xref: /freebsd/contrib/llvm-project/llvm/lib/MC/MCAssembler.cpp (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/MC/MCAssembler.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Statistic.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCCodeEmitter.h"
19 #include "llvm/MC/MCCodeView.h"
20 #include "llvm/MC/MCContext.h"
21 #include "llvm/MC/MCDwarf.h"
22 #include "llvm/MC/MCExpr.h"
23 #include "llvm/MC/MCFixup.h"
24 #include "llvm/MC/MCFixupKindInfo.h"
25 #include "llvm/MC/MCFragment.h"
26 #include "llvm/MC/MCInst.h"
27 #include "llvm/MC/MCObjectWriter.h"
28 #include "llvm/MC/MCSection.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/MC/MCValue.h"
31 #include "llvm/Support/Alignment.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/EndianStream.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/LEB128.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <tuple>
41 #include <utility>
42 
43 using namespace llvm;
44 
45 namespace llvm {
46 class MCSubtargetInfo;
47 }
48 
49 #define DEBUG_TYPE "assembler"
50 
51 namespace {
52 namespace stats {
53 
54 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
55 STATISTIC(EmittedRelaxableFragments,
56           "Number of emitted assembler fragments - relaxable");
57 STATISTIC(EmittedDataFragments,
58           "Number of emitted assembler fragments - data");
59 STATISTIC(EmittedCompactEncodedInstFragments,
60           "Number of emitted assembler fragments - compact encoded inst");
61 STATISTIC(EmittedAlignFragments,
62           "Number of emitted assembler fragments - align");
63 STATISTIC(EmittedFillFragments,
64           "Number of emitted assembler fragments - fill");
65 STATISTIC(EmittedNopsFragments, "Number of emitted assembler fragments - nops");
66 STATISTIC(EmittedOrgFragments, "Number of emitted assembler fragments - org");
67 STATISTIC(evaluateFixup, "Number of evaluated fixups");
68 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
69 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
70 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
71 
72 } // end namespace stats
73 } // end anonymous namespace
74 
75 // FIXME FIXME FIXME: There are number of places in this file where we convert
76 // what is a 64-bit assembler value used for computation into a value in the
77 // object file, which may truncate it. We should detect that truncation where
78 // invalid and report errors back.
79 
80 /* *** */
81 
82 MCAssembler::MCAssembler(MCContext &Context,
83                          std::unique_ptr<MCAsmBackend> Backend,
84                          std::unique_ptr<MCCodeEmitter> Emitter,
85                          std::unique_ptr<MCObjectWriter> Writer)
86     : Context(Context), Backend(std::move(Backend)),
87       Emitter(std::move(Emitter)), Writer(std::move(Writer)) {}
88 
89 void MCAssembler::reset() {
90   RelaxAll = false;
91   Sections.clear();
92   Symbols.clear();
93   ThumbFuncs.clear();
94   BundleAlignSize = 0;
95 
96   // reset objects owned by us
97   if (getBackendPtr())
98     getBackendPtr()->reset();
99   if (getEmitterPtr())
100     getEmitterPtr()->reset();
101   if (Writer)
102     Writer->reset();
103 }
104 
105 bool MCAssembler::registerSection(MCSection &Section) {
106   if (Section.isRegistered())
107     return false;
108   assert(Section.curFragList()->Head && "allocInitialFragment not called");
109   Sections.push_back(&Section);
110   Section.setIsRegistered(true);
111   return true;
112 }
113 
114 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
115   if (ThumbFuncs.count(Symbol))
116     return true;
117 
118   if (!Symbol->isVariable())
119     return false;
120 
121   const MCExpr *Expr = Symbol->getVariableValue();
122 
123   MCValue V;
124   if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
125     return false;
126 
127   if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
128     return false;
129 
130   const MCSymbolRefExpr *Ref = V.getSymA();
131   if (!Ref)
132     return false;
133 
134   if (Ref->getKind() != MCSymbolRefExpr::VK_None)
135     return false;
136 
137   const MCSymbol &Sym = Ref->getSymbol();
138   if (!isThumbFunc(&Sym))
139     return false;
140 
141   ThumbFuncs.insert(Symbol); // Cache it.
142   return true;
143 }
144 
145 bool MCAssembler::evaluateFixup(const MCFixup &Fixup, const MCFragment *DF,
146                                 MCValue &Target, const MCSubtargetInfo *STI,
147                                 uint64_t &Value, bool &WasForced) const {
148   ++stats::evaluateFixup;
149 
150   // FIXME: This code has some duplication with recordRelocation. We should
151   // probably merge the two into a single callback that tries to evaluate a
152   // fixup and records a relocation if one is needed.
