1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/MC/MCAssembler.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Statistic.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Twine.h" 16 #include "llvm/MC/MCAsmBackend.h" 17 #include "llvm/MC/MCAsmInfo.h" 18 #include "llvm/MC/MCAsmLayout.h" 19 #include "llvm/MC/MCCodeEmitter.h" 20 #include "llvm/MC/MCCodeView.h" 21 #include "llvm/MC/MCContext.h" 22 #include "llvm/MC/MCDwarf.h" 23 #include "llvm/MC/MCExpr.h" 24 #include "llvm/MC/MCFixup.h" 25 #include "llvm/MC/MCFixupKindInfo.h" 26 #include "llvm/MC/MCFragment.h" 27 #include "llvm/MC/MCInst.h" 28 #include "llvm/MC/MCObjectWriter.h" 29 #include "llvm/MC/MCSection.h" 30 #include "llvm/MC/MCSymbol.h" 31 #include "llvm/MC/MCValue.h" 32 #include "llvm/Support/Alignment.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/EndianStream.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/LEB128.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <cassert> 40 #include <cstdint> 41 #include <tuple> 42 #include <utility> 43 44 using namespace llvm; 45 46 namespace llvm { 47 class MCSubtargetInfo; 48 } 49 50 #define DEBUG_TYPE "assembler" 51 52 namespace { 53 namespace stats { 54 55 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total"); 56 STATISTIC(EmittedRelaxableFragments, 57 "Number of emitted assembler fragments - relaxable"); 58 STATISTIC(EmittedDataFragments, 59 "Number of emitted assembler fragments - data"); 60 STATISTIC(EmittedCompactEncodedInstFragments, 61 "Number of emitted assembler fragments - compact encoded inst"); 62 STATISTIC(EmittedAlignFragments, 63 "Number of emitted assembler fragments - align"); 64 STATISTIC(EmittedFillFragments, 65 "Number of emitted assembler fragments - fill"); 66 STATISTIC(EmittedNopsFragments, "Number of emitted assembler fragments - nops"); 67 STATISTIC(EmittedOrgFragments, "Number of emitted assembler fragments - org"); 68 STATISTIC(evaluateFixup, "Number of evaluated fixups"); 69 STATISTIC(FragmentLayouts, "Number of fragment layouts"); 70 STATISTIC(ObjectBytes, "Number of emitted object file bytes"); 71 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps"); 72 STATISTIC(RelaxedInstructions, "Number of relaxed instructions"); 73 74 } // end namespace stats 75 } // end anonymous namespace 76 77 // FIXME FIXME FIXME: There are number of places in this file where we convert 78 // what is a 64-bit assembler value used for computation into a value in the 79 // object file, which may truncate it. We should detect that truncation where 80 // invalid and report errors back. 81 82 /* *** */ 83 84 MCAssembler::MCAssembler(MCContext &Context, 85 std::unique_ptr<MCAsmBackend> Backend, 86 std::unique_ptr<MCCodeEmitter> Emitter, 87 std::unique_ptr<MCObjectWriter> Writer) 88 : Context(Context), Backend(std::move(Backend)), 89 Emitter(std::move(Emitter)), Writer(std::move(Writer)), 90 BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false), 91 IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) { 92 VersionInfo.Major = 0; // Major version == 0 for "none specified" 93 DarwinTargetVariantVersionInfo.Major = 0; 94 } 95 96 MCAssembler::~MCAssembler() = default; 97 98 void MCAssembler::reset() { 99 Sections.clear(); 100 Symbols.clear(); 101 IndirectSymbols.clear(); 102 DataRegions.clear(); 103 LinkerOptions.clear(); 104 FileNames.clear(); 105 ThumbFuncs.clear(); 106 BundleAlignSize = 0; 107 RelaxAll = false; 108 SubsectionsViaSymbols = false; 109 IncrementalLinkerCompatible = false; 110 ELFHeaderEFlags = 0; 111 LOHContainer.reset(); 112 VersionInfo.Major = 0; 113 VersionInfo.SDKVersion = VersionTuple(); 114 DarwinTargetVariantVersionInfo.Major = 0; 115 DarwinTargetVariantVersionInfo.SDKVersion = VersionTuple(); 116 117 // reset objects owned by us 118 if (getBackendPtr()) 119 getBackendPtr()->reset(); 120 if (getEmitterPtr()) 121 getEmitterPtr()->reset(); 122 if (getWriterPtr()) 123 getWriterPtr()->reset(); 124 getLOHContainer().reset(); 125 } 126 127 bool MCAssembler::registerSection(MCSection &Section) { 128 if (Section.isRegistered()) 129 return false; 130 Sections.push_back(&Section); 131 Section.setIsRegistered(true); 132 return true; 133 } 134 135 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const { 136 if (ThumbFuncs.count(Symbol)) 137 return true; 138 139 if (!Symbol->isVariable()) 140 return false; 141 142 const MCExpr *Expr = Symbol->getVariableValue(); 143 144 MCValue V; 145 if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr)) 146 return false; 147 148 if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None) 149 return false; 150 151 const MCSymbolRefExpr *Ref = V.getSymA(); 152 if (!Ref) 153 return false; 154 155 if (Ref->getKind() != MCSymbolRefExpr::VK_None) 156 return false; 157 158 const MCSymbol &Sym = Ref->getSymbol(); 159 if (!isThumbFunc(&Sym)) 160 return false; 161 162 ThumbFuncs.insert(Symbol); // Cache it. 163 return true; 164 } 165 166 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const { 167 // Non-temporary labels should always be visible to the linker. 168 if (!Symbol.isTemporary()) 169 return true; 170 171 if (Symbol.isUsedInReloc()) 172 return true; 173 174 return false; 175 } 176 177 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const { 178 // Linker visible symbols define atoms. 