1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/MC/MCAssembler.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Statistic.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Twine.h" 16 #include "llvm/MC/MCAsmBackend.h" 17 #include "llvm/MC/MCAsmInfo.h" 18 #include "llvm/MC/MCAsmLayout.h" 19 #include "llvm/MC/MCCodeEmitter.h" 20 #include "llvm/MC/MCCodeView.h" 21 #include "llvm/MC/MCContext.h" 22 #include "llvm/MC/MCDwarf.h" 23 #include "llvm/MC/MCExpr.h" 24 #include "llvm/MC/MCFixup.h" 25 #include "llvm/MC/MCFixupKindInfo.h" 26 #include "llvm/MC/MCFragment.h" 27 #include "llvm/MC/MCInst.h" 28 #include "llvm/MC/MCObjectWriter.h" 29 #include "llvm/MC/MCSection.h" 30 #include "llvm/MC/MCSectionELF.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/MC/MCValue.h" 33 #include "llvm/Support/Alignment.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/EndianStream.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/LEB128.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cassert> 42 #include <cstdint> 43 #include <cstring> 44 #include <tuple> 45 #include <utility> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "assembler" 50 51 namespace { 52 namespace stats { 53 54 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total"); 55 STATISTIC(EmittedRelaxableFragments, 56 "Number of emitted assembler fragments - relaxable"); 57 STATISTIC(EmittedDataFragments, 58 "Number of emitted assembler fragments - data"); 59 STATISTIC(EmittedCompactEncodedInstFragments, 60 "Number of emitted assembler fragments - compact encoded inst"); 61 STATISTIC(EmittedAlignFragments, 62 "Number of emitted assembler fragments - align"); 63 STATISTIC(EmittedFillFragments, 64 "Number of emitted assembler fragments - fill"); 65 STATISTIC(EmittedOrgFragments, 66 "Number of emitted assembler fragments - org"); 67 STATISTIC(evaluateFixup, "Number of evaluated fixups"); 68 STATISTIC(FragmentLayouts, "Number of fragment layouts"); 69 STATISTIC(ObjectBytes, "Number of emitted object file bytes"); 70 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps"); 71 STATISTIC(RelaxedInstructions, "Number of relaxed instructions"); 72 73 } // end namespace stats 74 } // end anonymous namespace 75 76 // FIXME FIXME FIXME: There are number of places in this file where we convert 77 // what is a 64-bit assembler value used for computation into a value in the 78 // object file, which may truncate it. We should detect that truncation where 79 // invalid and report errors back. 80 81 /* *** */ 82 83 MCAssembler::MCAssembler(MCContext &Context, 84 std::unique_ptr<MCAsmBackend> Backend, 85 std::unique_ptr<MCCodeEmitter> Emitter, 86 std::unique_ptr<MCObjectWriter> Writer) 87 : Context(Context), Backend(std::move(Backend)), 88 Emitter(std::move(Emitter)), Writer(std::move(Writer)), 89 BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false), 90 IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) { 91 VersionInfo.Major = 0; // Major version == 0 for "none specified" 92 } 93 94 MCAssembler::~MCAssembler() = default; 95 96 void MCAssembler::reset() { 97 Sections.clear(); 98 Symbols.clear(); 99 IndirectSymbols.clear(); 100 DataRegions.clear(); 101 LinkerOptions.clear(); 102 FileNames.clear(); 103 ThumbFuncs.clear(); 104 BundleAlignSize = 0; 105 RelaxAll = false; 106 SubsectionsViaSymbols = false; 107 IncrementalLinkerCompatible = false; 108 ELFHeaderEFlags = 0; 109 LOHContainer.reset(); 110 VersionInfo.Major = 0; 111 VersionInfo.SDKVersion = VersionTuple(); 112 113 // reset objects owned by us 114 if (getBackendPtr()) 115 getBackendPtr()->reset(); 116 if (getEmitterPtr()) 117 getEmitterPtr()->reset(); 118 if (getWriterPtr()) 119 getWriterPtr()->reset(); 120 getLOHContainer().reset(); 121 } 122 123 bool MCAssembler::registerSection(MCSection &Section) { 124 if (Section.isRegistered()) 125 return false; 126 Sections.push_back(&Section); 127 Section.setIsRegistered(true); 128 return true; 129 } 130 131 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const { 132 if (ThumbFuncs.count(Symbol)) 133 return true; 134 135 if (!Symbol->isVariable()) 136 return false; 137 138 const MCExpr *Expr = Symbol->getVariableValue(); 139 140 MCValue V; 141 if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr)) 142 return false; 143 144 if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None) 145 return false; 146 147 const MCSymbolRefExpr *Ref = V.getSymA(); 148 if (!Ref) 149 return false; 150 151 if (Ref->getKind() != MCSymbolRefExpr::VK_None) 152 return false; 153 154 const MCSymbol &Sym = Ref->getSymbol(); 155 if (!isThumbFunc(&Sym)) 156 return false; 157 158 ThumbFuncs.insert(Symbol); // Cache it. 159 return true; 160 } 161 162 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const { 163 // Non-temporary labels should always be visible to the linker. 164 if (!Symbol.isTemporary()) 165 return true; 166 167 if (Symbol.isUsedInReloc()) 168 return true; 169 170 return false; 171 } 172 173 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const { 174 // Linker visible symbols define atoms. 