xref: /freebsd/contrib/llvm-project/llvm/lib/MC/MCFragment.cpp (revision a3266ba2697a383d2ede56803320d941866c7e76)
1 //===- lib/MC/MCFragment.cpp - Assembler Fragment Implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/MC/MCFragment.h"
10 #include "llvm/ADT/SmallVector.h"
11 #include "llvm/ADT/StringExtras.h"
12 #include "llvm/ADT/Twine.h"
13 #include "llvm/Config/llvm-config.h"
14 #include "llvm/MC/MCAsmLayout.h"
15 #include "llvm/MC/MCAssembler.h"
16 #include "llvm/MC/MCContext.h"
17 #include "llvm/MC/MCExpr.h"
18 #include "llvm/MC/MCFixup.h"
19 #include "llvm/MC/MCSection.h"
20 #include "llvm/MC/MCSymbol.h"
21 #include "llvm/MC/MCValue.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <cassert>
27 #include <cstdint>
28 #include <utility>
29 
30 using namespace llvm;
31 
32 MCAsmLayout::MCAsmLayout(MCAssembler &Asm) : Assembler(Asm) {
33   // Compute the section layout order. Virtual sections must go last.
34   for (MCSection &Sec : Asm)
35     if (!Sec.isVirtualSection())
36       SectionOrder.push_back(&Sec);
37   for (MCSection &Sec : Asm)
38     if (Sec.isVirtualSection())
39       SectionOrder.push_back(&Sec);
40 }
41 
42 bool MCAsmLayout::isFragmentValid(const MCFragment *F) const {
43   const MCSection *Sec = F->getParent();
44   const MCFragment *LastValid = LastValidFragment.lookup(Sec);
45   if (!LastValid)
46     return false;
47   assert(LastValid->getParent() == Sec);
48   return F->getLayoutOrder() <= LastValid->getLayoutOrder();
49 }
50 
51 bool MCAsmLayout::canGetFragmentOffset(const MCFragment *F) const {
52   MCSection *Sec = F->getParent();
53   MCSection::iterator I;
54   if (MCFragment *LastValid = LastValidFragment[Sec]) {
55     // Fragment already valid, offset is available.
56     if (F->getLayoutOrder() <= LastValid->getLayoutOrder())
57       return true;
58     I = ++MCSection::iterator(LastValid);
59   } else
60     I = Sec->begin();
61 
62   // A fragment ordered before F is currently being laid out.
63   const MCFragment *FirstInvalidFragment = &*I;
64   if (FirstInvalidFragment->IsBeingLaidOut)
65     return false;
66 
67   return true;
68 }
69 
70 void MCAsmLayout::invalidateFragmentsFrom(MCFragment *F) {
71   // If this fragment wasn't already valid, we don't need to do anything.
72   if (!isFragmentValid(F))
73     return;
74 
75   // Otherwise, reset the last valid fragment to the previous fragment
76   // (if this is the first fragment, it will be NULL).
77   LastValidFragment[F->getParent()] = F->getPrevNode();
78 }
79 
80 void MCAsmLayout::ensureValid(const MCFragment *F) const {
81   MCSection *Sec = F->getParent();
82   MCSection::iterator I;
83   if (MCFragment *Cur = LastValidFragment[Sec])
84     I = ++MCSection::iterator(Cur);
85   else
86     I = Sec->begin();
87 
88   // Advance the layout position until the fragment is valid.
89   while (!isFragmentValid(F)) {
90     assert(I != Sec->end() && "Layout bookkeeping error");
91     const_cast<MCAsmLayout *>(this)->layoutFragment(&*I);
92     ++I;
93   }
94 }
95 
96 uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
97   ensureValid(F);
98   assert(F->Offset != ~UINT64_C(0) && "Address not set!");
99   return F->Offset;
100 }
101 
102 // Simple getSymbolOffset helper for the non-variable case.