179 if (isSymbolLinkerVisible(S)) 180 return &S; 181 182 // Absolute and undefined symbols have no defining atom. 183 if (!S.isInSection()) 184 return nullptr; 185 186 // Non-linker visible symbols in sections which can't be atomized have no 187 // defining atom. 188 if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols( 189 *S.getFragment()->getParent())) 190 return nullptr; 191 192 // Otherwise, return the atom for the containing fragment. 193 return S.getFragment()->getAtom(); 194 } 195 196 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout, 197 const MCFixup &Fixup, const MCFragment *DF, 198 MCValue &Target, uint64_t &Value, 199 bool &WasForced) const { 200 ++stats::evaluateFixup; 201 202 // FIXME: This code has some duplication with recordRelocation. We should 203 // probably merge the two into a single callback that tries to evaluate a 204 // fixup and records a relocation if one is needed. 205 206 // On error claim to have completely evaluated the fixup, to prevent any 207 // further processing from being done. 208 const MCExpr *Expr = Fixup.getValue(); 209 MCContext &Ctx = getContext(); 210 Value = 0; 211 WasForced = false; 212 if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) { 213 Ctx.reportError(Fixup.getLoc(), "expected relocatable expression"); 214 return true; 215 } 216 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 217 if (RefB->getKind() != MCSymbolRefExpr::VK_None) { 218 Ctx.reportError(Fixup.getLoc(), 219 "unsupported subtraction of qualified symbol"); 220 return true; 221 } 222 } 223 224 assert(getBackendPtr() && "Expected assembler backend"); 225 bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags & 226 MCFixupKindInfo::FKF_IsTarget; 227 228 if (IsTarget) 229 return getBackend().evaluateTargetFixup(*this, Layout, Fixup, DF, Target, 230 Value, WasForced); 231 232 unsigned FixupFlags = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags; 233 bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags & 234 MCFixupKindInfo::FKF_IsPCRel; 235 236 bool IsResolved = false; 237 if (IsPCRel) { 238 if (Target.getSymB()) { 239 IsResolved = false; 240 } else if (!Target.getSymA()) { 241 IsResolved = false; 242 } else { 243 const MCSymbolRefExpr *A = Target.getSymA(); 244 const MCSymbol &SA = A->getSymbol(); 245 if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) { 246 IsResolved = false; 247 } else if (auto *Writer = getWriterPtr()) { 248 IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) || 249 Writer->isSymbolRefDifferenceFullyResolvedImpl( 250 *this, SA, *DF, false, true); 251 } 252 } 253 } else { 254 IsResolved = Target.isAbsolute(); 255 } 256 257 Value = Target.getConstant(); 258 259 if (const MCSymbolRefExpr *A = Target.getSymA()) { 260 const MCSymbol &Sym = A->getSymbol(); 261 if (Sym.isDefined()) 262 Value += Layout.getSymbolOffset(Sym); 263 } 264 if (const MCSymbolRefExpr *B = Target.getSymB()) { 265 const MCSymbol &Sym = B->getSymbol(); 266 if (Sym.isDefined()) 267 Value -= Layout.getSymbolOffset(Sym); 268 } 269 270 bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags & 271 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits; 272 assert((ShouldAlignPC ? IsPCRel : true) && 273 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!"); 274 275 if (IsPCRel) { 276 uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset(); 277 278 // A number of ARM fixups in Thumb mode require that the effective PC 279 // address be determined as the 32-bit aligned version of the actual offset. 280 if (ShouldAlignPC) Offset &= ~0x3; 281 Value -= Offset; 282 } 283 284 // Let the backend force a relocation if needed. 285 if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) { 286 IsResolved = false; 287 WasForced = true; 288 } 289 290 return IsResolved; 291 } 292 293 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout, 294 const MCFragment &F) const { 295 assert(getBackendPtr() && "Requires assembler backend"); 296 switch (F.getKind()) { 297 case MCFragment::FT_Data: 298 return cast<MCDataFragment>(F).getContents().size(); 299 case MCFragment::FT_Relaxable: 300 return cast<MCRelaxableFragment>(F).getContents().size(); 301 case MCFragment::FT_CompactEncodedInst: 302 return cast<MCCompactEncodedInstFragment>(F).getContents().size(); 303 case MCFragment::FT_Fill: { 304 auto &FF = cast<MCFillFragment>(F); 305 int64_t NumValues = 0; 306 if (!FF.getNumValues().evaluateAsAbsolute(NumValues, Layout)) { 307 getContext().reportError(FF.getLoc(), 308 "expected assembly-time absolute expression"); 309 return 0; 310 } 311 int64_t Size = NumValues * FF.getValueSize(); 312 if (Size < 0) { 313 getContext().reportError(FF.getLoc(), "invalid number of bytes"); 314 return 0; 315 } 316 return Size; 317 } 318 319 case MCFragment::FT_Nops: 320 return cast<MCNopsFragment>(F).getNumBytes(); 321 322 case MCFragment::FT_LEB: 323 return cast<MCLEBFragment>(F).getContents().size(); 324 325 case MCFragment::FT_BoundaryAlign: 326 return cast<MCBoundaryAlignFragment>(F).getSize(); 327 328 case MCFragment::FT_SymbolId: 329 return 4; 330 331 case MCFragment::FT_Align: { 332 const MCAlignFragment &AF = cast<MCAlignFragment>(F); 333 unsigned Offset = Layout.getFragmentOffset(&AF); 334 unsigned Size = offsetToAlignment(Offset, AF.getAlignment()); 335 336 // Insert extra Nops for code alignment if the target define 337 // shouldInsertExtraNopBytesForCodeAlign target hook. 338 if (AF.getParent()->useCodeAlign() && AF.hasEmitNops() && 339 getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size)) 340 return Size; 341 342 // If