xref: /freebsd/contrib/llvm-project/llvm/lib/MC/MCExpr.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- MCExpr.cpp - Assembly Level Expression Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/MC/MCExpr.h"
10 #include "llvm/ADT/Statistic.h"
11 #include "llvm/ADT/StringSwitch.h"
12 #include "llvm/Config/llvm-config.h"
13 #include "llvm/MC/MCAsmBackend.h"
14 #include "llvm/MC/MCAsmInfo.h"
15 #include "llvm/MC/MCAssembler.h"
16 #include "llvm/MC/MCContext.h"
17 #include "llvm/MC/MCObjectWriter.h"
18 #include "llvm/MC/MCSymbol.h"
19 #include "llvm/MC/MCValue.h"
20 #include "llvm/Support/Casting.h"
21 #include "llvm/Support/Compiler.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include <cassert>
26 #include <cstdint>
27 
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "mcexpr"
31 
32 namespace {
33 namespace stats {
34 
35 STATISTIC(MCExprEvaluate, "Number of MCExpr evaluations");
36 
37 } // end namespace stats
38 } // end anonymous namespace
39 
40 void MCExpr::print(raw_ostream &OS, const MCAsmInfo *MAI, bool InParens) const {
41   switch (getKind()) {
42   case MCExpr::Target:
43     return cast<MCTargetExpr>(this)->printImpl(OS, MAI);
44   case MCExpr::Constant: {
45     auto Value = cast<MCConstantExpr>(*this).getValue();
46     auto PrintInHex = cast<MCConstantExpr>(*this).useHexFormat();
47     auto SizeInBytes = cast<MCConstantExpr>(*this).getSizeInBytes();
48     if (Value < 0 && MAI && !MAI->supportsSignedData())
49       PrintInHex = true;
50     if (PrintInHex)
51       switch (SizeInBytes) {
52       default:
53         OS << "0x" << Twine::utohexstr(Value);
54         break;
55       case 1:
56         OS << format("0x%02" PRIx64, Value);
57         break;
58       case 2:
59         OS << format("0x%04" PRIx64, Value);
60         break;
61       case 4:
62         OS << format("0x%08" PRIx64, Value);
63         break;
64       case 8:
65         OS << format("0x%016" PRIx64, Value);
66         break;
67       }
68     else
69       OS << Value;
70     return;
71   }
72   case MCExpr::SymbolRef: {
73     const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(*this);
74     const MCSymbol &Sym = SRE.getSymbol();
75     // Parenthesize names that start with $ so that they don't look like
76     // absolute names.
77     bool UseParens = MAI && MAI->useParensForDollarSignNames() && !InParens &&
78                      Sym.getName().starts_with('$');
79 
80     if (UseParens) {
81       OS << '(';
82       Sym.print(OS, MAI);
83       OS << ')';
84     } else
85       Sym.print(OS, MAI);
86 
87     const MCSymbolRefExpr::VariantKind Kind = SRE.getKind();
88     if (Kind != MCSymbolRefExpr::VK_None) {
89       if (MAI && MAI->useParensForSymbolVariant()) // ARM
90         OS << '(' << MCSymbolRefExpr::getVariantKindName(Kind) << ')';
91       else
92         OS << '@' << MCSymbolRefExpr::getVariantKindName(Kind);
93     }
94 
95     return;
96   }
97 
98   case MCExpr::Unary: {
99     const MCUnaryExpr &UE = cast<MCUnaryExpr>(*this);
100     switch (UE.getOpcode()) {
101     case MCUnaryExpr::LNot:  OS << '!'; break;
102     case MCUnaryExpr::Minus: OS << '-'; break;
103     case MCUnaryExpr::Not:   OS << '~'; break;
104     case MCUnaryExpr::Plus:  OS << '+'; break;
105     }
106     bool Binary = UE.getSubExpr()->getKind() == MCExpr::Binary;
107     if (Binary) OS << "(";
108     UE.getSubExpr()->print(OS, MAI);
109     if (Binary) OS << ")";
110     return;
111   }
112 
113   case MCExpr::Binary: {
114     const MCBinaryExpr &BE = cast<MCBinaryExpr>(*this);
115 
116     // Only print parens around the LHS if it is non-trivial.
117     if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS())) {
118       BE.getLHS()->print(OS, MAI);
119     } else {
120       OS << '(';
121       BE.getLHS()->print(OS, MAI);
122       OS << ')';
123     }
124 
125     switch (BE.getOpcode()) {
126     case MCBinaryExpr::Add:
127       // Print "X-42" instead of "X+-42".
128       if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
129         if (RHSC->getValue() < 0) {
130           OS << RHSC->getValue();
131           return;
132         }
133       }
134 
135       OS <<  '+';
136       break;
137     case MCBinaryExpr::AShr: OS << ">>"; break;
138     case MCBinaryExpr::And:  OS <<  '&'; break;
139     case MCBinaryExpr::Div:  OS <<  '/'; break;
140     case MCBinaryExpr::EQ:   OS << "=="; break;
141     case MCBinaryExpr::GT:   OS <<  '>'; break;
142     case MCBinaryExpr::GTE:  OS << ">="; break;
143     case MCBinaryExpr::LAnd: OS << "&&"; break;
144     case MCBinaryExpr::LOr:  OS << "||"; break;
145     case MCBinaryExpr::LShr: OS << ">>"; break;
146     case MCBinaryExpr::LT:   OS <<  '<'; break;
147     case MCBinaryExpr::LTE:  OS << "<="; break;
148     case MCBinaryExpr::Mod:  OS <<  '%'; break;
149     case MCBinaryExpr::Mul:  OS <<  '*'; break;
150     case MCBinaryExpr::NE:   OS << "!="; break;
151     case MCBinaryExpr::Or:   OS <<  '|'; break;
152     case MCBinaryExpr::OrNot: OS << '!'; break;
153     case MCBinaryExpr::Shl:  OS << "<<"; break;
154     case MCBinaryExpr::Sub:  OS <<  '-'; break;
155     case MCBinaryExpr::Xor:  OS <<  '^'; break;
156     }
157 
158     // Only print parens around the LHS if it is non-trivial.