153 
154   // On error claim to have completely evaluated the fixup, to prevent any
155   // further processing from being done.
156   const MCExpr *Expr = Fixup.getValue();
157   MCContext &Ctx = getContext();
158   Value = 0;
159   WasForced = false;
160   if (!Expr->evaluateAsRelocatable(Target, this, &Fixup)) {
161     Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
162     return true;
163   }
164   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
165     if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
166       Ctx.reportError(Fixup.getLoc(),
167                       "unsupported subtraction of qualified symbol");
168       return true;
169     }
170   }
171 
172   assert(getBackendPtr() && "Expected assembler backend");
173   bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
174                   MCFixupKindInfo::FKF_IsTarget;
175 
176   if (IsTarget)
177     return getBackend().evaluateTargetFixup(*this, Fixup, DF, Target, STI,
178                                             Value, WasForced);
179 
180   unsigned FixupFlags = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags;
181   bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
182                  MCFixupKindInfo::FKF_IsPCRel;
183 
184   bool IsResolved = false;
185   if (IsPCRel) {
186     if (Target.getSymB()) {
187       IsResolved = false;
188     } else if (!Target.getSymA()) {
189       IsResolved = false;
190     } else {
191       const MCSymbolRefExpr *A = Target.getSymA();
192       const MCSymbol &SA = A->getSymbol();
193       if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
194         IsResolved = false;
195       } else {
196         IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) ||
197                      getWriter().isSymbolRefDifferenceFullyResolvedImpl(
198                          *this, SA, *DF, false, true);
199       }
200     }
201   } else {
202     IsResolved = Target.isAbsolute();
203   }
204 
205   Value = Target.getConstant();
206 
207   if (const MCSymbolRefExpr *A = Target.getSymA()) {
208     const MCSymbol &Sym = A->getSymbol();
209     if (Sym.isDefined())
210       Value += getSymbolOffset(Sym);
211   }
212   if (const MCSymbolRefExpr *B = Target.getSymB()) {
213     const MCSymbol &Sym = B->getSymbol();
214     if (Sym.isDefined())
215       Value -= getSymbolOffset(Sym);
216   }
217 
218   bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
219                        MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
220   assert((ShouldAlignPC ? IsPCRel : true) &&
221     "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
222 
223   if (IsPCRel) {
224     uint64_t Offset = getFragmentOffset(*DF) + Fixup.getOffset();
225 
226     // A number of ARM fixups in Thumb mode require that the effective PC
227     // address be determined as the 32-bit aligned version of the actual offset.
228     if (ShouldAlignPC) Offset &= ~0x3;
229     Value -= Offset;
230   }
231 
232   // Let the backend force a relocation if needed.
233   if (IsResolved &&
234       getBackend().shouldForceRelocation(*this, Fixup, Target, STI)) {
235     IsResolved = false;
236     WasForced = true;
237   }
238 
239   // A linker relaxation target may emit ADD/SUB relocations for A-B+C. Let
240   // recordRelocation handle non-VK_None cases like A@plt-B+C.
241   if (!IsResolved && Target.getSymA() && Target.getSymB() &&
242       Target.getSymA()->getKind() == MCSymbolRefExpr::VK_None &&
243       getBackend().handleAddSubRelocations(*this, *DF, Fixup, Target, Value))
244     return true;
245 
246   return IsResolved;
247 }
248 
249 uint64_t MCAssembler::computeFragmentSize(const MCFragment &F) const {
250   assert(getBackendPtr() && "Requires assembler backend");
251   switch (F.getKind()) {
252   case MCFragment::FT_Data:
253     return cast<MCDataFragment>(F).getContents().size();
254   case MCFragment::FT_Relaxable:
255     return cast<MCRelaxableFragment>(F).getContents().size();
256   case MCFragment::FT_CompactEncodedInst:
257     return cast<MCCompactEncodedInstFragment>(F).getContents().size();
258   case MCFragment::FT_Fill: {
259     auto &FF = cast<MCFillFragment>(F);
260     int64_t NumValues = 0;
261     if (!FF.getNumValues().evaluateKnownAbsolute(NumValues, *this)) {
262       getContext().reportError(FF.getLoc(),
263                                "expected assembly-time absolute expression");
264       return 0;
265     }
266     int64_t Size = NumValues * FF.getValueSize();
267     if (Size < 0) {
268       getContext().reportError(FF.getLoc(), "invalid number of bytes");
269       return 0;
270     }
271     return Size;
272   }
273 
274   case MCFragment::FT_Nops:
275     return cast<MCNopsFragment>(F).getNumBytes();
276 
277   case MCFragment::FT_LEB:
278     return cast<MCLEBFragment>(F).getContents().size();
279 
280   case MCFragment::FT_BoundaryAlign:
281     return cast<MCBoundaryAlignFragment>(F).getSize();
282 
283   case MCFragment::FT_SymbolId:
284     return 4;
285 
286   case MCFragment::FT_Align: {
287     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
288     unsigned Offset = getFragmentOffset(AF);
289     unsigned Size = offsetToAlignment(Offset, AF.getAlignment());
290 
291     // Insert extra Nops for code alignment if the target define
292     // shouldInsertExtraNopBytesForCodeAlign target hook.