we are padding with nops, force the padding to be larger than the 343 // minimum nop size. 344 if (Size > 0 && AF.hasEmitNops()) { 345 while (Size % getBackend().getMinimumNopSize()) 346 Size += AF.getAlignment().value(); 347 } 348 if (Size > AF.getMaxBytesToEmit()) 349 return 0; 350 return Size; 351 } 352 353 case MCFragment::FT_Org: { 354 const MCOrgFragment &OF = cast<MCOrgFragment>(F); 355 MCValue Value; 356 if (!OF.getOffset().evaluateAsValue(Value, Layout)) { 357 getContext().reportError(OF.getLoc(), 358 "expected assembly-time absolute expression"); 359 return 0; 360 } 361 362 uint64_t FragmentOffset = Layout.getFragmentOffset(&OF); 363 int64_t TargetLocation = Value.getConstant(); 364 if (const MCSymbolRefExpr *A = Value.getSymA()) { 365 uint64_t Val; 366 if (!Layout.getSymbolOffset(A->getSymbol(), Val)) { 367 getContext().reportError(OF.getLoc(), "expected absolute expression"); 368 return 0; 369 } 370 TargetLocation += Val; 371 } 372 int64_t Size = TargetLocation - FragmentOffset; 373 if (Size < 0 || Size >= 0x40000000) { 374 getContext().reportError( 375 OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) + 376 "' (at offset '" + Twine(FragmentOffset) + "')"); 377 return 0; 378 } 379 return Size; 380 } 381 382 case MCFragment::FT_Dwarf: 383 return cast<MCDwarfLineAddrFragment>(F).getContents().size(); 384 case MCFragment::FT_DwarfFrame: 385 return cast<MCDwarfCallFrameFragment>(F).getContents().size(); 386 case MCFragment::FT_CVInlineLines: 387 return cast<MCCVInlineLineTableFragment>(F).getContents().size(); 388 case MCFragment::FT_CVDefRange: 389 return cast<MCCVDefRangeFragment>(F).getContents().size(); 390 case MCFragment::FT_PseudoProbe: 391 return cast<MCPseudoProbeAddrFragment>(F).getContents().size(); 392 case MCFragment::FT_Dummy: 393 llvm_unreachable("Should not have been added"); 394 } 395 396 llvm_unreachable("invalid fragment kind"); 397 } 398 399 void MCAsmLayout::layoutFragment(MCFragment *F) { 400 MCFragment *Prev = F->getPrevNode(); 401 402 // We should never try to recompute something which is valid. 403 assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!"); 404 // We should never try to compute the fragment layout if its predecessor 405 // isn't valid. 406 assert((!Prev || isFragmentValid(Prev)) && 407 "Attempt to compute fragment before its predecessor!"); 408 409 assert(!F->IsBeingLaidOut && "Already being laid out!"); 410 F->IsBeingLaidOut = true; 411 412 ++stats::FragmentLayouts; 413 414 // Compute fragment offset and size. 415 if (Prev) 416 F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev); 417 else 418 F->Offset = 0; 419 F->IsBeingLaidOut = false; 420 LastValidFragment[F->getParent()] = F; 421 422 // If bundling is enabled and this fragment has instructions in it, it has to 423 // obey the bundling restrictions. With padding, we'll have: 424 // 425 // 426 // BundlePadding 427 // ||| 428 // ------------------------------------- 429 // Prev |##########| F | 430 // ------------------------------------- 431 // ^ 432 // | 433 // F->Offset 434 // 435 // The fragment's offset will point to after the padding, and its computed 436 // size won't include the padding. 437 // 438 // When the -mc-relax-all flag is used, we optimize bundling by writting the 439 // padding directly into fragments when the instructions are emitted inside 440 // the streamer. When the fragment is larger than the bundle size, we need to 441 // ensure that it's bundle aligned. This means that if we end up with 442 // multiple fragments, we must emit bundle padding between fragments. 443 // 444 // ".align N" is an example of a directive that introduces multiple 445 // fragments. We could add a special case to handle ".align N" by emitting 446 // within-fragment padding (which would produce less padding when N is less 447 // than the bundle size), but for now we don't. 448 // 449 if (Assembler.isBundlingEnabled() && F->hasInstructions()) { 450 assert(isa<MCEncodedFragment>(F) && 451 "Only MCEncodedFragment implementations have instructions"); 452 MCEncodedFragment *EF = cast<MCEncodedFragment>(F); 453 uint64_t FSize = Assembler.computeFragmentSize(*this, *EF); 454 455 if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize()) 456 report_fatal_error("Fragment can't be larger than a bundle size"); 457 458 uint64_t RequiredBundlePadding = 459 computeBundlePadding(Assembler, EF, EF->Offset, FSize); 460 if (RequiredBundlePadding > UINT8_MAX) 461 report_fatal_error("Padding cannot exceed 255 bytes"); 462 EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding)); 463 EF->Offset += RequiredBundlePadding; 464 } 465 } 466 467 void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) { 468 bool New = !Symbol.isRegistered(); 469 if (Created) 470 *Created = New; 471 if (New) { 472 Symbol.setIsRegistered(true); 473 Symbols.push_back(&Symbol); 474 } 475 } 476 477 void MCAssembler::writeFragmentPadding(raw_ostream &OS, 478 const MCEncodedFragment &EF, 479 uint64_t FSize) const { 480 assert(getBackendPtr() && "Expected assembler backend"); 481 // Should NOP padding be written out before this fragment? 482 unsigned BundlePadding = EF.getBundlePadding(); 483 if (BundlePadding > 0) { 484 assert(isBundlingEnabled() && 485 "Writing bundle padding with disabled bundling"); 486 assert(EF.hasInstructions() && 487 "Writing bundle padding for a fragment without instructions"); 488 489 unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize); 490 const MCSubtargetInfo *STI = EF.getSubtargetInfo(); 491 if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) { 492 // If the padding itself crosses a bundle boundary, it must be emitted 493 // in 2 pieces, since even nop instructions must not cross boundaries. 