xref: /freebsd/contrib/llvm-project/llvm/lib/MC/MCAssembler.cpp (revision da759cfa320d5076b075d15ff3f00ab3ba5634fd)
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/MC/MCAssembler.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Statistic.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCAsmLayout.h"
19 #include "llvm/MC/MCCodeEmitter.h"
20 #include "llvm/MC/MCCodeView.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCExpr.h"
24 #include "llvm/MC/MCFixup.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCFragment.h"
27 #include "llvm/MC/MCInst.h"
28 #include "llvm/MC/MCObjectWriter.h"
29 #include "llvm/MC/MCSection.h"
30 #include "llvm/MC/MCSectionELF.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/MC/MCValue.h"
33 #include "llvm/Support/Alignment.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/LEB128.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <cassert>
41 #include <cstdint>
42 #include <cstring>
43 #include <tuple>
44 #include <utility>
45 
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "assembler"
49 
50 namespace {
51 namespace stats {
52 
53 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
54 STATISTIC(EmittedRelaxableFragments,
55           "Number of emitted assembler fragments - relaxable");
56 STATISTIC(EmittedDataFragments,
57           "Number of emitted assembler fragments - data");
58 STATISTIC(EmittedCompactEncodedInstFragments,
59           "Number of emitted assembler fragments - compact encoded inst");
60 STATISTIC(EmittedAlignFragments,
61           "Number of emitted assembler fragments - align");
62 STATISTIC(EmittedFillFragments,
63           "Number of emitted assembler fragments - fill");
64 STATISTIC(EmittedOrgFragments,
65           "Number of emitted assembler fragments - org");
66 STATISTIC(evaluateFixup, "Number of evaluated fixups");
67 STATISTIC(FragmentLayouts, "Number of fragment layouts");
68 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
69 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
70 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
71 
72 } // end namespace stats
73 } // end anonymous namespace
74 
75 // FIXME FIXME FIXME: There are number of places in this file where we convert
76 // what is a 64-bit assembler value used for computation into a value in the
77 // object file, which may truncate it. We should detect that truncation where
78 // invalid and report errors back.
79 
80 /* *** */
81 
82 MCAssembler::MCAssembler(MCContext &Context,
83                          std::unique_ptr<MCAsmBackend> Backend,
84                          std::unique_ptr<MCCodeEmitter> Emitter,
85                          std::unique_ptr<MCObjectWriter> Writer)
86     : Context(Context), Backend(std::move(Backend)),
87       Emitter(std::move(Emitter)), Writer(std::move(Writer)),
88       BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
89       IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
90   VersionInfo.Major = 0; // Major version == 0 for "none specified"
91 }
92 
93 MCAssembler::~MCAssembler() = default;
94 
95 void MCAssembler::reset() {
96   Sections.clear();
97   Symbols.clear();
98   IndirectSymbols.clear();
99   DataRegions.clear();
100   LinkerOptions.clear();
101   FileNames.clear();
102   ThumbFuncs.clear();
103   BundleAlignSize = 0;
104   RelaxAll = false;
105   SubsectionsViaSymbols = false;
106   IncrementalLinkerCompatible = false;
107   ELFHeaderEFlags = 0;
108   LOHContainer.reset();
109   VersionInfo.Major = 0;
110   VersionInfo.SDKVersion = VersionTuple();
111 
112   // reset objects owned by us
113   if (getBackendPtr())
114     getBackendPtr()->reset();
115   if (getEmitterPtr())
116     getEmitterPtr()->reset();
117   if (getWriterPtr())
118     getWriterPtr()->reset();
119   getLOHContainer().reset();
120 }
121 
122 bool MCAssembler::registerSection(MCSection &Section) {
123   if (Section.isRegistered())
124     return false;
125   Sections.push_back(&Section);
126   Section.setIsRegistered(true);
127   return true;
128 }
129 
130 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
131   if (ThumbFuncs.count(Symbol))
132     return true;
133 
134   if (!Symbol->isVariable())
135     return false;
136 
137   const MCExpr *Expr = Symbol->getVariableValue();
138 
139   MCValue V;
140   if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
141     return false;
142 
143   if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
144     return false;
145 
146   const MCSymbolRefExpr *Ref = V.getSymA();
147   if (!Ref)
148     return false;
149 
150   if (Ref->getKind() != MCSymbolRefExpr::VK_None)
151     return false;
152 
153   const MCSymbol &Sym = Ref->getSymbol();
154   if (!isThumbFunc(&Sym))
155     return false;
156 
157   ThumbFuncs.insert(Symbol); // Cache it.
158   return true;
159 }
160 
161 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
162   // Non-temporary labels should always be visible to the linker.
163   if (!Symbol.isTemporary())
164     return true;
165 
166   if (Symbol.isUsedInReloc())
167     return true;
168 
169   return false;
170 }
171 
172 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
173   // Linker visible symbols define atoms.
174   if (isSymbolLinkerVisible(S))
175     return &S;
176 
177   // Absolute and undefined symbols have no defining atom.
178   if (!S.isInSection())
179     return nullptr;
180 
181   // Non-linker visible symbols in sections which can't be atomized have no
182   // defining atom.
183   if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
184           *S.getFragment()->getParent()))
185     return nullptr;
186 
187   // Otherwise, return the atom for the containing fragment.