159     if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
160       BE.getRHS()->print(OS, MAI);
161     } else {
162       OS << '(';
163       BE.getRHS()->print(OS, MAI);
164       OS << ')';
165     }
166     return;
167   }
168   }
169 
170   llvm_unreachable("Invalid expression kind!");
171 }
172 
173 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
174 LLVM_DUMP_METHOD void MCExpr::dump() const {
175   dbgs() << *this;
176   dbgs() << '\n';
177 }
178 #endif
179 
180 /* *** */
181 
182 const MCBinaryExpr *MCBinaryExpr::create(Opcode Opc, const MCExpr *LHS,
183                                          const MCExpr *RHS, MCContext &Ctx,
184                                          SMLoc Loc) {
185   return new (Ctx) MCBinaryExpr(Opc, LHS, RHS, Loc);
186 }
187 
188 const MCUnaryExpr *MCUnaryExpr::create(Opcode Opc, const MCExpr *Expr,
189                                        MCContext &Ctx, SMLoc Loc) {
190   return new (Ctx) MCUnaryExpr(Opc, Expr, Loc);
191 }
192 
193 const MCConstantExpr *MCConstantExpr::create(int64_t Value, MCContext &Ctx,
194                                              bool PrintInHex,
195                                              unsigned SizeInBytes) {
196   return new (Ctx) MCConstantExpr(Value, PrintInHex, SizeInBytes);
197 }
198 
199 /* *** */
200 
201 MCSymbolRefExpr::MCSymbolRefExpr(const MCSymbol *Symbol, VariantKind Kind,
202                                  const MCAsmInfo *MAI, SMLoc Loc)
203     : MCExpr(MCExpr::SymbolRef, Loc,
204              encodeSubclassData(Kind, MAI->hasSubsectionsViaSymbols())),
205       Symbol(Symbol) {
206   assert(Symbol);
207 }
208 
209 const MCSymbolRefExpr *MCSymbolRefExpr::create(const MCSymbol *Sym,
210                                                VariantKind Kind,
211                                                MCContext &Ctx, SMLoc Loc) {
212   return new (Ctx) MCSymbolRefExpr(Sym, Kind, Ctx.getAsmInfo(), Loc);
213 }
214 
215 const MCSymbolRefExpr *MCSymbolRefExpr::create(StringRef Name, VariantKind Kind,
216                                                MCContext &Ctx) {
217   return create(Ctx.getOrCreateSymbol(Name), Kind, Ctx);
218 }
219 
220 StringRef MCSymbolRefExpr::getVariantKindName(VariantKind Kind) {
221   switch (Kind) {
222     // clang-format off
223   case VK_Invalid: return "<<invalid>>";
224   case VK_None: return "<<none>>";
225 
226   case VK_DTPOFF: return "DTPOFF";
227   case VK_DTPREL: return "DTPREL";
228   case VK_GOT: return "GOT";
229   case VK_GOTOFF: return "GOTOFF";
230   case VK_GOTREL: return "GOTREL";
231   case VK_PCREL: return "PCREL";
232   case VK_GOTPCREL: return "GOTPCREL";
233   case VK_GOTPCREL_NORELAX: return "GOTPCREL_NORELAX";
234   case VK_GOTTPOFF: return "GOTTPOFF";
235   case VK_GOTTPOFF_FDPIC: return "gottpoff_fdpic";
236   case VK_INDNTPOFF: return "INDNTPOFF";
237   case VK_NTPOFF: return "NTPOFF";
238   case VK_GOTNTPOFF: return "GOTNTPOFF";
239   case VK_PLT: return "PLT";
240   case VK_TLSGD: return "TLSGD";
241   case VK_TLSGD_FDPIC: return "tlsgd_fdpic";
242   case VK_TLSLD: return "TLSLD";
243   case VK_TLSLDM: return "TLSLDM";
244   case VK_TLSLDM_FDPIC: return "tlsldm_fdpic";
245   case VK_TPOFF: return "TPOFF";
246   case VK_TPREL: return "TPREL";
247   case VK_TLSCALL: return "tlscall";
248   case VK_TLSDESC: return "tlsdesc";
249   case VK_TLVP: return "TLVP";
250   case VK_TLVPPAGE: return "TLVPPAGE";
251   case VK_TLVPPAGEOFF: return "TLVPPAGEOFF";
252   case VK_PAGE: return "PAGE";
253   case VK_PAGEOFF: return "PAGEOFF";
254   case VK_GOTPAGE: return "GOTPAGE";
255   case VK_GOTPAGEOFF: return "GOTPAGEOFF";
256   case VK_SECREL: return "SECREL32";
257   case VK_SIZE: return "SIZE";
258   case VK_WEAKREF: return "WEAKREF";
259   case VK_FUNCDESC: return "FUNCDESC";
260   case VK_GOTFUNCDESC: return "GOTFUNCDESC";
261   case VK_GOTOFFFUNCDESC: return "GOTOFFFUNCDESC";
262   case VK_X86_ABS8: return "ABS8";
263   case VK_X86_PLTOFF: return "PLTOFF";
264   case VK_ARM_NONE: return "none";
265   case VK_ARM_GOT_PREL: return "GOT_PREL";
266   case VK_ARM_TARGET1: return "target1";
267   case VK_ARM_TARGET2: return "target2";
268   case VK_ARM_PREL31: return "prel31";
269   case VK_ARM_SBREL: return "sbrel";
270   case VK_ARM_TLSLDO: return "tlsldo";
271   case VK_ARM_TLSDESCSEQ: return "tlsdescseq";
272   case VK_AVR_NONE: return "none";
273   case VK_AVR_LO8: return "lo8";
274   case VK_AVR_HI8: return "hi8";
275   case VK_AVR_HLO8: return "hlo8";
276   case VK_AVR_DIFF8: return "diff8";
277   case VK_AVR_DIFF16: return "diff16";
278   case VK_AVR_DIFF32: return "diff32";
