1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/MC/MCAssembler.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Statistic.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Twine.h" 16 #include "llvm/MC/MCAsmBackend.h" 17 #include "llvm/MC/MCAsmInfo.h" 18 #include "llvm/MC/MCAsmLayout.h" 19 #include "llvm/MC/MCCodeEmitter.h" 20 #include "llvm/MC/MCCodeView.h" 21 #include "llvm/MC/MCContext.h" 22 #include "llvm/MC/MCDwarf.h" 23 #include "llvm/MC/MCExpr.h" 24 #include "llvm/MC/MCFixup.h" 25 #include "llvm/MC/MCFixupKindInfo.h" 26 #include "llvm/MC/MCFragment.h" 27 #include "llvm/MC/MCInst.h" 28 #include "llvm/MC/MCObjectWriter.h" 29 #include "llvm/MC/MCSection.h" 30 #include "llvm/MC/MCSymbol.h" 31 #include "llvm/MC/MCValue.h" 32 #include "llvm/Support/Alignment.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/EndianStream.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/LEB128.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <cassert> 40 #include <cstdint> 41 #include <tuple> 42 #include <utility> 43 44 using namespace llvm; 45 46 namespace llvm { 47 class MCSubtargetInfo; 48 } 49 50 #define DEBUG_TYPE "assembler" 51 52 namespace { 53 namespace stats { 54 55 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total"); 56 STATISTIC(EmittedRelaxableFragments, 57 "Number of emitted assembler fragments - relaxable"); 58 STATISTIC(EmittedDataFragments, 59 "Number of emitted assembler fragments - data"); 60 STATISTIC(EmittedCompactEncodedInstFragments, 61 "Number of emitted assembler fragments - compact encoded inst"); 62 STATISTIC(EmittedAlignFragments, 63 "Number of emitted assembler fragments - align"); 64 STATISTIC(EmittedFillFragments, 65 "Number of emitted assembler fragments - fill"); 66 STATISTIC(EmittedNopsFragments, "Number of emitted assembler fragments - nops"); 67 STATISTIC(EmittedOrgFragments, "Number of emitted assembler fragments - org"); 68 STATISTIC(evaluateFixup, "Number of evaluated fixups"); 69 STATISTIC(FragmentLayouts, "Number of fragment layouts"); 70 STATISTIC(ObjectBytes, "Number of emitted object file bytes"); 71 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps"); 72 STATISTIC(RelaxedInstructions, "Number of relaxed instructions"); 73 74 } // end namespace stats 75 } // end anonymous namespace 76 77 // FIXME FIXME FIXME: There are number of places in this file where we convert 78 // what is a 64-bit assembler value used for computation into a value in the 79 // object file, which may truncate it. We should detect that truncation where 80 // invalid and report errors back. 81 82 /* *** */ 83 84 MCAssembler::MCAssembler(MCContext &Context, 85 std::unique_ptr<MCAsmBackend> Backend, 86 std::unique_ptr<MCCodeEmitter> Emitter, 87 std::unique_ptr<MCObjectWriter> Writer) 88 : Context(Context), Backend(std::move(Backend)), 89 Emitter(std::move(Emitter)), Writer(std::move(Writer)), 90 BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false), 91 IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) { 92 VersionInfo.Major = 0; // Major version == 0 for "none specified" 93 DarwinTargetVariantVersionInfo.Major = 0; 94 } 95 96 MCAssembler::~MCAssembler() = default; 97 98 void MCAssembler::reset() { 99 Sections.clear(); 100 Symbols.clear(); 101 IndirectSymbols.clear(); 102 DataRegions.clear(); 103 LinkerOptions.clear(); 104 FileNames.clear(); 105 ThumbFuncs.clear(); 106 BundleAlignSize = 0; 107 RelaxAll = false; 108 SubsectionsViaSymbols = false; 109 IncrementalLinkerCompatible = false; 110 ELFHeaderEFlags = 0; 111 LOHContainer.reset(); 112 VersionInfo.Major = 0; 113 VersionInfo.SDKVersion = VersionTuple(); 114 DarwinTargetVariantVersionInfo.Major = 0; 115 DarwinTargetVariantVersionInfo.SDKVersion = VersionTuple(); 116 117 // reset objects owned by us 118 if (getBackendPtr()) 119 getBackendPtr()->reset(); 120 if (getEmitterPtr()) 121 getEmitterPtr()->reset(); 122 if (getWriterPtr()) 123 getWriterPtr()->reset(); 124 getLOHContainer().reset(); 125 } 126 127 bool MCAssembler::registerSection(MCSection &Section) { 128 if (Section.isRegistered()) 129 return false; 130 Sections.push_back(&Section); 131 Section.setIsRegistered(true); 132 return true; 133 } 134 135 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const { 136 if (ThumbFuncs.count(Symbol)) 137 return true; 138 139 if (!Symbol->isVariable()) 140 return false; 141 142 const MCExpr *Expr = Symbol->getVariableValue(); 143 144 MCValue V; 145 if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr)) 146 return false; 147 148 if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None) 149 return false; 150 151 const MCSymbolRefExpr *Ref = V.getSymA(); 152 if (!Ref) 153 return false; 154 155 if (Ref->getKind() != MCSymbolRefExpr::VK_None) 156 return false; 157 158 const MCSymbol &Sym = Ref->getSymbol(); 159 if (!isThumbFunc(&Sym)) 160 return false; 161 162 ThumbFuncs.insert(Symbol); // Cache it. 163 return true; 164 } 165 166 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const { 167 // Non-temporary labels should always be visible to the linker. 168 if (!Symbol.isTemporary()) 169 return true; 170 171 if (Symbol.isUsedInReloc()) 172 return true; 173 174 return false; 175 } 176 177 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const { 178 // Linker visible symbols define atoms. 