103 static bool getLabelOffset(const MCAsmLayout &Layout, const MCSymbol &S,
104                            bool ReportError, uint64_t &Val) {
105   if (!S.getFragment()) {
106     if (ReportError)
107       report_fatal_error("unable to evaluate offset to undefined symbol '" +
108                          S.getName() + "'");
109     return false;
110   }
111   Val = Layout.getFragmentOffset(S.getFragment()) + S.getOffset();
112   return true;
113 }
114 
115 static bool getSymbolOffsetImpl(const MCAsmLayout &Layout, const MCSymbol &S,
116                                 bool ReportError, uint64_t &Val) {
117   if (!S.isVariable())
118     return getLabelOffset(Layout, S, ReportError, Val);
119 
120   // If SD is a variable, evaluate it.
121   MCValue Target;
122   if (!S.getVariableValue()->evaluateAsValue(Target, Layout))
123     report_fatal_error("unable to evaluate offset for variable '" +
124                        S.getName() + "'");
125 
126   uint64_t Offset = Target.getConstant();
127 
128   const MCSymbolRefExpr *A = Target.getSymA();
129   if (A) {
130     uint64_t ValA;
131     if (!getLabelOffset(Layout, A->getSymbol(), ReportError, ValA))
132       return false;
133     Offset += ValA;
134   }
135 
136   const MCSymbolRefExpr *B = Target.getSymB();
137   if (B) {
138     uint64_t ValB;
139     if (!getLabelOffset(Layout, B->getSymbol(), ReportError, ValB))
140       return false;
141     Offset -= ValB;
142   }
143 
144   Val = Offset;
145   return true;
146 }
147 
148 bool MCAsmLayout::getSymbolOffset(const MCSymbol &S, uint64_t &Val) const {
149   return getSymbolOffsetImpl(*this, S, false, Val);
150 }
151 
152 uint64_t MCAsmLayout::getSymbolOffset(const MCSymbol &S) const {
153   uint64_t Val;
154   getSymbolOffsetImpl(*this, S, true, Val);
155   return Val;
156 }
157 
158 const MCSymbol *MCAsmLayout::getBaseSymbol(const MCSymbol &Symbol) const {
159   if (!Symbol.isVariable())
160     return &Symbol;
161 
162   const MCExpr *Expr = Symbol.getVariableValue();
163   MCValue Value;
164   if (!Expr->evaluateAsValue(Value, *this)) {
165     Assembler.getContext().reportError(
166         Expr->getLoc(), "expression could not be evaluated");
167     return nullptr;
168   }
169 
170   const MCSymbolRefExpr *RefB = Value.getSymB();
171   if (RefB) {
172     Assembler.getContext().reportError(
173         Expr->getLoc(), Twine("symbol '") + RefB->getSymbol().getName() +
174                      "' could not be evaluated in a subtraction expression");
175     return nullptr;
176   }
177 
178   const MCSymbolRefExpr *A = Value.getSymA();
179   if (!A)
180     return nullptr;
181 
182   const MCSymbol &ASym = A->getSymbol();
183   const MCAssembler &Asm = getAssembler();
184   if (ASym.isCommon()) {
185     Asm.getContext().reportError(Expr->getLoc(),
186                                  "Common symbol '" + ASym.getName() +
187                                      "' cannot be used in assignment expr");
188     return nullptr;
189   }
190 
191   return &ASym;
192 }
193 
194 uint64_t MCAsmLayout::getSectionAddressSize(const MCSection *Sec) const {
195   // The size is the last fragment's end offset.
196   const MCFragment &F = Sec->getFragmentList().back();
197   return getFragmentOffset(&F) + getAssembler().computeFragmentSize(*this, F);
198 }
199 
200 uint64_t MCAsmLayout::getSectionFileSize(const MCSection *Sec) const {
201   // Virtual sections have no file size.
202   if (Sec->isVirtualSection())
203     return 0;
204 
205   // Otherwise, the file size is the same as the address space size.