188   return S.getFragment()->getAtom();
189 }
190 
191 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
192                                 const MCFixup &Fixup, const MCFragment *DF,
193                                 MCValue &Target, uint64_t &Value,
194                                 bool &WasForced) const {
195   ++stats::evaluateFixup;
196 
197   // FIXME: This code has some duplication with recordRelocation. We should
198   // probably merge the two into a single callback that tries to evaluate a
199   // fixup and records a relocation if one is needed.
200 
201   // On error claim to have completely evaluated the fixup, to prevent any
202   // further processing from being done.
203   const MCExpr *Expr = Fixup.getValue();
204   MCContext &Ctx = getContext();
205   Value = 0;
206   WasForced = false;
207   if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
208     Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
209     return true;
210   }
211   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
212     if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
213       Ctx.reportError(Fixup.getLoc(),
214                       "unsupported subtraction of qualified symbol");
215       return true;
216     }
217   }
218 
219   assert(getBackendPtr() && "Expected assembler backend");
220   bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
221                   MCFixupKindInfo::FKF_IsTarget;
222 
223   if (IsTarget)
224     return getBackend().evaluateTargetFixup(*this, Layout, Fixup, DF, Target,
225                                             Value, WasForced);
226 
227   unsigned FixupFlags = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags;
228   bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
229                  MCFixupKindInfo::FKF_IsPCRel;
230 
231   bool IsResolved = false;
232   if (IsPCRel) {
233     if (Target.getSymB()) {
234       IsResolved = false;
235     } else if (!Target.getSymA()) {
236       IsResolved = false;
237     } else {
238       const MCSymbolRefExpr *A = Target.getSymA();
239       const MCSymbol &SA = A->getSymbol();
240       if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
241         IsResolved = false;
242       } else if (auto *Writer = getWriterPtr()) {
243         IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) ||
244                      Writer->isSymbolRefDifferenceFullyResolvedImpl(
245                          *this, SA, *DF, false, true);
246       }
247     }
248   } else {
249     IsResolved = Target.isAbsolute();
250   }
251 
252   Value = Target.getConstant();
253 
254   if (const MCSymbolRefExpr *A = Target.getSymA()) {
255     const MCSymbol &Sym = A->getSymbol();
256     if (Sym.isDefined())
257       Value += Layout.getSymbolOffset(Sym);
258   }
259   if (const MCSymbolRefExpr *B = Target.getSymB()) {
260     const MCSymbol &Sym = B->getSymbol();
261     if (Sym.isDefined())
262       Value -= Layout.getSymbolOffset(Sym);
263   }
264 
265   bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
266                        MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
267   assert((ShouldAlignPC ? IsPCRel : true) &&
268     "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
269 
270   if (IsPCRel) {
271     uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
272 
273     // A number of ARM fixups in Thumb mode require that the effective PC
274     // address be determined as the 32-bit aligned version of the actual offset.
275     if (ShouldAlignPC) Offset &= ~0x3;
276     Value -= Offset;
277   }
278 
279   // Let the backend force a relocation if needed.
280   if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) {
281     IsResolved = false;
282     WasForced = true;
283   }
284 
285   return IsResolved;
286 }
287 
288 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
289                                           const MCFragment &F) const {
290   assert(getBackendPtr() && "Requires assembler backend");
291   switch (F.getKind()) {
292   case MCFragment::FT_Data:
293     return cast<MCDataFragment>(F).getContents().size();
294   case MCFragment::FT_Relaxable:
295     return cast<MCRelaxableFragment>(F).getContents().size();
296   case MCFragment::FT_CompactEncodedInst:
297     return cast<MCCompactEncodedInstFragment>(F).getContents().size();
298   case MCFragment::FT_Fill: {
299     auto &FF = cast<MCFillFragment>(F);
300     int64_t NumValues = 0;
301     if (!FF.getNumValues().evaluateAsAbsolute(NumValues, Layout)) {
302       getContext().reportError(FF.getLoc(),
303                                "expected assembly-time absolute expression");
304       return 0;
305     }
306     int64_t Size = NumValues * FF.getValueSize();
307     if (Size < 0) {
308       getContext().reportError(FF.getLoc(), "invalid number of bytes");
309       return 0;
310     }
311     return Size;
312   }
313 
314   case MCFragment::FT_LEB:
315     return cast<MCLEBFragment>(F).getContents().size();
316 
317   case MCFragment::FT_BoundaryAlign:
318     return cast<MCBoundaryAlignFragment>(F).getSize();
319 
320   case MCFragment::FT_SymbolId:
321     return 4;
322 
323   case MCFragment::FT_Align: {
324     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
325     unsigned Offset = Layout.getFragmentOffset(&AF);
326     unsigned Size = offsetToAlignment(Offset, Align(AF.getAlignment()));
327 
328     // Insert extra Nops for code alignment if the target define
329     // shouldInsertExtraNopBytesForCodeAlign target hook.
330     if (AF.getParent()->UseCodeAlign() && AF.hasEmitNops() &&
331         getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size))
332       return Size;
333 
334     // If we are padding with nops, force the padding to be larger than the
335     // minimum nop size.