179 if (isSymbolLinkerVisible(S)) 180 return &S; 181 182 // Absolute and undefined symbols have no defining atom. 183 if (!S.isInSection()) 184 return nullptr; 185 186 // Non-linker visible symbols in sections which can't be atomized have no 187 // defining atom. 188 if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols( 189 *S.getFragment()->getParent())) 190 return nullptr; 191 192 // Otherwise, return the atom for the containing fragment. 193 return S.getFragment()->getAtom(); 194 } 195 196 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout, 197 const MCFixup &Fixup, const MCFragment *DF, 198 MCValue &Target, uint64_t &Value, 199 bool &WasForced) const { 200 ++stats::evaluateFixup; 201 202 // FIXME: This code has some duplication with recordRelocation. We should 203 // probably merge the two into a single callback that tries to evaluate a 204 // fixup and records a relocation if one is needed. 205 206 // On error claim to have completely evaluated the fixup, to prevent any 207 // further processing from being done. 208 const MCExpr *Expr = Fixup.getValue(); 209 MCContext &Ctx = getContext(); 210 Value = 0; 211 WasForced = false; 212 if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) { 213 Ctx.reportError(Fixup.getLoc(), "expected relocatable expression"); 214 return true; 215 } 216 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 217 if (RefB->getKind() != MCSymbolRefExpr::VK_None) { 218 Ctx.reportError(Fixup.getLoc(), 219 "unsupported subtraction of qualified symbol"); 220 return true; 221 } 222 } 223 224 assert(getBackendPtr() && "Expected assembler backend"); 225 bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags & 226 MCFixupKindInfo::FKF_IsTarget; 227 228 if (IsTarget) 229 return getBackend().evaluateTargetFixup(*this, Layout, Fixup, DF, Target, 230 Value, WasForced); 231 232 unsigned FixupFlags = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags; 233 bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags & 234 MCFixupKindInfo::FKF_IsPCRel; 235 236 bool IsResolved = false; 237 if (IsPCRel) { 238 if (Target.getSymB()) { 239 IsResolved = false; 240 } else if (!Target.getSymA()) { 241 IsResolved = false; 242 } else { 243 const MCSymbolRefExpr *A = Target.getSymA(); 244 const MCSymbol &SA = A->getSymbol(); 245 if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) { 246 IsResolved = false; 247 } else if (auto *Writer = getWriterPtr()) { 248 IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) || 249 Writer->isSymbolRefDifferenceFullyResolvedImpl( 250 *this, SA, *DF, false, true); 251 } 252 } 253 } else { 254 IsResolved = Target.isAbsolute(); 255 } 256 257 Value = Target.getConstant(); 258 259 if (const MCSymbolRefExpr *A = Target.getSymA()) { 260 const MCSymbol &Sym = A->getSymbol(); 261 if (Sym.isDefined()) 262 Value += Layout.getSymbolOffset(Sym); 263 } 264 if (const MCSymbolRefExpr *B = Target.getSymB()) { 265 const MCSymbol &Sym = B->getSymbol(); 266 if (Sym.isDefined()) 267 Value -= Layout.getSymbolOffset(Sym); 268 } 269 270 bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags & 271 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits; 272 assert((ShouldAlignPC ? IsPCRel : true) && 273 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!"); 274 275 if (IsPCRel) { 276 uint64_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset(); 277 278 // A number of ARM fixups in Thumb mode require that the effective PC 279 // address be determined as the 32-bit aligned version of the actual offset. 280 if (ShouldAlignPC) Offset &= ~0x3; 281 Value -= Offset; 282 } 283 284 // Let the backend force a relocation if needed. 285 if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) { 286 IsResolved = false; 287 WasForced = true; 288 } 289 290 // A linker relaxation target may emit ADD/SUB relocations for A-B+C. Let 291 // recordRelocation handle non-VK_None cases like A@plt-B+C. 292 if (!IsResolved && Target.getSymA() && Target.getSymB() && 293 Target.getSymA()->getKind() == MCSymbolRefExpr::VK_None && 294 getBackend().handleAddSubRelocations(Layout, *DF, Fixup, Target, Value)) 295 return true; 296 297 return IsResolved; 298 } 299 300 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout, 301 const MCFragment &F) const { 302 assert(getBackendPtr() && "Requires assembler backend"); 303 switch (F.getKind()) { 304 case MCFragment::FT_Data: 305 return cast<MCDataFragment>(F).getContents().size(); 306 case MCFragment::FT_Relaxable: 307 return cast<MCRelaxableFragment>(F).getContents().size(); 308 case MCFragment::FT_CompactEncodedInst: 309 return cast<MCCompactEncodedInstFragment>(F).getContents().size(); 310 case MCFragment::FT_Fill: { 311 auto &FF = cast<MCFillFragment>(F); 312 int64_t NumValues = 0; 313 if (!FF.getNumValues().evaluateKnownAbsolute(NumValues, Layout)) { 314 getContext().reportError(FF.getLoc(), 315 "expected assembly-time absolute expression"); 316 return 0; 317 } 318 int64_t Size = NumValues * FF.getValueSize(); 319 if (Size < 0) { 320 getContext().reportError(FF.getLoc(), "invalid number of bytes"); 321 return 0; 322 } 323 return Size; 324 } 325 326 case MCFragment::FT_Nops: 327 return cast<MCNopsFragment>(F).getNumBytes(); 328 329 case MCFragment::FT_LEB: 330 return cast<MCLEBFragment>(F).getContents().size(); 331 332 case MCFragment::FT_BoundaryAlign: 333 return cast<MCBoundaryAlignFragment>(F).getSize(); 334 335 case MCFragment::FT_SymbolId: 336 return 4; 337 338 case MCFragment::FT_Align: { 339 const MCAlignFragment &AF = cast<MCAlignFragment>(F); 340 unsigned Offset = Layout.getFragmentOffset(&AF); 341 unsigned