206   return getSectionAddressSize(Sec);
207 }
208 
209 uint64_t llvm::computeBundlePadding(const MCAssembler &Assembler,
210                                     const MCEncodedFragment *F,
211                                     uint64_t FOffset, uint64_t FSize) {
212   uint64_t BundleSize = Assembler.getBundleAlignSize();
213   assert(BundleSize > 0 &&
214          "computeBundlePadding should only be called if bundling is enabled");
215   uint64_t BundleMask = BundleSize - 1;
216   uint64_t OffsetInBundle = FOffset & BundleMask;
217   uint64_t EndOfFragment = OffsetInBundle + FSize;
218 
219   // There are two kinds of bundling restrictions:
220   //
221   // 1) For alignToBundleEnd(), add padding to ensure that the fragment will
222   //    *end* on a bundle boundary.
223   // 2) Otherwise, check if the fragment would cross a bundle boundary. If it
224   //    would, add padding until the end of the bundle so that the fragment
225   //    will start in a new one.
226   if (F->alignToBundleEnd()) {
227     // Three possibilities here:
228     //
229     // A) The fragment just happens to end at a bundle boundary, so we're good.
230     // B) The fragment ends before the current bundle boundary: pad it just
231     //    enough to reach the boundary.
232     // C) The fragment ends after the current bundle boundary: pad it until it
233     //    reaches the end of the next bundle boundary.
234     //
235     // Note: this code could be made shorter with some modulo trickery, but it's
236     // intentionally kept in its more explicit form for simplicity.
237     if (EndOfFragment == BundleSize)
238       return 0;
239     else if (EndOfFragment < BundleSize)
240       return BundleSize - EndOfFragment;
241     else { // EndOfFragment > BundleSize
242       return 2 * BundleSize - EndOfFragment;
243     }
244   } else if (OffsetInBundle > 0 && EndOfFragment > BundleSize)
245     return BundleSize - OffsetInBundle;
246   else
247     return 0;
248 }
249 
250 /* *** */
251 
252 void ilist_alloc_traits<MCFragment>::deleteNode(MCFragment *V) { V->destroy(); }
253 
254 MCFragment::MCFragment(FragmentType Kind, bool HasInstructions,
255                        MCSection *Parent)
256     : Parent(Parent), Atom(nullptr), Offset(~UINT64_C(0)), LayoutOrder(0),
257       Kind(Kind), IsBeingLaidOut(false), HasInstructions(HasInstructions) {
258   if (Parent && !isa<MCDummyFragment>(*this))
259     Parent->getFragmentList().push_back(this);
260 }
261 
262 void MCFragment::destroy() {
263   // First check if we are the sentinal.
264   if (Kind == FragmentType(~0)) {
265     delete this;
266     return;
267   }
268 
269   switch (Kind) {
270     case FT_Align:
271       delete cast<MCAlignFragment>(this);
272       return;
273     case FT_Data:
274       delete cast<MCDataFragment>(this);
275       return;
276     case FT_CompactEncodedInst:
277       delete cast<MCCompactEncodedInstFragment>(this);
278       return;
279     case FT_Fill:
280       delete cast<MCFillFragment>(this);
281       return;
282     case FT_Nops:
283       delete cast<MCNopsFragment>(this);
284       return;
285     case FT_Relaxable:
286       delete cast<MCRelaxableFragment>(this);
287       return;
288     case FT_Org:
289       delete cast<MCOrgFragment>(this);
290       return;
291     case FT_Dwarf:
292       delete cast<MCDwarfLineAddrFragment>(this);
293       return;
294     case FT_DwarfFrame:
295       delete cast<MCDwarfCallFrameFragment>(this);
296       return;
297     case FT_LEB:
298       delete cast<MCLEBFragment>(this);
299       return;
300     case FT_BoundaryAlign:
301       delete cast<MCBoundaryAlignFragment>(this);