279   case VK_AVR_PM: return "pm";
280   case VK_PPC_LO: return "l";
281   case VK_PPC_HI: return "h";
282   case VK_PPC_HA: return "ha";
283   case VK_PPC_HIGH: return "high";
284   case VK_PPC_HIGHA: return "higha";
285   case VK_PPC_HIGHER: return "higher";
286   case VK_PPC_HIGHERA: return "highera";
287   case VK_PPC_HIGHEST: return "highest";
288   case VK_PPC_HIGHESTA: return "highesta";
289   case VK_PPC_GOT_LO: return "got@l";
290   case VK_PPC_GOT_HI: return "got@h";
291   case VK_PPC_GOT_HA: return "got@ha";
292   case VK_PPC_TOCBASE: return "tocbase";
293   case VK_PPC_TOC: return "toc";
294   case VK_PPC_TOC_LO: return "toc@l";
295   case VK_PPC_TOC_HI: return "toc@h";
296   case VK_PPC_TOC_HA: return "toc@ha";
297   case VK_PPC_U: return "u";
298   case VK_PPC_L: return "l";
299   case VK_PPC_DTPMOD: return "dtpmod";
300   case VK_PPC_TPREL_LO: return "tprel@l";
301   case VK_PPC_TPREL_HI: return "tprel@h";
302   case VK_PPC_TPREL_HA: return "tprel@ha";
303   case VK_PPC_TPREL_HIGH: return "tprel@high";
304   case VK_PPC_TPREL_HIGHA: return "tprel@higha";
305   case VK_PPC_TPREL_HIGHER: return "tprel@higher";
306   case VK_PPC_TPREL_HIGHERA: return "tprel@highera";
307   case VK_PPC_TPREL_HIGHEST: return "tprel@highest";
308   case VK_PPC_TPREL_HIGHESTA: return "tprel@highesta";
309   case VK_PPC_DTPREL_LO: return "dtprel@l";
310   case VK_PPC_DTPREL_HI: return "dtprel@h";
311   case VK_PPC_DTPREL_HA: return "dtprel@ha";
312   case VK_PPC_DTPREL_HIGH: return "dtprel@high";
313   case VK_PPC_DTPREL_HIGHA: return "dtprel@higha";
314   case VK_PPC_DTPREL_HIGHER: return "dtprel@higher";
315   case VK_PPC_DTPREL_HIGHERA: return "dtprel@highera";
316   case VK_PPC_DTPREL_HIGHEST: return "dtprel@highest";
317   case VK_PPC_DTPREL_HIGHESTA: return "dtprel@highesta";
318   case VK_PPC_GOT_TPREL: return "got@tprel";
319   case VK_PPC_GOT_TPREL_LO: return "got@tprel@l";
320   case VK_PPC_GOT_TPREL_HI: return "got@tprel@h";
321   case VK_PPC_GOT_TPREL_HA: return "got@tprel@ha";
322   case VK_PPC_GOT_DTPREL: return "got@dtprel";
323   case VK_PPC_GOT_DTPREL_LO: return "got@dtprel@l";
324   case VK_PPC_GOT_DTPREL_HI: return "got@dtprel@h";
325   case VK_PPC_GOT_DTPREL_HA: return "got@dtprel@ha";
326   case VK_PPC_TLS: return "tls";
327   case VK_PPC_GOT_TLSGD: return "got@tlsgd";
328   case VK_PPC_GOT_TLSGD_LO: return "got@tlsgd@l";
329   case VK_PPC_GOT_TLSGD_HI: return "got@tlsgd@h";
330   case VK_PPC_GOT_TLSGD_HA: return "got@tlsgd@ha";
331   case VK_PPC_TLSGD: return "tlsgd";
332   case VK_PPC_AIX_TLSGD:
333     return "gd";
334   case VK_PPC_AIX_TLSGDM:
335     return "m";
336   case VK_PPC_AIX_TLSIE:
337     return "ie";
338   case VK_PPC_AIX_TLSLE:
339     return "le";
340   case VK_PPC_AIX_TLSLD:
341     return "ld";
342   case VK_PPC_AIX_TLSML:
343     return "ml";
344   case VK_PPC_GOT_TLSLD: return "got@tlsld";
345   case VK_PPC_GOT_TLSLD_LO: return "got@tlsld@l";
346   case VK_PPC_GOT_TLSLD_HI: return "got@tlsld@h";
347   case VK_PPC_GOT_TLSLD_HA: return "got@tlsld@ha";
348   case VK_PPC_GOT_PCREL:
349     return "got@pcrel";
350   case VK_PPC_GOT_TLSGD_PCREL:
351     return "got@tlsgd@pcrel";
352   case VK_PPC_GOT_TLSLD_PCREL:
353     return "got@tlsld@pcrel";
354   case VK_PPC_GOT_TPREL_PCREL:
355     return "got@tprel@pcrel";
356   case VK_PPC_TLS_PCREL:
357     return "tls@pcrel";
358   case VK_PPC_TLSLD: return "tlsld";
359   case VK_PPC_LOCAL: return "local";
360   case VK_PPC_NOTOC: return "notoc";
361   case VK_PPC_PCREL_OPT: return "<<invalid>>";
362   case VK_COFF_IMGREL32: return "IMGREL";
363   case VK_Hexagon_LO16: return "LO16";
364   case VK_Hexagon_HI16: return "HI16";
365   case VK_Hexagon_GPREL: return "GPREL";
366   case VK_Hexagon_GD_GOT: return "GDGOT";
367   case VK_Hexagon_LD_GOT: return "LDGOT";
368   case VK_Hexagon_GD_PLT: return "GDPLT";
369   case VK_Hexagon_LD_PLT: return "LDPLT";
370   case VK_Hexagon_IE: return "IE";
371   case VK_Hexagon_IE_GOT: return "IEGOT";
372   case VK_WASM_TYPEINDEX: return "TYPEINDEX";
373   case VK_WASM_MBREL: return "MBREL";
374   case VK_WASM_TLSREL: return "TLSREL";
375   case VK_WASM_TBREL: return "TBREL";
376   case VK_WASM_GOT_TLS: return "GOT@TLS";
377   case VK_WASM_FUNCINDEX: return "FUNCINDEX";
378   case VK_AMDGPU_GOTPCREL32_LO: return "gotpcrel32@lo";
379   case VK_AMDGPU_GOTPCREL32_HI: return "gotpcrel32@hi";
380   case VK_AMDGPU_REL32_LO: return "rel32@lo";
381   case VK_AMDGPU_REL32_HI: return "rel32@hi";
382   case VK_AMDGPU_REL64: return "rel64";
383   case VK_AMDGPU_ABS32_LO: return "abs32@lo";
384   case VK_AMDGPU_ABS32_HI: return "abs32@hi";