Size = offsetToAlignment(Offset, AF.getAlignment()); 342 343 // Insert extra Nops for code alignment if the target define 344 // shouldInsertExtraNopBytesForCodeAlign target hook. 345 if (AF.getParent()->useCodeAlign() && AF.hasEmitNops() && 346 getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size)) 347 return Size; 348 349 // If we are padding with nops, force the padding to be larger than the 350 // minimum nop size. 351 if (Size > 0 && AF.hasEmitNops()) { 352 while (Size % getBackend().getMinimumNopSize()) 353 Size += AF.getAlignment().value(); 354 } 355 if (Size > AF.getMaxBytesToEmit()) 356 return 0; 357 return Size; 358 } 359 360 case MCFragment::FT_Org: { 361 const MCOrgFragment &OF = cast<MCOrgFragment>(F); 362 MCValue Value; 363 if (!OF.getOffset().evaluateAsValue(Value, Layout)) { 364 getContext().reportError(OF.getLoc(), 365 "expected assembly-time absolute expression"); 366 return 0; 367 } 368 369 uint64_t FragmentOffset = Layout.getFragmentOffset(&OF); 370 int64_t TargetLocation = Value.getConstant(); 371 if (const MCSymbolRefExpr *A = Value.getSymA()) { 372 uint64_t Val; 373 if (!Layout.getSymbolOffset(A->getSymbol(), Val)) { 374 getContext().reportError(OF.getLoc(), "expected absolute expression"); 375 return 0; 376 } 377 TargetLocation += Val; 378 } 379 int64_t Size = TargetLocation - FragmentOffset; 380 if (Size < 0 || Size >= 0x40000000) { 381 getContext().reportError( 382 OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) + 383 "' (at offset '" + Twine(FragmentOffset) + "')"); 384 return 0; 385 } 386 return Size; 387 } 388 389 case MCFragment::FT_Dwarf: 390 return cast<MCDwarfLineAddrFragment>(F).getContents().size(); 391 case MCFragment::FT_DwarfFrame: 392 return cast<MCDwarfCallFrameFragment>(F).getContents().size(); 393 case MCFragment::FT_CVInlineLines: 394 return cast<MCCVInlineLineTableFragment>(F).getContents().size(); 395 case MCFragment::FT_CVDefRange: 396 return cast<MCCVDefRangeFragment>(F).getContents().size(); 397 case MCFragment::FT_PseudoProbe: 398 return cast<MCPseudoProbeAddrFragment>(F).getContents().size(); 399 case MCFragment::FT_Dummy: 400 llvm_unreachable("Should not have been added"); 401 } 402 403 llvm_unreachable("invalid fragment kind"); 404 } 405 406 void MCAsmLayout::layoutFragment(MCFragment *F) { 407 MCFragment *Prev = F->getPrevNode(); 408 409 // We should never try to recompute something which is valid. 410 assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!"); 411 // We should never try to compute the fragment layout if its predecessor 412 // isn't valid. 413 assert((!Prev || isFragmentValid(Prev)) && 414 "Attempt to compute fragment before its predecessor!"); 415 416 assert(!F->IsBeingLaidOut && "Already being laid out!"); 417 F->IsBeingLaidOut = true; 418 419 ++stats::FragmentLayouts; 420 421 // Compute fragment offset and size. 422 if (Prev) 423 F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev); 424 else 425 F->Offset = 0; 426 F->IsBeingLaidOut = false; 427 LastValidFragment[F->getParent()] = F; 428 429 // If bundling is enabled and this fragment has instructions in it, it has to 430 // obey the bundling restrictions. With padding, we'll have: 431 // 432 // 433 // BundlePadding 434 // ||| 435 // ------------------------------------- 436 // Prev |##########| F | 437 // ------------------------------------- 438 // ^ 439 // | 440 // F->Offset 441 // 442 // The fragment's offset will point to after the padding, and its computed 443 // size won't include the padding. 444 // 445 // When the -mc-relax-all flag is used, we optimize bundling by writting the 446 // padding directly into fragments when the instructions are emitted inside 447 // the streamer. When the fragment is larger than the bundle size, we need to 448 // ensure that it's bundle aligned. This means that if we end up with 449 // multiple fragments, we must emit bundle padding between fragments. 450 // 451 // ".align N" is an example of a directive that introduces multiple 452 // fragments. We could add a special case to handle ".align N" by emitting 453 // within-fragment padding (which would produce less padding when N is less 454 // than the bundle size), but for now we don't. 455 // 456 if (Assembler.isBundlingEnabled() && F->hasInstructions()) { 457 assert(isa<MCEncodedFragment>(F) && 458 "Only MCEncodedFragment implementations have instructions"); 459 MCEncodedFragment *EF = cast<MCEncodedFragment>(F); 460 uint64_t FSize = Assembler.computeFragmentSize(*this, *EF); 461 462 if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize()) 463 report_fatal_error("Fragment can't be larger than a bundle size"); 464 465 uint64_t RequiredBundlePadding = 466 computeBundlePadding(Assembler, EF, EF->Offset, FSize); 467 if (RequiredBundlePadding > UINT8_MAX) 468 report_fatal_error("Padding cannot exceed 255 bytes"); 469 EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding)); 470 EF->Offset += RequiredBundlePadding; 471 } 472 } 473 474 bool MCAssembler::registerSymbol(const MCSymbol &Symbol) { 475 bool Changed = !Symbol.isRegistered(); 476 if (Changed) { 477 Symbol.setIsRegistered(true); 478 Symbols.push_back(&Symbol); 479 } 480 return Changed; 481 } 482 483 void MCAssembler::writeFragmentPadding(raw_ostream &OS, 484 const MCEncodedFragment &EF, 485 uint64_t FSize) const { 486 assert(getBackendPtr() && "Expected assembler backend"); 487 // Should NOP padding be written out before this fragment? 