != e; ++i)
4912       getStreamer().emitIntValue(IntValue, Size);
4913   } else {
4914     for (uint64_t i = 0, e = NumValues; i != e; ++i)
4915       getStreamer().emitValue(Value, Size, ExprLoc);
4916   }
4917 
4918   return parseEOL();
4919 }
4920 
4921 /// parseDirectiveRealDCB
4922 /// ::= .dcb.{d, s} expression, expression
4923 bool AsmParser::parseDirectiveRealDCB(StringRef IDVal, const fltSemantics &Semantics) {
4924   SMLoc NumValuesLoc = Lexer.getLoc();
4925   int64_t NumValues;
4926   if (checkForValidSection() || parseAbsoluteExpression(NumValues))
4927     return true;
4928 
4929   if (NumValues < 0) {
4930     Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect");
4931     return false;
4932   }
4933 
4934   if (parseComma())
4935     return true;
4936 
4937   APInt AsInt;
4938   if (parseRealValue(Semantics, AsInt) || parseEOL())
4939     return true;
4940 
4941   for (uint64_t i = 0, e = NumValues; i != e; ++i)
4942     getStreamer().emitIntValue(AsInt.getLimitedValue(),
4943                                AsInt.getBitWidth() / 8);
4944 
4945   return false;
4946 }
4947 
4948 /// parseDirectiveDS
4949 /// ::= .ds.{b, d, l, p, s, w, x} expression
4950 bool AsmParser::parseDirectiveDS(StringRef IDVal, unsigned Size) {
4951   SMLoc NumValuesLoc = Lexer.getLoc();
4952   int64_t NumValues;
4953   if (checkForValidSection() || parseAbsoluteExpression(NumValues) ||
4954       parseEOL())
4955     return true;
4956 
4957   if (NumValues < 0) {
4958     Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect");
4959     return false;
4960   }
4961 
4962   for (uint64_t i = 0, e = NumValues; i != e; ++i)
4963     getStreamer().emitFill(Size, 0);
4964 
4965   return false;
4966 }
4967 
4968 /// parseDirectiveLEB128
4969 /// ::= (.sleb128 | .uleb128) [ expression (, expression)* ]
4970 bool AsmParser::parseDirectiveLEB128(bool Signed) {
4971   if (checkForValidSection())
4972     return true;
4973 
4974   auto parseOp = [&]() -> bool {
4975     const MCExpr *Value;
4976     if (parseExpression(Value))
4977       return true;
4978     if (Signed)
4979       getStreamer().emitSLEB128Value(Value);
4980     else
4981       getStreamer().emitULEB128Value(Value);
4982     return false;
4983   };
4984 
4985   return parseMany(parseOp);
4986 }
4987 
4988 /// parseDirectiveSymbolAttribute
4989 ///  ::= { ".globl", ".weak", ... } [ identifier ( , identifier )* ]
4990 bool AsmParser::parseDirectiveSymbolAttribute(MCSymbolAttr Attr) {
4991   auto parseOp = [&]() -> bool {
4992     StringRef Name;
4993     SMLoc Loc = getTok().getLoc();
4994     if (parseIdentifier(Name))
4995       return Error(Loc, "expected identifier");
4996 
4997     if (discardLTOSymbol(Name))
4998       return false;
4999 
5000     MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
5001 
5002     // Assembler local symbols don't make any sense here, except for directives
5003     // that the symbol should be tagged.
5004     if (Sym->isTemporary() && Attr != MCSA_Memtag)
5005       return Error(Loc, "non-local symbol required");
5006 
5007     if (!getStreamer().emitSymbolAttribute(Sym, Attr))
5008       return Error(Loc, "unable to emit symbol attribute");
5009     return false;
5010   };
5011 
5012   return parseMany(parseOp);
5013 }
5014 
5015 /// parseDirectiveComm
5016 ///  ::= ( .comm | .lcomm ) identifier , size_expression [ , align_expression ]
5017 bool AsmParser::parseDirectiveComm(bool IsLocal) {
5018   if (checkForValidSection())
5019     return true;
5020 
5021   SMLoc IDLoc = getLexer().getLoc();
5022   StringRef Name;
5023   if (parseIdentifier(Name))
5024     return TokError("expected identifier in directive");
5025 
5026   // Handle the identifier as the key symbol.
5027   MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
5028 
5029   if (parseComma())
5030     return true;
5031 
5032   int64_t Size;
5033   SMLoc SizeLoc = getLexer().getLoc();
5034   if (parseAbsoluteExpression(Size))
5035     return true;
5036 
5037   int64_t Pow2Alignment = 0;
5038   SMLoc Pow2AlignmentLoc;
5039   if (getLexer().is(AsmToken::Comma)) {
5040     Lex();
5041     Pow2AlignmentLoc = getLexer().getLoc();
5042     if (parseAbsoluteExpression(Pow2Alignment))
5043       return true;
5044 
5045     LCOMM::LCOMMType LCOMM = Lexer.getMAI().getLCOMMDirectiveAlignmentType();
5046     if (IsLocal && LCOMM == LCOMM::NoAlignment)
5047       return Error(Pow2AlignmentLoc, "alignment not supported on this target");
5048 
5049     // If this target takes alignments in bytes (not log) validate and convert.
5050     if ((!IsLocal && Lexer.getMAI().getCOMMDirectiveAlignmentIsInBytes()) ||
5051         (IsLocal && LCOMM == LCOMM::ByteAlignment)) {
5052       if (!isPowerOf2_64(Pow2Alignment))
5053         return Error(Pow2AlignmentLoc, "alignment must be a power of 2");
5054       Pow2Alignment = Log2_64(Pow2Alignment);
5055     }
5056   }
5057 
5058   if (parseEOL())
5059     return true;
5060 
5061   // NOTE: a size of zero for a .comm should create a undefined symbol
5062   // but a size of .lcomm creates a bss symbol of size zero.
5063   if (Size < 0)
5064     return Error(SizeLoc, "size must be non-negative");
5065 
5066   Sym->redefineIfPossible();
5067   if (!Sym->isUndefined())
5068     return Error(IDLoc, "invalid symbol redefinition");
5069 
5070   // Create the Symbol as a common or local common with Size and Pow2Alignment
5071   if (IsLocal) {
5072     getStreamer().emitLocalCommonSymbol(Sym, Size,
5073                                         Align(1ULL << Pow2Alignment));
5074     return false;
5075   }
5076 
5077   getStreamer().emitCommonSymbol(Sym, Size, Align(1ULL << Pow2Alignment));
5078   return false;
5079 }
5080 
5081 /// parseDirectiveAbort
5082 ///  ::= .abort [... message ...]
5083 bool AsmParser::parseDirectiveAbort() {
5084   // FIXME: Use loc from directive.
5085   SMLoc Loc = getLexer().getLoc();
5086 
5087   StringRef Str = parseStringToEndOfStatement();
5088   if (parseEOL())
5089     return true;
5090 
5091   if (Str.empty())
5092     return Error(Loc, ".abort detected. Assembly stopping.");
5093   else
5094     return Error(Loc, ".abort '" + Str + "' detected. Assembly stopping.");
5095   // FIXME: Actually abort assembly here.
5096 
5097   return false;
5098 }
5099 
5100 /// parseDirectiveInclude
5101 ///  ::= .include "filename"
5102 bool AsmParser::parseDirectiveInclude() {
5103   // Allow the strings to have escaped octal character sequence.
5104   std::string Filename;
5105   SMLoc IncludeLoc = getTok().getLoc();
5106 
5107   if (check(getTok().isNot(AsmToken::String),
5108             "expected string in '.include' directive") ||
5109       parseEscapedString(Filename) ||
5110       check(getTok().isNot(AsmToken::EndOfStatement),
5111             "unexpected token in '.include' directive") ||
5112       // Attempt to switch the lexer to the included file before consuming the
5113       // end of statement to avoid losing it when we switch.
5114       check(enterIncludeFile(Filename), IncludeLoc,
5115             "Could not find include file '" + Filename + "'"))
5116     return true;
5117 
5118   return false;
5119 }
5120 
5121 /// parseDirectiveIncbin
5122 ///  ::= .incbin "filename" [ , skip [ , count ] ]
5123 bool AsmParser::parseDirectiveIncbin() {
5124   // Allow the strings to have escaped octal character sequence.