385   case VK_VE_HI32: return "hi";
386   case VK_VE_LO32: return "lo";
387   case VK_VE_PC_HI32: return "pc_hi";
388   case VK_VE_PC_LO32: return "pc_lo";
389   case VK_VE_GOT_HI32: return "got_hi";
390   case VK_VE_GOT_LO32: return "got_lo";
391   case VK_VE_GOTOFF_HI32: return "gotoff_hi";
392   case VK_VE_GOTOFF_LO32: return "gotoff_lo";
393   case VK_VE_PLT_HI32: return "plt_hi";
394   case VK_VE_PLT_LO32: return "plt_lo";
395   case VK_VE_TLS_GD_HI32: return "tls_gd_hi";
396   case VK_VE_TLS_GD_LO32: return "tls_gd_lo";
397   case VK_VE_TPOFF_HI32: return "tpoff_hi";
398   case VK_VE_TPOFF_LO32: return "tpoff_lo";
399     // clang-format on
400   }
401   llvm_unreachable("Invalid variant kind");
402 }
403 
404 MCSymbolRefExpr::VariantKind
405 MCSymbolRefExpr::getVariantKindForName(StringRef Name) {
406   return StringSwitch<VariantKind>(Name.lower())
407     .Case("dtprel", VK_DTPREL)
408     .Case("dtpoff", VK_DTPOFF)
409     .Case("got", VK_GOT)
410     .Case("gotoff", VK_GOTOFF)
411     .Case("gotrel", VK_GOTREL)
412     .Case("pcrel", VK_PCREL)
413     .Case("gotpcrel", VK_GOTPCREL)
414     .Case("gotpcrel_norelax", VK_GOTPCREL_NORELAX)
415     .Case("gottpoff", VK_GOTTPOFF)
416     .Case("indntpoff", VK_INDNTPOFF)
417     .Case("ntpoff", VK_NTPOFF)
418     .Case("gotntpoff", VK_GOTNTPOFF)
419     .Case("plt", VK_PLT)
420     .Case("tlscall", VK_TLSCALL)
421     .Case("tlsdesc", VK_TLSDESC)
422     .Case("tlsgd", VK_TLSGD)
423     .Case("tlsld", VK_TLSLD)
424     .Case("tlsldm", VK_TLSLDM)
425     .Case("tpoff", VK_TPOFF)
426     .Case("tprel", VK_TPREL)
427     .Case("tlvp", VK_TLVP)
428     .Case("tlvppage", VK_TLVPPAGE)
429     .Case("tlvppageoff", VK_TLVPPAGEOFF)
430     .Case("page", VK_PAGE)
431     .Case("pageoff", VK_PAGEOFF)
432     .Case("gotpage", VK_GOTPAGE)
433     .Case("gotpageoff", VK_GOTPAGEOFF)
434     .Case("imgrel", VK_COFF_IMGREL32)
435     .Case("secrel32", VK_SECREL)
436     .Case("size", VK_SIZE)
437     .Case("abs8", VK_X86_ABS8)
438     .Case("pltoff", VK_X86_PLTOFF)
439     .Case("l", VK_PPC_LO)
440     .Case("h", VK_PPC_HI)
441     .Case("ha", VK_PPC_HA)
442     .Case("high", VK_PPC_HIGH)
443     .Case("higha", VK_PPC_HIGHA)
444     .Case("higher", VK_PPC_HIGHER)
445     .Case("highera", VK_PPC_HIGHERA)
446     .Case("highest", VK_PPC_HIGHEST)
447     .Case("highesta", VK_PPC_HIGHESTA)
448     .Case("got@l", VK_PPC_GOT_LO)
449     .Case("got@h", VK_PPC_GOT_HI)
450     .Case("got@ha", VK_PPC_GOT_HA)
451     .Case("local", VK_PPC_LOCAL)
452     .Case("tocbase", VK_PPC_TOCBASE)
453     .Case("toc", VK_PPC_TOC)
454     .Case("toc@l", VK_PPC_TOC_LO)
455     .Case("toc@h", VK_PPC_TOC_HI)
456     .Case("toc@ha", VK_PPC_TOC_HA)
457     .Case("u", VK_PPC_U)
458     .Case("l", VK_PPC_L)
459     .Case("tls", VK_PPC_TLS)
460     .Case("dtpmod", VK_PPC_DTPMOD)
461     .Case("tprel@l", VK_PPC_TPREL_LO)
462     .Case("tprel@h", VK_PPC_TPREL_HI)
463     .Case("tprel@ha", VK_PPC_TPREL_HA)
464     .Case("tprel@high", VK_PPC_TPREL_HIGH)
465     .Case("tprel@higha", VK_PPC_TPREL_HIGHA)
466     .Case("tprel@higher", VK_PPC_TPREL_HIGHER)
467     .Case("tprel@highera", VK_PPC_TPREL_HIGHERA)
468     .Case("tprel@highest", VK_PPC_TPREL_HIGHEST)
469     .Case("tprel@highesta", VK_PPC_TPREL_HIGHESTA)
470     .Case("dtprel@l", VK_PPC_DTPREL_LO)
471     .Case("dtprel@h", VK_PPC_DTPREL_HI)
472     .Case("dtprel@ha", VK_PPC_DTPREL_HA)
473     .Case("dtprel@high", VK_PPC_DTPREL_HIGH)
474     .Case("dtprel@higha", VK_PPC_DTPREL_HIGHA)
475     .Case("dtprel@higher", VK_PPC_DTPREL_HIGHER)
476     .Case("dtprel@highera", VK_PPC_DTPREL_HIGHERA)
477     .Case("dtprel@highest", VK_PPC_DTPREL_HIGHEST)
478     .Case("dtprel@highesta", VK_PPC_DTPREL_HIGHESTA)
479     .Case("got@tprel", VK_PPC_GOT_TPREL)
480     .Case("got@tprel@l", VK_PPC_GOT_TPREL_LO)
481     .Case("got@tprel@h", VK_PPC_GOT_TPREL_HI)
482     .Case("got@tprel@ha", VK_PPC_GOT_TPREL_HA)
483     .Case("got@dtprel", VK_PPC_GOT_DTPREL)
484     .Case("got@dtprel@l", VK_PPC_GOT_DTPREL_LO)
485     .Case("got@dtprel@h", VK_PPC_GOT_DTPREL_HI)
486     .Case("got@dtprel@ha", VK_PPC_GOT_DTPREL_HA)
487     .Case("got@tlsgd", VK_PPC_GOT_TLSGD)
488     .Case("got@tlsgd@l", VK_PPC_GOT_TLSGD_LO)
489     .Case("got@tlsgd@h", VK_PPC_GOT_TLSGD_HI)
490     .Case("got@tlsgd@ha", VK_PPC_GOT_TLSGD_HA)
491     .Case("got@tlsld", VK_PPC_GOT_TLSLD)
492     .Case("got@tlsld@l", VK_PPC_GOT_TLSLD_LO)
493     .Case("got@tlsld@h", VK_PPC_GOT_TLSLD_HI)
494     .Case("got@tlsld@ha", VK_PPC_GOT_TLSLD_HA)
495     .Case("got@pcrel", VK_PPC_GOT_PCREL)
496     .Case("got@tlsgd@pcrel", VK_PPC_GOT_TLSGD_PCREL)