494 // v--------------v <- BundleAlignSize 495 // v---------v <- BundlePadding 496 // ---------------------------- 497 // | Prev |####|####| F | 498 // ---------------------------- 499 // ^-------------------^ <- TotalLength 500 unsigned DistanceToBoundary = TotalLength - getBundleAlignSize(); 501 if (!getBackend().writeNopData(OS, DistanceToBoundary, STI)) 502 report_fatal_error("unable to write NOP sequence of " + 503 Twine(DistanceToBoundary) + " bytes"); 504 BundlePadding -= DistanceToBoundary; 505 } 506 if (!getBackend().writeNopData(OS, BundlePadding, STI)) 507 report_fatal_error("unable to write NOP sequence of " + 508 Twine(BundlePadding) + " bytes"); 509 } 510 } 511 512 /// Write the fragment \p F to the output file. 513 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm, 514 const MCAsmLayout &Layout, const MCFragment &F) { 515 // FIXME: Embed in fragments instead? 516 uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F); 517 518 support::endianness Endian = Asm.getBackend().Endian; 519 520 if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F)) 521 Asm.writeFragmentPadding(OS, *EF, FragmentSize); 522 523 // This variable (and its dummy usage) is to participate in the assert at 524 // the end of the function. 525 uint64_t Start = OS.tell(); 526 (void) Start; 527 528 ++stats::EmittedFragments; 529 530 switch (F.getKind()) { 531 case MCFragment::FT_Align: { 532 ++stats::EmittedAlignFragments; 533 const MCAlignFragment &AF = cast<MCAlignFragment>(F); 534 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!"); 535 536 uint64_t Count = FragmentSize / AF.getValueSize(); 537 538 // FIXME: This error shouldn't actually occur (the front end should emit 539 // multiple .align directives to enforce the semantics it wants), but is 540 // severe enough that we want to report it. How to handle this? 541 if (Count * AF.getValueSize() != FragmentSize) 542 report_fatal_error("undefined .align directive, value size '" + 543 Twine(AF.getValueSize()) + 544 "' is not a divisor of padding size '" + 545 Twine(FragmentSize) + "'"); 546 547 // See if we are aligning with nops, and if so do that first to try to fill 548 // the Count bytes. Then if that did not fill any bytes or there are any 549 // bytes left to fill use the Value and ValueSize to fill the rest. 550 // If we are aligning with nops, ask that target to emit the right data. 551 if (AF.hasEmitNops()) { 552 if (!Asm.getBackend().writeNopData(OS, Count, AF.getSubtargetInfo())) 553 report_fatal_error("unable to write nop sequence of " + 554 Twine(Count) + " bytes"); 555 break; 556 } 557 558 // Otherwise, write out in multiples of the value size. 559 for (uint64_t i = 0; i != Count; ++i) { 560 switch (AF.getValueSize()) { 561 default: llvm_unreachable("Invalid size!"); 562 case 1: OS << char(AF.getValue()); break; 563 case 2: 564 support::endian::write<uint16_t>(OS, AF.getValue(), Endian); 565 break; 566 case 4: 567 support::endian::write<uint32_t>(OS, AF.getValue(), Endian); 568 break; 569 case 8: 570 support::endian::write<uint64_t>(OS, AF.getValue(), Endian); 571 break; 572 } 573 } 574 break; 575 } 576 577 case MCFragment::FT_Data: 578 ++stats::EmittedDataFragments; 579 OS << cast<MCDataFragment>(F).getContents(); 580 break; 581 582 case MCFragment::FT_Relaxable: 583 ++stats::EmittedRelaxableFragments; 584 OS << cast<MCRelaxableFragment>(F).getContents(); 585 break; 586 587 case MCFragment::FT_CompactEncodedInst: 588 ++stats::EmittedCompactEncodedInstFragments; 589 OS << cast<MCCompactEncodedInstFragment>(F).getContents(); 590 break; 591 592 case MCFragment::FT_Fill: { 593 ++stats::EmittedFillFragments; 594 const MCFillFragment &FF = cast<MCFillFragment>(F); 595 uint64_t V = FF.getValue(); 596 unsigned VSize = FF.getValueSize(); 597 const unsigned MaxChunkSize = 16; 598 char Data[MaxChunkSize]; 599 assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size"); 600 // Duplicate V into Data as byte vector to reduce number of 601 // writes done. As such, do endian conversion here. 602 for (unsigned I = 0; I != VSize; ++I) { 603 unsigned index = Endian == support::little ? I : (VSize - I - 1); 604 Data[I] = uint8_t(V >> (index * 8)); 605 } 606 for (unsigned I = VSize; I < MaxChunkSize; ++I) 607 Data[I] = Data[I - VSize]; 608 609 // Set to largest multiple of VSize in Data. 610 const unsigned NumPerChunk = MaxChunkSize / VSize; 611 // Set ChunkSize to largest multiple of VSize in Data 612 const unsigned ChunkSize = VSize * NumPerChunk; 613 614 // Do copies by chunk. 615 StringRef Ref(Data, ChunkSize); 616 for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I) 617 OS << Ref; 618 619 // do remainder if needed. 