293     if (AF.getParent()->useCodeAlign() && AF.hasEmitNops() &&
294         getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size))
295       return Size;
296 
297     // If we are padding with nops, force the padding to be larger than the
298     // minimum nop size.
299     if (Size > 0 && AF.hasEmitNops()) {
300       while (Size % getBackend().getMinimumNopSize())
301         Size += AF.getAlignment().value();
302     }
303     if (Size > AF.getMaxBytesToEmit())
304       return 0;
305     return Size;
306   }
307 
308   case MCFragment::FT_Org: {
309     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
310     MCValue Value;
311     if (!OF.getOffset().evaluateAsValue(Value, *this)) {
312       getContext().reportError(OF.getLoc(),
313                                "expected assembly-time absolute expression");
314         return 0;
315     }
316 
317     uint64_t FragmentOffset = getFragmentOffset(OF);
318     int64_t TargetLocation = Value.getConstant();
319     if (const MCSymbolRefExpr *A = Value.getSymA()) {
320       uint64_t Val;
321       if (!getSymbolOffset(A->getSymbol(), Val)) {
322         getContext().reportError(OF.getLoc(), "expected absolute expression");
323         return 0;
324       }
325       TargetLocation += Val;
326     }
327     int64_t Size = TargetLocation - FragmentOffset;
328     if (Size < 0 || Size >= 0x40000000) {
329       getContext().reportError(
330           OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
331                            "' (at offset '" + Twine(FragmentOffset) + "')");
332       return 0;
333     }
334     return Size;
335   }
336 
337   case MCFragment::FT_Dwarf:
338     return cast<MCDwarfLineAddrFragment>(F).getContents().size();
339   case MCFragment::FT_DwarfFrame:
340     return cast<MCDwarfCallFrameFragment>(F).getContents().size();
341   case MCFragment::FT_CVInlineLines:
342     return cast<MCCVInlineLineTableFragment>(F).getContents().size();
343   case MCFragment::FT_CVDefRange:
344     return cast<MCCVDefRangeFragment>(F).getContents().size();
345   case MCFragment::FT_PseudoProbe:
346     return cast<MCPseudoProbeAddrFragment>(F).getContents().size();
347   case MCFragment::FT_Dummy:
348     llvm_unreachable("Should not have been added");
349   }
350 
351   llvm_unreachable("invalid fragment kind");
352 }
353 
354 // Compute the amount of padding required before the fragment \p F to
355 // obey bundling restrictions, where \p FOffset is the fragment's offset in
356 // its section and \p FSize is the fragment's size.
357 static uint64_t computeBundlePadding(unsigned BundleSize,
358                                      const MCEncodedFragment *F,
359                                      uint64_t FOffset, uint64_t FSize) {
360   uint64_t OffsetInBundle = FOffset & (BundleSize - 1);
361   uint64_t EndOfFragment = OffsetInBundle + FSize;
362 
363   // There are two kinds of bundling restrictions:
364   //
365   // 1) For alignToBundleEnd(), add padding to ensure that the fragment will
366   //    *end* on a bundle boundary.
367   // 2) Otherwise, check if the fragment would cross a bundle boundary. If it
368   //    would, add padding until the end of the bundle so that the fragment
369   //    will start in a new one.
370   if (F->alignToBundleEnd()) {
371     // Three possibilities here:
372     //
373     // A) The fragment just happens to end at a bundle boundary, so we're good.
374     // B) The fragment ends before the current bundle boundary: pad it just
375     //    enough to reach the boundary.
376     // C) The fragment ends after the current bundle boundary: pad it until it
377     //    reaches the end of the next bundle boundary.
378     //
379     // Note: this code could be made shorter with some modulo trickery, but it's
380     // intentionally kept in its more explicit form for simplicity.