488 unsigned BundlePadding = EF.getBundlePadding(); 489 if (BundlePadding > 0) { 490 assert(isBundlingEnabled() && 491 "Writing bundle padding with disabled bundling"); 492 assert(EF.hasInstructions() && 493 "Writing bundle padding for a fragment without instructions"); 494 495 unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize); 496 const MCSubtargetInfo *STI = EF.getSubtargetInfo(); 497 if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) { 498 // If the padding itself crosses a bundle boundary, it must be emitted 499 // in 2 pieces, since even nop instructions must not cross boundaries. 500 // v--------------v <- BundleAlignSize 501 // v---------v <- BundlePadding 502 // ---------------------------- 503 // | Prev |####|####| F | 504 // ---------------------------- 505 // ^-------------------^ <- TotalLength 506 unsigned DistanceToBoundary = TotalLength - getBundleAlignSize(); 507 if (!getBackend().writeNopData(OS, DistanceToBoundary, STI)) 508 report_fatal_error("unable to write NOP sequence of " + 509 Twine(DistanceToBoundary) + " bytes"); 510 BundlePadding -= DistanceToBoundary; 511 } 512 if (!getBackend().writeNopData(OS, BundlePadding, STI)) 513 report_fatal_error("unable to write NOP sequence of " + 514 Twine(BundlePadding) + " bytes"); 515 } 516 } 517 518 /// Write the fragment \p F to the output file. 519 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm, 520 const MCAsmLayout &Layout, const MCFragment &F) { 521 // FIXME: Embed in fragments instead? 522 uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F); 523 524 support::endianness Endian = Asm.getBackend().Endian; 525 526 if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F)) 527 Asm.writeFragmentPadding(OS, *EF, FragmentSize); 528 529 // This variable (and its dummy usage) is to participate in the assert at 530 // the end of the function. 531 uint64_t Start = OS.tell(); 532 (void) Start; 533 534 ++stats::EmittedFragments; 535 536 switch (F.getKind()) { 537 case MCFragment::FT_Align: { 538 ++stats::EmittedAlignFragments; 539 const MCAlignFragment &AF = cast<MCAlignFragment>(F); 540 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!"); 541 542 uint64_t Count = FragmentSize / AF.getValueSize(); 543 544 // FIXME: This error shouldn't actually occur (the front end should emit 545 // multiple .align directives to enforce the semantics it wants), but is 546 // severe enough that we want to report it. How to handle this? 547 if (Count * AF.getValueSize() != FragmentSize) 548 report_fatal_error("undefined .align directive, value size '" + 549 Twine(AF.getValueSize()) + 550 "' is not a divisor of padding size '" + 551 Twine(FragmentSize) + "'"); 552 553 // See if we are aligning with nops, and if so do that first to try to fill 554 // the Count bytes. Then if that did not fill any bytes or there are any 555 // bytes left to fill use the Value and ValueSize to fill the rest. 556 // If we are aligning with nops, ask that target to emit the right data. 557 if (AF.hasEmitNops()) { 558 if (!Asm.getBackend().writeNopData(OS, Count, AF.getSubtargetInfo())) 559 report_fatal_error("unable to write nop sequence of " + 560 Twine(Count) + " bytes"); 561 break; 562 } 563 564 // Otherwise, write out in multiples of the value size. 565 for (uint64_t i = 0; i != Count; ++i) { 566 switch (AF.getValueSize()) { 567 default: llvm_unreachable("Invalid size!"); 568 case 1: OS << char(AF.getValue()); break; 569 case 2: 570 support::endian::write<uint16_t>(OS, AF.getValue(), Endian); 571 break; 572 case 4: 573 support::endian::write<uint32_t>(OS, AF.getValue(), Endian); 574 break; 575 case 8: 576 support::endian::write<uint64_t>(OS, AF.getValue(), Endian); 577 break; 578 } 579 } 580 break; 581 } 582 583 case MCFragment::FT_Data: 584 ++stats::EmittedDataFragments; 585 OS << cast<MCDataFragment>(F).getContents(); 586 break; 587 588 case MCFragment::FT_Relaxable: 589 ++stats::EmittedRelaxableFragments; 590 OS << cast<MCRelaxableFragment>(F).getContents(); 591 break; 592 593 case MCFragment::FT_CompactEncodedInst: 594 ++stats::EmittedCompactEncodedInstFragments; 595 OS << cast<MCCompactEncodedInstFragment>(F).getContents(); 596 break; 597 598 case MCFragment::FT_Fill: { 599 ++stats::EmittedFillFragments; 600 const MCFillFragment &FF = cast<MCFillFragment>(F); 601 uint64_t V = FF.getValue(); 602 unsigned VSize = FF.getValueSize(); 603 const unsigned MaxChunkSize = 16; 604 char Data[MaxChunkSize]; 605 assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size"); 606 // Duplicate V into Data as byte vector to reduce number of 607 // writes done. As such, do endian conversion here. 608 for (unsigned I = 0; I != VSize; ++I) { 609 unsigned index = Endian == support::little ? I : (VSize - I - 1); 610 Data[I] = uint8_t(V >> (index * 8)); 611 } 612 for (unsigned I = VSize; I < MaxChunkSize; ++I) 613 Data[I] = Data[I - VSize]; 614 615 // Set to largest multiple of VSize in Data. 616 const unsigned NumPerChunk = MaxChunkSize / VSize; 617 // Set ChunkSize to largest multiple of VSize in Data 618 const unsigned ChunkSize = VSize * NumPerChunk; 619 620 // Do copies by chunk. 621 StringRef Ref(Data, ChunkSize); 622 for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I) 623 OS << Ref; 624 625 // do remainder if needed. 