175 if (isSymbolLinkerVisible(S)) 176 return &S; 177 178 // Absolute and undefined symbols have no defining atom. 179 if (!S.isInSection()) 180 return nullptr; 181 182 // Non-linker visible symbols in sections which can't be atomized have no 183 // defining atom. 184 if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols( 185 *S.getFragment()->getParent())) 186 return nullptr; 187 188 // Otherwise, return the atom for the containing fragment. 189 return S.getFragment()->getAtom(); 190 } 191 192 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout, 193 const MCFixup &Fixup, const MCFragment *DF, 194 MCValue &Target, uint64_t &Value, 195 bool &WasForced) const { 196 ++stats::evaluateFixup; 197 198 // FIXME: This code has some duplication with recordRelocation. We should 199 // probably merge the two into a single callback that tries to evaluate a 200 // fixup and records a relocation if one is needed. 201 202 // On error claim to have completely evaluated the fixup, to prevent any 203 // further processing from being done. 204 const MCExpr *Expr = Fixup.getValue(); 205 MCContext &Ctx = getContext(); 206 Value = 0; 207 WasForced = false; 208 if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) { 209 Ctx.reportError(Fixup.getLoc(), "expected relocatable expression"); 210 return true; 211 } 212 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 213 if (RefB->getKind() != MCSymbolRefExpr::VK_None) { 214 Ctx.reportError(Fixup.getLoc(), 215 "unsupported subtraction of qualified symbol"); 216 return true; 217 } 218 } 219 220 assert(getBackendPtr() && "Expected assembler backend"); 221 bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags & 222 MCFixupKindInfo::FKF_IsTarget; 223 224 if (IsTarget) 225 return getBackend().evaluateTargetFixup(*this, Layout, Fixup, DF, Target, 226 Value, WasForced); 227 228 unsigned FixupFlags = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags; 229 bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags & 230 MCFixupKindInfo::FKF_IsPCRel; 231 232 bool IsResolved = false; 233 if (IsPCRel) { 234 if (Target.getSymB()) { 235 IsResolved = false; 236 } else if (!Target.getSymA()) { 237 IsResolved = false; 238 } else { 239 const MCSymbolRefExpr *A = Target.getSymA(); 240 const MCSymbol &SA = A->getSymbol(); 241 if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) { 242 IsResolved = false; 243 } else if (auto *Writer = getWriterPtr()) { 244 IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) || 245 Writer->isSymbolRefDifferenceFullyResolvedImpl( 246 *this, SA, *DF, false, true); 247 } 248 } 249 } else { 250 IsResolved = Target.isAbsolute(); 251 } 252 253 Value = Target.getConstant(); 254 255 if (const MCSymbolRefExpr *A = Target.getSymA()) { 256 const MCSymbol &Sym = A->getSymbol(); 257 if (Sym.isDefined()) 258 Value += Layout.getSymbolOffset(Sym); 259 } 260 if (const MCSymbolRefExpr *B = Target.getSymB()) { 261 const MCSymbol &Sym = B->getSymbol(); 262 if (Sym.isDefined()) 263 Value -= Layout.getSymbolOffset(Sym); 264 } 265 266 bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags & 267 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits; 268 assert((ShouldAlignPC ? IsPCRel : true) && 269 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!"); 270 271 if (IsPCRel) { 272 uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset(); 273 274 // A number of ARM fixups in Thumb mode require that the effective PC 275 // address be determined as the 32-bit aligned version of the actual offset. 276 if (ShouldAlignPC) Offset &= ~0x3; 277 Value -= Offset; 278 } 279 280 // Let the backend force a relocation if needed. 281 if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) { 282 IsResolved = false; 283 WasForced = true; 284 } 285 286 return IsResolved; 287 } 288 289 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout, 290 const MCFragment &F) const { 291 assert(getBackendPtr() && "Requires assembler backend"); 292 switch (F.getKind()) { 293 case MCFragment::FT_Data: 294 return cast<MCDataFragment>(F).getContents().size(); 295 case MCFragment::FT_Relaxable: 296 return cast<MCRelaxableFragment>(F).getContents().size(); 297 case MCFragment::FT_CompactEncodedInst: 298 return cast<MCCompactEncodedInstFragment>(F).getContents().size(); 299 case MCFragment::FT_Fill: { 300 auto &FF = cast<MCFillFragment>(F); 301 int64_t NumValues = 0; 302 if (!FF.getNumValues().evaluateAsAbsolute(NumValues, Layout)) { 303 getContext().reportError(FF.getLoc(), 304 "expected assembly-time absolute expression"); 305 return 0; 306 } 307 int64_t Size = NumValues * FF.getValueSize(); 308 if (Size < 0) { 309 getContext().reportError(FF.getLoc(), "invalid number of bytes"); 310 return 0; 311 } 312 return Size; 313 } 314 315 case MCFragment::FT_LEB: 316 return cast<MCLEBFragment>(F).getContents().size(); 317 318 case MCFragment::FT_BoundaryAlign: 319 return cast<MCBoundaryAlignFragment>(F).getSize(); 320 321 case MCFragment::FT_SymbolId: 322 return 4; 323 324 case MCFragment::FT_Align: { 325 const MCAlignFragment &AF = cast<MCAlignFragment>(F); 326 unsigned Offset = Layout.getFragmentOffset(&AF); 327 unsigned Size = offsetToAlignment(Offset, Align(AF.getAlignment())); 328 329 // Insert extra Nops for code alignment if the target define 330 // shouldInsertExtraNopBytesForCodeAlign target hook. 331 if (AF.getParent()->UseCodeAlign() && AF.hasEmitNops() && 332 getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size)) 333 return Size; 334 335 // If we are padding with nops, force the padding to be larger than the 336 // minimum nop size. 337 if (Size > 0 && AF.hasEmitNops()) { 338 while (Size % getBackend().getMinimumNopSize()) 339 Size += AF.getAlignment(); 340 } 341 if (Size > AF.getMaxBytesToEmit()) 342 return 0; 343 return Size; 344 } 345 346 case MCFragment::FT_Org: { 347 const MCOrgFragment &OF = cast<MCOrgFragment>(F); 348 MCValue Value; 349 if (!OF.getOffset().evaluateAsValue(Value, Layout)) { 350 getContext().reportError(OF.getLoc(), 351 "expected assembly-time absolute expression"); 352 return 0; 353 } 354 355 uint64_t FragmentOffset = Layout.getFragmentOffset(&OF); 356 int64_t TargetLocation = Value.getConstant(); 357 if (const MCSymbolRefExpr *A = Value.getSymA()) { 358 uint64_t Val; 359 if (!Layout.getSymbolOffset(A->getSymbol(), Val)) { 360 getContext().reportError(OF.getLoc(), "expected absolute expression"); 361 return 0; 362 } 363 TargetLocation += Val; 364 } 365 int64_t Size = TargetLocation - FragmentOffset; 366 if (Size < 0 || Size >= 0x40000000) { 367 getContext().reportError( 368 OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) + 369 "' (at offset '" + Twine(FragmentOffset) + "')"); 370 return 0; 371 } 372 return Size; 373 } 374 375 case MCFragment::FT_Dwarf: 376 return cast<MCDwarfLineAddrFragment>(F).getContents().size(); 377 case MCFragment::FT_DwarfFrame: 378 return cast<MCDwarfCallFrameFragment>(F).getContents().size(); 379 case MCFragment::FT_CVInlineLines: 380 return cast<MCCVInlineLineTableFragment>(F).getContents().size(); 381 case MCFragment::FT_CVDefRange: 382 return cast<MCCVDefRangeFragment>(F).getContents().size(); 383 case MCFragment::FT_Dummy: 384 llvm_unreachable("Should not have been added"); 385 } 386 387 llvm_unreachable("invalid fragment kind"); 388 } 389 390 void MCAsmLayout::layoutFragment(MCFragment *F) { 391 MCFragment *Prev = F->getPrevNode(); 392 393 // We should never try to recompute something which is valid. 394 assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!"); 395 // We should never try to compute the fragment layout if its predecessor 396 // isn't valid. 397 assert((!Prev || isFragmentValid(Prev)) && 398 "Attempt to compute fragment before its predecessor!"); 399 400 assert(!F->IsBeingLaidOut && "Already being laid out!"); 401 F->IsBeingLaidOut = true; 402 403 ++stats::FragmentLayouts; 404 405 // Compute fragment offset and size. 406 if (Prev) 407 F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev); 408 else 409 F->Offset = 0; 410 F->IsBeingLaidOut = false; 411 LastValidFragment[F->getParent()] = F; 412 413 // If bundling is enabled and this fragment has instructions in it, it has to 414 // obey the bundling restrictions. With padding, we'll have: 415 // 416 // 417 // BundlePadding 418 // ||| 419 // ------------------------------------- 420 // Prev |##########| F | 421 // ------------------------------------- 422 // ^ 423 // | 424 // F->Offset 425 // 426 // The fragment's offset will point to after the padding, and its computed 427 // size won't include the padding. 428 // 429 // When the -mc-relax-all flag is used, we optimize bundling by writting the 430 // padding directly into fragments when the instructions are emitted inside 431 // the streamer. When the fragment is larger than the bundle size, we need to 432 // ensure that it's bundle aligned. This means that if we end up with 433 // multiple fragments, we must emit bundle padding between fragments. 434 // 435 // ".align N" is an example of a directive that introduces multiple 436 // fragments. We could add a special case to handle ".align N" by emitting 437 // within-fragment padding (which would produce less padding when N is less 438 // than the bundle size), but for now we don't. 439 // 440 if (Assembler.isBundlingEnabled() && F->hasInstructions()) { 441 assert(isa<MCEncodedFragment>(F) && 442 "Only MCEncodedFragment implementations have instructions"); 443 MCEncodedFragment *EF = cast<MCEncodedFragment>(F); 444 uint64_t FSize = Assembler.computeFragmentSize(*this, *EF); 445 446 if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize()) 447 report_fatal_error("Fragment can't be larger than a bundle size"); 448 449 uint64_t RequiredBundlePadding = 450 computeBundlePadding(Assembler, EF, EF->Offset, FSize); 451 if (RequiredBundlePadding > UINT8_MAX) 452 report_fatal_error("Padding cannot exceed 255 bytes"); 453 EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding)); 454 EF->Offset += RequiredBundlePadding; 455 } 456 } 457 458 void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) { 459 bool New = !Symbol.isRegistered(); 460 if (Created) 461 *Created = New; 462 if (New) { 463 Symbol.setIsRegistered(true); 464 Symbols.push_back(&Symbol); 465 } 466 } 467 468 void MCAssembler::writeFragmentPadding(raw_ostream &OS, 469 const MCEncodedFragment &EF, 470 uint64_t FSize) const { 471 assert(getBackendPtr() && "Expected assembler backend"); 472 // Should NOP padding be written out before this fragment? 