620 unsigned TrailingCount = FragmentSize % ChunkSize; 621 if (TrailingCount) 622 OS.write(Data, TrailingCount); 623 break; 624 } 625 626 case MCFragment::FT_Nops: { 627 ++stats::EmittedNopsFragments; 628 const MCNopsFragment &NF = cast<MCNopsFragment>(F); 629 630 int64_t NumBytes = NF.getNumBytes(); 631 int64_t ControlledNopLength = NF.getControlledNopLength(); 632 int64_t MaximumNopLength = 633 Asm.getBackend().getMaximumNopSize(*NF.getSubtargetInfo()); 634 635 assert(NumBytes > 0 && "Expected positive NOPs fragment size"); 636 assert(ControlledNopLength >= 0 && "Expected non-negative NOP size"); 637 638 if (ControlledNopLength > MaximumNopLength) { 639 Asm.getContext().reportError(NF.getLoc(), 640 "illegal NOP size " + 641 std::to_string(ControlledNopLength) + 642 ". (expected within [0, " + 643 std::to_string(MaximumNopLength) + "])"); 644 // Clamp the NOP length as reportError does not stop the execution 645 // immediately. 646 ControlledNopLength = MaximumNopLength; 647 } 648 649 // Use maximum value if the size of each NOP is not specified 650 if (!ControlledNopLength) 651 ControlledNopLength = MaximumNopLength; 652 653 while (NumBytes) { 654 uint64_t NumBytesToEmit = 655 (uint64_t)std::min(NumBytes, ControlledNopLength); 656 assert(NumBytesToEmit && "try to emit empty NOP instruction"); 657 if (!Asm.getBackend().writeNopData(OS, NumBytesToEmit, 658 NF.getSubtargetInfo())) { 659 report_fatal_error("unable to write nop sequence of the remaining " + 660 Twine(NumBytesToEmit) + " bytes"); 661 break; 662 } 663 NumBytes -= NumBytesToEmit; 664 } 665 break; 666 } 667 668 case MCFragment::FT_LEB: { 669 const MCLEBFragment &LF = cast<MCLEBFragment>(F); 670 OS << LF.getContents(); 671 break; 672 } 673 674 case MCFragment::FT_BoundaryAlign: { 675 const MCBoundaryAlignFragment &BF = cast<MCBoundaryAlignFragment>(F); 676 if (!Asm.getBackend().writeNopData(OS, FragmentSize, BF.getSubtargetInfo())) 677 report_fatal_error("unable to write nop sequence of " + 678 Twine(FragmentSize) + " bytes"); 679 break; 680 } 681 682 case MCFragment::FT_SymbolId: { 683 const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F); 684 support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian); 685 break; 686 } 687 688 case MCFragment::FT_Org: { 689 ++stats::EmittedOrgFragments; 690 const MCOrgFragment &OF = cast<MCOrgFragment>(F); 691 692 for (uint64_t i = 0, e = FragmentSize; i != e; ++i) 693 OS << char(OF.getValue()); 694 695 break; 696 } 697 698 case MCFragment::FT_Dwarf: { 699 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F); 700 OS << OF.getContents(); 701 break; 702 } 703 case MCFragment::FT_DwarfFrame: { 704 const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F); 705 OS << CF.getContents(); 706 break; 707 } 708 case MCFragment::FT_CVInlineLines: { 709 const auto &OF = cast<MCCVInlineLineTableFragment>(F); 710 OS << OF.getContents(); 711 break; 712 } 713 case MCFragment::FT_CVDefRange: { 714 const auto &DRF = cast<MCCVDefRangeFragment>(F); 715 OS << DRF.getContents(); 716 break; 717 } 718 case MCFragment::FT_PseudoProbe: { 719 const MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(F); 720 OS << PF.getContents(); 721 break; 722 } 723 case MCFragment::FT_Dummy: 724 llvm_unreachable("Should not have been added"); 725 } 726 727 assert(OS.tell() - Start == FragmentSize && 728 "The stream should advance by fragment size"); 729 } 730 731 void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec, 732 const MCAsmLayout &Layout) const { 733 assert(getBackendPtr() && "Expected assembler backend"); 734 735 // Ignore virtual sections. 736 if (Sec->isVirtualSection()) { 737 assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!"); 738 739 // Check that contents are only things legal inside a virtual section. 740 for (const MCFragment &F : *Sec) { 741 switch (F.getKind()) { 742 default: llvm_unreachable("Invalid fragment in virtual section!"); 743 case MCFragment::FT_Data: { 744 // Check that we aren't trying to write a non-zero contents (or fixups) 745 // into a virtual section. This is to support clients which use standard 746 // directives to fill the contents of virtual sections. 747 const MCDataFragment &DF = cast<MCDataFragment>(F); 748 if (DF.fixup_begin() != DF.fixup_end()) 749 getContext().reportError(SMLoc(), Sec->getVirtualSectionKind() + 750 " section '" + Sec->getName() + 751 "' cannot have fixups"); 752 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i) 753 if (DF.getContents()[i]) { 754 getContext().reportError(SMLoc(), 755 Sec->getVirtualSectionKind() + 756 " section '" + Sec->getName() + 757 "' cannot have non-zero initializers"); 758 break; 759 } 760 break; 761 } 762 case MCFragment::FT_Align: 763 // Check that we aren't trying to write a non-zero value into a virtual 764 // section. 765 assert((cast<MCAlignFragment>(F).getValueSize() == 0 || 766 cast<MCAlignFragment>(F).getValue() == 0) && 767 "Invalid align in virtual section!"); 768 break; 769 case MCFragment::FT_Fill: 770 assert((cast<MCFillFragment>(F).getValue() == 0) && 771 "Invalid fill in virtual section!"); 772 break; 773 case MCFragment::FT_Org: 774 break; 775 } 776 } 777 778 return; 779 } 780 781 uint64_t Start = OS.tell(); 782 (void)Start; 783 784 for (const MCFragment &F : *Sec) 785 writeFragment(OS, *this, Layout, F); 786 787 assert(getContext().hadError() || 788 OS.tell() - Start == Layout.getSectionAddressSize(Sec)); 789 } 790 791 std::tuple<MCValue, uint64_t, bool> 792 MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F, 793 const MCFixup &Fixup) { 794 // Evaluate the fixup. 