497     .Case("got@tlsld@pcrel", VK_PPC_GOT_TLSLD_PCREL)
498     .Case("got@tprel@pcrel", VK_PPC_GOT_TPREL_PCREL)
499     .Case("tls@pcrel", VK_PPC_TLS_PCREL)
500     .Case("notoc", VK_PPC_NOTOC)
501     .Case("gdgot", VK_Hexagon_GD_GOT)
502     .Case("gdplt", VK_Hexagon_GD_PLT)
503     .Case("iegot", VK_Hexagon_IE_GOT)
504     .Case("ie", VK_Hexagon_IE)
505     .Case("ldgot", VK_Hexagon_LD_GOT)
506     .Case("ldplt", VK_Hexagon_LD_PLT)
507     .Case("lo8", VK_AVR_LO8)
508     .Case("hi8", VK_AVR_HI8)
509     .Case("hlo8", VK_AVR_HLO8)
510     .Case("typeindex", VK_WASM_TYPEINDEX)
511     .Case("tbrel", VK_WASM_TBREL)
512     .Case("mbrel", VK_WASM_MBREL)
513     .Case("tlsrel", VK_WASM_TLSREL)
514     .Case("got@tls", VK_WASM_GOT_TLS)
515     .Case("funcindex", VK_WASM_FUNCINDEX)
516     .Case("gotpcrel32@lo", VK_AMDGPU_GOTPCREL32_LO)
517     .Case("gotpcrel32@hi", VK_AMDGPU_GOTPCREL32_HI)
518     .Case("rel32@lo", VK_AMDGPU_REL32_LO)
519     .Case("rel32@hi", VK_AMDGPU_REL32_HI)
520     .Case("rel64", VK_AMDGPU_REL64)
521     .Case("abs32@lo", VK_AMDGPU_ABS32_LO)
522     .Case("abs32@hi", VK_AMDGPU_ABS32_HI)
523     .Case("hi", VK_VE_HI32)
524     .Case("lo", VK_VE_LO32)
525     .Case("pc_hi", VK_VE_PC_HI32)
526     .Case("pc_lo", VK_VE_PC_LO32)
527     .Case("got_hi", VK_VE_GOT_HI32)
528     .Case("got_lo", VK_VE_GOT_LO32)
529     .Case("gotoff_hi", VK_VE_GOTOFF_HI32)
530     .Case("gotoff_lo", VK_VE_GOTOFF_LO32)
531     .Case("plt_hi", VK_VE_PLT_HI32)
532     .Case("plt_lo", VK_VE_PLT_LO32)
533     .Case("tls_gd_hi", VK_VE_TLS_GD_HI32)
534     .Case("tls_gd_lo", VK_VE_TLS_GD_LO32)
535     .Case("tpoff_hi", VK_VE_TPOFF_HI32)
536     .Case("tpoff_lo", VK_VE_TPOFF_LO32)
537     .Default(VK_Invalid);
538 }
539 
540 /* *** */
541 
542 void MCTargetExpr::anchor() {}
543 
544 /* *** */
545 
546 bool MCExpr::evaluateAsAbsolute(int64_t &Res) const {
547   return evaluateAsAbsolute(Res, nullptr, nullptr, false);
548 }
549 
550 bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm,
551                                 const SectionAddrMap &Addrs) const {
552   // Setting InSet causes us to absolutize differences across sections and that
553   // is what the MachO writer uses Addrs for.
554   return evaluateAsAbsolute(Res, &Asm, &Addrs, true);
555 }
556 
557 bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm) const {
558   return evaluateAsAbsolute(Res, &Asm, nullptr, false);
559 }
560 
561 bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm) const {
562   return evaluateAsAbsolute(Res, Asm, nullptr, false);
563 }
564 
565 bool MCExpr::evaluateKnownAbsolute(int64_t &Res, const MCAssembler &Asm) const {
566   return evaluateAsAbsolute(Res, &Asm, nullptr, true);
567 }
568 
569 bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm,
570                                 const SectionAddrMap *Addrs, bool InSet) const {
571   MCValue Value;
572 
573   // Fast path constants.
574   if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(this)) {
575     Res = CE->getValue();
576     return true;
577   }
578 
579   bool IsRelocatable =
580       evaluateAsRelocatableImpl(Value, Asm, nullptr, Addrs, InSet);
581 
582   // Record the current value.
583   Res = Value.getConstant();
584 
585   return IsRelocatable && Value.isAbsolute();
586 }
587 
588 /// Helper method for \see EvaluateSymbolAdd().
589 static void AttemptToFoldSymbolOffsetDifference(
590     const MCAssembler *Asm, const SectionAddrMap *Addrs, bool InSet,
591     const MCSymbolRefExpr *&A, const MCSymbolRefExpr *&B, int64_t &Addend) {
592   if (!A || !B)
593     return;
594 
595   const MCSymbol &SA = A->getSymbol();
596   const MCSymbol &SB = B->getSymbol();
597 
598   if (SA.isUndefined() || SB.isUndefined())
599     return;
600 
601   if (!Asm->getWriter().isSymbolRefDifferenceFullyResolved(*Asm, A, B, InSet))
602     return;
603 
604   auto FinalizeFolding = [&]() {
605     // Pointers to Thumb symbols need to have their low-bit set to allow
606     // for interworking.
607     if (Asm->isThumbFunc(&SA))
608       Addend |= 1;
609 
610     // Clear the symbol expr pointers to indicate we have folded these
611     // operands.
612     A = B = nullptr;
613   };
614 
615   const MCFragment *FA = SA.getFragment();
616   const MCFragment *FB = SB.getFragment();
617   const MCSection &SecA = *FA->getParent();
618   const MCSection &SecB = *FB->getParent();
619   if ((&SecA != &SecB) && !Addrs)
620     return;
621 
622   // When layout is available, we can generally compute the difference using the
623   // getSymbolOffset path, which also avoids the possible slow fragment walk.