473 unsigned BundlePadding = EF.getBundlePadding(); 474 if (BundlePadding > 0) { 475 assert(isBundlingEnabled() && 476 "Writing bundle padding with disabled bundling"); 477 assert(EF.hasInstructions() && 478 "Writing bundle padding for a fragment without instructions"); 479 480 unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize); 481 if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) { 482 // If the padding itself crosses a bundle boundary, it must be emitted 483 // in 2 pieces, since even nop instructions must not cross boundaries. 484 // v--------------v <- BundleAlignSize 485 // v---------v <- BundlePadding 486 // ---------------------------- 487 // | Prev |####|####| F | 488 // ---------------------------- 489 // ^-------------------^ <- TotalLength 490 unsigned DistanceToBoundary = TotalLength - getBundleAlignSize(); 491 if (!getBackend().writeNopData(OS, DistanceToBoundary)) 492 report_fatal_error("unable to write NOP sequence of " + 493 Twine(DistanceToBoundary) + " bytes"); 494 BundlePadding -= DistanceToBoundary; 495 } 496 if (!getBackend().writeNopData(OS, BundlePadding)) 497 report_fatal_error("unable to write NOP sequence of " + 498 Twine(BundlePadding) + " bytes"); 499 } 500 } 501 502 /// Write the fragment \p F to the output file. 503 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm, 504 const MCAsmLayout &Layout, const MCFragment &F) { 505 // FIXME: Embed in fragments instead? 506 uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F); 507 508 support::endianness Endian = Asm.getBackend().Endian; 509 510 if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F)) 511 Asm.writeFragmentPadding(OS, *EF, FragmentSize); 512 513 // This variable (and its dummy usage) is to participate in the assert at 514 // the end of the function. 515 uint64_t Start = OS.tell(); 516 (void) Start; 517 518 ++stats::EmittedFragments; 519 520 switch (F.getKind()) { 521 case MCFragment::FT_Align: { 522 ++stats::EmittedAlignFragments; 523 const MCAlignFragment &AF = cast<MCAlignFragment>(F); 524 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!"); 525 526 uint64_t Count = FragmentSize / AF.getValueSize(); 527 528 // FIXME: This error shouldn't actually occur (the front end should emit 529 // multiple .align directives to enforce the semantics it wants), but is 530 // severe enough that we want to report it. How to handle this? 531 if (Count * AF.getValueSize() != FragmentSize) 532 report_fatal_error("undefined .align directive, value size '" + 533 Twine(AF.getValueSize()) + 534 "' is not a divisor of padding size '" + 535 Twine(FragmentSize) + "'"); 536 537 // See if we are aligning with nops, and if so do that first to try to fill 538 // the Count bytes. Then if that did not fill any bytes or there are any 539 // bytes left to fill use the Value and ValueSize to fill the rest. 540 // If we are aligning with nops, ask that target to emit the right data. 541 if (AF.hasEmitNops()) { 542 if (!Asm.getBackend().writeNopData(OS, Count)) 543 report_fatal_error("unable to write nop sequence of " + 544 Twine(Count) + " bytes"); 545 break; 546 } 547 548 // Otherwise, write out in multiples of the value size. 549 for (uint64_t i = 0; i != Count; ++i) { 550 switch (AF.getValueSize()) { 551 default: llvm_unreachable("Invalid size!"); 552 case 1: OS << char(AF.getValue()); break; 553 case 2: 554 support::endian::write<uint16_t>(OS, AF.getValue(), Endian); 555 break; 556 case 4: 557 support::endian::write<uint32_t>(OS, AF.getValue(), Endian); 558 break; 559 case 8: 560 support::endian::write<uint64_t>(OS, AF.getValue(), Endian); 561 break; 562 } 563 } 564 break; 565 } 566 567 case MCFragment::FT_Data: 568 ++stats::EmittedDataFragments; 569 OS << cast<MCDataFragment>(F).getContents(); 570 break; 571 572 case MCFragment::FT_Relaxable: 573 ++stats::EmittedRelaxableFragments; 574 OS << cast<MCRelaxableFragment>(F).getContents(); 575 break; 576 577 case MCFragment::FT_CompactEncodedInst: 578 ++stats::EmittedCompactEncodedInstFragments; 579 OS << cast<MCCompactEncodedInstFragment>(F).getContents(); 580 break; 581 582 case MCFragment::FT_Fill: { 583 ++stats::EmittedFillFragments; 584 const MCFillFragment &FF = cast<MCFillFragment>(F); 585 uint64_t V = FF.getValue(); 586 unsigned VSize = FF.getValueSize(); 587 const unsigned MaxChunkSize = 16; 588 char Data[MaxChunkSize]; 589 assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size"); 590 // Duplicate V into Data as byte vector to reduce number of 591 // writes done. As such, do endian conversion here. 592 for (unsigned I = 0; I != VSize; ++I) { 593 unsigned index = Endian == support::little ? I : (VSize - I - 1); 594 Data[I] = uint8_t(V >> (index * 8)); 595 } 596 for (unsigned I = VSize; I < MaxChunkSize; ++I) 597 Data[I] = Data[I - VSize]; 598 599 // Set to largest multiple of VSize in Data. 600 const unsigned NumPerChunk = MaxChunkSize / VSize; 601 // Set ChunkSize to largest multiple of VSize in Data 602 const unsigned ChunkSize = VSize * NumPerChunk; 603 604 // Do copies by chunk. 605 StringRef Ref(Data, ChunkSize); 606 for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I) 607 OS << Ref; 608 609 // do remainder if needed. 