336     if (Size > 0 && AF.hasEmitNops()) {
337       while (Size % getBackend().getMinimumNopSize())
338         Size += AF.getAlignment();
339     }
340     if (Size > AF.getMaxBytesToEmit())
341       return 0;
342     return Size;
343   }
344 
345   case MCFragment::FT_Org: {
346     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
347     MCValue Value;
348     if (!OF.getOffset().evaluateAsValue(Value, Layout)) {
349       getContext().reportError(OF.getLoc(),
350                                "expected assembly-time absolute expression");
351         return 0;
352     }
353 
354     uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
355     int64_t TargetLocation = Value.getConstant();
356     if (const MCSymbolRefExpr *A = Value.getSymA()) {
357       uint64_t Val;
358       if (!Layout.getSymbolOffset(A->getSymbol(), Val)) {
359         getContext().reportError(OF.getLoc(), "expected absolute expression");
360         return 0;
361       }
362       TargetLocation += Val;
363     }
364     int64_t Size = TargetLocation - FragmentOffset;
365     if (Size < 0 || Size >= 0x40000000) {
366       getContext().reportError(
367           OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
368                            "' (at offset '" + Twine(FragmentOffset) + "')");
369       return 0;
370     }
371     return Size;
372   }
373 
374   case MCFragment::FT_Dwarf:
375     return cast<MCDwarfLineAddrFragment>(F).getContents().size();
376   case MCFragment::FT_DwarfFrame:
377     return cast<MCDwarfCallFrameFragment>(F).getContents().size();
378   case MCFragment::FT_CVInlineLines:
379     return cast<MCCVInlineLineTableFragment>(F).getContents().size();
380   case MCFragment::FT_CVDefRange:
381     return cast<MCCVDefRangeFragment>(F).getContents().size();
382   case MCFragment::FT_Dummy:
383     llvm_unreachable("Should not have been added");
384   }
385 
386   llvm_unreachable("invalid fragment kind");
387 }
388 
389 void MCAsmLayout::layoutFragment(MCFragment *F) {
390   MCFragment *Prev = F->getPrevNode();
391 
392   // We should never try to recompute something which is valid.
393   assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
394   // We should never try to compute the fragment layout if its predecessor
395   // isn't valid.
396   assert((!Prev || isFragmentValid(Prev)) &&
397          "Attempt to compute fragment before its predecessor!");
398 
399   ++stats::FragmentLayouts;
400 
401   // Compute fragment offset and size.
402   if (Prev)
403     F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
404   else
405     F->Offset = 0;
406   LastValidFragment[F->getParent()] = F;
407 
408   // If bundling is enabled and this fragment has instructions in it, it has to
409   // obey the bundling restrictions. With padding, we'll have:
410   //
411   //
412   //        BundlePadding
413   //             |||
414   // -------------------------------------
415   //   Prev  |##########|       F        |
416   // -------------------------------------
417   //                    ^
418   //                    |
419   //                    F->Offset
420   //
421   // The fragment's offset will point to after the padding, and its computed
422   // size won't include the padding.
423   //
424   // When the -mc-relax-all flag is used, we optimize bundling by writting the
425   // padding directly into fragments when the instructions are emitted inside
426   // the streamer. When the fragment is larger than the bundle size, we need to
427   // ensure that it's bundle aligned. This means that if we end up with
428   // multiple fragments, we must emit bundle padding between fragments.
429   //
430   // ".align N" is an example of a directive that introduces multiple
431   // fragments. We could add a special case to handle ".align N" by emitting
432   // within-fragment padding (which would produce less padding when N is less
433   // than the bundle size), but for now we don't.
434   //
435   if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
436     assert(isa<MCEncodedFragment>(F) &&
437            "Only MCEncodedFragment implementations have instructions");
438     MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
439     uint64_t FSize = Assembler.computeFragmentSize(*this, *EF);
440 
441     if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
442       report_fatal_error("Fragment can't be larger than a bundle size");
443 
444     uint64_t RequiredBundlePadding =
445         computeBundlePadding(Assembler, EF, EF->Offset, FSize);
446     if (RequiredBundlePadding > UINT8_MAX)
447       report_fatal_error("Padding cannot exceed 255 bytes");
448     EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
449     EF->Offset += RequiredBundlePadding;
450   }
451 }
452 
453 void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
454   bool New = !Symbol.isRegistered();
455   if (Created)
456     *Created = New;
457   if (New) {
458     Symbol.setIsRegistered(true);
459     Symbols.push_back(&Symbol);
460   }
461 }
462 
463 void MCAssembler::writeFragmentPadding(raw_ostream &OS,
464                                        const MCEncodedFragment &EF,
465                                        uint64_t FSize) const {
466   assert(getBackendPtr() && "Expected assembler backend");
467   // Should NOP padding be written out before this fragment?
468   unsigned BundlePadding = EF.getBundlePadding();
469   if (BundlePadding > 0) {
470     assert(isBundlingEnabled() &&
471            "Writing bundle padding with disabled bundling");
472     assert(EF.hasInstructions() &&
473            "Writing bundle padding for a fragment without instructions");
474 
475     unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
476     if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
477       // If the padding itself crosses a bundle boundary, it must be emitted
478       // in 2 pieces, since even nop instructions must not cross boundaries.
479       //             v--------------v   <- BundleAlignSize
480       //        v---------v             <- BundlePadding
481       // ----------------------------
482       // | Prev |####|####|    F    |
483       // ----------------------------
484       //        ^-------------------^   <- TotalLength
485       unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
486       if (!getBackend().writeNopData(OS, DistanceToBoundary))
487         report_fatal_error("unable to write NOP sequence of " +
488                            Twine(DistanceToBoundary) + " bytes");
489       BundlePadding -= DistanceToBoundary;
490     }
491     if (!getBackend().writeNopData(OS, BundlePadding))
492       report_fatal_error("unable to write NOP sequence of " +
493                          Twine(BundlePadding) + " bytes");
494   }
495 }
496 
497 /// Write the fragment \p F to the output file.
498 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
499                           const MCAsmLayout &Layout, const MCFragment &F) {
500   // FIXME: Embed in fragments instead?