5125   std::string Filename;
5126   SMLoc IncbinLoc = getTok().getLoc();
5127   if (check(getTok().isNot(AsmToken::String),
5128             "expected string in '.incbin' directive") ||
5129       parseEscapedString(Filename))
5130     return true;
5131 
5132   int64_t Skip = 0;
5133   const MCExpr *Count = nullptr;
5134   SMLoc SkipLoc, CountLoc;
5135   if (parseOptionalToken(AsmToken::Comma)) {
5136     // The skip expression can be omitted while specifying the count, e.g:
5137     //  .incbin "filename",,4
5138     if (getTok().isNot(AsmToken::Comma)) {
5139       if (parseTokenLoc(SkipLoc) || parseAbsoluteExpression(Skip))
5140         return true;
5141     }
5142     if (parseOptionalToken(AsmToken::Comma)) {
5143       CountLoc = getTok().getLoc();
5144       if (parseExpression(Count))
5145         return true;
5146     }
5147   }
5148 
5149   if (parseEOL())
5150     return true;
5151 
5152   if (check(Skip < 0, SkipLoc, "skip is negative"))
5153     return true;
5154 
5155   // Attempt to process the included file.
5156   if (processIncbinFile(Filename, Skip, Count, CountLoc))
5157     return Error(IncbinLoc, "Could not find incbin file '" + Filename + "'");
5158   return false;
5159 }
5160 
5161 /// parseDirectiveIf
5162 /// ::= .if{,eq,ge,gt,le,lt,ne} expression
5163 bool AsmParser::parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind) {
5164   TheCondStack.push_back(TheCondState);
5165   TheCondState.TheCond = AsmCond::IfCond;
5166   if (TheCondState.Ignore) {
5167     eatToEndOfStatement();
5168   } else {
5169     int64_t ExprValue;
5170     if (parseAbsoluteExpression(ExprValue) || parseEOL())
5171       return true;
5172 
5173     switch (DirKind) {
5174     default:
5175       llvm_unreachable("unsupported directive");
5176     case DK_IF:
5177     case DK_IFNE:
5178       break;
5179     case DK_IFEQ:
5180       ExprValue = ExprValue == 0;
5181       break;
5182     case DK_IFGE:
5183       ExprValue = ExprValue >= 0;
5184       break;
5185     case DK_IFGT:
5186       ExprValue = ExprValue > 0;
5187       break;
5188     case DK_IFLE:
5189       ExprValue = ExprValue <= 0;
5190       break;
5191     case DK_IFLT:
5192       ExprValue = ExprValue < 0;
5193       break;
5194     }
5195 
5196     TheCondState.CondMet = ExprValue;
5197     TheCondState.Ignore = !TheCondState.CondMet;
5198   }
5199 
5200   return false;
5201 }
5202 
5203 /// parseDirectiveIfb
5204 /// ::= .ifb string
5205 bool AsmParser::parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank) {
5206   TheCondStack.push_back(TheCondState);
5207   TheCondState.TheCond = AsmCond::IfCond;
5208 
5209   if (TheCondState.Ignore) {
5210     eatToEndOfStatement();
5211   } else {
5212     StringRef Str = parseStringToEndOfStatement();
5213 
5214     if (parseEOL())
5215       return true;
5216 
5217     TheCondState.CondMet = ExpectBlank == Str.empty();
5218     TheCondState.Ignore = !TheCondState.CondMet;
5219   }
5220 
5221   return false;
5222 }
5223 
5224 /// parseDirectiveIfc
5225 /// ::= .ifc string1, string2
5226 /// ::= .ifnc string1, string2
5227 bool AsmParser::parseDirectiveIfc(SMLoc DirectiveLoc, bool ExpectEqual) {
5228   TheCondStack.push_back(TheCondState);
5229   TheCondState.TheCond = AsmCond::IfCond;
5230 
5231   if (TheCondState.Ignore) {
5232     eatToEndOfStatement();
5233   } else {
5234     StringRef Str1 = parseStringToComma();
5235 
5236     if (parseComma())
5237       return true;
5238 
5239     StringRef Str2 = parseStringToEndOfStatement();
5240 
5241     if (parseEOL())
5242       return true;
5243 
5244     TheCondState.CondMet = ExpectEqual == (Str1.trim() == Str2.trim());
5245     TheCondState.Ignore = !TheCondState.CondMet;
5246   }
5247 
5248   return false;
5249 }
5250 
5251 /// parseDirectiveIfeqs
5252 ///   ::= .ifeqs string1, string2
5253 bool AsmParser::parseDirectiveIfeqs(SMLoc DirectiveLoc, bool ExpectEqual) {
5254   if (Lexer.isNot(AsmToken::String)) {
5255     if (ExpectEqual)
5256       return TokError("expected string parameter for '.ifeqs' directive");
5257     return TokError("expected string parameter for '.ifnes' directive");
5258   }
5259 
5260   StringRef String1 = getTok().getStringContents();
5261   Lex();
5262 
5263   if (Lexer.isNot(AsmToken::Comma)) {
5264     if (ExpectEqual)
5265       return TokError(
5266           "expected comma after first string for '.ifeqs' directive");
5267     return TokError("expected comma after first string for '.ifnes' directive");
5268   }
5269 
5270   Lex();
5271 
5272   if (Lexer.isNot(AsmToken::String)) {
5273     if (ExpectEqual)
5274       return TokError("expected string parameter for '.ifeqs' directive");
5275     return TokError("expected string parameter for '.ifnes' directive");
5276   }
5277 
5278   StringRef String2 = getTok().getStringContents();
5279   Lex();
5280 
5281   TheCondStack.push_back(TheCondState);
5282   TheCondState.TheCond = AsmCond::IfCond;
5283   TheCondState.CondMet = ExpectEqual == (String1 == String2);
5284   TheCondState.Ignore = !TheCondState.CondMet;
5285 
5286   return false;
5287 }
5288 
5289 /// parseDirectiveIfdef
5290 /// ::= .ifdef symbol
5291 bool AsmParser::parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined) {
5292   StringRef Name;
5293   TheCondStack.push_back(TheCondState);
5294   TheCondState.TheCond = AsmCond::IfCond;
5295 
5296   if (TheCondState.Ignore) {
5297     eatToEndOfStatement();
5298   } else {
5299     if (check(parseIdentifier(Name), "expected identifier after '.ifdef'") ||
5300         parseEOL())
5301       return true;
5302 
5303     MCSymbol *Sym = getContext().lookupSymbol(Name);
5304 
5305     if (expect_defined)
5306       TheCondState.CondMet = (Sym && !Sym->isUndefined(false));
5307     else
5308       TheCondState.CondMet = (!Sym || Sym->isUndefined(false));
5309     TheCondState.Ignore = !TheCondState.CondMet;
5310   }
5311 
5312   return false;
5313 }
5314 
5315 /// parseDirectiveElseIf
5316 /// ::= .elseif expression
5317 bool AsmParser::parseDirectiveElseIf(SMLoc DirectiveLoc) {
5318   if (TheCondState.TheCond != AsmCond::IfCond &&
5319       TheCondState.TheCond != AsmCond::ElseIfCond)
5320     return Error(DirectiveLoc, "Encountered a .elseif that doesn't follow an"
5321                                " .if or  an .elseif");
5322   TheCondState.TheCond = AsmCond::ElseIfCond;
5323 
5324   bool LastIgnoreState = false;
5325   if (!TheCondStack.empty())
5326     LastIgnoreState = TheCondStack.back().Ignore;
5327   if (LastIgnoreState || TheCondState.CondMet) {
5328     TheCondState.Ignore = true;
5329     eatToEndOfStatement();
5330   } else {
5331     int64_t ExprValue;
5332     if (parseAbsoluteExpression(ExprValue))
5333       return true;
5334 
5335     if (parseEOL())
5336       return true;
5337 
5338     TheCondState.CondMet = ExprValue;
5339     TheCondState.Ignore = !TheCondState.CondMet;
5340   }
5341 
5342   return false;
5343 }
5344 
5345 /// parseDirectiveElse
5346 /// ::= .else
5347 bool AsmParser::parseDirectiveElse(SMLoc DirectiveLoc) {
5348   if (parseEOL())
5349     return true;
5350 
5351   if (TheCondState.TheCond != AsmCond::IfCond &&
5352       TheCondState.TheCond != AsmCond::ElseIfCond)
5353     return Error(DirectiveLoc, "Encountered a .else that doesn't follow "
5354                                " an .if or an .elseif");
5355   TheCondState.TheCond = AsmCond::ElseCond;
5356   bool LastIgnoreState = false;
5357   if (!TheCondStack.empty())
5358     LastIgnoreState = TheCondStack.back().Ignore;
5359   if (LastIgnoreState || TheCondState.CondMet)
5360     TheCondState.Ignore = true;
5361   else
5362     TheCondState.Ignore = false;
5363 
5364   return false;
5365 }
5366 
5367 /// parseDirectiveEnd
5368 /// ::= .end
5369 bool AsmParser::parseDirectiveEnd(SMLoc DirectiveLoc) {
5370   if (parseEOL())
5371     return true;
5372 
5373   while (Lexer.isNot(AsmToken::Eof))
5374     Lexer.Lex();
5375 
5376   return false;
5377 }
5378 
5379 /// parseDirectiveError
5380 ///   ::= .err
5381 ///   ::= .error [string]
5382 bool AsmParser::parseDirectiveError(SMLoc L, bool WithMessage) {
5383   if (!TheCondStack.empty()) {
5384     if (TheCondStack.back().Ignore) {
5385       eatToEndOfStatement();
5386       return false;
5387     }
5388   }
5389 
5390   if (!WithMessage)
5391     return Error(L, ".err encountered");
5392 
5393   StringRef Message = ".error directive invoked in source file";
5394   if (Lexer.isNot(AsmToken::EndOfStatement)) {
5395     if (Lexer.isNot(AsmToken::String))
5396       return TokError(".error argument must be a string");
5397 
5398     Message = getTok().getStringContents();
5399     Lex();
5400   }
5401 
5402   return Error(L, Message);
5403 }
5404 
5405 /// parseDirectiveWarning
5406 ///   ::= .warning [string]
5407 bool AsmParser::parseDirectiveWarning(SMLoc L) {
5408   if (!TheCondStack.empty()) {
5409     if (TheCondStack.back().Ignore) {
5410       eatToEndOfStatement();
5411       return false;
5412     }
5413   }
5414 
5415   StringRef Message = ".warning directive invoked in source file";
5416 
5417   if (!parseOptionalToken(AsmToken::EndOfStatement)) {
5418     if (Lexer.isNot(AsmToken::String))
5419       return TokError(".warning argument must be a string");
5420 
5421     Message = getTok().getStringContents();
5422     Lex();
5423     if (parseEOL())
5424       return true;
5425   }
5426 
5427   return Warning(L, Message);
5428 }
5429 
5430 /// parseDirectiveEndIf
5431 /// ::= .endif
5432 bool AsmParser::parseDirectiveEndIf(SMLoc DirectiveLoc) {
5433   if (parseEOL())
5434     return true;
5435 
5436   if ((TheCondState.TheCond == AsmCond::NoCond) || TheCondStack.empty())
5437     return Error(DirectiveLoc, "Encountered a .endif that doesn't follow "
5438                                "an .if or .else");
5439   if (!TheCondStack.empty()) {
5440     TheCondState = TheCondStack.back();
5441     TheCondStack.pop_back();
5442   }
5443 
5444   return false;
5445 }
5446 
5447 void AsmParser::initializeDirectiveKindMap() {
5448   /* Lookup will be done with the directive
5449    * converted to lower case, so all these
5450    * keys should be lower case.