381     if (EndOfFragment == BundleSize)
382       return 0;
383     else if (EndOfFragment < BundleSize)
384       return BundleSize - EndOfFragment;
385     else { // EndOfFragment > BundleSize
386       return 2 * BundleSize - EndOfFragment;
387     }
388   } else if (OffsetInBundle > 0 && EndOfFragment > BundleSize)
389     return BundleSize - OffsetInBundle;
390   else
391     return 0;
392 }
393 
394 void MCAssembler::layoutBundle(MCFragment *Prev, MCFragment *F) const {
395   // If bundling is enabled and this fragment has instructions in it, it has to
396   // obey the bundling restrictions. With padding, we'll have:
397   //
398   //
399   //        BundlePadding
400   //             |||
401   // -------------------------------------
402   //   Prev  |##########|       F        |
403   // -------------------------------------
404   //                    ^
405   //                    |
406   //                    F->Offset
407   //
408   // The fragment's offset will point to after the padding, and its computed
409   // size won't include the padding.
410   //
411   // ".align N" is an example of a directive that introduces multiple
412   // fragments. We could add a special case to handle ".align N" by emitting
413   // within-fragment padding (which would produce less padding when N is less
414   // than the bundle size), but for now we don't.
415   //
416   assert(isa<MCEncodedFragment>(F) &&
417          "Only MCEncodedFragment implementations have instructions");
418   MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
419   uint64_t FSize = computeFragmentSize(*EF);
420 
421   if (FSize > getBundleAlignSize())
422     report_fatal_error("Fragment can't be larger than a bundle size");
423 
424   uint64_t RequiredBundlePadding =
425       computeBundlePadding(getBundleAlignSize(), EF, EF->Offset, FSize);
426   if (RequiredBundlePadding > UINT8_MAX)
427     report_fatal_error("Padding cannot exceed 255 bytes");
428   EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
429   EF->Offset += RequiredBundlePadding;
430   if (auto *DF = dyn_cast_or_null<MCDataFragment>(Prev))
431     if (DF->getContents().empty())
432       DF->Offset = EF->Offset;
433 }
434 
435 void MCAssembler::ensureValid(MCSection &Sec) const {
436   if (Sec.hasLayout())
437     return;
438   Sec.setHasLayout(true);
439   MCFragment *Prev = nullptr;
440   uint64_t Offset = 0;
441   for (MCFragment &F : Sec) {
442     F.Offset = Offset;
443     if (isBundlingEnabled() && F.hasInstructions()) {
444       layoutBundle(Prev, &F);
445       Offset = F.Offset;
446     }
447     Offset += computeFragmentSize(F);
448     Prev = &F;
449   }
450 }
451 
452 uint64_t MCAssembler::getFragmentOffset(const MCFragment &F) const {
453   ensureValid(*F.getParent());
454   return F.Offset;
455 }
456 
457 // Simple getSymbolOffset helper for the non-variable case.
458 static bool getLabelOffset(const MCAssembler &Asm, const MCSymbol &S,
459                            bool ReportError, uint64_t &Val) {
460   if (!S.getFragment()) {
461     if (ReportError)
462       report_fatal_error("unable to evaluate offset to undefined symbol '" +
463                          S.getName() + "'");
464     return false;
465   }
466   Val = Asm.getFragmentOffset(*S.getFragment()) + S.getOffset();
467   return true;
468 }
469 
470 static bool getSymbolOffsetImpl(const MCAssembler &Asm, const MCSymbol &S,
471                                 bool ReportError, uint64_t &Val) {
472   if (!S.isVariable())
473     return getLabelOffset(Asm, S, ReportError, Val);
474 
475   // If SD is a variable, evaluate it.
476   MCValue Target;
477   if (!S.getVariableValue()->evaluateAsValue(Target, Asm))
478     report_fatal_error("unable to evaluate offset for variable '" +
479                        S.getName() + "'");
480 
481   uint64_t Offset = Target.getConstant();
482 
483   const MCSymbolRefExpr *A = Target.getSymA();
484   if (A) {
485     uint64_t ValA;
486     // FIXME: On most platforms, `Target`'s component symbols are labels from
487     // having been simplified during evaluation, but on Mach-O they can be
488     // variables due to PR19203. This, and the line below for `B` can be
489     // restored to call `getLabelOffset` when PR19203 is fixed.