501   uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
502 
503   support::endianness Endian = Asm.getBackend().Endian;
504 
505   if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
506     Asm.writeFragmentPadding(OS, *EF, FragmentSize);
507 
508   // This variable (and its dummy usage) is to participate in the assert at
509   // the end of the function.
510   uint64_t Start = OS.tell();
511   (void) Start;
512 
513   ++stats::EmittedFragments;
514 
515   switch (F.getKind()) {
516   case MCFragment::FT_Align: {
517     ++stats::EmittedAlignFragments;
518     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
519     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
520 
521     uint64_t Count = FragmentSize / AF.getValueSize();
522 
523     // FIXME: This error shouldn't actually occur (the front end should emit
524     // multiple .align directives to enforce the semantics it wants), but is
525     // severe enough that we want to report it. How to handle this?
526     if (Count * AF.getValueSize() != FragmentSize)
527       report_fatal_error("undefined .align directive, value size '" +
528                         Twine(AF.getValueSize()) +
529                         "' is not a divisor of padding size '" +
530                         Twine(FragmentSize) + "'");
531 
532     // See if we are aligning with nops, and if so do that first to try to fill
533     // the Count bytes.  Then if that did not fill any bytes or there are any
534     // bytes left to fill use the Value and ValueSize to fill the rest.
535     // If we are aligning with nops, ask that target to emit the right data.
536     if (AF.hasEmitNops()) {
537       if (!Asm.getBackend().writeNopData(OS, Count))
538         report_fatal_error("unable to write nop sequence of " +
539                           Twine(Count) + " bytes");
540       break;
541     }
542 
543     // Otherwise, write out in multiples of the value size.
544     for (uint64_t i = 0; i != Count; ++i) {
545       switch (AF.getValueSize()) {
546       default: llvm_unreachable("Invalid size!");
547       case 1: OS << char(AF.getValue()); break;
548       case 2:
549         support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
550         break;
551       case 4:
552         support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
553         break;
554       case 8:
555         support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
556         break;
557       }
558     }
559     break;
560   }
561 
562   case MCFragment::FT_Data:
563     ++stats::EmittedDataFragments;
564     OS << cast<MCDataFragment>(F).getContents();
565     break;
566 
567   case MCFragment::FT_Relaxable:
568     ++stats::EmittedRelaxableFragments;
569     OS << cast<MCRelaxableFragment>(F).getContents();
570     break;
571 
572   case MCFragment::FT_CompactEncodedInst:
573     ++stats::EmittedCompactEncodedInstFragments;
574     OS << cast<MCCompactEncodedInstFragment>(F).getContents();
575     break;
576 
577   case MCFragment::FT_Fill: {
578     ++stats::EmittedFillFragments;
579     const MCFillFragment &FF = cast<MCFillFragment>(F);
580     uint64_t V = FF.getValue();
581     unsigned VSize = FF.getValueSize();
582     const unsigned MaxChunkSize = 16;
583     char Data[MaxChunkSize];
584     assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size");
585     // Duplicate V into Data as byte vector to reduce number of
586     // writes done. As such, do endian conversion here.
587     for (unsigned I = 0; I != VSize; ++I) {
588       unsigned index = Endian == support::little ? I : (VSize - I - 1);
589       Data[I] = uint8_t(V >> (index * 8));
590     }
591     for (unsigned I = VSize; I < MaxChunkSize; ++I)
592       Data[I] = Data[I - VSize];
593 
594     // Set to largest multiple of VSize in Data.
595     const unsigned NumPerChunk = MaxChunkSize / VSize;
596     // Set ChunkSize to largest multiple of VSize in Data
597     const unsigned ChunkSize = VSize * NumPerChunk;
598 
599     // Do copies by chunk.
600     StringRef Ref(Data, ChunkSize);
601     for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
602       OS << Ref;
603 
604     // do remainder if needed.
605     unsigned TrailingCount = FragmentSize % ChunkSize;
606     if (TrailingCount)
607       OS.write(Data, TrailingCount);
608     break;
609   }
610 
611   case MCFragment::FT_LEB: {
612     const MCLEBFragment &LF = cast<MCLEBFragment>(F);
613     OS << LF.getContents();
614     break;
615   }
616 
617   case MCFragment::FT_BoundaryAlign: {
618     if (!Asm.getBackend().writeNopData(OS, FragmentSize))
619       report_fatal_error("unable to write nop sequence of " +
620                          Twine(FragmentSize) + " bytes");
621     break;
622   }
623 
624   case MCFragment::FT_SymbolId: {
625     const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
626     support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
627     break;
628   }
629 
630   case MCFragment::FT_Org: {
631     ++stats::EmittedOrgFragments;
632     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
633 
634     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
635       OS << char(OF.getValue());
636 
637     break;
638   }
639 
640   case MCFragment::FT_Dwarf: {
641     const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
642     OS << OF.getContents();
643     break;
644   }
645   case MCFragment::FT_DwarfFrame: {
646     const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
647     OS << CF.getContents();
648     break;
649   }
650   case MCFragment::FT_CVInlineLines: {
651     const auto &OF = cast<MCCVInlineLineTableFragment>(F);
652     OS << OF.getContents();
653     break;
654   }
655   case MCFragment::FT_CVDefRange: {
656     const auto &DRF = cast<MCCVDefRangeFragment>(F);
657     OS << DRF.getContents();
658     break;
659   }
660   case MCFragment::FT_Dummy:
661     llvm_unreachable("Should not have been added");
662   }
663 
664   assert(OS.tell() - Start == FragmentSize &&
665          "The stream should advance by fragment size");
666 }
667 
668 void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec,
669                                    const MCAsmLayout &Layout) const {
670   assert(getBackendPtr() && "Expected assembler backend");
671 
672   // Ignore virtual sections.