5451    * (target specific directives are handled
5452    *  elsewhere)
5453    */
5454   DirectiveKindMap[".set"] = DK_SET;
5455   DirectiveKindMap[".equ"] = DK_EQU;
5456   DirectiveKindMap[".equiv"] = DK_EQUIV;
5457   DirectiveKindMap[".ascii"] = DK_ASCII;
5458   DirectiveKindMap[".asciz"] = DK_ASCIZ;
5459   DirectiveKindMap[".string"] = DK_STRING;
5460   DirectiveKindMap[".byte"] = DK_BYTE;
5461   DirectiveKindMap[".short"] = DK_SHORT;
5462   DirectiveKindMap[".value"] = DK_VALUE;
5463   DirectiveKindMap[".2byte"] = DK_2BYTE;
5464   DirectiveKindMap[".long"] = DK_LONG;
5465   DirectiveKindMap[".int"] = DK_INT;
5466   DirectiveKindMap[".4byte"] = DK_4BYTE;
5467   DirectiveKindMap[".quad"] = DK_QUAD;
5468   DirectiveKindMap[".8byte"] = DK_8BYTE;
5469   DirectiveKindMap[".octa"] = DK_OCTA;
5470   DirectiveKindMap[".single"] = DK_SINGLE;
5471   DirectiveKindMap[".float"] = DK_FLOAT;
5472   DirectiveKindMap[".double"] = DK_DOUBLE;
5473   DirectiveKindMap[".align"] = DK_ALIGN;
5474   DirectiveKindMap[".align32"] = DK_ALIGN32;
5475   DirectiveKindMap[".balign"] = DK_BALIGN;
5476   DirectiveKindMap[".balignw"] = DK_BALIGNW;
5477   DirectiveKindMap[".balignl"] = DK_BALIGNL;
5478   DirectiveKindMap[".p2align"] = DK_P2ALIGN;
5479   DirectiveKindMap[".p2alignw"] = DK_P2ALIGNW;
5480   DirectiveKindMap[".p2alignl"] = DK_P2ALIGNL;
5481   DirectiveKindMap[".org"] = DK_ORG;
5482   DirectiveKindMap[".fill"] = DK_FILL;
5483   DirectiveKindMap[".zero"] = DK_ZERO;
5484   DirectiveKindMap[".extern"] = DK_EXTERN;
5485   DirectiveKindMap[".globl"] = DK_GLOBL;
5486   DirectiveKindMap[".global"] = DK_GLOBAL;
5487   DirectiveKindMap[".lazy_reference"] = DK_LAZY_REFERENCE;
5488   DirectiveKindMap[".no_dead_strip"] = DK_NO_DEAD_STRIP;
5489   DirectiveKindMap[".symbol_resolver"] = DK_SYMBOL_RESOLVER;
5490   DirectiveKindMap[".private_extern"] = DK_PRIVATE_EXTERN;
5491   DirectiveKindMap[".reference"] = DK_REFERENCE;
5492   DirectiveKindMap[".weak_definition"] = DK_WEAK_DEFINITION;
5493   DirectiveKindMap[".weak_reference"] = DK_WEAK_REFERENCE;
5494   DirectiveKindMap[".weak_def_can_be_hidden"] = DK_WEAK_DEF_CAN_BE_HIDDEN;
5495   DirectiveKindMap[".cold"] = DK_COLD;
5496   DirectiveKindMap[".comm"] = DK_COMM;
5497   DirectiveKindMap[".common"] = DK_COMMON;
5498   DirectiveKindMap[".lcomm"] = DK_LCOMM;
5499   DirectiveKindMap[".abort"] = DK_ABORT;
5500   DirectiveKindMap[".include"] = DK_INCLUDE;
5501   DirectiveKindMap[".incbin"] = DK_INCBIN;
5502   DirectiveKindMap[".code16"] = DK_CODE16;
5503   DirectiveKindMap[".code16gcc"] = DK_CODE16GCC;
5504   DirectiveKindMap[".rept"] = DK_REPT;
5505   DirectiveKindMap[".rep"] = DK_REPT;
5506   DirectiveKindMap[".irp"] = DK_IRP;
5507   DirectiveKindMap[".irpc"] = DK_IRPC;
5508   DirectiveKindMap[".endr"] = DK_ENDR;
5509   DirectiveKindMap[".bundle_align_mode"] = DK_BUNDLE_ALIGN_MODE;
5510   DirectiveKindMap[".bundle_lock"] = DK_BUNDLE_LOCK;
5511   DirectiveKindMap[".bundle_unlock"] = DK_BUNDLE_UNLOCK;
5512   DirectiveKindMap[".if"] = DK_IF;
5513   DirectiveKindMap[".ifeq"] = DK_IFEQ;
5514   DirectiveKindMap[".ifge"] = DK_IFGE;
5515   DirectiveKindMap[".ifgt"] = DK_IFGT;
5516   DirectiveKindMap[".ifle"] = DK_IFLE;
5517   DirectiveKindMap[".iflt"] = DK_IFLT;
5518   DirectiveKindMap[".ifne"] = DK_IFNE;
5519   DirectiveKindMap[".ifb"] = DK_IFB;
5520   DirectiveKindMap[".ifnb"] = DK_IFNB;
5521   DirectiveKindMap[".ifc"] = DK_IFC;
5522   DirectiveKindMap[".ifeqs"] = DK_IFEQS;
5523   DirectiveKindMap[".ifnc"] = DK_IFNC;
5524   DirectiveKindMap[".ifnes"] = DK_IFNES;
5525   DirectiveKindMap[".ifdef"] = DK_IFDEF;
5526   DirectiveKindMap[".ifndef"] = DK_IFNDEF;
5527   DirectiveKindMap[".ifnotdef"] = DK_IFNOTDEF;
5528   DirectiveKindMap[".elseif"] = DK_ELSEIF;
5529   DirectiveKindMap[".else"] = DK_ELSE;
5530   DirectiveKindMap[".end"] = DK_END;
5531   DirectiveKindMap[".endif"] = DK_ENDIF;
5532   DirectiveKindMap[".skip"] = DK_SKIP;
5533   DirectiveKindMap[".space"] = DK_SPACE;
5534   DirectiveKindMap[".file"] = DK_FILE;
5535   DirectiveKindMap[".line"] = DK_LINE;
5536   DirectiveKindMap[".loc"] = DK_LOC;
5537   DirectiveKindMap[".stabs"] = DK_STABS;
5538   DirectiveKindMap[".cv_file"] = DK_CV_FILE;
5539   DirectiveKindMap[".cv_func_id"] = DK_CV_FUNC_ID;
5540   DirectiveKindMap[".cv_loc"] = DK_CV_LOC;
5541   DirectiveKindMap[".cv_linetable"] = DK_CV_LINETABLE;
5542   DirectiveKindMap[".cv_inline_linetable"] = DK_CV_INLINE_LINETABLE;
5543   DirectiveKindMap[".cv_inline_site_id"] = DK_CV_INLINE_SITE_ID;
5544   DirectiveKindMap[".cv_def_range"] = DK_CV_DEF_RANGE;
5545   DirectiveKindMap[".cv_string"] = DK_CV_STRING;
5546   DirectiveKindMap[".cv_stringtable"] = DK_CV_STRINGTABLE;
5547   DirectiveKindMap[".cv_filechecksums"] = DK_CV_FILECHECKSUMS;
5548   DirectiveKindMap[".cv_filechecksumoffset"] = DK_CV_FILECHECKSUM_OFFSET;
5549   DirectiveKindMap[".cv_fpo_data"] = DK_CV_FPO_DATA;
5550   DirectiveKindMap[".sleb128"] = DK_SLEB128;