302       return;
303     case FT_SymbolId:
304       delete cast<MCSymbolIdFragment>(this);
305       return;
306     case FT_CVInlineLines:
307       delete cast<MCCVInlineLineTableFragment>(this);
308       return;
309     case FT_CVDefRange:
310       delete cast<MCCVDefRangeFragment>(this);
311       return;
312     case FT_PseudoProbe:
313       delete cast<MCPseudoProbeAddrFragment>(this);
314       return;
315     case FT_Dummy:
316       delete cast<MCDummyFragment>(this);
317       return;
318   }
319 }
320 
321 // Debugging methods
322 
323 namespace llvm {
324 
325 raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
326   OS << "<MCFixup" << " Offset:" << AF.getOffset()
327      << " Value:" << *AF.getValue()
328      << " Kind:" << AF.getKind() << ">";
329   return OS;
330 }
331 
332 } // end namespace llvm
333 
334 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
335 LLVM_DUMP_METHOD void MCFragment::dump() const {
336   raw_ostream &OS = errs();
337 
338   OS << "<";
339   switch (getKind()) {
340   case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
341   case MCFragment::FT_Data:  OS << "MCDataFragment"; break;
342   case MCFragment::FT_CompactEncodedInst:
343     OS << "MCCompactEncodedInstFragment"; break;
344   case MCFragment::FT_Fill:  OS << "MCFillFragment"; break;
345   case MCFragment::FT_Nops:
346     OS << "MCFNopsFragment";
347     break;
348   case MCFragment::FT_Relaxable:  OS << "MCRelaxableFragment"; break;
349   case MCFragment::FT_Org:   OS << "MCOrgFragment"; break;
350   case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
351   case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break;
352   case MCFragment::FT_LEB:   OS << "MCLEBFragment"; break;
353   case MCFragment::FT_BoundaryAlign: OS<<"MCBoundaryAlignFragment"; break;
354   case MCFragment::FT_SymbolId:    OS << "MCSymbolIdFragment"; break;
355   case MCFragment::FT_CVInlineLines: OS << "MCCVInlineLineTableFragment"; break;
356   case MCFragment::FT_CVDefRange: OS << "MCCVDefRangeTableFragment"; break;
357   case MCFragment::FT_PseudoProbe:
358     OS << "MCPseudoProbe";
359     break;
360   case MCFragment::FT_Dummy: OS << "MCDummyFragment"; break;
361   }
362 
363   OS << "<MCFragment " << (const void *)this << " LayoutOrder:" << LayoutOrder
364      << " Offset:" << Offset << " HasInstructions:" << hasInstructions();
365   if (const auto *EF = dyn_cast<MCEncodedFragment>(this))
366     OS << " BundlePadding:" << static_cast<unsigned>(EF->getBundlePadding());
367   OS << ">";
368 
369   switch (getKind()) {
370   case MCFragment::FT_Align: {
371     const auto *AF = cast<MCAlignFragment>(this);
372     if (AF->hasEmitNops())
373       OS << " (emit nops)";
374     OS << "\n       ";
375     OS << " Alignment:" << AF->getAlignment()
376        << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
377        << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
378     break;
379   }
380   case MCFragment::FT_Data:  {
381     const auto *DF = cast<MCDataFragment>(this);
382     OS << "\n       ";
383     OS << " Contents:[";
384     const SmallVectorImpl<char> &Contents = DF->getContents();
385     for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
386       if (i) OS << ",";
387       OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
388     }
389     OS << "] (" << Contents.size() << " bytes)";
390 
391     if (DF->fixup_begin() != DF->fixup_end()) {
392       OS << ",\n       ";
393       OS << " Fixups:[";
394       for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
395              ie = DF->fixup_end(); it != ie; ++it) {
396         if (it != DF->fixup_begin()) OS << ",\n                ";