626 unsigned TrailingCount = FragmentSize % ChunkSize; 627 if (TrailingCount) 628 OS.write(Data, TrailingCount); 629 break; 630 } 631 632 case MCFragment::FT_Nops: { 633 ++stats::EmittedNopsFragments; 634 const MCNopsFragment &NF = cast<MCNopsFragment>(F); 635 636 int64_t NumBytes = NF.getNumBytes(); 637 int64_t ControlledNopLength = NF.getControlledNopLength(); 638 int64_t MaximumNopLength = 639 Asm.getBackend().getMaximumNopSize(*NF.getSubtargetInfo()); 640 641 assert(NumBytes > 0 && "Expected positive NOPs fragment size"); 642 assert(ControlledNopLength >= 0 && "Expected non-negative NOP size"); 643 644 if (ControlledNopLength > MaximumNopLength) { 645 Asm.getContext().reportError(NF.getLoc(), 646 "illegal NOP size " + 647 std::to_string(ControlledNopLength) + 648 ". (expected within [0, " + 649 std::to_string(MaximumNopLength) + "])"); 650 // Clamp the NOP length as reportError does not stop the execution 651 // immediately. 652 ControlledNopLength = MaximumNopLength; 653 } 654 655 // Use maximum value if the size of each NOP is not specified 656 if (!ControlledNopLength) 657 ControlledNopLength = MaximumNopLength; 658 659 while (NumBytes) { 660 uint64_t NumBytesToEmit = 661 (uint64_t)std::min(NumBytes, ControlledNopLength); 662 assert(NumBytesToEmit && "try to emit empty NOP instruction"); 663 if (!Asm.getBackend().writeNopData(OS, NumBytesToEmit, 664 NF.getSubtargetInfo())) { 665 report_fatal_error("unable to write nop sequence of the remaining " + 666 Twine(NumBytesToEmit) + " bytes"); 667 break; 668 } 669 NumBytes -= NumBytesToEmit; 670 } 671 break; 672 } 673 674 case MCFragment::FT_LEB: { 675 const MCLEBFragment &LF = cast<MCLEBFragment>(F); 676 OS << LF.getContents(); 677 break; 678 } 679 680 case MCFragment::FT_BoundaryAlign: { 681 const MCBoundaryAlignFragment &BF = cast<MCBoundaryAlignFragment>(F); 682 if (!Asm.getBackend().writeNopData(OS, FragmentSize, BF.getSubtargetInfo())) 683 report_fatal_error("unable to write nop sequence of " + 684 Twine(FragmentSize) + " bytes"); 685 break; 686 } 687 688 case MCFragment::FT_SymbolId: { 689 const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F); 690 support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian); 691 break; 692 } 693 694 case MCFragment::FT_Org: { 695 ++stats::EmittedOrgFragments; 696 const MCOrgFragment &OF = cast<MCOrgFragment>(F); 697 698 for (uint64_t i = 0, e = FragmentSize; i != e; ++i) 699 OS << char(OF.getValue()); 700 701 break; 702 } 703 704 case MCFragment::FT_Dwarf: { 705 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F); 706 OS << OF.getContents(); 707 break; 708 } 709 case MCFragment::FT_DwarfFrame: { 710 const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F); 711 OS << CF.getContents(); 712 break; 713 } 714 case MCFragment::FT_CVInlineLines: { 715 const auto &OF = cast<MCCVInlineLineTableFragment>(F); 716 OS << OF.getContents(); 717 break; 718 } 719 case MCFragment::FT_CVDefRange: { 720 const auto &DRF = cast<MCCVDefRangeFragment>(F); 721 OS << DRF.getContents(); 722 break; 723 } 724 case MCFragment::FT_PseudoProbe: { 725 const MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(F); 726 OS << PF.getContents(); 727 break; 728 } 729 case MCFragment::FT_Dummy: 730 llvm_unreachable("Should not have been added"); 731 } 732 733 assert(OS.tell() - Start == FragmentSize && 734 "The stream should advance by fragment size"); 735 } 736 737 void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec, 738 const MCAsmLayout &Layout) const { 739 assert(getBackendPtr() && "Expected assembler backend"); 740 741 // Ignore virtual sections. 742 if (Sec->isVirtualSection()) { 743 assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!"); 744 745 // Check that contents are only things legal inside a virtual section. 746 for (const MCFragment &F : *Sec) { 747 switch (F.getKind()) { 748 default: llvm_unreachable("Invalid fragment in virtual section!"); 749 case MCFragment::FT_Data: { 750 // Check that we aren't trying to write a non-zero contents (or fixups) 751 // into a virtual section. This is to support clients which use standard 752 // directives to fill the contents of virtual sections. 753 const MCDataFragment &DF = cast<MCDataFragment>(F); 754 if (DF.fixup_begin() != DF.fixup_end()) 755 getContext().reportError(SMLoc(), Sec->getVirtualSectionKind() + 756 " section '" + Sec->getName() + 757 "' cannot have fixups"); 758 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i) 759 if (DF.getContents()[i]) { 760 getContext().reportError(SMLoc(), 761 Sec->getVirtualSectionKind() + 762 " section '" + Sec->getName() + 763 "' cannot have non-zero initializers"); 764 break; 765 } 766 break; 767 } 768 case MCFragment::FT_Align: 769 // Check that we aren't trying to write a non-zero value into a virtual 770 // section. 771 assert((cast<MCAlignFragment>(F).getValueSize() == 0 || 772 cast<MCAlignFragment>(F).getValue() == 0) && 773 "Invalid align in virtual section!"); 774 break; 775 case MCFragment::FT_Fill: 776 assert((cast<MCFillFragment>(F).getValue() == 0) && 777 "Invalid fill in virtual section!"); 778 break; 779 case MCFragment::FT_Org: 780 break; 781 } 782 } 783 784 return; 785 } 786 787 uint64_t Start = OS.tell(); 788 (void)Start; 789 790 for (const MCFragment &F : *Sec) 791 writeFragment(OS, *this, Layout, F); 792 793 assert(getContext().hadError() || 794 OS.tell() - Start == Layout.getSectionAddressSize(Sec)); 795 } 796 797 std::tuple<MCValue, uint64_t, bool> 798 MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F, 799 const MCFixup &Fixup) { 800 // Evaluate the fixup. 