610 unsigned TrailingCount = FragmentSize % ChunkSize; 611 if (TrailingCount) 612 OS.write(Data, TrailingCount); 613 break; 614 } 615 616 case MCFragment::FT_LEB: { 617 const MCLEBFragment &LF = cast<MCLEBFragment>(F); 618 OS << LF.getContents(); 619 break; 620 } 621 622 case MCFragment::FT_BoundaryAlign: { 623 if (!Asm.getBackend().writeNopData(OS, FragmentSize)) 624 report_fatal_error("unable to write nop sequence of " + 625 Twine(FragmentSize) + " bytes"); 626 break; 627 } 628 629 case MCFragment::FT_SymbolId: { 630 const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F); 631 support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian); 632 break; 633 } 634 635 case MCFragment::FT_Org: { 636 ++stats::EmittedOrgFragments; 637 const MCOrgFragment &OF = cast<MCOrgFragment>(F); 638 639 for (uint64_t i = 0, e = FragmentSize; i != e; ++i) 640 OS << char(OF.getValue()); 641 642 break; 643 } 644 645 case MCFragment::FT_Dwarf: { 646 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F); 647 OS << OF.getContents(); 648 break; 649 } 650 case MCFragment::FT_DwarfFrame: { 651 const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F); 652 OS << CF.getContents(); 653 break; 654 } 655 case MCFragment::FT_CVInlineLines: { 656 const auto &OF = cast<MCCVInlineLineTableFragment>(F); 657 OS << OF.getContents(); 658 break; 659 } 660 case MCFragment::FT_CVDefRange: { 661 const auto &DRF = cast<MCCVDefRangeFragment>(F); 662 OS << DRF.getContents(); 663 break; 664 } 665 case MCFragment::FT_Dummy: 666 llvm_unreachable("Should not have been added"); 667 } 668 669 assert(OS.tell() - Start == FragmentSize && 670 "The stream should advance by fragment size"); 671 } 672 673 void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec, 674 const MCAsmLayout &Layout) const { 675 assert(getBackendPtr() && "Expected assembler backend"); 676 677 // Ignore virtual sections. 678 if (Sec->isVirtualSection()) { 679 assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!"); 680 681 // Check that contents are only things legal inside a virtual section. 682 for (const MCFragment &F : *Sec) { 683 switch (F.getKind()) { 684 default: llvm_unreachable("Invalid fragment in virtual section!"); 685 case MCFragment::FT_Data: { 686 // Check that we aren't trying to write a non-zero contents (or fixups) 687 // into a virtual section. This is to support clients which use standard 688 // directives to fill the contents of virtual sections. 689 const MCDataFragment &DF = cast<MCDataFragment>(F); 690 if (DF.fixup_begin() != DF.fixup_end()) 691 getContext().reportError(SMLoc(), Sec->getVirtualSectionKind() + 692 " section '" + Sec->getName() + 693 "' cannot have fixups"); 694 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i) 695 if (DF.getContents()[i]) { 696 getContext().reportError(SMLoc(), 697 Sec->getVirtualSectionKind() + 698 " section '" + Sec->getName() + 699 "' cannot have non-zero initializers"); 700 break; 701 } 702 break; 703 } 704 case MCFragment::FT_Align: 705 // Check that we aren't trying to write a non-zero value into a virtual 706 // section. 707 assert((cast<MCAlignFragment>(F).getValueSize() == 0 || 708 cast<MCAlignFragment>(F).getValue() == 0) && 709 "Invalid align in virtual section!"); 710 break; 711 case MCFragment::FT_Fill: 712 assert((cast<MCFillFragment>(F).getValue() == 0) && 713 "Invalid fill in virtual section!"); 714 break; 715 } 716 } 717 718 return; 719 } 720 721 uint64_t Start = OS.tell(); 722 (void)Start; 723 724 for (const MCFragment &F : *Sec) 725 writeFragment(OS, *this, Layout, F); 726 727 assert(OS.tell() - Start == Layout.getSectionAddressSize(Sec)); 728 } 729 730 std::tuple<MCValue, uint64_t, bool> 731 MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F, 732 const MCFixup &Fixup) { 733 // Evaluate the fixup. 734 MCValue Target; 735 uint64_t FixedValue; 736 bool WasForced; 737 bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue, 738 WasForced); 739 if (!IsResolved) { 740 // The fixup was unresolved, we need a relocation. Inform the object 741 // writer of the relocation, and give it an opportunity to adjust the 742 // fixup value if need be. 743 if (Target.getSymA() && Target.getSymB() && 744 getBackend().requiresDiffExpressionRelocations()) { 745 // The fixup represents the difference between two symbols, which the 746 // backend has indicated must be resolved at link time. Split up the fixup 747 // into two relocations, one for the add, and one for the sub, and emit 748 // both of these. The constant will be associated with the add half of the 749 // expression. 750 MCFixup FixupAdd = MCFixup::createAddFor(Fixup); 751 MCValue TargetAdd = 752 MCValue::get(Target.getSymA(), nullptr, Target.getConstant()); 753 getWriter().recordRelocation(*this, Layout, &F, FixupAdd, TargetAdd, 754 FixedValue); 755 MCFixup FixupSub = MCFixup::createSubFor(Fixup); 756 MCValue TargetSub = MCValue::get(Target.getSymB()); 757 getWriter().recordRelocation(*this, Layout, &F, FixupSub, TargetSub, 758 FixedValue); 759 } else { 760 getWriter().recordRelocation(*this, Layout, &F, Fixup, Target, 761 FixedValue); 762 } 763 } 764 return std::make_tuple(Target, FixedValue, IsResolved); 765 } 766 767 void MCAssembler::layout(MCAsmLayout &Layout) { 768 assert(getBackendPtr() && "Expected assembler backend"); 769 DEBUG_WITH_TYPE("mc-dump", { 770 errs() << "assembler backend - pre-layout\n--\n"; 771 dump(); }); 772 773 // Create dummy fragments and assign section ordinals. 