397         OS << *it;
398       }
399       OS << "]";
400     }
401     break;
402   }
403   case MCFragment::FT_CompactEncodedInst: {
404     const auto *CEIF =
405       cast<MCCompactEncodedInstFragment>(this);
406     OS << "\n       ";
407     OS << " Contents:[";
408     const SmallVectorImpl<char> &Contents = CEIF->getContents();
409     for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
410       if (i) OS << ",";
411       OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
412     }
413     OS << "] (" << Contents.size() << " bytes)";
414     break;
415   }
416   case MCFragment::FT_Fill:  {
417     const auto *FF = cast<MCFillFragment>(this);
418     OS << " Value:" << static_cast<unsigned>(FF->getValue())
419        << " ValueSize:" << static_cast<unsigned>(FF->getValueSize())
420        << " NumValues:" << FF->getNumValues();
421     break;
422   }
423   case MCFragment::FT_Nops: {
424     const auto *NF = cast<MCNopsFragment>(this);
425     OS << " NumBytes:" << NF->getNumBytes()
426        << " ControlledNopLength:" << NF->getControlledNopLength();
427     break;
428   }
429   case MCFragment::FT_Relaxable:  {
430     const auto *F = cast<MCRelaxableFragment>(this);
431     OS << "\n       ";
432     OS << " Inst:";
433     F->getInst().dump_pretty(OS);
434     OS << " (" << F->getContents().size() << " bytes)";
435     break;
436   }
437   case MCFragment::FT_Org:  {
438     const auto *OF = cast<MCOrgFragment>(this);
439     OS << "\n       ";
440     OS << " Offset:" << OF->getOffset()
441        << " Value:" << static_cast<unsigned>(OF->getValue());
442     break;
443   }
444   case MCFragment::FT_Dwarf:  {
445     const auto *OF = cast<MCDwarfLineAddrFragment>(this);
446     OS << "\n       ";
447     OS << " AddrDelta:" << OF->getAddrDelta()
448        << " LineDelta:" << OF->getLineDelta();
449     break;
450   }
451   case MCFragment::FT_DwarfFrame:  {
452     const auto *CF = cast<MCDwarfCallFrameFragment>(this);
453     OS << "\n       ";
454     OS << " AddrDelta:" << CF->getAddrDelta();
455     break;
456   }
457   case MCFragment::FT_LEB: {
458     const auto *LF = cast<MCLEBFragment>(this);
459     OS << "\n       ";
460     OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
461     break;
462   }
463   case MCFragment::FT_BoundaryAlign: {
464     const auto *BF = cast<MCBoundaryAlignFragment>(this);
465     OS << "\n       ";
466     OS << " BoundarySize:" << BF->getAlignment().value()
467        << " LastFragment:" << BF->getLastFragment()
468        << " Size:" << BF->getSize();
469     break;
470   }
471   case MCFragment::FT_SymbolId: {
472     const auto *F = cast<MCSymbolIdFragment>(this);
473     OS << "\n       ";
474     OS << " Sym:" << F->getSymbol();
475     break;
476   }
477   case MCFragment::FT_CVInlineLines: {
478     const auto *F = cast<MCCVInlineLineTableFragment>(this);
479     OS << "\n       ";
480     OS << " Sym:" << *F->getFnStartSym();
481     break;
482   }
483   case MCFragment::FT_CVDefRange: {
484     const auto *F = cast<MCCVDefRangeFragment>(this);
485     OS << "\n       ";
486     for (std::pair<const MCSymbol *, const MCSymbol *> RangeStartEnd :
487          F->getRanges()) {
488       OS << " RangeStart:" << RangeStartEnd.first;
489       OS << " RangeEnd:" << RangeStartEnd.second;
490     }
491     break;
492   }
493   case MCFragment::FT_PseudoProbe: {
494     const auto *OF = cast<MCPseudoProbeAddrFragment>(this);
495     OS << "\n       ";
496     OS << " AddrDelta:" << OF->getAddrDelta();
497     break;
498   }
499   case MCFragment::FT_Dummy:
500     break;
501   }
502   OS << ">";
503 }
504 #endif
505