795 MCValue Target; 796 uint64_t FixedValue; 797 bool WasForced; 798 bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue, 799 WasForced); 800 if (!IsResolved) { 801 // The fixup was unresolved, we need a relocation. Inform the object 802 // writer of the relocation, and give it an opportunity to adjust the 803 // fixup value if need be. 804 getWriter().recordRelocation(*this, Layout, &F, Fixup, Target, FixedValue); 805 } 806 return std::make_tuple(Target, FixedValue, IsResolved); 807 } 808 809 void MCAssembler::layout(MCAsmLayout &Layout) { 810 assert(getBackendPtr() && "Expected assembler backend"); 811 DEBUG_WITH_TYPE("mc-dump", { 812 errs() << "assembler backend - pre-layout\n--\n"; 813 dump(); }); 814 815 // Create dummy fragments and assign section ordinals. 816 unsigned SectionIndex = 0; 817 for (MCSection &Sec : *this) { 818 // Create dummy fragments to eliminate any empty sections, this simplifies 819 // layout. 820 if (Sec.getFragmentList().empty()) 821 new MCDataFragment(&Sec); 822 823 Sec.setOrdinal(SectionIndex++); 824 } 825 826 // Assign layout order indices to sections and fragments. 827 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) { 828 MCSection *Sec = Layout.getSectionOrder()[i]; 829 Sec->setLayoutOrder(i); 830 831 unsigned FragmentIndex = 0; 832 for (MCFragment &Frag : *Sec) 833 Frag.setLayoutOrder(FragmentIndex++); 834 } 835 836 // Layout until everything fits. 837 while (layoutOnce(Layout)) { 838 if (getContext().hadError()) 839 return; 840 // Size of fragments in one section can depend on the size of fragments in 841 // another. If any fragment has changed size, we have to re-layout (and 842 // as a result possibly further relax) all. 843 for (MCSection &Sec : *this) 844 Layout.invalidateFragmentsFrom(&*Sec.begin()); 845 } 846 847 DEBUG_WITH_TYPE("mc-dump", { 848 errs() << "assembler backend - post-relaxation\n--\n"; 849 dump(); }); 850 851 // Finalize the layout, including fragment lowering. 852 finishLayout(Layout); 853 854 DEBUG_WITH_TYPE("mc-dump", { 855 errs() << "assembler backend - final-layout\n--\n"; 856 dump(); }); 857 858 // Allow the object writer a chance to perform post-layout binding (for 859 // example, to set the index fields in the symbol data). 860 getWriter().executePostLayoutBinding(*this, Layout); 861 862 // Evaluate and apply the fixups, generating relocation entries as necessary. 863 for (MCSection &Sec : *this) { 864 for (MCFragment &Frag : Sec) { 865 ArrayRef<MCFixup> Fixups; 866 MutableArrayRef<char> Contents; 867 const MCSubtargetInfo *STI = nullptr; 868 869 // Process MCAlignFragment and MCEncodedFragmentWithFixups here. 870 switch (Frag.getKind()) { 871 default: 872 continue; 873 case MCFragment::FT_Align: { 874 MCAlignFragment &AF = cast<MCAlignFragment>(Frag); 875 // Insert fixup type for code alignment if the target define 876 // shouldInsertFixupForCodeAlign target hook. 877 if (Sec.useCodeAlign() && AF.hasEmitNops()) 878 getBackend().shouldInsertFixupForCodeAlign(*this, Layout, AF); 879 continue; 880 } 881 case MCFragment::FT_Data: { 882 MCDataFragment &DF = cast<MCDataFragment>(Frag); 883 Fixups = DF.getFixups(); 884 Contents = DF.getContents(); 885 STI = DF.getSubtargetInfo(); 886 assert(!DF.hasInstructions() || STI != nullptr); 887 break; 888 } 889 case MCFragment::FT_Relaxable: { 890 MCRelaxableFragment &RF = cast<MCRelaxableFragment>(Frag); 891 Fixups = RF.getFixups(); 892 Contents = RF.getContents(); 893 STI = RF.getSubtargetInfo(); 894 assert(!RF.hasInstructions() || STI != nullptr); 895 break; 896 } 897 case MCFragment::FT_CVDefRange: { 898 MCCVDefRangeFragment &CF = cast<MCCVDefRangeFragment>(Frag); 899 Fixups = CF.getFixups(); 900 Contents = CF.getContents(); 901 break; 902 } 903 case MCFragment::FT_Dwarf: { 904 MCDwarfLineAddrFragment &DF = cast<MCDwarfLineAddrFragment>(Frag); 905 Fixups = DF.getFixups(); 906 Contents = DF.getContents(); 907 break; 908 } 909 case MCFragment::FT_DwarfFrame: { 910 MCDwarfCallFrameFragment &DF = cast<MCDwarfCallFrameFragment>(Frag); 911 Fixups = DF.getFixups(); 912 Contents = DF.getContents(); 913 break; 914 } 915 case MCFragment::FT_PseudoProbe: { 916 MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(Frag); 917 Fixups = PF.getFixups(); 918 Contents = PF.getContents(); 919 break; 920 } 921 } 922 for (const MCFixup &Fixup : Fixups) { 923 uint64_t FixedValue; 924 bool IsResolved; 925 MCValue Target; 926 std::tie(Target, FixedValue, IsResolved) = 927 handleFixup(Layout, Frag, Fixup); 928 getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue, 929 IsResolved, STI); 930 } 931 } 932 } 933 } 934 935 void MCAssembler::Finish() { 936 // Create the layout object. 937 MCAsmLayout Layout(*this); 938 layout(Layout); 939 940 // Write the object file. 941 stats::ObjectBytes += getWriter().writeObject(*this, Layout); 942 } 943 944 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup, 945 const MCRelaxableFragment *DF, 946 const MCAsmLayout &Layout) const { 947 assert(getBackendPtr() && "Expected assembler backend"); 948 MCValue Target; 949 uint64_t Value; 950 bool WasForced; 951 bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced); 952 if (Target.getSymA() && 953 Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 && 954 Fixup.getKind() == FK_Data_1) 955 return false; 956 return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF, 957 Layout, WasForced); 958 } 959 960 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F, 961 const MCAsmLayout &Layout) const { 962 assert(getBackendPtr() && "Expected assembler backend"); 963 // If this inst doesn't ever need relaxation, ignore it. This occurs when we 964 // are intentionally pushing out inst fragments, or because we relaxed a 965 // previous instruction to one that doesn't need relaxation. 