774 unsigned SectionIndex = 0; 775 for (MCSection &Sec : *this) { 776 // Create dummy fragments to eliminate any empty sections, this simplifies 777 // layout. 778 if (Sec.getFragmentList().empty()) 779 new MCDataFragment(&Sec); 780 781 Sec.setOrdinal(SectionIndex++); 782 } 783 784 // Assign layout order indices to sections and fragments. 785 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) { 786 MCSection *Sec = Layout.getSectionOrder()[i]; 787 Sec->setLayoutOrder(i); 788 789 unsigned FragmentIndex = 0; 790 for (MCFragment &Frag : *Sec) 791 Frag.setLayoutOrder(FragmentIndex++); 792 } 793 794 // Layout until everything fits. 795 while (layoutOnce(Layout)) { 796 if (getContext().hadError()) 797 return; 798 // Size of fragments in one section can depend on the size of fragments in 799 // another. If any fragment has changed size, we have to re-layout (and 800 // as a result possibly further relax) all. 801 for (MCSection &Sec : *this) 802 Layout.invalidateFragmentsFrom(&*Sec.begin()); 803 } 804 805 DEBUG_WITH_TYPE("mc-dump", { 806 errs() << "assembler backend - post-relaxation\n--\n"; 807 dump(); }); 808 809 // Finalize the layout, including fragment lowering. 810 finishLayout(Layout); 811 812 DEBUG_WITH_TYPE("mc-dump", { 813 errs() << "assembler backend - final-layout\n--\n"; 814 dump(); }); 815 816 // Allow the object writer a chance to perform post-layout binding (for 817 // example, to set the index fields in the symbol data). 818 getWriter().executePostLayoutBinding(*this, Layout); 819 820 // Evaluate and apply the fixups, generating relocation entries as necessary. 821 for (MCSection &Sec : *this) { 822 for (MCFragment &Frag : Sec) { 823 ArrayRef<MCFixup> Fixups; 824 MutableArrayRef<char> Contents; 825 const MCSubtargetInfo *STI = nullptr; 826 827 // Process MCAlignFragment and MCEncodedFragmentWithFixups here. 828 switch (Frag.getKind()) { 829 default: 830 continue; 831 case MCFragment::FT_Align: { 832 MCAlignFragment &AF = cast<MCAlignFragment>(Frag); 833 // Insert fixup type for code alignment if the target define 834 // shouldInsertFixupForCodeAlign target hook. 835 if (Sec.UseCodeAlign() && AF.hasEmitNops()) 836 getBackend().shouldInsertFixupForCodeAlign(*this, Layout, AF); 837 continue; 838 } 839 case MCFragment::FT_Data: { 840 MCDataFragment &DF = cast<MCDataFragment>(Frag); 841 Fixups = DF.getFixups(); 842 Contents = DF.getContents(); 843 STI = DF.getSubtargetInfo(); 844 assert(!DF.hasInstructions() || STI != nullptr); 845 break; 846 } 847 case MCFragment::FT_Relaxable: { 848 MCRelaxableFragment &RF = cast<MCRelaxableFragment>(Frag); 849 Fixups = RF.getFixups(); 850 Contents = RF.getContents(); 851 STI = RF.getSubtargetInfo(); 852 assert(!RF.hasInstructions() || STI != nullptr); 853 break; 854 } 855 case MCFragment::FT_CVDefRange: { 856 MCCVDefRangeFragment &CF = cast<MCCVDefRangeFragment>(Frag); 857 Fixups = CF.getFixups(); 858 Contents = CF.getContents(); 859 break; 860 } 861 case MCFragment::FT_Dwarf: { 862 MCDwarfLineAddrFragment &DF = cast<MCDwarfLineAddrFragment>(Frag); 863 Fixups = DF.getFixups(); 864 Contents = DF.getContents(); 865 break; 866 } 867 case MCFragment::FT_DwarfFrame: { 868 MCDwarfCallFrameFragment &DF = cast<MCDwarfCallFrameFragment>(Frag); 869 Fixups = DF.getFixups(); 870 Contents = DF.getContents(); 871 break; 872 } 873 } 874 for (const MCFixup &Fixup : Fixups) { 875 uint64_t FixedValue; 876 bool IsResolved; 877 MCValue Target; 878 std::tie(Target, FixedValue, IsResolved) = 879 handleFixup(Layout, Frag, Fixup); 880 getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue, 881 IsResolved, STI); 882 } 883 } 884 } 885 } 886 887 void MCAssembler::Finish() { 888 // Create the layout object. 889 MCAsmLayout Layout(*this); 890 layout(Layout); 891 892 // Write the object file. 893 stats::ObjectBytes += getWriter().writeObject(*this, Layout); 894 } 895 896 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup, 897 const MCRelaxableFragment *DF, 898 const MCAsmLayout &Layout) const { 899 assert(getBackendPtr() && "Expected assembler backend"); 900 MCValue Target; 901 uint64_t Value; 902 bool WasForced; 903 bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced); 904 if (Target.getSymA() && 905 Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 && 906 Fixup.getKind() == FK_Data_1) 907 return false; 908 return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF, 909 Layout, WasForced); 910 } 911 912 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F, 913 const MCAsmLayout &Layout) const { 914 assert(getBackendPtr() && "Expected assembler backend"); 915 // If this inst doesn't ever need relaxation, ignore it. This occurs when we 916 // are intentionally pushing out inst fragments, or because we relaxed a 917 // previous instruction to one that doesn't need relaxation. 918 if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo())) 919 return false; 920 921 for (const MCFixup &Fixup : F->getFixups()) 922 if (fixupNeedsRelaxation(Fixup, F, Layout)) 923 return true; 924 925 return false; 926 } 927 928 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout, 929 MCRelaxableFragment &F) { 930 assert(getEmitterPtr() && 931 "Expected CodeEmitter defined for relaxInstruction"); 932 if (!fragmentNeedsRelaxation(&F, Layout)) 933 return false; 934 935 ++stats::RelaxedInstructions; 936 937 // FIXME-PERF: We could immediately lower out instructions if we can tell 938 // they are fully resolved, to avoid retesting on later passes. 