624   // However, linker relaxation may cause incorrect fold of A-B if A and B are
625   // separated by a linker-relaxable instruction. If the section contains
626   // instructions and InSet is false (not expressions in directive like
627   // .size/.fill), disable the fast path.
628   bool Layout = Asm->hasLayout();
629   if (Layout && (InSet || !SecA.hasInstructions() ||
630                  !(Asm->getContext().getTargetTriple().isRISCV() ||
631                    Asm->getContext().getTargetTriple().isLoongArch()))) {
632     // If both symbols are in the same fragment, return the difference of their
633     // offsets. canGetFragmentOffset(FA) may be false.
634     if (FA == FB && !SA.isVariable() && !SB.isVariable()) {
635       Addend += SA.getOffset() - SB.getOffset();
636       return FinalizeFolding();
637     }
638 
639     // Eagerly evaluate when layout is finalized.
640     Addend += Asm->getSymbolOffset(A->getSymbol()) -
641               Asm->getSymbolOffset(B->getSymbol());
642     if (Addrs && (&SecA != &SecB))
643       Addend += (Addrs->lookup(&SecA) - Addrs->lookup(&SecB));
644 
645     FinalizeFolding();
646   } else {
647     // When layout is not finalized, our ability to resolve differences between
648     // symbols is limited to specific cases where the fragments between two
649     // symbols (including the fragments the symbols are defined in) are
650     // fixed-size fragments so the difference can be calculated. For example,
651     // this is important when the Subtarget is changed and a new MCDataFragment
652     // is created in the case of foo: instr; .arch_extension ext; instr .if . -
653     // foo.
654     if (SA.isVariable() || SB.isVariable())
655       return;
656 
657     // Try to find a constant displacement from FA to FB, add the displacement
658     // between the offset in FA of SA and the offset in FB of SB.
659     bool Reverse = false;
660     if (FA == FB)
661       Reverse = SA.getOffset() < SB.getOffset();
662     else
663       Reverse = FA->getLayoutOrder() < FB->getLayoutOrder();
664 
665     uint64_t SAOffset = SA.getOffset(), SBOffset = SB.getOffset();
666     int64_t Displacement = SA.getOffset() - SB.getOffset();
667     if (Reverse) {
668       std::swap(FA, FB);
669       std::swap(SAOffset, SBOffset);
670       Displacement *= -1;
671     }
672 
673     // Track whether B is before a relaxable instruction and whether A is after
674     // a relaxable instruction. If SA and SB are separated by a linker-relaxable
675     // instruction, the difference cannot be resolved as it may be changed by
676     // the linker.
677     bool BBeforeRelax = false, AAfterRelax = false;
678     for (auto FI = FB; FI; FI = FI->getNext()) {
679       auto DF = dyn_cast<MCDataFragment>(FI);
680       if (DF && DF->isLinkerRelaxable()) {
681         if (&*FI != FB || SBOffset != DF->getContents().size())
682           BBeforeRelax = true;
683         if (&*FI != FA || SAOffset == DF->getContents().size())
684           AAfterRelax = true;
685         if (BBeforeRelax && AAfterRelax)
686           return;
687       }
688       if (&*FI == FA) {
689         // If FA and FB belong to the same subsection, the loop will find FA and
690         // we can resolve the difference.
691         Addend += Reverse ? -Displacement : Displacement;
692         FinalizeFolding();
693         return;
694       }
695 
696       int64_t Num;
697       unsigned Count;
698       if (DF) {
699         Displacement += DF->getContents().size();
700       } else if (auto *AF = dyn_cast<MCAlignFragment>(FI);
701                  AF && Layout && AF->hasEmitNops() &&
702                  !Asm->getBackend().shouldInsertExtraNopBytesForCodeAlign(
703                      *AF, Count)) {
704         Displacement += Asm->computeFragmentSize(*AF);
705       } else if (auto *FF = dyn_cast<MCFillFragment>(FI);
706                  FF && FF->getNumValues().evaluateAsAbsolute(Num)) {
707         Displacement += Num * FF->getValueSize();
708       } else {
709         return;
710       }
711     }
712   }
713 }
714 
715 /// Evaluate the result of an add between (conceptually) two MCValues.
716 ///
717 /// This routine conceptually attempts to construct an MCValue:
718 ///   Result = (Result_A - Result_B + Result_Cst)
719 /// from two MCValue's LHS and RHS where
720 ///   Result = LHS + RHS
721 /// and
722 ///   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
723 ///
724 /// This routine attempts to aggressively fold the operands such that the result
725 /// is representable in an MCValue, but may not always succeed.
726 ///
727 /// \returns True on success, false if the result is not representable in an
728 /// MCValue.
729 
730 /// NOTE: It is really important to have both the Asm and Layout arguments.
731 /// They might look redundant, but this function can be used before layout
732 /// is done (see the object streamer for example) and having the Asm argument
733 /// lets us avoid relaxations early.
734 static bool evaluateSymbolicAdd(const MCAssembler *Asm,
735                                 const SectionAddrMap *Addrs, bool InSet,
736                                 const MCValue &LHS, const MCValue &RHS,
737                                 MCValue &Res) {
738   // FIXME: This routine (and other evaluation parts) are *incredibly* sloppy
739   // about dealing with modifiers. This will ultimately bite us, one day.
740   const MCSymbolRefExpr *LHS_A = LHS.getSymA();
741   const MCSymbolRefExpr *LHS_B = LHS.getSymB();
742   int64_t LHS_Cst = LHS.getConstant();
743 
744   const MCSymbolRefExpr *RHS_A = RHS.getSymA();
745   const MCSymbolRefExpr *RHS_B = RHS.getSymB();
746   int64_t RHS_Cst = RHS.getConstant();
747 
748   if (LHS.getRefKind() != RHS.getRefKind())
749     return false;
750 
751   // Fold the result constant immediately.
752   int64_t Result_Cst = LHS_Cst + RHS_Cst;
753 
754   // If we have a layout, we can fold resolved differences.
755   if (Asm) {
756     // First, fold out any differences which are fully resolved. By
757     // reassociating terms in
758     //   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
759     // we have the four possible differences:
760     //   (LHS_A - LHS_B),
761     //   (LHS_A - RHS_B),
762     //   (RHS_A - LHS_B),
763     //   (RHS_A - RHS_B).
764     // Since we are attempting to be as aggressive as possible about folding, we
765     // attempt to evaluate each possible alternative.