673   if (Sec->isVirtualSection()) {
674     assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
675 
676     // Check that contents are only things legal inside a virtual section.
677     for (const MCFragment &F : *Sec) {
678       switch (F.getKind()) {
679       default: llvm_unreachable("Invalid fragment in virtual section!");
680       case MCFragment::FT_Data: {
681         // Check that we aren't trying to write a non-zero contents (or fixups)
682         // into a virtual section. This is to support clients which use standard
683         // directives to fill the contents of virtual sections.
684         const MCDataFragment &DF = cast<MCDataFragment>(F);
685         if (DF.fixup_begin() != DF.fixup_end())
686           report_fatal_error("cannot have fixups in virtual section!");
687         for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
688           if (DF.getContents()[i]) {
689             if (auto *ELFSec = dyn_cast<const MCSectionELF>(Sec))
690               report_fatal_error("non-zero initializer found in section '" +
691                   ELFSec->getSectionName() + "'");
692             else
693               report_fatal_error("non-zero initializer found in virtual section");
694           }
695         break;
696       }
697       case MCFragment::FT_Align:
698         // Check that we aren't trying to write a non-zero value into a virtual
699         // section.
700         assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
701                 cast<MCAlignFragment>(F).getValue() == 0) &&
702                "Invalid align in virtual section!");
703         break;
704       case MCFragment::FT_Fill:
705         assert((cast<MCFillFragment>(F).getValue() == 0) &&
706                "Invalid fill in virtual section!");
707         break;
708       }
709     }
710 
711     return;
712   }
713 
714   uint64_t Start = OS.tell();
715   (void)Start;
716 
717   for (const MCFragment &F : *Sec)
718     writeFragment(OS, *this, Layout, F);
719 
720   assert(OS.tell() - Start == Layout.getSectionAddressSize(Sec));
721 }
722 
723 std::tuple<MCValue, uint64_t, bool>
724 MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F,
725                          const MCFixup &Fixup) {
726   // Evaluate the fixup.
727   MCValue Target;
728   uint64_t FixedValue;
729   bool WasForced;
730   bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue,
731                                   WasForced);
732   if (!IsResolved) {
733     // The fixup was unresolved, we need a relocation. Inform the object
734     // writer of the relocation, and give it an opportunity to adjust the
735     // fixup value if need be.
736     if (Target.getSymA() && Target.getSymB() &&
737         getBackend().requiresDiffExpressionRelocations()) {
738       // The fixup represents the difference between two symbols, which the
739       // backend has indicated must be resolved at link time. Split up the fixup
740       // into two relocations, one for the add, and one for the sub, and emit
741       // both of these. The constant will be associated with the add half of the
742       // expression.
743       MCFixup FixupAdd = MCFixup::createAddFor(Fixup);
744       MCValue TargetAdd =
745           MCValue::get(Target.getSymA(), nullptr, Target.getConstant());
746       getWriter().recordRelocation(*this, Layout, &F, FixupAdd, TargetAdd,
747                                    FixedValue);
748       MCFixup FixupSub = MCFixup::createSubFor(Fixup);
749       MCValue TargetSub = MCValue::get(Target.getSymB());
750       getWriter().recordRelocation(*this, Layout, &F, FixupSub, TargetSub,
751                                    FixedValue);
752     } else {
753       getWriter().recordRelocation(*this, Layout, &F, Fixup, Target,
754                                    FixedValue);
755     }
756   }
757   return std::make_tuple(Target, FixedValue, IsResolved);
758 }
759 
760 void MCAssembler::layout(MCAsmLayout &Layout) {
761   assert(getBackendPtr() && "Expected assembler backend");
762   DEBUG_WITH_TYPE("mc-dump", {
763       errs() << "assembler backend - pre-layout\n--\n";
764       dump(); });
765 
766   // Create dummy fragments and assign section ordinals.
767   unsigned SectionIndex = 0;
768   for (MCSection &Sec : *this) {
769     // Create dummy fragments to eliminate any empty sections, this simplifies
770     // layout.
771     if (Sec.getFragmentList().empty())
772       new MCDataFragment(&Sec);
773 
774     Sec.setOrdinal(SectionIndex++);
775   }
776 
777   // Assign layout order indices to sections and fragments.
778   for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
779     MCSection *Sec = Layout.getSectionOrder()[i];
780     Sec->setLayoutOrder(i);
781 
782     unsigned FragmentIndex = 0;
783     for (MCFragment &Frag : *Sec)
784       Frag.setLayoutOrder(FragmentIndex++);
785   }
786 
787   // Layout until everything fits.
788   while (layoutOnce(Layout))
789     if (getContext().hadError())
790       return;
791 
792   DEBUG_WITH_TYPE("mc-dump", {
793       errs() << "assembler backend - post-relaxation\n--\n";
794       dump(); });
795 
796   // Finalize the layout, including fragment lowering.
797   finishLayout(Layout);
798 
799   DEBUG_WITH_TYPE("mc-dump", {
800       errs() << "assembler backend - final-layout\n--\n";
801       dump(); });
802 
803   // Allow the object writer a chance to perform post-layout binding (for
804   // example, to set the index fields in the symbol data).