490     if (!getSymbolOffsetImpl(Asm, A->getSymbol(), ReportError, ValA))
491       return false;
492     Offset += ValA;
493   }
494 
495   const MCSymbolRefExpr *B = Target.getSymB();
496   if (B) {
497     uint64_t ValB;
498     if (!getSymbolOffsetImpl(Asm, B->getSymbol(), ReportError, ValB))
499       return false;
500     Offset -= ValB;
501   }
502 
503   Val = Offset;
504   return true;
505 }
506 
507 bool MCAssembler::getSymbolOffset(const MCSymbol &S, uint64_t &Val) const {
508   return getSymbolOffsetImpl(*this, S, false, Val);
509 }
510 
511 uint64_t MCAssembler::getSymbolOffset(const MCSymbol &S) const {
512   uint64_t Val;
513   getSymbolOffsetImpl(*this, S, true, Val);
514   return Val;
515 }
516 
517 const MCSymbol *MCAssembler::getBaseSymbol(const MCSymbol &Symbol) const {
518   assert(HasLayout);
519   if (!Symbol.isVariable())
520     return &Symbol;
521 
522   const MCExpr *Expr = Symbol.getVariableValue();
523   MCValue Value;
524   if (!Expr->evaluateAsValue(Value, *this)) {
525     getContext().reportError(Expr->getLoc(),
526                              "expression could not be evaluated");
527     return nullptr;
528   }
529 
530   const MCSymbolRefExpr *RefB = Value.getSymB();
531   if (RefB) {
532     getContext().reportError(
533         Expr->getLoc(),
534         Twine("symbol '") + RefB->getSymbol().getName() +
535             "' could not be evaluated in a subtraction expression");
536     return nullptr;
537   }
538 
539   const MCSymbolRefExpr *A = Value.getSymA();
540   if (!A)
541     return nullptr;
542 
543   const MCSymbol &ASym = A->getSymbol();
544   if (ASym.isCommon()) {
545     getContext().reportError(Expr->getLoc(),
546                              "Common symbol '" + ASym.getName() +
547                                  "' cannot be used in assignment expr");
548     return nullptr;
549   }
550 
551   return &ASym;
552 }
553 
554 uint64_t MCAssembler::getSectionAddressSize(const MCSection &Sec) const {
555   assert(HasLayout);
556   // The size is the last fragment's end offset.
557   const MCFragment &F = *Sec.curFragList()->Tail;
558   return getFragmentOffset(F) + computeFragmentSize(F);
559 }
560 
561 uint64_t MCAssembler::getSectionFileSize(const MCSection &Sec) const {
562   // Virtual sections have no file size.
563   if (Sec.isVirtualSection())
564     return 0;
565   return getSectionAddressSize(Sec);
566 }
567 
568 bool MCAssembler::registerSymbol(const MCSymbol &Symbol) {
569   bool Changed = !Symbol.isRegistered();
570   if (Changed) {
571     Symbol.setIsRegistered(true);
572     Symbols.push_back(&Symbol);
573   }
574   return Changed;
575 }
576 
577 void MCAssembler::writeFragmentPadding(raw_ostream &OS,
578                                        const MCEncodedFragment &EF,
579                                        uint64_t FSize) const {
580   assert(getBackendPtr() && "Expected assembler backend");
581   // Should NOP padding be written out before this fragment?
582   unsigned BundlePadding = EF.getBundlePadding();
583   if (BundlePadding > 0) {
584     assert(isBundlingEnabled() &&
585            "Writing bundle padding with disabled bundling");
586     assert(EF.hasInstructions() &&
587            "Writing bundle padding for a fragment without instructions");
588 
589     unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
590     const MCSubtargetInfo *STI = EF.getSubtargetInfo();
591     if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
592       // If the padding itself crosses a bundle boundary, it must be emitted
593       // in 2 pieces, since even nop instructions must not cross boundaries.
594       //             v--------------v   <- BundleAlignSize
595       //        v---------v             <- BundlePadding
596       // ----------------------------
597       // | Prev |####|####|    F    |
598       // ----------------------------
599       //        ^-------------------^   <- TotalLength
600       unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
601       if (!getBackend().writeNopData(OS, DistanceToBoundary, STI))
602         report_fatal_error("unable to write NOP sequence of " +
603                            Twine(DistanceToBoundary) + " bytes");
604       BundlePadding -= DistanceToBoundary;
605     }
606     if (!getBackend().writeNopData(OS, BundlePadding, STI))
607       report_fatal_error("unable to write NOP sequence of " +
608                          Twine(BundlePadding) + " bytes");
609   }
610 }
611 
612 /// Write the fragment \p F to the output file.
613 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
614                           const MCFragment &F) {
615   // FIXME: Embed in fragments instead?
616   uint64_t FragmentSize = Asm.computeFragmentSize(F);
617 
618   llvm::endianness Endian = Asm.getBackend().Endian;
619 
620   if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
621     Asm.writeFragmentPadding(OS, *EF, FragmentSize);
622 
623   // This variable (and its dummy usage) is to participate in the assert at
624   // the end of the function.