5551   DirectiveKindMap[".uleb128"] = DK_ULEB128;
5552   DirectiveKindMap[".cfi_sections"] = DK_CFI_SECTIONS;
5553   DirectiveKindMap[".cfi_startproc"] = DK_CFI_STARTPROC;
5554   DirectiveKindMap[".cfi_endproc"] = DK_CFI_ENDPROC;
5555   DirectiveKindMap[".cfi_def_cfa"] = DK_CFI_DEF_CFA;
5556   DirectiveKindMap[".cfi_def_cfa_offset"] = DK_CFI_DEF_CFA_OFFSET;
5557   DirectiveKindMap[".cfi_adjust_cfa_offset"] = DK_CFI_ADJUST_CFA_OFFSET;
5558   DirectiveKindMap[".cfi_def_cfa_register"] = DK_CFI_DEF_CFA_REGISTER;
5559   DirectiveKindMap[".cfi_llvm_def_aspace_cfa"] = DK_CFI_LLVM_DEF_ASPACE_CFA;
5560   DirectiveKindMap[".cfi_offset"] = DK_CFI_OFFSET;
5561   DirectiveKindMap[".cfi_rel_offset"] = DK_CFI_REL_OFFSET;
5562   DirectiveKindMap[".cfi_personality"] = DK_CFI_PERSONALITY;
5563   DirectiveKindMap[".cfi_lsda"] = DK_CFI_LSDA;
5564   DirectiveKindMap[".cfi_remember_state"] = DK_CFI_REMEMBER_STATE;
5565   DirectiveKindMap[".cfi_restore_state"] = DK_CFI_RESTORE_STATE;
5566   DirectiveKindMap[".cfi_same_value"] = DK_CFI_SAME_VALUE;
5567   DirectiveKindMap[".cfi_restore"] = DK_CFI_RESTORE;
5568   DirectiveKindMap[".cfi_escape"] = DK_CFI_ESCAPE;
5569   DirectiveKindMap[".cfi_return_column"] = DK_CFI_RETURN_COLUMN;
5570   DirectiveKindMap[".cfi_signal_frame"] = DK_CFI_SIGNAL_FRAME;
5571   DirectiveKindMap[".cfi_undefined"] = DK_CFI_UNDEFINED;
5572   DirectiveKindMap[".cfi_register"] = DK_CFI_REGISTER;
5573   DirectiveKindMap[".cfi_window_save"] = DK_CFI_WINDOW_SAVE;
5574   DirectiveKindMap[".cfi_b_key_frame"] = DK_CFI_B_KEY_FRAME;
5575   DirectiveKindMap[".cfi_mte_tagged_frame"] = DK_CFI_MTE_TAGGED_FRAME;
5576   DirectiveKindMap[".macros_on"] = DK_MACROS_ON;
5577   DirectiveKindMap[".macros_off"] = DK_MACROS_OFF;
5578   DirectiveKindMap[".macro"] = DK_MACRO;
5579   DirectiveKindMap[".exitm"] = DK_EXITM;
5580   DirectiveKindMap[".endm"] = DK_ENDM;
5581   DirectiveKindMap[".endmacro"] = DK_ENDMACRO;
5582   DirectiveKindMap[".purgem"] = DK_PURGEM;
5583   DirectiveKindMap[".err"] = DK_ERR;
5584   DirectiveKindMap[".error"] = DK_ERROR;
5585   DirectiveKindMap[".warning"] = DK_WARNING;
5586   DirectiveKindMap[".altmacro"] = DK_ALTMACRO;
5587   DirectiveKindMap[".noaltmacro"] = DK_NOALTMACRO;
5588   DirectiveKindMap[".reloc"] = DK_RELOC;
5589   DirectiveKindMap[".dc"] = DK_DC;
5590   DirectiveKindMap[".dc.a"] = DK_DC_A;
5591   DirectiveKindMap[".dc.b"] = DK_DC_B;
5592   DirectiveKindMap[".dc.d"] = DK_DC_D;
5593   DirectiveKindMap[".dc.l"] = DK_DC_L;
5594   DirectiveKindMap[".dc.s"] = DK_DC_S;
5595   DirectiveKindMap[".dc.w"] = DK_DC_W;
5596   DirectiveKindMap[".dc.x"] = DK_DC_X;
5597   DirectiveKindMap[".dcb"] = DK_DCB;
5598   DirectiveKindMap[".dcb.b"] = DK_DCB_B;
5599   DirectiveKindMap[".dcb.d"] = DK_DCB_D;
5600   DirectiveKindMap[".dcb.l"] = DK_DCB_L;
5601   DirectiveKindMap[".dcb.s"] = DK_DCB_S;
5602   DirectiveKindMap[".dcb.w"] = DK_DCB_W;
5603   DirectiveKindMap[".dcb.x"] = DK_DCB_X;
5604   DirectiveKindMap[".ds"] = DK_DS;
5605   DirectiveKindMap[".ds.b"] = DK_DS_B;
5606   DirectiveKindMap[".ds.d"] = DK_DS_D;
5607   DirectiveKindMap[".ds.l"] = DK_DS_L;
5608   DirectiveKindMap[".ds.p"] = DK_DS_P;
5609   DirectiveKindMap[".ds.s"] = DK_DS_S;
5610   DirectiveKindMap[".ds.w"] = DK_DS_W;
5611   DirectiveKindMap[".ds.x"] = DK_DS_X;
5612   DirectiveKindMap[".print"] = DK_PRINT;
5613   DirectiveKindMap[".addrsig"] = DK_ADDRSIG;
5614   DirectiveKindMap[".addrsig_sym"] = DK_ADDRSIG_SYM;
5615   DirectiveKindMap[".pseudoprobe"] = DK_PSEUDO_PROBE;
5616   DirectiveKindMap[".lto_discard"] = DK_LTO_DISCARD;
5617   DirectiveKindMap[".lto_set_conditional"] = DK_LTO_SET_CONDITIONAL;
5618   DirectiveKindMap[".memtag"] = DK_MEMTAG;
5619 }
5620 
5621 MCAsmMacro *AsmParser::parseMacroLikeBody(SMLoc DirectiveLoc) {
5622   AsmToken EndToken, StartToken = getTok();
5623 
5624   unsigned NestLevel = 0;
5625   while (true) {
5626     // Check whether we have reached the end of the file.
5627     if (getLexer().is(AsmToken::Eof)) {
5628       printError(DirectiveLoc, "no matching '.endr' in definition");
5629       return nullptr;
5630     }
5631 
5632     if (Lexer.is(AsmToken::Identifier) &&
5633         (getTok().getIdentifier() == ".rep" ||
5634          getTok().getIdentifier() == ".rept" ||
5635          getTok().getIdentifier() == ".irp" ||
5636          getTok().getIdentifier() == ".irpc")) {
5637       ++NestLevel;
5638     }
5639 
5640     // Otherwise, check whether we have reached the .endr.
5641     if (Lexer.is(AsmToken::Identifier) && getTok().getIdentifier() == ".endr") {
5642       if (NestLevel == 0) {
5643         EndToken = getTok();
5644         Lex();
5645         if (Lexer.isNot(AsmToken::EndOfStatement)) {
5646           printError(getTok().getLoc(),
5647                      "unexpected token in '.endr' directive");
5648           return nullptr;
5649         }
5650         break;
5651       }
5652       --NestLevel;
5653     }
5654 
5655     // Otherwise, scan till the end of the statement.