939 940 // Relax the fragment. 941 942 MCInst Relaxed = F.getInst(); 943 getBackend().relaxInstruction(Relaxed, *F.getSubtargetInfo()); 944 945 // Encode the new instruction. 946 // 947 // FIXME-PERF: If it matters, we could let the target do this. It can 948 // probably do so more efficiently in many cases. 949 SmallVector<MCFixup, 4> Fixups; 950 SmallString<256> Code; 951 raw_svector_ostream VecOS(Code); 952 getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, *F.getSubtargetInfo()); 953 954 // Update the fragment. 955 F.setInst(Relaxed); 956 F.getContents() = Code; 957 F.getFixups() = Fixups; 958 959 return true; 960 } 961 962 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) { 963 uint64_t OldSize = LF.getContents().size(); 964 int64_t Value; 965 bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout); 966 if (!Abs) 967 report_fatal_error("sleb128 and uleb128 expressions must be absolute"); 968 SmallString<8> &Data = LF.getContents(); 969 Data.clear(); 970 raw_svector_ostream OSE(Data); 971 // The compiler can generate EH table assembly that is impossible to assemble 972 // without either adding padding to an LEB fragment or adding extra padding 973 // to a later alignment fragment. To accommodate such tables, relaxation can 974 // only increase an LEB fragment size here, not decrease it. See PR35809. 975 if (LF.isSigned()) 976 encodeSLEB128(Value, OSE, OldSize); 977 else 978 encodeULEB128(Value, OSE, OldSize); 979 return OldSize != LF.getContents().size(); 980 } 981 982 /// Check if the branch crosses the boundary. 983 /// 984 /// \param StartAddr start address of the fused/unfused branch. 985 /// \param Size size of the fused/unfused branch. 986 /// \param BoundaryAlignment alignment requirement of the branch. 987 /// \returns true if the branch cross the boundary. 988 static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size, 989 Align BoundaryAlignment) { 990 uint64_t EndAddr = StartAddr + Size; 991 return (StartAddr >> Log2(BoundaryAlignment)) != 992 ((EndAddr - 1) >> Log2(BoundaryAlignment)); 993 } 994 995 /// Check if the branch is against the boundary. 996 /// 997 /// \param StartAddr start address of the fused/unfused branch. 998 /// \param Size size of the fused/unfused branch. 999 /// \param BoundaryAlignment alignment requirement of the branch. 1000 /// \returns true if the branch is against the boundary. 1001 static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size, 1002 Align BoundaryAlignment) { 1003 uint64_t EndAddr = StartAddr + Size; 1004 return (EndAddr & (BoundaryAlignment.value() - 1)) == 0; 1005 } 1006 1007 /// Check if the branch needs padding. 1008 /// 1009 /// \param StartAddr start address of the fused/unfused branch. 1010 /// \param Size size of the fused/unfused branch. 1011 /// \param BoundaryAlignment alignment requirement of the branch. 1012 /// \returns true if the branch needs padding. 1013 static bool needPadding(uint64_t StartAddr, uint64_t Size, 1014 Align BoundaryAlignment) { 1015 return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) || 1016 isAgainstBoundary(StartAddr, Size, BoundaryAlignment); 1017 } 1018 1019 bool MCAssembler::relaxBoundaryAlign(MCAsmLayout &Layout, 1020 MCBoundaryAlignFragment &BF) { 1021 // BoundaryAlignFragment that doesn't need to align any fragment should not be 1022 // relaxed. 1023 if (!BF.getLastFragment()) 1024 return false; 1025 1026 uint64_t AlignedOffset = Layout.getFragmentOffset(&BF); 1027 uint64_t AlignedSize = 0; 1028 for (const MCFragment *F = BF.getLastFragment(); F != &BF; 1029 F = F->getPrevNode()) 1030 AlignedSize += computeFragmentSize(Layout, *F); 1031 1032 Align BoundaryAlignment = BF.getAlignment(); 1033 uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment) 1034 ? offsetToAlignment(AlignedOffset, BoundaryAlignment) 1035 : 0U; 1036 if (NewSize == BF.getSize()) 1037 return false; 1038 BF.setSize(NewSize); 1039 Layout.invalidateFragmentsFrom(&BF); 1040 return true; 1041 } 1042 1043 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout, 1044 MCDwarfLineAddrFragment &DF) { 1045 MCContext &Context = Layout.getAssembler().getContext(); 1046 uint64_t OldSize = DF.getContents().size(); 1047 int64_t AddrDelta; 1048 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout); 1049 assert(Abs && "We created a line delta with an invalid expression"); 1050 (void)Abs; 1051 int64_t LineDelta; 1052 LineDelta = DF.getLineDelta(); 1053 SmallVectorImpl<char> &Data = DF.getContents(); 1054 Data.clear(); 1055 raw_svector_ostream OSE(Data); 1056 DF.getFixups().clear(); 1057 1058 if (!getBackend().requiresDiffExpressionRelocations()) { 1059 MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta, 1060 AddrDelta, OSE); 1061 } else { 1062 uint32_t Offset; 1063 uint32_t Size; 1064 bool SetDelta = MCDwarfLineAddr::FixedEncode(Context, 1065 getDWARFLinetableParams(), 1066 LineDelta, AddrDelta, 1067 OSE, &Offset, &Size); 1068 // Add Fixups for address delta or new address. 