805   getWriter().executePostLayoutBinding(*this, Layout);
806 
807   // Evaluate and apply the fixups, generating relocation entries as necessary.
808   for (MCSection &Sec : *this) {
809     for (MCFragment &Frag : Sec) {
810       // Data and relaxable fragments both have fixups.  So only process
811       // those here.
812       // FIXME: Is there a better way to do this?  MCEncodedFragmentWithFixups
813       // being templated makes this tricky.
814       if (isa<MCEncodedFragment>(&Frag) &&
815           isa<MCCompactEncodedInstFragment>(&Frag))
816         continue;
817       if (!isa<MCEncodedFragment>(&Frag) && !isa<MCCVDefRangeFragment>(&Frag) &&
818           !isa<MCAlignFragment>(&Frag))
819         continue;
820       ArrayRef<MCFixup> Fixups;
821       MutableArrayRef<char> Contents;
822       const MCSubtargetInfo *STI = nullptr;
823       if (auto *FragWithFixups = dyn_cast<MCDataFragment>(&Frag)) {
824         Fixups = FragWithFixups->getFixups();
825         Contents = FragWithFixups->getContents();
826         STI = FragWithFixups->getSubtargetInfo();
827         assert(!FragWithFixups->hasInstructions() || STI != nullptr);
828       } else if (auto *FragWithFixups = dyn_cast<MCRelaxableFragment>(&Frag)) {
829         Fixups = FragWithFixups->getFixups();
830         Contents = FragWithFixups->getContents();
831         STI = FragWithFixups->getSubtargetInfo();
832         assert(!FragWithFixups->hasInstructions() || STI != nullptr);
833       } else if (auto *FragWithFixups = dyn_cast<MCCVDefRangeFragment>(&Frag)) {
834         Fixups = FragWithFixups->getFixups();
835         Contents = FragWithFixups->getContents();
836       } else if (auto *FragWithFixups = dyn_cast<MCDwarfLineAddrFragment>(&Frag)) {
837         Fixups = FragWithFixups->getFixups();
838         Contents = FragWithFixups->getContents();
839       } else if (auto *AF = dyn_cast<MCAlignFragment>(&Frag)) {
840         // Insert fixup type for code alignment if the target define
841         // shouldInsertFixupForCodeAlign target hook.
842         if (Sec.UseCodeAlign() && AF->hasEmitNops()) {
843           getBackend().shouldInsertFixupForCodeAlign(*this, Layout, *AF);
844         }
845         continue;
846       } else if (auto *FragWithFixups =
847                      dyn_cast<MCDwarfCallFrameFragment>(&Frag)) {
848         Fixups = FragWithFixups->getFixups();
849         Contents = FragWithFixups->getContents();
850       } else
851         llvm_unreachable("Unknown fragment with fixups!");
852       for (const MCFixup &Fixup : Fixups) {
853         uint64_t FixedValue;
854         bool IsResolved;
855         MCValue Target;
856         std::tie(Target, FixedValue, IsResolved) =
857             handleFixup(Layout, Frag, Fixup);
858         getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
859                                 IsResolved, STI);
860       }
861     }
862   }
863 }
864 
865 void MCAssembler::Finish() {
866   // Create the layout object.
867   MCAsmLayout Layout(*this);
868   layout(Layout);
869 
870   // Write the object file.
871   stats::ObjectBytes += getWriter().writeObject(*this, Layout);
872 }
873 
874 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
875                                        const MCRelaxableFragment *DF,
876                                        const MCAsmLayout &Layout) const {
877   assert(getBackendPtr() && "Expected assembler backend");
878   MCValue Target;
879   uint64_t Value;
880   bool WasForced;
881   bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced);
882   if (Target.getSymA() &&
883       Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
884       Fixup.getKind() == FK_Data_1)
885     return false;
886   return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
887                                                    Layout, WasForced);
888 }
889 
890 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
891                                           const MCAsmLayout &Layout) const {
892   assert(getBackendPtr() && "Expected assembler backend");
893   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
894   // are intentionally pushing out inst fragments, or because we relaxed a
895   // previous instruction to one that doesn't need relaxation.
896   if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
897     return false;
898 
899   for (const MCFixup &Fixup : F->getFixups())
900     if (fixupNeedsRelaxation(Fixup, F, Layout))
901       return true;
902 
903   return false;
904 }
905 
906 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
907                                    MCRelaxableFragment &F) {
908   assert(getEmitterPtr() &&
909          "Expected CodeEmitter defined for relaxInstruction");
910   if (!fragmentNeedsRelaxation(&F, Layout))
911     return false;
912 
913   ++stats::RelaxedInstructions;
914 
915   // FIXME-PERF: We could immediately lower out instructions if we can tell
916   // they are fully resolved, to avoid retesting on later passes.
917 
918   // Relax the fragment.
919 
920   MCInst Relaxed;
921   getBackend().relaxInstruction(F.getInst(), *F.getSubtargetInfo(), Relaxed);
922 
923   // Encode the new instruction.
924   //
925   // FIXME-PERF: If it matters, we could let the target do this. It can
926   // probably do so more efficiently in many cases.
927   SmallVector<MCFixup, 4> Fixups;
928   SmallString<256> Code;
929   raw_svector_ostream VecOS(Code);
930   getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, *F.getSubtargetInfo());
931 
932   // Update the fragment.