5656     eatToEndOfStatement();
5657   }
5658 
5659   const char *BodyStart = StartToken.getLoc().getPointer();
5660   const char *BodyEnd = EndToken.getLoc().getPointer();
5661   StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart);
5662 
5663   // We Are Anonymous.
5664   MacroLikeBodies.emplace_back(StringRef(), Body, MCAsmMacroParameters());
5665   return &MacroLikeBodies.back();
5666 }
5667 
5668 void AsmParser::instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc,
5669                                          raw_svector_ostream &OS) {
5670   OS << ".endr\n";
5671 
5672   std::unique_ptr<MemoryBuffer> Instantiation =
5673       MemoryBuffer::getMemBufferCopy(OS.str(), "<instantiation>");
5674 
5675   // Create the macro instantiation object and add to the current macro
5676   // instantiation stack.
5677   MacroInstantiation *MI = new MacroInstantiation{
5678       DirectiveLoc, CurBuffer, getTok().getLoc(), TheCondStack.size()};
5679   ActiveMacros.push_back(MI);
5680 
5681   // Jump to the macro instantiation and prime the lexer.
5682   CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc());
5683   Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
5684   Lex();
5685 }
5686 
5687 /// parseDirectiveRept
5688 ///   ::= .rep | .rept count
5689 bool AsmParser::parseDirectiveRept(SMLoc DirectiveLoc, StringRef Dir) {
5690   const MCExpr *CountExpr;
5691   SMLoc CountLoc = getTok().getLoc();
5692   if (parseExpression(CountExpr))
5693     return true;
5694 
5695   int64_t Count;
5696   if (!CountExpr->evaluateAsAbsolute(Count, getStreamer().getAssemblerPtr())) {
5697     return Error(CountLoc, "unexpected token in '" + Dir + "' directive");
5698   }
5699 
5700   if (check(Count < 0, CountLoc, "Count is negative") || parseEOL())
5701     return true;
5702 
5703   // Lex the rept definition.
5704   MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc);
5705   if (!M)
5706     return true;
5707 
5708   // Macro instantiation is lexical, unfortunately. We construct a new buffer
5709   // to hold the macro body with substitutions.
5710   SmallString<256> Buf;
5711   raw_svector_ostream OS(Buf);
5712   while (Count--) {
5713     // Note that the AtPseudoVariable is disabled for instantiations of .rep(t).
5714     if (expandMacro(OS, M->Body, std::nullopt, std::nullopt, false,
5715                     getTok().getLoc()))
5716       return true;
5717   }
5718   instantiateMacroLikeBody(M, DirectiveLoc, OS);
5719 
5720   return false;
5721 }
5722 
5723 /// parseDirectiveIrp
5724 /// ::= .irp symbol,values
5725 bool AsmParser::parseDirectiveIrp(SMLoc DirectiveLoc) {
5726   MCAsmMacroParameter Parameter;
5727   MCAsmMacroArguments A;
5728   if (check(parseIdentifier(Parameter.Name),
5729             "expected identifier in '.irp' directive") ||
5730       parseComma() || parseMacroArguments(nullptr, A) || parseEOL())
5731     return true;
5732 
5733   // Lex the irp definition.
5734   MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc);
5735   if (!M)
5736     return true;
5737 
5738   // Macro instantiation is lexical, unfortunately. We construct a new buffer
5739   // to hold the macro body with substitutions.
5740   SmallString<256> Buf;
5741   raw_svector_ostream OS(Buf);
5742 
5743   for (const MCAsmMacroArgument &Arg : A) {
5744     // Note that the AtPseudoVariable is enabled for instantiations of .irp.
5745     // This is undocumented, but GAS seems to support it.
5746     if (expandMacro(OS, M->Body, Parameter, Arg, true, getTok().getLoc()))
5747       return true;
5748   }
5749 
5750   instantiateMacroLikeBody(M, DirectiveLoc, OS);
5751 
5752   return false;
5753 }
5754 
5755 /// parseDirectiveIrpc
5756 /// ::= .irpc symbol,values
5757 bool AsmParser::parseDirectiveIrpc(SMLoc DirectiveLoc) {
5758   MCAsmMacroParameter Parameter;
5759   MCAsmMacroArguments A;
5760 
5761   if (check(parseIdentifier(Parameter.Name),
5762             "expected identifier in '.irpc' directive") ||
5763       parseComma() || parseMacroArguments(nullptr, A))
5764     return true;
5765 
5766   if (A.size() != 1 || A.front().size() != 1)
5767     return TokError("unexpected token in '.irpc' directive");
5768   if (parseEOL())
5769     return true;
5770 
5771   // Lex the irpc definition.
5772   MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc);
5773   if (!M)
5774     return true;
5775 
5776   // Macro instantiation is lexical, unfortunately. We construct a new buffer
5777   // to hold the macro body with substitutions.
5778   SmallString<256> Buf;
5779   raw_svector_ostream OS(Buf);
5780 
5781   StringRef Values = A.front().front().getString();
5782   for (std::size_t I = 0, End = Values.size(); I != End; ++I) {
5783     MCAsmMacroArgument Arg;
5784     Arg.emplace_back(AsmToken::Identifier, Values.slice(I, I + 1));
5785 
5786     // Note that the AtPseudoVariable is enabled for instantiations of .irpc.
5787     // This is undocumented, but GAS seems to support it.
5788     if (expandMacro(OS, M->Body, Parameter, Arg, true, getTok().getLoc()))
5789       return true;
5790   }
5791 
5792   instantiateMacroLikeBody(M, DirectiveLoc, OS);
5793 
5794   return false;
5795 }
5796 
5797 bool AsmParser::parseDirectiveEndr(SMLoc DirectiveLoc) {
5798   if (ActiveMacros.empty())
5799     return TokError("unmatched '.endr' directive");
5800 
5801   // The only .repl that should get here are the ones created by
5802   // instantiateMacroLikeBody.
5803   assert(getLexer().is(AsmToken::EndOfStatement));
5804 
5805   handleMacroExit();
5806   return false;
5807 }
5808 
5809 bool AsmParser::parseDirectiveMSEmit(SMLoc IDLoc, ParseStatementInfo &Info,
5810                                      size_t Len) {
5811   const MCExpr *Value;
5812   SMLoc ExprLoc = getLexer().getLoc();
5813   if (parseExpression(Value))
5814     return true;
5815   const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
5816   if (!MCE)
5817     return Error(ExprLoc, "unexpected expression in _emit");
5818   uint64_t IntValue = MCE->getValue();
5819   if (!isUInt<8>(IntValue) && !isInt<8>(IntValue))
5820     return Error(ExprLoc, "literal value out of range for directive");
5821 
5822   Info.AsmRewrites->emplace_back(AOK_Emit, IDLoc, Len);
5823   return false;
5824 }
5825 
5826 bool AsmParser::parseDirectiveMSAlign(SMLoc IDLoc, ParseStatementInfo &Info) {
5827   const MCExpr *Value;
5828   SMLoc ExprLoc = getLexer().getLoc();
5829   if (parseExpression(Value))
5830     return true;
5831   const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
5832   if (!MCE)
5833     return Error(ExprLoc, "unexpected expression in align");
5834   uint64_t IntValue = MCE->getValue();
5835   if (!isPowerOf2_64(IntValue))
5836     return Error(ExprLoc, "literal value not a power of two greater then zero");
5837 
5838   Info.AsmRewrites->emplace_back(AOK_Align, IDLoc, 5, Log2_64(IntValue));
5839   return false;
5840 }
5841 
5842 bool AsmParser::parseDirectivePrint(SMLoc DirectiveLoc) {
5843   const AsmToken StrTok = getTok();
5844   Lex();
5845   if (StrTok.isNot(AsmToken::String) || StrTok.getString().front() != '"')
5846     return Error(DirectiveLoc, "expected double quoted string after .print");
5847   if (parseEOL())
5848     return true;
5849   llvm::outs() << StrTok.getStringContents() << '\n';
5850   return false;
5851 }
5852 
5853 bool AsmParser::parseDirectiveAddrsig() {
5854   if (parseEOL())
5855     return true;
5856   getStreamer().emitAddrsig();
5857   return false;
5858 }
5859 
5860 bool AsmParser::parseDirectiveAddrsigSym() {
5861   StringRef Name;
5862   if (check(parseIdentifier(Name), "expected identifier") || parseEOL())
5863     return true;
5864   MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
5865   getStreamer().emitAddrsigSym(Sym);
5866   return false;
5867 }
5868 
5869 bool AsmParser::parseDirectivePseudoProbe() {