766     AttemptToFoldSymbolOffsetDifference(Asm, Addrs, InSet, LHS_A, LHS_B,
767                                         Result_Cst);
768     AttemptToFoldSymbolOffsetDifference(Asm, Addrs, InSet, LHS_A, RHS_B,
769                                         Result_Cst);
770     AttemptToFoldSymbolOffsetDifference(Asm, Addrs, InSet, RHS_A, LHS_B,
771                                         Result_Cst);
772     AttemptToFoldSymbolOffsetDifference(Asm, Addrs, InSet, RHS_A, RHS_B,
773                                         Result_Cst);
774   }
775 
776   // We can't represent the addition or subtraction of two symbols.
777   if ((LHS_A && RHS_A) || (LHS_B && RHS_B))
778     return false;
779 
780   // At this point, we have at most one additive symbol and one subtractive
781   // symbol -- find them.
782   const MCSymbolRefExpr *A = LHS_A ? LHS_A : RHS_A;
783   const MCSymbolRefExpr *B = LHS_B ? LHS_B : RHS_B;
784 
785   Res = MCValue::get(A, B, Result_Cst);
786   return true;
787 }
788 
789 bool MCExpr::evaluateAsRelocatable(MCValue &Res, const MCAssembler *Asm,
790                                    const MCFixup *Fixup) const {
791   return evaluateAsRelocatableImpl(Res, Asm, Fixup, nullptr, false);
792 }
793 
794 bool MCExpr::evaluateAsValue(MCValue &Res, const MCAssembler &Asm) const {
795   return evaluateAsRelocatableImpl(Res, &Asm, nullptr, nullptr, true);
796 }
797 
798 static bool canExpand(const MCSymbol &Sym, bool InSet) {
799   if (Sym.isWeakExternal())
800     return false;
801 
802   const MCExpr *Expr = Sym.getVariableValue();
803   const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr);
804   if (Inner) {
805     if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF)
806       return false;
807   }
808 
809   if (InSet)
810     return true;
811   return !Sym.isInSection();
812 }
813 
814 bool MCExpr::evaluateAsRelocatableImpl(MCValue &Res, const MCAssembler *Asm,
815                                        const MCFixup *Fixup,
816                                        const SectionAddrMap *Addrs,
817                                        bool InSet) const {
818   ++stats::MCExprEvaluate;
819   switch (getKind()) {
820   case Target:
821     return cast<MCTargetExpr>(this)->evaluateAsRelocatableImpl(Res, Asm, Fixup);
822 
823   case Constant:
824     Res = MCValue::get(cast<MCConstantExpr>(this)->getValue());
825     return true;
826 
827   case SymbolRef: {
828     const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
829     const MCSymbol &Sym = SRE->getSymbol();
830     const auto Kind = SRE->getKind();
831     bool Layout = Asm && Asm->hasLayout();
832 
833     // Evaluate recursively if this is a variable.
834     if (Sym.isVariable() && (Kind == MCSymbolRefExpr::VK_None || Layout) &&
835         canExpand(Sym, InSet)) {
836       bool IsMachO = SRE->hasSubsectionsViaSymbols();
837       if (Sym.getVariableValue()->evaluateAsRelocatableImpl(
838               Res, Asm, Fixup, Addrs, InSet || IsMachO)) {
839         if (Kind != MCSymbolRefExpr::VK_None) {
840           if (Res.isAbsolute()) {
841             Res = MCValue::get(SRE, nullptr, 0);
842             return true;
843           }
844           // If the reference has a variant kind, we can only handle expressions
845           // which evaluate exactly to a single unadorned symbol. Attach the
846           // original VariantKind to SymA of the result.
847           if (Res.getRefKind() != MCSymbolRefExpr::VK_None || !Res.getSymA() ||
848               Res.getSymB() || Res.getConstant())
849             return false;
850           Res =
851               MCValue::get(MCSymbolRefExpr::create(&Res.getSymA()->getSymbol(),
852                                                    Kind, Asm->getContext()),
853                            Res.getSymB(), Res.getConstant(), Res.getRefKind());
854         }
855         if (!IsMachO)
856           return true;
857 
858         const MCSymbolRefExpr *A = Res.getSymA();
859         const MCSymbolRefExpr *B = Res.getSymB();
860         // FIXME: This is small hack. Given
861         // a = b + 4
862         // .long a
863         // the OS X assembler will completely drop the 4. We should probably
864         // include it in the relocation or produce an error if that is not
865         // possible.
866         // Allow constant expressions.
867         if (!A && !B)
868           return true;
869         // Allows aliases with zero offset.
870         if (Res.getConstant() == 0 && (!A || !B))
871           return true;
872       }
873     }
874 
875     Res = MCValue::get(SRE, nullptr, 0);
876     return true;
877   }
878 
879   case Unary: {
880     const MCUnaryExpr *AUE = cast<MCUnaryExpr>(this);
881     MCValue Value;
882 
883     if (!AUE->getSubExpr()->evaluateAsRelocatableImpl(Value, Asm, Fixup, Addrs,
884                                                       InSet))
885       return false;
886 
887     switch (AUE->getOpcode()) {
888     case MCUnaryExpr::LNot:
889       if (!Value.isAbsolute())
890         return false;
891       Res = MCValue::get(!Value.getConstant());
892       break;
893     case MCUnaryExpr::Minus:
894       /// -(a - b + const) ==> (b - a - const)
895       if (Value.getSymA() && !Value.getSymB())
896         return false;
897 
898       // The cast avoids undefined behavior if the constant is INT64_MIN.
899       Res = MCValue::get(Value.getSymB(), Value.getSymA(),
900                          -(uint64_t)Value.getConstant());
901       break;
902     case MCUnaryExpr::Not:
903       if (!Value.isAbsolute())
904         return false;
905       Res = MCValue::get(~Value.getConstant());
906       break;
907     case MCUnaryExpr::Plus:
908       Res = Value;
909       break;
910     }
911 
912     return true;
913   }
914 
915   case Binary: {
916     const MCBinaryExpr *ABE = cast<MCBinaryExpr>(this);
917     MCValue LHSValue, RHSValue;
918 
919     if (!ABE->getLHS()->evaluateAsRelocatableImpl(LHSValue, Asm, Fixup, Addrs,
920                                                   InSet) ||
921         !ABE->getRHS()->evaluateAsRelocatableImpl(RHSValue, Asm, Fixup, Addrs,
922                                                   InSet)) {
923       // Check if both are Target Expressions, see if we can compare them.