966 if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo())) 967 return false; 968 969 for (const MCFixup &Fixup : F->getFixups()) 970 if (fixupNeedsRelaxation(Fixup, F, Layout)) 971 return true; 972 973 return false; 974 } 975 976 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout, 977 MCRelaxableFragment &F) { 978 assert(getEmitterPtr() && 979 "Expected CodeEmitter defined for relaxInstruction"); 980 if (!fragmentNeedsRelaxation(&F, Layout)) 981 return false; 982 983 ++stats::RelaxedInstructions; 984 985 // FIXME-PERF: We could immediately lower out instructions if we can tell 986 // they are fully resolved, to avoid retesting on later passes. 987 988 // Relax the fragment. 989 990 MCInst Relaxed = F.getInst(); 991 getBackend().relaxInstruction(Relaxed, *F.getSubtargetInfo()); 992 993 // Encode the new instruction. 994 // 995 // FIXME-PERF: If it matters, we could let the target do this. It can 996 // probably do so more efficiently in many cases. 997 SmallVector<MCFixup, 4> Fixups; 998 SmallString<256> Code; 999 raw_svector_ostream VecOS(Code); 1000 getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, *F.getSubtargetInfo()); 1001 1002 // Update the fragment. 1003 F.setInst(Relaxed); 1004 F.getContents() = Code; 1005 F.getFixups() = Fixups; 1006 1007 return true; 1008 } 1009 1010 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) { 1011 uint64_t OldSize = LF.getContents().size(); 1012 int64_t Value; 1013 bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout); 1014 if (!Abs) 1015 report_fatal_error("sleb128 and uleb128 expressions must be absolute"); 1016 SmallString<8> &Data = LF.getContents(); 1017 Data.clear(); 1018 raw_svector_ostream OSE(Data); 1019 // The compiler can generate EH table assembly that is impossible to assemble 1020 // without either adding padding to an LEB fragment or adding extra padding 1021 // to a later alignment fragment. To accommodate such tables, relaxation can 1022 // only increase an LEB fragment size here, not decrease it. See PR35809. 1023 if (LF.isSigned()) 1024 encodeSLEB128(Value, OSE, OldSize); 1025 else 1026 encodeULEB128(Value, OSE, OldSize); 1027 return OldSize != LF.getContents().size(); 1028 } 1029 1030 /// Check if the branch crosses the boundary. 1031 /// 1032 /// \param StartAddr start address of the fused/unfused branch. 1033 /// \param Size size of the fused/unfused branch. 1034 /// \param BoundaryAlignment alignment requirement of the branch. 1035 /// \returns true if the branch cross the boundary. 1036 static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size, 1037 Align BoundaryAlignment) { 1038 uint64_t EndAddr = StartAddr + Size; 1039 return (StartAddr >> Log2(BoundaryAlignment)) != 1040 ((EndAddr - 1) >> Log2(BoundaryAlignment)); 1041 } 1042 1043 /// Check if the branch is against the boundary. 1044 /// 1045 /// \param StartAddr start address of the fused/unfused branch. 1046 /// \param Size size of the fused/unfused branch. 1047 /// \param BoundaryAlignment alignment requirement of the branch. 1048 /// \returns true if the branch is against the boundary. 1049 static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size, 1050 Align BoundaryAlignment) { 1051 uint64_t EndAddr = StartAddr + Size; 1052 return (EndAddr & (BoundaryAlignment.value() - 1)) == 0; 1053 } 1054 1055 /// Check if the branch needs padding. 1056 /// 1057 /// \param StartAddr start address of the fused/unfused branch. 1058 /// \param Size size of the fused/unfused branch. 1059 /// \param BoundaryAlignment alignment requirement of the branch. 1060 /// \returns true if the branch needs padding. 1061 static bool needPadding(uint64_t StartAddr, uint64_t Size, 1062 Align BoundaryAlignment) { 1063 return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) || 1064 isAgainstBoundary(StartAddr, Size, BoundaryAlignment); 1065 } 1066 1067 bool MCAssembler::relaxBoundaryAlign(MCAsmLayout &Layout, 1068 MCBoundaryAlignFragment &BF) { 1069 // BoundaryAlignFragment that doesn't need to align any fragment should not be 1070 // relaxed. 1071 if (!BF.getLastFragment()) 1072 return false; 1073 1074 uint64_t AlignedOffset = Layout.getFragmentOffset(&BF); 1075 uint64_t AlignedSize = 0; 1076 for (const MCFragment *F = BF.getLastFragment(); F != &BF; 1077 F = F->getPrevNode()) 1078 AlignedSize += computeFragmentSize(Layout, *F); 1079 1080 Align BoundaryAlignment = BF.getAlignment(); 1081 uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment) 1082 ? offsetToAlignment(AlignedOffset, BoundaryAlignment) 1083 : 0U; 1084 if (NewSize == BF.getSize()) 1085 return false; 1086 BF.setSize(NewSize); 1087 Layout.invalidateFragmentsFrom(&BF); 1088 return true; 1089 } 1090 1091 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout, 1092 MCDwarfLineAddrFragment &DF) { 1093 1094 bool WasRelaxed; 1095 if (getBackend().relaxDwarfLineAddr(DF, Layout, WasRelaxed)) 1096 return WasRelaxed; 1097 1098 MCContext &Context = Layout.getAssembler().getContext(); 1099 uint64_t OldSize = DF.getContents().size(); 1100 int64_t AddrDelta; 1101 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout); 1102 assert(Abs && "We created a line delta with an invalid expression"); 1103 (void)Abs; 1104 int64_t LineDelta; 1105 LineDelta = DF.getLineDelta(); 1106 SmallVectorImpl<char> &Data = DF.getContents(); 1107 Data.clear(); 1108 raw_svector_ostream OSE(Data); 1109 DF.getFixups().clear(); 1110 