625   uint64_t Start = OS.tell();
626   (void) Start;
627 
628   ++stats::EmittedFragments;
629 
630   switch (F.getKind()) {
631   case MCFragment::FT_Align: {
632     ++stats::EmittedAlignFragments;
633     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
634     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
635 
636     uint64_t Count = FragmentSize / AF.getValueSize();
637 
638     // FIXME: This error shouldn't actually occur (the front end should emit
639     // multiple .align directives to enforce the semantics it wants), but is
640     // severe enough that we want to report it. How to handle this?
641     if (Count * AF.getValueSize() != FragmentSize)
642       report_fatal_error("undefined .align directive, value size '" +
643                         Twine(AF.getValueSize()) +
644                         "' is not a divisor of padding size '" +
645                         Twine(FragmentSize) + "'");
646 
647     // See if we are aligning with nops, and if so do that first to try to fill
648     // the Count bytes.  Then if that did not fill any bytes or there are any
649     // bytes left to fill use the Value and ValueSize to fill the rest.
650     // If we are aligning with nops, ask that target to emit the right data.
651     if (AF.hasEmitNops()) {
652       if (!Asm.getBackend().writeNopData(OS, Count, AF.getSubtargetInfo()))
653         report_fatal_error("unable to write nop sequence of " +
654                           Twine(Count) + " bytes");
655       break;
656     }
657 
658     // Otherwise, write out in multiples of the value size.
659     for (uint64_t i = 0; i != Count; ++i) {
660       switch (AF.getValueSize()) {
661       default: llvm_unreachable("Invalid size!");
662       case 1: OS << char(AF.getValue()); break;
663       case 2:
664         support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
665         break;
666       case 4:
667         support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
668         break;
669       case 8:
670         support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
671         break;
672       }
673     }
674     break;
675   }
676 
677   case MCFragment::FT_Data:
678     ++stats::EmittedDataFragments;
679     OS << cast<MCDataFragment>(F).getContents();
680     break;
681 
682   case MCFragment::FT_Relaxable:
683     ++stats::EmittedRelaxableFragments;
684     OS << cast<MCRelaxableFragment>(F).getContents();
685     break;
686 
687   case MCFragment::FT_CompactEncodedInst:
688     ++stats::EmittedCompactEncodedInstFragments;
689     OS << cast<MCCompactEncodedInstFragment>(F).getContents();
690     break;
691 
692   case MCFragment::FT_Fill: {
693     ++stats::EmittedFillFragments;
694     const MCFillFragment &FF = cast<MCFillFragment>(F);
695     uint64_t V = FF.getValue();
696     unsigned VSize = FF.getValueSize();
697     const unsigned MaxChunkSize = 16;
698     char Data[MaxChunkSize];
699     assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size");
700     // Duplicate V into Data as byte vector to reduce number of
701     // writes done. As such, do endian conversion here.
702     for (unsigned I = 0; I != VSize; ++I) {
703       unsigned index = Endian == llvm::endianness::little ? I : (VSize - I - 1);
704       Data[I] = uint8_t(V >> (index * 8));
705     }
706     for (unsigned I = VSize; I < MaxChunkSize; ++I)
707       Data[I] = Data[I - VSize];
708 
709     // Set to largest multiple of VSize in Data.
710     const unsigned NumPerChunk = MaxChunkSize / VSize;
711     // Set ChunkSize to largest multiple of VSize in Data
712     const unsigned ChunkSize = VSize * NumPerChunk;
713 
714     // Do copies by chunk.
715     StringRef Ref(Data, ChunkSize);
716     for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
717       OS << Ref;
718 
719     // do remainder if needed.
720     unsigned TrailingCount = FragmentSize % ChunkSize;
721     if (TrailingCount)
722       OS.write(Data, TrailingCount);
723     break;
724   }
725 
726   case MCFragment::FT_Nops: {
727     ++stats::EmittedNopsFragments;
728     const MCNopsFragment &NF = cast<MCNopsFragment>(F);
729 
730     int64_t NumBytes = NF.getNumBytes();
731     int64_t ControlledNopLength = NF.getControlledNopLength();
732     int64_t MaximumNopLength =
733         Asm.getBackend().getMaximumNopSize(*NF.getSubtargetInfo());
734 
735     assert(NumBytes > 0 && "Expected positive NOPs fragment size");
736     assert(ControlledNopLength >= 0 && "Expected non-negative NOP size");
737 
738     if (ControlledNopLength > MaximumNopLength) {
739       Asm.getContext().reportError(NF.getLoc(),
740                                    "illegal NOP size " +
741                                        std::to_string(ControlledNopLength) +
742                                        ". (expected within [0, " +
743                                        std::to_string(MaximumNopLength) + "])");
744       // Clamp the NOP length as reportError does not stop the execution
745       // immediately.