5870   int64_t Guid;
5871   int64_t Index;
5872   int64_t Type;
5873   int64_t Attr;
5874   int64_t Discriminator = 0;
5875 
5876   if (parseIntToken(Guid, "unexpected token in '.pseudoprobe' directive"))
5877     return true;
5878 
5879   if (parseIntToken(Index, "unexpected token in '.pseudoprobe' directive"))
5880     return true;
5881 
5882   if (parseIntToken(Type, "unexpected token in '.pseudoprobe' directive"))
5883     return true;
5884 
5885   if (parseIntToken(Attr, "unexpected token in '.pseudoprobe' directive"))
5886     return true;
5887 
5888   if (hasDiscriminator(Attr)) {
5889     if (parseIntToken(Discriminator,
5890                       "unexpected token in '.pseudoprobe' directive"))
5891       return true;
5892   }
5893 
5894   // Parse inline stack like @ GUID:11:12 @ GUID:1:11 @ GUID:3:21
5895   MCPseudoProbeInlineStack InlineStack;
5896 
5897   while (getLexer().is(AsmToken::At)) {
5898     // eat @
5899     Lex();
5900 
5901     int64_t CallerGuid = 0;
5902     if (getLexer().is(AsmToken::Integer)) {
5903       if (parseIntToken(CallerGuid,
5904                         "unexpected token in '.pseudoprobe' directive"))
5905         return true;
5906     }
5907 
5908     // eat colon
5909     if (getLexer().is(AsmToken::Colon))
5910       Lex();
5911 
5912     int64_t CallerProbeId = 0;
5913     if (getLexer().is(AsmToken::Integer)) {
5914       if (parseIntToken(CallerProbeId,
5915                         "unexpected token in '.pseudoprobe' directive"))
5916         return true;
5917     }
5918 
5919     InlineSite Site(CallerGuid, CallerProbeId);
5920     InlineStack.push_back(Site);
5921   }
5922 
5923   // Parse function entry name
5924   StringRef FnName;
5925   if (parseIdentifier(FnName))
5926     return Error(getLexer().getLoc(), "unexpected token in '.pseudoprobe' directive");
5927   MCSymbol *FnSym = getContext().lookupSymbol(FnName);
5928 
5929   if (parseEOL())
5930     return true;
5931 
5932   getStreamer().emitPseudoProbe(Guid, Index, Type, Attr, Discriminator,
5933                                 InlineStack, FnSym);
5934   return false;
5935 }
5936 
5937 /// parseDirectiveLTODiscard
5938 ///  ::= ".lto_discard" [ identifier ( , identifier )* ]
5939 /// The LTO library emits this directive to discard non-prevailing symbols.
5940 /// We ignore symbol assignments and attribute changes for the specified
5941 /// symbols.
5942 bool AsmParser::parseDirectiveLTODiscard() {
5943   auto ParseOp = [&]() -> bool {
5944     StringRef Name;
5945     SMLoc Loc = getTok().getLoc();
5946     if (parseIdentifier(Name))
5947       return Error(Loc, "expected identifier");
5948     LTODiscardSymbols.insert(Name);
5949     return false;
5950   };
5951 
5952   LTODiscardSymbols.clear();
5953   return parseMany(ParseOp);
5954 }
5955 
5956 // We are comparing pointers, but the pointers are relative to a single string.
5957 // Thus, this should always be deterministic.
5958 static int rewritesSort(const AsmRewrite *AsmRewriteA,
5959                         const AsmRewrite *AsmRewriteB) {
5960   if (AsmRewriteA->Loc.getPointer() < AsmRewriteB->Loc.getPointer())
5961     return -1;
5962   if (AsmRewriteB->Loc.getPointer() < AsmRewriteA->Loc.getPointer())
5963     return 1;
5964 
5965   // It's possible to have a SizeDirective, Imm/ImmPrefix and an Input/Output
5966   // rewrite to the same location.  Make sure the SizeDirective rewrite is
5967   // performed first, then the Imm/ImmPrefix and finally the Input/Output.  This
5968   // ensures the sort algorithm is stable.
5969   if (AsmRewritePrecedence[AsmRewriteA->Kind] >
5970       AsmRewritePrecedence[AsmRewriteB->Kind])
5971     return -1;
5972 
5973   if (AsmRewritePrecedence[AsmRewriteA->Kind] <
5974       AsmRewritePrecedence[AsmRewriteB->Kind])
5975     return 1;
5976   llvm_unreachable("Unstable rewrite sort.");
5977 }
5978 
5979 bool AsmParser::parseMSInlineAsm(
5980     std::string &AsmString, unsigned &NumOutputs, unsigned &NumInputs,
5981     SmallVectorImpl<std::pair<void *, bool>> &OpDecls,
5982     SmallVectorImpl<std::string> &Constraints,
5983     SmallVectorImpl<std::string> &Clobbers, const MCInstrInfo *MII,
5984     const MCInstPrinter *IP, MCAsmParserSemaCallback &SI) {
5985   SmallVector<void *, 4> InputDecls;
5986   SmallVector<void *, 4> OutputDecls;
5987   SmallVector<bool, 4> InputDeclsAddressOf;
5988   SmallVector<bool, 4> OutputDeclsAddressOf;
5989   SmallVector<std::string, 4> InputConstraints;
5990   SmallVector<std::string, 4> OutputConstraints;
5991   SmallVector<unsigned, 4> ClobberRegs;
5992 
5993   SmallVector<AsmRewrite, 4> AsmStrRewrites;
5994 
5995   // Prime the lexer.
5996   Lex();
5997 
5998   // While we have input, parse each statement.
5999   unsigned InputIdx = 0;
6000   unsigned OutputIdx = 0;
6001   while (getLexer().isNot(AsmToken::Eof)) {
6002     // Parse curly braces marking block start/end
6003     if (parseCurlyBlockScope(AsmStrRewrites))
6004       continue;
6005 
6006     ParseStatementInfo Info(&AsmStrRewrites);
6007     bool StatementErr = parseStatement(Info, &SI);
6008 
6009     if (StatementErr || Info.ParseError) {
6010       // Emit pending errors if any exist.
6011       printPendingErrors();
6012       return true;
6013     }
6014 
6015     // No pending error should exist here.
6016     assert(!hasPendingError() && "unexpected error from parseStatement");
6017 
6018     if (Info.Opcode == ~0U)
6019       continue;
6020 
6021     const MCInstrDesc &Desc = MII->get(Info.Opcode);
6022 
6023     // Build the list of clobbers, outputs and inputs.
6024     for (unsigned i = 1, e = Info.ParsedOperands.size(); i != e; ++i) {
6025       MCParsedAsmOperand &Operand = *Info.ParsedOperands[i];
6026 
6027       // Register operand.
6028       if (Operand.isReg() && !Operand.needAddressOf() &&
6029           !getTargetParser().OmitRegisterFromClobberLists(Operand.getReg())) {
6030         unsigned NumDefs = Desc.getNumDefs();
6031         // Clobber.
6032         if (NumDefs && Operand.getMCOperandNum() < NumDefs)
6033           ClobberRegs.push_back(Operand.getReg());
6034         continue;
6035       }
6036 
6037       // Expr/Input or Output.
6038       StringRef SymName = Operand.getSymName();
6039       if (SymName.empty())
6040         continue;
6041 
6042       void *OpDecl = Operand.getOpDecl();
6043       if (!OpDecl)
6044         continue;
6045 
6046       StringRef Constraint = Operand.getConstraint();
6047       if (Operand.isImm()) {
6048         // Offset as immediate
6049         if (Operand.isOffsetOfLocal())
6050           Constraint = "r";
6051         else
6052           Constraint = "i";
6053       }
6054 
6055       bool isOutput = (i == 1) && Desc.mayStore();
6056       bool Restricted = Operand.isMemUseUpRegs();
6057       SMLoc Start = SMLoc::getFromPointer(SymName.data());
6058       if (isOutput) {
6059         ++InputIdx;
6060         OutputDecls.push_back(OpDecl);
6061         OutputDeclsAddressOf.push_back(Operand.needAddressOf());
6062         OutputConstraints.push_back(("=" + Constraint).str());
6063         AsmStrRewrites.emplace_back(AOK_Output, Start, SymName.size(), 0,
6064                                     Restricted);
6065       } else {
6066         InputDecls.push_back(OpDecl);
6067         InputDeclsAddressOf.push_back(Operand.needAddressOf());
6068         InputConstraints.push_back(Constraint.str());
6069         if (Desc.operands()[i - 1].isBranchTarget())
6070           AsmStrRewrites.emplace_back(AOK_CallInput, Start, SymName.size(), 0,
6071                                       Restricted);
6072         else
6073           AsmStrRewrites.emplace_back(AOK_Input, Start, SymName.size(), 0,
6074                                       Restricted);
6075       }
6076     }
6077 
6078     // Consider implicit defs to be clobbers.  Think of cpuid and push.