801 MCValue Target; 802 uint64_t FixedValue; 803 bool WasForced; 804 bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue, 805 WasForced); 806 if (!IsResolved) { 807 // The fixup was unresolved, we need a relocation. Inform the object 808 // writer of the relocation, and give it an opportunity to adjust the 809 // fixup value if need be. 810 getWriter().recordRelocation(*this, Layout, &F, Fixup, Target, FixedValue); 811 } 812 return std::make_tuple(Target, FixedValue, IsResolved); 813 } 814 815 void MCAssembler::layout(MCAsmLayout &Layout) { 816 assert(getBackendPtr() && "Expected assembler backend"); 817 DEBUG_WITH_TYPE("mc-dump", { 818 errs() << "assembler backend - pre-layout\n--\n"; 819 dump(); }); 820 821 // Create dummy fragments and assign section ordinals. 822 unsigned SectionIndex = 0; 823 for (MCSection &Sec : *this) { 824 // Create dummy fragments to eliminate any empty sections, this simplifies 825 // layout. 826 if (Sec.getFragmentList().empty()) 827 new MCDataFragment(&Sec); 828 829 Sec.setOrdinal(SectionIndex++); 830 } 831 832 // Assign layout order indices to sections and fragments. 833 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) { 834 MCSection *Sec = Layout.getSectionOrder()[i]; 835 Sec->setLayoutOrder(i); 836 837 unsigned FragmentIndex = 0; 838 for (MCFragment &Frag : *Sec) 839 Frag.setLayoutOrder(FragmentIndex++); 840 } 841 842 // Layout until everything fits. 843 while (layoutOnce(Layout)) { 844 if (getContext().hadError()) 845 return; 846 // Size of fragments in one section can depend on the size of fragments in 847 // another. If any fragment has changed size, we have to re-layout (and 848 // as a result possibly further relax) all. 849 for (MCSection &Sec : *this) 850 Layout.invalidateFragmentsFrom(&*Sec.begin()); 851 } 852 853 DEBUG_WITH_TYPE("mc-dump", { 854 errs() << "assembler backend - post-relaxation\n--\n"; 855 dump(); }); 856 857 // Finalize the layout, including fragment lowering. 858 finishLayout(Layout); 859 860 DEBUG_WITH_TYPE("mc-dump", { 861 errs() << "assembler backend - final-layout\n--\n"; 862 dump(); }); 863 864 // Allow the object writer a chance to perform post-layout binding (for 865 // example, to set the index fields in the symbol data). 866 getWriter().executePostLayoutBinding(*this, Layout); 867 868 // Evaluate and apply the fixups, generating relocation entries as necessary. 869 for (MCSection &Sec : *this) { 870 for (MCFragment &Frag : Sec) { 871 ArrayRef<MCFixup> Fixups; 872 MutableArrayRef<char> Contents; 873 const MCSubtargetInfo *STI = nullptr; 874 875 // Process MCAlignFragment and MCEncodedFragmentWithFixups here. 876 switch (Frag.getKind()) { 877 default: 878 continue; 879 case MCFragment::FT_Align: { 880 MCAlignFragment &AF = cast<MCAlignFragment>(Frag); 881 // Insert fixup type for code alignment if the target define 882 // shouldInsertFixupForCodeAlign target hook. 883 if (Sec.useCodeAlign() && AF.hasEmitNops()) 884 getBackend().shouldInsertFixupForCodeAlign(*this, Layout, AF); 885 continue; 886 } 887 case MCFragment::FT_Data: { 888 MCDataFragment &DF = cast<MCDataFragment>(Frag); 889 Fixups = DF.getFixups(); 890 Contents = DF.getContents(); 891 STI = DF.getSubtargetInfo(); 892 assert(!DF.hasInstructions() || STI != nullptr); 893 break; 894 } 895 case MCFragment::FT_Relaxable: { 896 MCRelaxableFragment &RF = cast<MCRelaxableFragment>(Frag); 897 Fixups = RF.getFixups(); 898 Contents = RF.getContents(); 899 STI = RF.getSubtargetInfo(); 900 assert(!RF.hasInstructions() || STI != nullptr); 901 break; 902 } 903 case MCFragment::FT_CVDefRange: { 904 MCCVDefRangeFragment &CF = cast<MCCVDefRangeFragment>(Frag); 905 Fixups = CF.getFixups(); 906 Contents = CF.getContents(); 907 break; 908 } 909 case MCFragment::FT_Dwarf: { 910 MCDwarfLineAddrFragment &DF = cast<MCDwarfLineAddrFragment>(Frag); 911 Fixups = DF.getFixups(); 912 Contents = DF.getContents(); 913 break; 914 } 915 case MCFragment::FT_DwarfFrame: { 916 MCDwarfCallFrameFragment &DF = cast<MCDwarfCallFrameFragment>(Frag); 917 Fixups = DF.getFixups(); 918 Contents = DF.getContents(); 919 break; 920 } 921 case MCFragment::FT_PseudoProbe: { 922 MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(Frag); 923 Fixups = PF.getFixups(); 924 Contents = PF.getContents(); 925 break; 926 } 927 } 928 for (const MCFixup &Fixup : Fixups) { 929 uint64_t FixedValue; 930 bool IsResolved; 931 MCValue Target; 932 std::tie(Target, FixedValue, IsResolved) = 933 handleFixup(Layout, Frag, Fixup); 934 getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue, 935 IsResolved, STI); 936 } 937 } 938 } 939 } 940 941 void MCAssembler::Finish() { 942 // Create the layout object. 943 MCAsmLayout Layout(*this); 944 layout(Layout); 945 946 // Write the object file. 947 stats::ObjectBytes += getWriter().writeObject(*this, Layout); 948 } 949 950 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup, 951 const MCRelaxableFragment *DF, 952 const MCAsmLayout &Layout) const { 953 assert(getBackendPtr() && "Expected assembler backend"); 954 MCValue Target; 955 uint64_t Value; 956 bool WasForced; 957 bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced); 958 if (Target.getSymA() && 959 Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 && 960 Fixup.getKind() == FK_Data_1) 961 return false; 962 return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF, 963 Layout, WasForced); 964 } 965 966 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F, 967 const MCAsmLayout &Layout) const { 968 assert(getBackendPtr() && "Expected assembler backend"); 969 // If this inst doesn't ever need relaxation, ignore it. This occurs when we 970 // are intentionally pushing out inst fragments, or because we relaxed a 971 // previous instruction to one that doesn't need relaxation. 