746       ControlledNopLength = MaximumNopLength;
747     }
748 
749     // Use maximum value if the size of each NOP is not specified
750     if (!ControlledNopLength)
751       ControlledNopLength = MaximumNopLength;
752 
753     while (NumBytes) {
754       uint64_t NumBytesToEmit =
755           (uint64_t)std::min(NumBytes, ControlledNopLength);
756       assert(NumBytesToEmit && "try to emit empty NOP instruction");
757       if (!Asm.getBackend().writeNopData(OS, NumBytesToEmit,
758                                          NF.getSubtargetInfo())) {
759         report_fatal_error("unable to write nop sequence of the remaining " +
760                            Twine(NumBytesToEmit) + " bytes");
761         break;
762       }
763       NumBytes -= NumBytesToEmit;
764     }
765     break;
766   }
767 
768   case MCFragment::FT_LEB: {
769     const MCLEBFragment &LF = cast<MCLEBFragment>(F);
770     OS << LF.getContents();
771     break;
772   }
773 
774   case MCFragment::FT_BoundaryAlign: {
775     const MCBoundaryAlignFragment &BF = cast<MCBoundaryAlignFragment>(F);
776     if (!Asm.getBackend().writeNopData(OS, FragmentSize, BF.getSubtargetInfo()))
777       report_fatal_error("unable to write nop sequence of " +
778                          Twine(FragmentSize) + " bytes");
779     break;
780   }
781 
782   case MCFragment::FT_SymbolId: {
783     const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
784     support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
785     break;
786   }
787 
788   case MCFragment::FT_Org: {
789     ++stats::EmittedOrgFragments;
790     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
791 
792     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
793       OS << char(OF.getValue());
794 
795     break;
796   }
797 
798   case MCFragment::FT_Dwarf: {
799     const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
800     OS << OF.getContents();
801     break;
802   }
803   case MCFragment::FT_DwarfFrame: {
804     const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
805     OS << CF.getContents();
806     break;
807   }
808   case MCFragment::FT_CVInlineLines: {
809     const auto &OF = cast<MCCVInlineLineTableFragment>(F);
810     OS << OF.getContents();
811     break;
812   }
813   case MCFragment::FT_CVDefRange: {
814     const auto &DRF = cast<MCCVDefRangeFragment>(F);
815     OS << DRF.getContents();
816     break;
817   }
818   case MCFragment::FT_PseudoProbe: {
819     const MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(F);
820     OS << PF.getContents();
821     break;
822   }
823   case MCFragment::FT_Dummy:
824     llvm_unreachable("Should not have been added");
825   }
826 
827   assert(OS.tell() - Start == FragmentSize &&
828          "The stream should advance by fragment size");
829 }
830 
831 void MCAssembler::writeSectionData(raw_ostream &OS,
832                                    const MCSection *Sec) const {
833   assert(getBackendPtr() && "Expected assembler backend");
834 
835   // Ignore virtual sections.
836   if (Sec->isVirtualSection()) {
837     assert(getSectionFileSize(*Sec) == 0 && "Invalid size for section!");
838 
839     // Check that contents are only things legal inside a virtual section.
840     for (const MCFragment &F : *Sec) {
841       switch (F.getKind()) {
842       default: llvm_unreachable("Invalid fragment in virtual section!");
843       case MCFragment::FT_Data: {
844         // Check that we aren't trying to write a non-zero contents (or fixups)
845         // into a virtual section. This is to support clients which use standard
846         // directives to fill the contents of virtual sections.
847         const MCDataFragment &DF = cast<MCDataFragment>(F);
848         if (DF.fixup_begin() != DF.fixup_end())
849           getContext().reportError(SMLoc(), Sec->getVirtualSectionKind() +
850                                                 " section '" + Sec->getName() +
851                                                 "' cannot have fixups");
852         for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
853           if (DF.getContents()[i]) {
854             getContext().reportError(SMLoc(),
855                                      Sec->getVirtualSectionKind() +
856                                          " section '" + Sec->getName() +
857                                          "' cannot have non-zero initializers");
858             break;
859           }
860         break;
861       }
862       case MCFragment::FT_Align:
863         // Check that we aren't trying to write a non-zero value into a virtual
864         // section.