933   F.setInst(Relaxed);
934   F.getContents() = Code;
935   F.getFixups() = Fixups;
936 
937   return true;
938 }
939 
940 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
941   uint64_t OldSize = LF.getContents().size();
942   int64_t Value;
943   bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
944   if (!Abs)
945     report_fatal_error("sleb128 and uleb128 expressions must be absolute");
946   SmallString<8> &Data = LF.getContents();
947   Data.clear();
948   raw_svector_ostream OSE(Data);
949   // The compiler can generate EH table assembly that is impossible to assemble
950   // without either adding padding to an LEB fragment or adding extra padding
951   // to a later alignment fragment. To accommodate such tables, relaxation can
952   // only increase an LEB fragment size here, not decrease it. See PR35809.
953   if (LF.isSigned())
954     encodeSLEB128(Value, OSE, OldSize);
955   else
956     encodeULEB128(Value, OSE, OldSize);
957   return OldSize != LF.getContents().size();
958 }
959 
960 /// Check if the branch crosses the boundary.
961 ///
962 /// \param StartAddr start address of the fused/unfused branch.
963 /// \param Size size of the fused/unfused branch.
964 /// \param BoundaryAlignment alignment requirement of the branch.
965 /// \returns true if the branch cross the boundary.
966 static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size,
967                              Align BoundaryAlignment) {
968   uint64_t EndAddr = StartAddr + Size;
969   return (StartAddr >> Log2(BoundaryAlignment)) !=
970          ((EndAddr - 1) >> Log2(BoundaryAlignment));
971 }
972 
973 /// Check if the branch is against the boundary.
974 ///
975 /// \param StartAddr start address of the fused/unfused branch.
976 /// \param Size size of the fused/unfused branch.
977 /// \param BoundaryAlignment alignment requirement of the branch.
978 /// \returns true if the branch is against the boundary.
979 static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size,
980                               Align BoundaryAlignment) {
981   uint64_t EndAddr = StartAddr + Size;
982   return (EndAddr & (BoundaryAlignment.value() - 1)) == 0;
983 }
984 
985 /// Check if the branch needs padding.
986 ///
987 /// \param StartAddr start address of the fused/unfused branch.
988 /// \param Size size of the fused/unfused branch.
989 /// \param BoundaryAlignment alignment requirement of the branch.
990 /// \returns true if the branch needs padding.
991 static bool needPadding(uint64_t StartAddr, uint64_t Size,
992                         Align BoundaryAlignment) {
993   return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) ||
994          isAgainstBoundary(StartAddr, Size, BoundaryAlignment);
995 }
996 
997 bool MCAssembler::relaxBoundaryAlign(MCAsmLayout &Layout,
998                                      MCBoundaryAlignFragment &BF) {
999   // The MCBoundaryAlignFragment that doesn't emit NOP should not be relaxed.
1000   if (!BF.canEmitNops())
1001     return false;
1002 
1003   uint64_t AlignedOffset = Layout.getFragmentOffset(BF.getNextNode());
1004   uint64_t AlignedSize = 0;
1005   const MCFragment *F = BF.getNextNode();
1006   // If the branch is unfused, it is emitted into one fragment, otherwise it is
1007   // emitted into two fragments at most, the next MCBoundaryAlignFragment(if
1008   // exists) also marks the end of the branch.
1009   for (auto i = 0, N = BF.isFused() ? 2 : 1;
1010        i != N && !isa<MCBoundaryAlignFragment>(F); ++i, F = F->getNextNode()) {
1011     AlignedSize += computeFragmentSize(Layout, *F);
1012   }
1013   uint64_t OldSize = BF.getSize();
1014   AlignedOffset -= OldSize;
1015   Align BoundaryAlignment = BF.getAlignment();
1016   uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment)
1017                          ? offsetToAlignment(AlignedOffset, BoundaryAlignment)
1018                          : 0U;
1019   if (NewSize == OldSize)
1020     return false;
1021   BF.setSize(NewSize);
1022   Layout.invalidateFragmentsFrom(&BF);
1023   return true;
1024 }
1025 
1026 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
1027                                      MCDwarfLineAddrFragment &DF) {
1028   MCContext &Context = Layout.getAssembler().getContext();
1029   uint64_t OldSize = DF.getContents().size();
1030   int64_t AddrDelta;
1031   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1032   assert(Abs && "We created a line delta with an invalid expression");
1033   (void)Abs;
1034   int64_t LineDelta;
1035   LineDelta = DF.getLineDelta();
1036   SmallVectorImpl<char> &Data = DF.getContents();
1037   Data.clear();
1038   raw_svector_ostream OSE(Data);
1039   DF.getFixups().clear();
1040 
1041   if (!getBackend().requiresDiffExpressionRelocations()) {
1042     MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
1043                             AddrDelta, OSE);
1044   } else {
1045     uint32_t Offset;
1046     uint32_t Size;
1047     bool SetDelta = MCDwarfLineAddr::FixedEncode(Context,
1048                                                  getDWARFLinetableParams(),
1049                                                  LineDelta, AddrDelta,
1050                                                  OSE, &Offset, &Size);
1051     // Add Fixups for address delta or new address.