6079     llvm::append_range(ClobberRegs, Desc.implicit_defs());
6080   }
6081 
6082   // Set the number of Outputs and Inputs.
6083   NumOutputs = OutputDecls.size();
6084   NumInputs = InputDecls.size();
6085 
6086   // Set the unique clobbers.
6087   array_pod_sort(ClobberRegs.begin(), ClobberRegs.end());
6088   ClobberRegs.erase(std::unique(ClobberRegs.begin(), ClobberRegs.end()),
6089                     ClobberRegs.end());
6090   Clobbers.assign(ClobberRegs.size(), std::string());
6091   for (unsigned I = 0, E = ClobberRegs.size(); I != E; ++I) {
6092     raw_string_ostream OS(Clobbers[I]);
6093     IP->printRegName(OS, ClobberRegs[I]);
6094   }
6095 
6096   // Merge the various outputs and inputs.  Output are expected first.
6097   if (NumOutputs || NumInputs) {
6098     unsigned NumExprs = NumOutputs + NumInputs;
6099     OpDecls.resize(NumExprs);
6100     Constraints.resize(NumExprs);
6101     for (unsigned i = 0; i < NumOutputs; ++i) {
6102       OpDecls[i] = std::make_pair(OutputDecls[i], OutputDeclsAddressOf[i]);
6103       Constraints[i] = OutputConstraints[i];
6104     }
6105     for (unsigned i = 0, j = NumOutputs; i < NumInputs; ++i, ++j) {
6106       OpDecls[j] = std::make_pair(InputDecls[i], InputDeclsAddressOf[i]);
6107       Constraints[j] = InputConstraints[i];
6108     }
6109   }
6110 
6111   // Build the IR assembly string.
6112   std::string AsmStringIR;
6113   raw_string_ostream OS(AsmStringIR);
6114   StringRef ASMString =
6115       SrcMgr.getMemoryBuffer(SrcMgr.getMainFileID())->getBuffer();
6116   const char *AsmStart = ASMString.begin();
6117   const char *AsmEnd = ASMString.end();
6118   array_pod_sort(AsmStrRewrites.begin(), AsmStrRewrites.end(), rewritesSort);
6119   for (auto it = AsmStrRewrites.begin(); it != AsmStrRewrites.end(); ++it) {
6120     const AsmRewrite &AR = *it;
6121     // Check if this has already been covered by another rewrite...
6122     if (AR.Done)
6123       continue;
6124     AsmRewriteKind Kind = AR.Kind;
6125 
6126     const char *Loc = AR.Loc.getPointer();
6127     assert(Loc >= AsmStart && "Expected Loc to be at or after Start!");
6128 
6129     // Emit everything up to the immediate/expression.
6130     if (unsigned Len = Loc - AsmStart)
6131       OS << StringRef(AsmStart, Len);
6132 
6133     // Skip the original expression.
6134     if (Kind == AOK_Skip) {
6135       AsmStart = Loc + AR.Len;
6136       continue;
6137     }
6138 
6139     unsigned AdditionalSkip = 0;
6140     // Rewrite expressions in $N notation.
6141     switch (Kind) {
6142     default:
6143       break;
6144     case AOK_IntelExpr:
6145       assert(AR.IntelExp.isValid() && "cannot write invalid intel expression");
6146       if (AR.IntelExp.NeedBracs)
6147         OS << "[";
6148       if (AR.IntelExp.hasBaseReg())
6149         OS << AR.IntelExp.BaseReg;
6150       if (AR.IntelExp.hasIndexReg())
6151         OS << (AR.IntelExp.hasBaseReg() ? " + " : "")
6152            << AR.IntelExp.IndexReg;
6153       if (AR.IntelExp.Scale > 1)
6154         OS << " * $$" << AR.IntelExp.Scale;
6155       if (AR.IntelExp.hasOffset()) {
6156         if (AR.IntelExp.hasRegs())
6157           OS << " + ";
6158         // Fuse this rewrite with a rewrite of the offset name, if present.
6159         StringRef OffsetName = AR.IntelExp.OffsetName;
6160         SMLoc OffsetLoc = SMLoc::getFromPointer(AR.IntelExp.OffsetName.data());
6161         size_t OffsetLen = OffsetName.size();
6162         auto rewrite_it = std::find_if(
6163             it, AsmStrRewrites.end(), [&](const AsmRewrite &FusingAR) {
6164               return FusingAR.Loc == OffsetLoc && FusingAR.Len == OffsetLen &&
6165                      (FusingAR.Kind == AOK_Input ||
6166                       FusingAR.Kind == AOK_CallInput);
6167             });
6168         if (rewrite_it == AsmStrRewrites.end()) {
6169           OS << "offset " << OffsetName;
6170         } else if (rewrite_it->Kind == AOK_CallInput) {
6171           OS << "${" << InputIdx++ << ":P}";
6172           rewrite_it->Done = true;
6173         } else {
6174           OS << '$' << InputIdx++;
6175           rewrite_it->Done = true;
6176         }
6177       }
6178       if (AR.IntelExp.Imm || AR.IntelExp.emitImm())
6179         OS << (AR.IntelExp.emitImm() ? "$$" : " + $$") << AR.IntelExp.Imm;
6180       if (AR.IntelExp.NeedBracs)
6181         OS << "]";
6182       break;
6183     case AOK_Label:
6184       OS << Ctx.getAsmInfo()->getPrivateLabelPrefix() << AR.Label;
6185       break;
6186     case AOK_Input:
6187       if (AR.IntelExpRestricted)
6188         OS << "${" << InputIdx++ << ":P}";
6189       else
6190         OS << '$' << InputIdx++;
6191       break;
6192     case AOK_CallInput:
6193       OS << "${" << InputIdx++ << ":P}";
6194       break;
6195     case AOK_Output:
6196       if (AR.IntelExpRestricted)
6197         OS << "${" << OutputIdx++ << ":P}";
6198       else
6199         OS << '$' << OutputIdx++;
6200       break;
6201     case AOK_SizeDirective:
6202       switch (AR.Val) {
6203       default: break;
6204       case 8:  OS << "byte ptr "; break;
6205       case 16: OS << "word ptr "; break;
6206       case 32: OS << "dword ptr "; break;
6207       case 64: OS << "qword ptr "; break;
6208       case 80: OS << "xword ptr "; break;
6209       case 128: OS << "xmmword ptr "; break;
6210       case 256: OS << "ymmword ptr "; break;
6211       }
6212       break;
6213     case AOK_Emit:
6214       OS << ".byte";
6215       break;
6216     case AOK_Align: {
6217       // MS alignment directives are measured in bytes. If the native assembler
6218       // measures alignment in bytes, we can pass it straight through.
6219       OS << ".align";
6220       if (getContext().getAsmInfo()->getAlignmentIsInBytes())
6221         break;
6222 
6223       // Alignment is in log2 form, so print that instead and skip the original
6224       // immediate.
6225       unsigned Val = AR.Val;
6226       OS << ' ' << Val;
6227       assert(Val < 10 && "Expected alignment less then 2^10.");
6228       AdditionalSkip = (Val < 4) ? 2 : Val < 7 ? 3 : 4;
6229       break;
6230     }
6231     case AOK_EVEN:
6232       OS << ".even";
6233       break;
6234     case AOK_EndOfStatement:
6235       OS << "\n\t";
6236       break;
6237     }
6238 
6239     // Skip the original expression.
6240     AsmStart = Loc + AR.Len + AdditionalSkip;
6241   }
6242 
6243   // Emit the remainder of the asm string.
6244   if (AsmStart != AsmEnd)
6245     OS << StringRef(AsmStart, AsmEnd - AsmStart);
6246 
6247   AsmString = OS.str();
6248   return false;
6249 }
6250 
6251 bool HLASMAsmParser::parseAsHLASMLabel(ParseStatementInfo &Info,
6252                                        MCAsmParserSemaCallback *SI) {
6253   AsmToken LabelTok = getTok();
6254   SMLoc LabelLoc = LabelTok.getLoc();
6255   StringRef LabelVal;
6256 
6257   if (parseIdentifier(LabelVal))
6258     return Error(LabelLoc, "The HLASM Label has to be an Identifier");
6259 
6260   // We have validated whether the token is an Identifier.
6261   // Now we have to validate whether the token is a
6262   // valid HLASM Label.
6263   if (!getTargetParser().isLabel(LabelTok) || checkForValidSection())
6264     return true;
6265 
6266   // Lex leading spaces to get to the next operand.