972 if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo())) 973 return false; 974 975 for (const MCFixup &Fixup : F->getFixups()) 976 if (fixupNeedsRelaxation(Fixup, F, Layout)) 977 return true; 978 979 return false; 980 } 981 982 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout, 983 MCRelaxableFragment &F) { 984 assert(getEmitterPtr() && 985 "Expected CodeEmitter defined for relaxInstruction"); 986 if (!fragmentNeedsRelaxation(&F, Layout)) 987 return false; 988 989 ++stats::RelaxedInstructions; 990 991 // FIXME-PERF: We could immediately lower out instructions if we can tell 992 // they are fully resolved, to avoid retesting on later passes. 993 994 // Relax the fragment. 995 996 MCInst Relaxed = F.getInst(); 997 getBackend().relaxInstruction(Relaxed, *F.getSubtargetInfo()); 998 999 // Encode the new instruction. 1000 F.setInst(Relaxed); 1001 F.getFixups().clear(); 1002 F.getContents().clear(); 1003 getEmitter().encodeInstruction(Relaxed, F.getContents(), F.getFixups(), 1004 *F.getSubtargetInfo()); 1005 return true; 1006 } 1007 1008 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) { 1009 uint64_t OldSize = LF.getContents().size(); 1010 int64_t Value; 1011 bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout); 1012 if (!Abs) 1013 report_fatal_error("sleb128 and uleb128 expressions must be absolute"); 1014 SmallString<8> &Data = LF.getContents(); 1015 Data.clear(); 1016 raw_svector_ostream OSE(Data); 1017 // The compiler can generate EH table assembly that is impossible to assemble 1018 // without either adding padding to an LEB fragment or adding extra padding 1019 // to a later alignment fragment. To accommodate such tables, relaxation can 1020 // only increase an LEB fragment size here, not decrease it. See PR35809. 1021 if (LF.isSigned()) 1022 encodeSLEB128(Value, OSE, OldSize); 1023 else 1024 encodeULEB128(Value, OSE, OldSize); 1025 return OldSize != LF.getContents().size(); 1026 } 1027 1028 /// Check if the branch crosses the boundary. 1029 /// 1030 /// \param StartAddr start address of the fused/unfused branch. 1031 /// \param Size size of the fused/unfused branch. 1032 /// \param BoundaryAlignment alignment requirement of the branch. 1033 /// \returns true if the branch cross the boundary. 1034 static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size, 1035 Align BoundaryAlignment) { 1036 uint64_t EndAddr = StartAddr + Size; 1037 return (StartAddr >> Log2(BoundaryAlignment)) != 1038 ((EndAddr - 1) >> Log2(BoundaryAlignment)); 1039 } 1040 1041 /// Check if the branch is against the boundary. 1042 /// 1043 /// \param StartAddr start address of the fused/unfused branch. 1044 /// \param Size size of the fused/unfused branch. 1045 /// \param BoundaryAlignment alignment requirement of the branch. 1046 /// \returns true if the branch is against the boundary. 1047 static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size, 1048 Align BoundaryAlignment) { 1049 uint64_t EndAddr = StartAddr + Size; 1050 return (EndAddr & (BoundaryAlignment.value() - 1)) == 0; 1051 } 1052 1053 /// Check if the branch needs padding. 1054 /// 1055 /// \param StartAddr start address of the fused/unfused branch. 1056 /// \param Size size of the fused/unfused branch. 1057 /// \param BoundaryAlignment alignment requirement of the branch. 1058 /// \returns true if the branch needs padding. 1059 static bool needPadding(uint64_t StartAddr, uint64_t Size, 1060 Align BoundaryAlignment) { 1061 return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) || 1062 isAgainstBoundary(StartAddr, Size, BoundaryAlignment); 1063 } 1064 1065 bool MCAssembler::relaxBoundaryAlign(MCAsmLayout &Layout, 1066 MCBoundaryAlignFragment &BF) { 1067 // BoundaryAlignFragment that doesn't need to align any fragment should not be 1068 // relaxed. 1069 if (!BF.getLastFragment()) 1070 return false; 1071 1072 uint64_t AlignedOffset = Layout.getFragmentOffset(&BF); 1073 uint64_t AlignedSize = 0; 1074 for (const MCFragment *F = BF.getLastFragment(); F != &BF; 1075 F = F->getPrevNode()) 1076 AlignedSize += computeFragmentSize(Layout, *F); 1077 1078 Align BoundaryAlignment = BF.getAlignment(); 1079 uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment) 1080 ? offsetToAlignment(AlignedOffset, BoundaryAlignment) 1081 : 0U; 1082 if (NewSize == BF.getSize()) 1083 return false; 1084 BF.setSize(NewSize); 1085 Layout.invalidateFragmentsFrom(&BF); 1086 return true; 1087 } 1088 1089 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout, 1090 MCDwarfLineAddrFragment &DF) { 1091 1092 bool WasRelaxed; 1093 if (getBackend().relaxDwarfLineAddr(DF, Layout, WasRelaxed)) 1094 return WasRelaxed; 1095 1096 MCContext &Context = Layout.getAssembler().getContext(); 1097 uint64_t OldSize = DF.getContents().size(); 1098 int64_t AddrDelta; 1099 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout); 1100 assert(Abs && "We created a line delta with an invalid expression"); 1101 (void)Abs; 1102 int64_t LineDelta; 1103 LineDelta = DF.getLineDelta(); 1104 SmallVectorImpl<char> &Data = DF.getContents(); 1105 Data.clear(); 1106 DF.getFixups().clear(); 1107 1108 MCDwarfLineAddr::encode(Context, getDWARFLinetableParams(), LineDelta, 