1052     const MCExpr *FixupExpr;
1053     if (SetDelta) {
1054       FixupExpr = &DF.getAddrDelta();
1055     } else {
1056       const MCBinaryExpr *ABE = cast<MCBinaryExpr>(&DF.getAddrDelta());
1057       FixupExpr = ABE->getLHS();
1058     }
1059     DF.getFixups().push_back(
1060         MCFixup::create(Offset, FixupExpr,
1061                         MCFixup::getKindForSize(Size, false /*isPCRel*/)));
1062   }
1063 
1064   return OldSize != Data.size();
1065 }
1066 
1067 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
1068                                               MCDwarfCallFrameFragment &DF) {
1069   MCContext &Context = Layout.getAssembler().getContext();
1070   uint64_t OldSize = DF.getContents().size();
1071   int64_t AddrDelta;
1072   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1073   assert(Abs && "We created call frame with an invalid expression");
1074   (void) Abs;
1075   SmallVectorImpl<char> &Data = DF.getContents();
1076   Data.clear();
1077   raw_svector_ostream OSE(Data);
1078   DF.getFixups().clear();
1079 
1080   if (getBackend().requiresDiffExpressionRelocations()) {
1081     uint32_t Offset;
1082     uint32_t Size;
1083     MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE, &Offset,
1084                                           &Size);
1085     if (Size) {
1086       DF.getFixups().push_back(MCFixup::create(
1087           Offset, &DF.getAddrDelta(),
1088           MCFixup::getKindForSizeInBits(Size /*In bits.*/, false /*isPCRel*/)));
1089     }
1090   } else {
1091     MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
1092   }
1093 
1094   return OldSize != Data.size();
1095 }
1096 
1097 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout,
1098                                          MCCVInlineLineTableFragment &F) {
1099   unsigned OldSize = F.getContents().size();
1100   getContext().getCVContext().encodeInlineLineTable(Layout, F);
1101   return OldSize != F.getContents().size();
1102 }
1103 
1104 bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout,
1105                                   MCCVDefRangeFragment &F) {
1106   unsigned OldSize = F.getContents().size();
1107   getContext().getCVContext().encodeDefRange(Layout, F);
1108   return OldSize != F.getContents().size();
1109 }
1110 
1111 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
1112   // Holds the first fragment which needed relaxing during this layout. It will
1113   // remain NULL if none were relaxed.
1114   // When a fragment is relaxed, all the fragments following it should get
1115   // invalidated because their offset is going to change.
1116   MCFragment *FirstRelaxedFragment = nullptr;
1117 
1118   // Attempt to relax all the fragments in the section.
1119   for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) {
1120     // Check if this is a fragment that needs relaxation.
1121     bool RelaxedFrag = false;
1122     switch(I->getKind()) {
1123     default:
1124       break;
1125     case MCFragment::FT_Relaxable:
1126       assert(!getRelaxAll() &&
1127              "Did not expect a MCRelaxableFragment in RelaxAll mode");
1128       RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
1129       break;
1130     case MCFragment::FT_Dwarf:
1131       RelaxedFrag = relaxDwarfLineAddr(Layout,
1132                                        *cast<MCDwarfLineAddrFragment>(I));
1133       break;
1134     case MCFragment::FT_DwarfFrame:
1135       RelaxedFrag =
1136         relaxDwarfCallFrameFragment(Layout,
1137                                     *cast<MCDwarfCallFrameFragment>(I));
1138       break;
1139     case MCFragment::FT_LEB:
1140       RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
1141       break;
1142     case MCFragment::FT_BoundaryAlign:
1143       RelaxedFrag =
1144           relaxBoundaryAlign(Layout, *cast<MCBoundaryAlignFragment>(I));
1145       break;
1146     case MCFragment::FT_CVInlineLines:
1147       RelaxedFrag =
1148           relaxCVInlineLineTable(Layout, *cast<MCCVInlineLineTableFragment>(I));
1149       break;
1150     case MCFragment::FT_CVDefRange:
1151       RelaxedFrag = relaxCVDefRange(Layout, *cast<MCCVDefRangeFragment>(I));
1152       break;
1153     }
1154     if (RelaxedFrag && !FirstRelaxedFragment)
1155       FirstRelaxedFragment = &*I;
1156   }
1157   if (FirstRelaxedFragment) {
1158     Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
1159     return true;
1160   }
1161   return false;
1162 }
1163 
1164 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
1165   ++stats::RelaxationSteps;
1166 
1167   bool WasRelaxed = false;
1168   for (iterator it = begin(), ie = end(); it != ie; ++it) {
1169     MCSection &Sec = *it;
1170     while (layoutSectionOnce(Layout, Sec))
1171       WasRelaxed = true;
1172   }
1173 
1174   return WasRelaxed;
1175 }
1176 
1177 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
1178   assert(getBackendPtr() && "Expected assembler backend");
1179   // The layout is done. Mark every fragment as valid.
1180   for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
1181     MCSection &Section = *Layout.getSectionOrder()[i];
1182     Layout.getFragmentOffset(&*Section.getFragmentList().rbegin());
1183     computeFragmentSize(Layout, *Section.getFragmentList().rbegin());
1184   }
1185   getBackend().finishLayout(*this, Layout);
1186 }
1187 
1188 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1189 LLVM_DUMP_METHOD void MCAssembler::dump() const{
1190   raw_ostream &OS = errs();
1191 
1192   OS << "<MCAssembler\n";
1193   OS << "  Sections:[\n    ";
1194   for (const_iterator it = begin(), ie = end(); it != ie; ++it) {
1195     if (it != begin()) OS << ",\n    ";
1196     it->dump();
1197   }
1198   OS << "],\n";
1199   OS << "  Symbols:[";
1200 
1201   for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1202     if (it != symbol_begin()) OS << ",\n           ";
1203     OS << "(";
1204     it->dump();
1205     OS << ", Index:" << it->getIndex() << ", ";
1206     OS << ")";
1207   }
1208   OS << "]>\n";
1209 }
1210 #endif
1211