1111 MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta, 1112 AddrDelta, OSE); 1113 return OldSize != Data.size(); 1114 } 1115 1116 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout, 1117 MCDwarfCallFrameFragment &DF) { 1118 bool WasRelaxed; 1119 if (getBackend().relaxDwarfCFA(DF, Layout, WasRelaxed)) 1120 return WasRelaxed; 1121 1122 MCContext &Context = Layout.getAssembler().getContext(); 1123 uint64_t OldSize = DF.getContents().size(); 1124 int64_t AddrDelta; 1125 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout); 1126 assert(Abs && "We created call frame with an invalid expression"); 1127 (void) Abs; 1128 SmallVectorImpl<char> &Data = DF.getContents(); 1129 Data.clear(); 1130 raw_svector_ostream OSE(Data); 1131 DF.getFixups().clear(); 1132 1133 MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE); 1134 return OldSize != Data.size(); 1135 } 1136 1137 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout, 1138 MCCVInlineLineTableFragment &F) { 1139 unsigned OldSize = F.getContents().size(); 1140 getContext().getCVContext().encodeInlineLineTable(Layout, F); 1141 return OldSize != F.getContents().size(); 1142 } 1143 1144 bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout, 1145 MCCVDefRangeFragment &F) { 1146 unsigned OldSize = F.getContents().size(); 1147 getContext().getCVContext().encodeDefRange(Layout, F); 1148 return OldSize != F.getContents().size(); 1149 } 1150 1151 bool MCAssembler::relaxPseudoProbeAddr(MCAsmLayout &Layout, 1152 MCPseudoProbeAddrFragment &PF) { 1153 uint64_t OldSize = PF.getContents().size(); 1154 int64_t AddrDelta; 1155 bool Abs = PF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout); 1156 assert(Abs && "We created a pseudo probe with an invalid expression"); 1157 (void)Abs; 1158 SmallVectorImpl<char> &Data = PF.getContents(); 1159 Data.clear(); 1160 raw_svector_ostream OSE(Data); 1161 PF.getFixups().clear(); 1162 1163 // AddrDelta is a signed integer 1164 encodeSLEB128(AddrDelta, OSE, OldSize); 1165 return OldSize != Data.size(); 1166 } 1167 1168 bool MCAssembler::relaxFragment(MCAsmLayout &Layout, MCFragment &F) { 1169 switch(F.getKind()) { 1170 default: 1171 return false; 1172 case MCFragment::FT_Relaxable: 1173 assert(!getRelaxAll() && 1174 "Did not expect a MCRelaxableFragment in RelaxAll mode"); 1175 return relaxInstruction(Layout, cast<MCRelaxableFragment>(F)); 1176 case MCFragment::FT_Dwarf: 1177 return relaxDwarfLineAddr(Layout, cast<MCDwarfLineAddrFragment>(F)); 1178 case MCFragment::FT_DwarfFrame: 1179 return relaxDwarfCallFrameFragment(Layout, 1180 cast<MCDwarfCallFrameFragment>(F)); 1181 case MCFragment::FT_LEB: 1182 return relaxLEB(Layout, cast<MCLEBFragment>(F)); 1183 case MCFragment::FT_BoundaryAlign: 1184 return relaxBoundaryAlign(Layout, cast<MCBoundaryAlignFragment>(F)); 1185 case MCFragment::FT_CVInlineLines: 1186 return relaxCVInlineLineTable(Layout, cast<MCCVInlineLineTableFragment>(F)); 1187 case MCFragment::FT_CVDefRange: 1188 return relaxCVDefRange(Layout, cast<MCCVDefRangeFragment>(F)); 1189 case MCFragment::FT_PseudoProbe: 1190 return relaxPseudoProbeAddr(Layout, cast<MCPseudoProbeAddrFragment>(F)); 1191 } 1192 } 1193 1194 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) { 1195 // Holds the first fragment which needed relaxing during this layout. It will 1196 // remain NULL if none were relaxed. 1197 // When a fragment is relaxed, all the fragments following it should get 1198 // invalidated because their offset is going to change. 1199 MCFragment *FirstRelaxedFragment = nullptr; 1200 1201 // Attempt to relax all the fragments in the section. 1202 for (MCFragment &Frag : Sec) { 1203 // Check if this is a fragment that needs relaxation. 1204 bool RelaxedFrag = relaxFragment(Layout, Frag); 1205 if (RelaxedFrag && !FirstRelaxedFragment) 1206 FirstRelaxedFragment = &Frag; 1207 } 1208 if (FirstRelaxedFragment) { 1209 Layout.invalidateFragmentsFrom(FirstRelaxedFragment); 1210 return true; 1211 } 1212 return false; 1213 } 1214 1215 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) { 1216 ++stats::RelaxationSteps; 1217 1218 bool WasRelaxed = false; 1219 for (MCSection &Sec : *this) { 1220 while (layoutSectionOnce(Layout, Sec)) 1221 WasRelaxed = true; 1222 } 1223 1224 return WasRelaxed; 1225 } 1226 1227 void MCAssembler::finishLayout(MCAsmLayout &Layout) { 1228 assert(getBackendPtr() && "Expected assembler backend"); 1229 // The layout is done. Mark every fragment as valid. 1230 for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) { 1231 MCSection &Section = *Layout.getSectionOrder()[i]; 1232 Layout.getFragmentOffset(&*Section.getFragmentList().rbegin()); 1233 computeFragmentSize(Layout, *Section.getFragmentList().rbegin()); 1234 } 1235 getBackend().finishLayout(*this, Layout); 1236 } 1237 1238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1239 LLVM_DUMP_METHOD void MCAssembler::dump() const{ 1240 raw_ostream &OS = errs(); 1241 1242 OS << "<MCAssembler\n"; 1243 OS << " Sections:[\n "; 1244 for (const_iterator it = begin(), ie = end(); it != ie; ++it) { 1245 if (it != begin()) OS << ",\n "; 1246 it->dump(); 1247 } 1248 OS << "],\n"; 1249 OS << " Symbols:["; 1250 1251 for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) { 1252 if (it != symbol_begin()) OS << ",\n "; 1253 OS << "("; 1254 it->dump(); 1255 OS << ", Index:" << it->getIndex() << ", "; 1256 OS << ")"; 1257 } 1258 OS << "]>\n"; 1259 } 1260 #endif 1261