6267   lexLeadingSpaces();
6268 
6269   // We shouldn't emit the label if there is nothing else after the label.
6270   // i.e asm("<token>\n")
6271   if (getTok().is(AsmToken::EndOfStatement))
6272     return Error(LabelLoc,
6273                  "Cannot have just a label for an HLASM inline asm statement");
6274 
6275   MCSymbol *Sym = getContext().getOrCreateSymbol(
6276       getContext().getAsmInfo()->shouldEmitLabelsInUpperCase()
6277           ? LabelVal.upper()
6278           : LabelVal);
6279 
6280   getTargetParser().doBeforeLabelEmit(Sym, LabelLoc);
6281 
6282   // Emit the label.
6283   Out.emitLabel(Sym, LabelLoc);
6284 
6285   // If we are generating dwarf for assembly source files then gather the
6286   // info to make a dwarf label entry for this label if needed.
6287   if (enabledGenDwarfForAssembly())
6288     MCGenDwarfLabelEntry::Make(Sym, &getStreamer(), getSourceManager(),
6289                                LabelLoc);
6290 
6291   getTargetParser().onLabelParsed(Sym);
6292 
6293   return false;
6294 }
6295 
6296 bool HLASMAsmParser::parseAsMachineInstruction(ParseStatementInfo &Info,
6297                                                MCAsmParserSemaCallback *SI) {
6298   AsmToken OperationEntryTok = Lexer.getTok();
6299   SMLoc OperationEntryLoc = OperationEntryTok.getLoc();
6300   StringRef OperationEntryVal;
6301 
6302   // Attempt to parse the first token as an Identifier
6303   if (parseIdentifier(OperationEntryVal))
6304     return Error(OperationEntryLoc, "unexpected token at start of statement");
6305 
6306   // Once we've parsed the operation entry successfully, lex
6307   // any spaces to get to the OperandEntries.
6308   lexLeadingSpaces();
6309 
6310   return parseAndMatchAndEmitTargetInstruction(
6311       Info, OperationEntryVal, OperationEntryTok, OperationEntryLoc);
6312 }
6313 
6314 bool HLASMAsmParser::parseStatement(ParseStatementInfo &Info,
6315                                     MCAsmParserSemaCallback *SI) {
6316   assert(!hasPendingError() && "parseStatement started with pending error");
6317 
6318   // Should the first token be interpreted as a HLASM Label.
6319   bool ShouldParseAsHLASMLabel = false;
6320 
6321   // If a Name Entry exists, it should occur at the very
6322   // start of the string. In this case, we should parse the
6323   // first non-space token as a Label.
6324   // If the Name entry is missing (i.e. there's some other
6325   // token), then we attempt to parse the first non-space
6326   // token as a Machine Instruction.
6327   if (getTok().isNot(AsmToken::Space))
6328     ShouldParseAsHLASMLabel = true;
6329 
6330   // If we have an EndOfStatement (which includes the target's comment
6331   // string) we can appropriately lex it early on)
6332   if (Lexer.is(AsmToken::EndOfStatement)) {
6333     // if this is a line comment we can drop it safely
6334     if (getTok().getString().empty() || getTok().getString().front() == '\r' ||
6335         getTok().getString().front() == '\n')
6336       Out.addBlankLine();
6337     Lex();
6338     return false;
6339   }
6340 
6341   // We have established how to parse the inline asm statement.
6342   // Now we can safely lex any leading spaces to get to the
6343   // first token.
6344   lexLeadingSpaces();
6345 
6346   // If we see a new line or carriage return as the first operand,
6347   // after lexing leading spaces, emit the new line and lex the
6348   // EndOfStatement token.
6349   if (Lexer.is(AsmToken::EndOfStatement)) {
6350     if (getTok().getString().front() == '\n' ||
6351         getTok().getString().front() == '\r') {
6352       Out.addBlankLine();
6353       Lex();
6354       return false;
6355     }
6356   }
6357 
6358   // Handle the label first if we have to before processing the rest
6359   // of the tokens as a machine instruction.
6360   if (ShouldParseAsHLASMLabel) {
6361     // If there were any errors while handling and emitting the label,
6362     // early return.
6363     if (parseAsHLASMLabel(Info, SI)) {
6364       // If we know we've failed in parsing, simply eat until end of the
6365       // statement. This ensures that we don't process any other statements.
6366       eatToEndOfStatement();
6367       return true;
6368     }
6369   }
6370 
6371   return parseAsMachineInstruction(Info, SI);
6372 }
6373 
6374 namespace llvm {
6375 namespace MCParserUtils {
6376 
6377 /// Returns whether the given symbol is used anywhere in the given expression,
6378 /// or subexpressions.
6379 static bool isSymbolUsedInExpression(const MCSymbol *Sym, const MCExpr *Value) {
6380   switch (Value->getKind()) {
6381   case MCExpr::Binary: {
6382     const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Value);
6383     return isSymbolUsedInExpression(Sym, BE->getLHS()) ||
6384            isSymbolUsedInExpression(Sym, BE->getRHS());
6385   }
6386   case MCExpr::Target:
6387   case MCExpr::Constant:
6388     return false;
6389   case MCExpr::SymbolRef: {
6390     const MCSymbol &S =
6391         static_cast<const MCSymbolRefExpr *>(Value)->getSymbol();
6392     if (S.isVariable() && !S.isWeakExternal())
6393       return isSymbolUsedInExpression(Sym, S.getVariableValue());
6394     return &S == Sym;
6395   }
6396   case MCExpr::Unary:
6397     return isSymbolUsedInExpression(
6398         Sym, static_cast<const MCUnaryExpr *>(Value)->getSubExpr());
6399   }
6400 
6401   llvm_unreachable("Unknown expr kind!");
6402 }
6403 
6404 bool parseAssignmentExpression(StringRef Name, bool allow_redef,
6405                                MCAsmParser &Parser, MCSymbol *&Sym,
6406                                const MCExpr *&Value) {
6407 
6408   // FIXME: Use better location, we should use proper tokens.
6409   SMLoc EqualLoc = Parser.getTok().getLoc();
6410   if (Parser.parseExpression(Value))
6411     return Parser.TokError("missing expression");
6412 
6413   // Note: we don't count b as used in "a = b". This is to allow
6414   // a = b
6415   // b = c
6416 
6417   if (Parser.parseEOL())
6418     return true;
6419 
6420   // Validate that the LHS is allowed to be a variable (either it has not been
6421   // used as a symbol, or it is an absolute symbol).
6422   Sym = Parser.getContext().lookupSymbol(Name);
6423   if (Sym) {
6424     // Diagnose assignment to a label.
6425     //
6426     // FIXME: Diagnostics. Note the location of the definition as a label.
6427     // FIXME: Diagnose assignment to protected identifier (e.g., register name).
6428     if (isSymbolUsedInExpression(Sym, Value))
6429       return Parser.Error(EqualLoc, "Recursive use of '" + Name + "'");
6430     else if (Sym->isUndefined(/*SetUsed*/ false) && !Sym->isUsed() &&
6431              !Sym->isVariable())
6432       ; // Allow redefinitions of undefined symbols only used in directives.
6433     else if (Sym->isVariable() && !Sym->isUsed() && allow_redef)
6434       ; // Allow redefinitions of variables that haven't yet been used.
6435     else if (!Sym->isUndefined() && (!Sym->isVariable() || !allow_redef))
6436       return Parser.Error(EqualLoc, "redefinition of '" + Name + "'");
6437     else if (!Sym->isVariable())
6438       return Parser.Error(EqualLoc, "invalid assignment to '" + Name + "'");
6439     else if (!isa<MCConstantExpr>(Sym->getVariableValue()))
6440       return Parser.Error(EqualLoc,
6441                           "invalid reassignment of non-absolute variable '" +
6442                               Name + "'");
6443   } else if (Name == ".") {
6444     Parser.getStreamer().emitValueToOffset(Value, 0, EqualLoc);
6445     return false;
6446   } else
6447     Sym = Parser.getContext().getOrCreateSymbol(Name);
6448 
6449   Sym->setRedefinable(allow_redef);
6450 
6451   return false;
6452 }
6453 
6454 } // end namespace MCParserUtils
6455 } // end namespace llvm
6456 
6457 /// Create an MCAsmParser instance.
6458 MCAsmParser *llvm::createMCAsmParser(SourceMgr &SM, MCContext &C,
6459                                      MCStreamer &Out, const MCAsmInfo &MAI,
6460                                      unsigned CB) {
6461   if (C.getTargetTriple().isSystemZ() && C.getTargetTriple().isOSzOS())
6462     return new HLASMAsmParser(SM, C, Out, MAI, CB);
6463 
6464   return new AsmParser(SM, C, Out, MAI, CB);
6465 }
6466