1109 AddrDelta, Data); 1110 return OldSize != Data.size(); 1111 } 1112 1113 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout, 1114 MCDwarfCallFrameFragment &DF) { 1115 bool WasRelaxed; 1116 if (getBackend().relaxDwarfCFA(DF, Layout, WasRelaxed)) 1117 return WasRelaxed; 1118 1119 MCContext &Context = Layout.getAssembler().getContext(); 1120 int64_t Value; 1121 bool Abs = DF.getAddrDelta().evaluateAsAbsolute(Value, Layout); 1122 if (!Abs) { 1123 getContext().reportError(DF.getAddrDelta().getLoc(), 1124 "invalid CFI advance_loc expression"); 1125 DF.setAddrDelta(MCConstantExpr::create(0, Context)); 1126 return false; 1127 } 1128 1129 SmallVectorImpl<char> &Data = DF.getContents(); 1130 uint64_t OldSize = Data.size(); 1131 Data.clear(); 1132 DF.getFixups().clear(); 1133 1134 MCDwarfFrameEmitter::encodeAdvanceLoc(Context, Value, Data); 1135 return OldSize != Data.size(); 1136 } 1137 1138 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout, 1139 MCCVInlineLineTableFragment &F) { 1140 unsigned OldSize = F.getContents().size(); 1141 getContext().getCVContext().encodeInlineLineTable(Layout, F); 1142 return OldSize != F.getContents().size(); 1143 } 1144 1145 bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout, 1146 MCCVDefRangeFragment &F) { 1147 unsigned OldSize = F.getContents().size(); 1148 getContext().getCVContext().encodeDefRange(Layout, F); 1149 return OldSize != F.getContents().size(); 1150 } 1151 1152 bool MCAssembler::relaxPseudoProbeAddr(MCAsmLayout &Layout, 1153 MCPseudoProbeAddrFragment &PF) { 1154 uint64_t OldSize = PF.getContents().size(); 1155 int64_t AddrDelta; 1156 bool Abs = PF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout); 1157 assert(Abs && "We created a pseudo probe with an invalid expression"); 1158 (void)Abs; 1159 SmallVectorImpl<char> &Data = PF.getContents(); 1160 Data.clear(); 1161 raw_svector_ostream OSE(Data); 1162 PF.getFixups().clear(); 1163 1164 // AddrDelta is a signed integer 1165 encodeSLEB128(AddrDelta, OSE, OldSize); 1166 return OldSize != Data.size(); 1167 } 1168 1169 bool MCAssembler::relaxFragment(MCAsmLayout &Layout, MCFragment &F) { 1170 switch(F.getKind()) { 1171 default: 1172 return false; 1173 case MCFragment::FT_Relaxable: 1174 assert(!getRelaxAll() && 1175 "Did not expect a MCRelaxableFragment in RelaxAll mode"); 1176 return relaxInstruction(Layout, cast<MCRelaxableFragment>(F)); 1177 case MCFragment::FT_Dwarf: 1178 return relaxDwarfLineAddr(Layout, cast<MCDwarfLineAddrFragment>(F)); 1179 case MCFragment::FT_DwarfFrame: 1180 return relaxDwarfCallFrameFragment(Layout, 1181 cast<MCDwarfCallFrameFragment>(F)); 1182 case MCFragment::FT_LEB: 1183 return relaxLEB(Layout, cast<MCLEBFragment>(F)); 1184 case MCFragment::FT_BoundaryAlign: 1185 return relaxBoundaryAlign(Layout, cast<MCBoundaryAlignFragment>(F)); 1186 case MCFragment::FT_CVInlineLines: 1187 return relaxCVInlineLineTable(Layout, cast<MCCVInlineLineTableFragment>(F)); 1188 case MCFragment::FT_CVDefRange: 1189 return relaxCVDefRange(Layout, cast<MCCVDefRangeFragment>(F)); 1190 case MCFragment::FT_PseudoProbe: 1191 return relaxPseudoProbeAddr(Layout, cast<MCPseudoProbeAddrFragment>(F)); 1192 } 1193 } 1194 1195 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) { 1196 // Holds the first fragment which needed relaxing during this layout. It will 1197 // remain NULL if none were relaxed. 1198 // When a fragment is relaxed, all the fragments following it should get 1199 // invalidated because their offset is going to change. 1200 MCFragment *FirstRelaxedFragment = nullptr; 1201 1202 // Attempt to relax all the fragments in the section. 1203 for (MCFragment &Frag : Sec) { 1204 // Check if this is a fragment that needs relaxation. 1205 bool RelaxedFrag = relaxFragment(Layout, Frag); 1206 if (RelaxedFrag && !FirstRelaxedFragment) 1207 FirstRelaxedFragment = &Frag; 1208 } 1209 if (FirstRelaxedFragment) { 1210 Layout.invalidateFragmentsFrom(FirstRelaxedFragment); 1211 return true; 1212 } 1213 return false; 1214 } 1215 1216 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) { 1217 ++stats::RelaxationSteps; 1218 1219 bool WasRelaxed = false; 1220 for (MCSection &Sec : *this) { 1221 while (layoutSectionOnce(Layout, Sec)) 1222 WasRelaxed = true; 1223 } 1224 1225 return WasRelaxed; 1226 } 1227 1228 void MCAssembler::finishLayout(MCAsmLayout &Layout) { 1229 assert(getBackendPtr() && "Expected assembler backend"); 1230 // The layout is done. Mark every fragment as valid. 1231 for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) { 1232 MCSection &Section = *Layout.getSectionOrder()[i]; 1233 Layout.getFragmentOffset(&*Section.getFragmentList().rbegin()); 1234 computeFragmentSize(Layout, *Section.getFragmentList().rbegin()); 1235 } 1236 getBackend().finishLayout(*this, Layout); 1237 } 1238 1239 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1240 LLVM_DUMP_METHOD void MCAssembler::dump() const{ 1241 raw_ostream &OS = errs(); 1242 1243 OS << "<MCAssembler\n"; 1244 OS << " Sections:[\n "; 1245 for (const_iterator it = begin(), ie = end(); it != ie; ++it) { 1246 if (it != begin()) OS << ",\n "; 1247 it->dump(); 1248 } 1249 OS << "],\n"; 1250 OS << " Symbols:["; 1251 1252 for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) { 1253 if (it != symbol_begin()) OS << ",\n "; 1254 OS << "("; 1255 it->dump(); 1256 OS << ", Index:" << it->getIndex() << ", "; 1257 OS << ")"; 1258 } 1259 OS << "]>\n"; 1260 } 1261 #endif 1262