924       if (const MCTargetExpr *L = dyn_cast<MCTargetExpr>(ABE->getLHS())) {
925         if (const MCTargetExpr *R = dyn_cast<MCTargetExpr>(ABE->getRHS())) {
926           switch (ABE->getOpcode()) {
927           case MCBinaryExpr::EQ:
928             Res = MCValue::get(L->isEqualTo(R) ? -1 : 0);
929             return true;
930           case MCBinaryExpr::NE:
931             Res = MCValue::get(L->isEqualTo(R) ? 0 : -1);
932             return true;
933           default:
934             break;
935           }
936         }
937       }
938       return false;
939     }
940 
941     // We only support a few operations on non-constant expressions, handle
942     // those first.
943     if (!LHSValue.isAbsolute() || !RHSValue.isAbsolute()) {
944       switch (ABE->getOpcode()) {
945       default:
946         return false;
947       case MCBinaryExpr::Sub:
948         // Negate RHS and add.
949         // The cast avoids undefined behavior if the constant is INT64_MIN.
950         return evaluateSymbolicAdd(
951             Asm, Addrs, InSet, LHSValue,
952             MCValue::get(RHSValue.getSymB(), RHSValue.getSymA(),
953                          -(uint64_t)RHSValue.getConstant(),
954                          RHSValue.getRefKind()),
955             Res);
956 
957       case MCBinaryExpr::Add:
958         return evaluateSymbolicAdd(
959             Asm, Addrs, InSet, LHSValue,
960             MCValue::get(RHSValue.getSymA(), RHSValue.getSymB(),
961                          RHSValue.getConstant(), RHSValue.getRefKind()),
962             Res);
963       }
964     }
965 
966     // FIXME: We need target hooks for the evaluation. It may be limited in
967     // width, and gas defines the result of comparisons differently from
968     // Apple as.
969     int64_t LHS = LHSValue.getConstant(), RHS = RHSValue.getConstant();
970     int64_t Result = 0;
971     auto Op = ABE->getOpcode();
972     switch (Op) {
973     case MCBinaryExpr::AShr: Result = LHS >> RHS; break;
974     case MCBinaryExpr::Add:  Result = LHS + RHS; break;
975     case MCBinaryExpr::And:  Result = LHS & RHS; break;
976     case MCBinaryExpr::Div:
977     case MCBinaryExpr::Mod:
978       // Handle division by zero. gas just emits a warning and keeps going,
979       // we try to be stricter.
980       // FIXME: Currently the caller of this function has no way to understand
981       // we're bailing out because of 'division by zero'. Therefore, it will
982       // emit a 'expected relocatable expression' error. It would be nice to
983       // change this code to emit a better diagnostic.
984       if (RHS == 0)
985         return false;
986       if (ABE->getOpcode() == MCBinaryExpr::Div)
987         Result = LHS / RHS;
988       else
989         Result = LHS % RHS;
990       break;
991     case MCBinaryExpr::EQ:   Result = LHS == RHS; break;
992     case MCBinaryExpr::GT:   Result = LHS > RHS; break;
993     case MCBinaryExpr::GTE:  Result = LHS >= RHS; break;
994     case MCBinaryExpr::LAnd: Result = LHS && RHS; break;
995     case MCBinaryExpr::LOr:  Result = LHS || RHS; break;
996     case MCBinaryExpr::LShr: Result = uint64_t(LHS) >> uint64_t(RHS); break;
997     case MCBinaryExpr::LT:   Result = LHS < RHS; break;
998     case MCBinaryExpr::LTE:  Result = LHS <= RHS; break;
999     case MCBinaryExpr::Mul:  Result = LHS * RHS; break;
1000     case MCBinaryExpr::NE:   Result = LHS != RHS; break;
1001     case MCBinaryExpr::Or:   Result = LHS | RHS; break;
1002     case MCBinaryExpr::OrNot: Result = LHS | ~RHS; break;
1003     case MCBinaryExpr::Shl:  Result = uint64_t(LHS) << uint64_t(RHS); break;
1004     case MCBinaryExpr::Sub:  Result = LHS - RHS; break;
1005     case MCBinaryExpr::Xor:  Result = LHS ^ RHS; break;
1006     }
1007 
1008     switch (Op) {
1009     default:
1010       Res = MCValue::get(Result);
1011       break;
1012     case MCBinaryExpr::EQ:
1013     case MCBinaryExpr::GT:
1014     case MCBinaryExpr::GTE:
1015     case MCBinaryExpr::LT:
1016     case MCBinaryExpr::LTE:
1017     case MCBinaryExpr::NE:
1018       // A comparison operator returns a -1 if true and 0 if false.
1019       Res = MCValue::get(Result ? -1 : 0);
1020       break;
1021     }
1022 
1023     return true;
1024   }
1025   }
1026 
1027   llvm_unreachable("Invalid assembly expression kind!");
1028 }
1029 
1030 MCFragment *MCExpr::findAssociatedFragment() const {
1031   switch (getKind()) {
1032   case Target:
1033     // We never look through target specific expressions.
1034     return cast<MCTargetExpr>(this)->findAssociatedFragment();
1035 
1036   case Constant:
1037     return MCSymbol::AbsolutePseudoFragment;
1038 
1039   case SymbolRef: {
1040     const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
1041     const MCSymbol &Sym = SRE->getSymbol();
1042     return Sym.getFragment();
1043   }
1044 
1045   case Unary:
1046     return cast<MCUnaryExpr>(this)->getSubExpr()->findAssociatedFragment();
1047 
1048   case Binary: {
1049     const MCBinaryExpr *BE = cast<MCBinaryExpr>(this);
1050     MCFragment *LHS_F = BE->getLHS()->findAssociatedFragment();
1051     MCFragment *RHS_F = BE->getRHS()->findAssociatedFragment();
1052 
1053     // If either is absolute, return the other.
1054     if (LHS_F == MCSymbol::AbsolutePseudoFragment)
1055       return RHS_F;
1056     if (RHS_F == MCSymbol::AbsolutePseudoFragment)
1057       return LHS_F;
1058 
1059     // Not always correct, but probably the best we can do without more context.
1060     if (BE->getOpcode() == MCBinaryExpr::Sub)
1061       return MCSymbol::AbsolutePseudoFragment;
1062 
1063     // Otherwise, return the first non-null fragment.
1064     return LHS_F ? LHS_F : RHS_F;
1065   }
1066   }
1067 
1068   llvm_unreachable("Invalid assembly expression kind!");
1069 }
1070