1069 const MCExpr *FixupExpr; 1070 if (SetDelta) { 1071 FixupExpr = &DF.getAddrDelta(); 1072 } else { 1073 const MCBinaryExpr *ABE = cast<MCBinaryExpr>(&DF.getAddrDelta()); 1074 FixupExpr = ABE->getLHS(); 1075 } 1076 DF.getFixups().push_back( 1077 MCFixup::create(Offset, FixupExpr, 1078 MCFixup::getKindForSize(Size, false /*isPCRel*/))); 1079 } 1080 1081 return OldSize != Data.size(); 1082 } 1083 1084 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout, 1085 MCDwarfCallFrameFragment &DF) { 1086 MCContext &Context = Layout.getAssembler().getContext(); 1087 uint64_t OldSize = DF.getContents().size(); 1088 int64_t AddrDelta; 1089 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout); 1090 assert(Abs && "We created call frame with an invalid expression"); 1091 (void) Abs; 1092 SmallVectorImpl<char> &Data = DF.getContents(); 1093 Data.clear(); 1094 raw_svector_ostream OSE(Data); 1095 DF.getFixups().clear(); 1096 1097 if (getBackend().requiresDiffExpressionRelocations()) { 1098 uint32_t Offset; 1099 uint32_t Size; 1100 MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE, &Offset, 1101 &Size); 1102 if (Size) { 1103 DF.getFixups().push_back(MCFixup::create( 1104 Offset, &DF.getAddrDelta(), 1105 MCFixup::getKindForSizeInBits(Size /*In bits.*/, false /*isPCRel*/))); 1106 } 1107 } else { 1108 MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE); 1109 } 1110 1111 return OldSize != Data.size(); 1112 } 1113 1114 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout, 1115 MCCVInlineLineTableFragment &F) { 1116 unsigned OldSize = F.getContents().size(); 1117 getContext().getCVContext().encodeInlineLineTable(Layout, F); 1118 return OldSize != F.getContents().size(); 1119 } 1120 1121 bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout, 1122 MCCVDefRangeFragment &F) { 1123 unsigned OldSize = F.getContents().size(); 1124 getContext().getCVContext().encodeDefRange(Layout, F); 1125 return OldSize != F.getContents().size(); 1126 } 1127 1128 bool MCAssembler::relaxFragment(MCAsmLayout &Layout, MCFragment &F) { 1129 switch(F.getKind()) { 1130 default: 1131 return false; 1132 case MCFragment::FT_Relaxable: 1133 assert(!getRelaxAll() && 1134 "Did not expect a MCRelaxableFragment in RelaxAll mode"); 1135 return relaxInstruction(Layout, cast<MCRelaxableFragment>(F)); 1136 case MCFragment::FT_Dwarf: 1137 return relaxDwarfLineAddr(Layout, cast<MCDwarfLineAddrFragment>(F)); 1138 case MCFragment::FT_DwarfFrame: 1139 return relaxDwarfCallFrameFragment(Layout, 1140 cast<MCDwarfCallFrameFragment>(F)); 1141 case MCFragment::FT_LEB: 1142 return relaxLEB(Layout, cast<MCLEBFragment>(F)); 1143 case MCFragment::FT_BoundaryAlign: 1144 return relaxBoundaryAlign(Layout, cast<MCBoundaryAlignFragment>(F)); 1145 case MCFragment::FT_CVInlineLines: 1146 return relaxCVInlineLineTable(Layout, cast<MCCVInlineLineTableFragment>(F)); 1147 case MCFragment::FT_CVDefRange: 1148 return relaxCVDefRange(Layout, cast<MCCVDefRangeFragment>(F)); 1149 } 1150 } 1151 1152 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) { 1153 // Holds the first fragment which needed relaxing during this layout. It will 1154 // remain NULL if none were relaxed. 1155 // When a fragment is relaxed, all the fragments following it should get 1156 // invalidated because their offset is going to change. 1157 MCFragment *FirstRelaxedFragment = nullptr; 1158 1159 // Attempt to relax all the fragments in the section. 1160 for (MCFragment &Frag : Sec) { 1161 // Check if this is a fragment that needs relaxation. 1162 bool RelaxedFrag = relaxFragment(Layout, Frag); 1163 if (RelaxedFrag && !FirstRelaxedFragment) 1164 FirstRelaxedFragment = &Frag; 1165 } 1166 if (FirstRelaxedFragment) { 1167 Layout.invalidateFragmentsFrom(FirstRelaxedFragment); 1168 return true; 1169 } 1170 return false; 1171 } 1172 1173 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) { 1174 ++stats::RelaxationSteps; 1175 1176 bool WasRelaxed = false; 1177 for (MCSection &Sec : *this) { 1178 while (layoutSectionOnce(Layout, Sec)) 1179 WasRelaxed = true; 1180 } 1181 1182 return WasRelaxed; 1183 } 1184 1185 void MCAssembler::finishLayout(MCAsmLayout &Layout) { 1186 assert(getBackendPtr() && "Expected assembler backend"); 1187 // The layout is done. Mark every fragment as valid. 1188 for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) { 1189 MCSection &Section = *Layout.getSectionOrder()[i]; 1190 Layout.getFragmentOffset(&*Section.getFragmentList().rbegin()); 1191 computeFragmentSize(Layout, *Section.getFragmentList().rbegin()); 1192 } 1193 getBackend().finishLayout(*this, Layout); 1194 } 1195 1196 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1197 LLVM_DUMP_METHOD void MCAssembler::dump() const{ 1198 raw_ostream &OS = errs(); 1199 1200 OS << "<MCAssembler\n"; 1201 OS << " Sections:[\n "; 1202 for (const_iterator it = begin(), ie = end(); it != ie; ++it) { 1203 if (it != begin()) OS << ",\n "; 1204 it->dump(); 1205 } 1206 OS << "],\n"; 1207 OS << " Symbols:["; 1208 1209 for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) { 1210 if (it != symbol_begin()) OS << ",\n "; 1211 OS << "("; 1212 it->dump(); 1213 OS << ", Index:" << it->getIndex() << ", "; 1214 OS << ")"; 1215 } 1216 OS << "]>\n"; 1217 } 1218 #endif 1219