865         assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
866                 cast<MCAlignFragment>(F).getValue() == 0) &&
867                "Invalid align in virtual section!");
868         break;
869       case MCFragment::FT_Fill:
870         assert((cast<MCFillFragment>(F).getValue() == 0) &&
871                "Invalid fill in virtual section!");
872         break;
873       case MCFragment::FT_Org:
874         break;
875       }
876     }
877 
878     return;
879   }
880 
881   uint64_t Start = OS.tell();
882   (void)Start;
883 
884   for (const MCFragment &F : *Sec)
885     writeFragment(OS, *this, F);
886 
887   assert(getContext().hadError() ||
888          OS.tell() - Start == getSectionAddressSize(*Sec));
889 }
890 
891 std::tuple<MCValue, uint64_t, bool>
892 MCAssembler::handleFixup(MCFragment &F, const MCFixup &Fixup,
893                          const MCSubtargetInfo *STI) {
894   // Evaluate the fixup.
895   MCValue Target;
896   uint64_t FixedValue;
897   bool WasForced;
898   bool IsResolved =
899       evaluateFixup(Fixup, &F, Target, STI, FixedValue, WasForced);
900   if (!IsResolved) {
901     // The fixup was unresolved, we need a relocation. Inform the object
902     // writer of the relocation, and give it an opportunity to adjust the
903     // fixup value if need be.
904     getWriter().recordRelocation(*this, &F, Fixup, Target, FixedValue);
905   }
906   return std::make_tuple(Target, FixedValue, IsResolved);
907 }
908 
909 void MCAssembler::layout() {
910   assert(getBackendPtr() && "Expected assembler backend");
911   DEBUG_WITH_TYPE("mc-dump", {
912       errs() << "assembler backend - pre-layout\n--\n";
913       dump(); });
914 
915   // Assign section ordinals.
916   unsigned SectionIndex = 0;
917   for (MCSection &Sec : *this) {
918     Sec.setOrdinal(SectionIndex++);
919 
920     // Chain together fragments from all subsections.
921     if (Sec.Subsections.size() > 1) {
922       MCDummyFragment Dummy;
923       MCFragment *Tail = &Dummy;
924       for (auto &[_, List] : Sec.Subsections) {
925         assert(List.Head);
926         Tail->Next = List.Head;
927         Tail = List.Tail;
928       }
929       Sec.Subsections.clear();
930       Sec.Subsections.push_back({0u, {Dummy.getNext(), Tail}});
931       Sec.CurFragList = &Sec.Subsections[0].second;
932 
933       unsigned FragmentIndex = 0;
934       for (MCFragment &Frag : Sec)
935         Frag.setLayoutOrder(FragmentIndex++);
936     }
937   }
938 
939   // Layout until everything fits.
940   this->HasLayout = true;
941   while (layoutOnce()) {
942     if (getContext().hadError())
943       return;
944     // Size of fragments in one section can depend on the size of fragments in
945     // another. If any fragment has changed size, we have to re-layout (and
946     // as a result possibly further relax) all.
947     for (MCSection &Sec : *this)
948       Sec.setHasLayout(false);
949   }
950 
951   DEBUG_WITH_TYPE("mc-dump", {
952       errs() << "assembler backend - post-relaxation\n--\n";
953       dump(); });
954 
955   // Finalize the layout, including fragment lowering.
956   getBackend().finishLayout(*this);
957 
958   DEBUG_WITH_TYPE("mc-dump", {
959       errs() << "assembler backend - final-layout\n--\n";
960       dump(); });
961 
962   // Allow the object writer a chance to perform post-layout binding (for
963   // example, to set the index fields in the symbol data).
964   getWriter().executePostLayoutBinding(*this);
965 
966   // Evaluate and apply the fixups, generating relocation entries as necessary.
967   for (MCSection &Sec : *this) {
968     for (MCFragment &Frag : Sec) {
969       ArrayRef<MCFixup> Fixups;
970       MutableArrayRef<char> Contents;
971       const MCSubtargetInfo *STI = nullptr;
972 
973       // Process MCAlignFragment and MCEncodedFragmentWithFixups here.
974       switch (Frag.getKind()) {
975       default:
976         continue;
977       case MCFragment::FT_Align: {
978         MCAlignFragment &AF = cast<MCAlignFragment>(Frag);
979         // Insert fixup type for code alignment if the target define
980         // shouldInsertFixupForCodeAlign target hook.
981         if (Sec.useCodeAlign() && AF.hasEmitNops())
982           getBackend().shouldInsertFixupForCodeAlign(*this, AF);
983         continue;
984       }
985       case MCFragment::FT_Data: {
986         MCDataFragment &DF = cast<MCDataFragment>(Frag);
987         Fixups = DF.getFixups();
988         Contents = DF.getContents();
989         STI = DF.getSubtargetInfo();
990         assert(!DF.hasInstructions() || STI != nullptr);
991         break;
992       }
993       case MCFragment::FT_Relaxable: {
994         MCRelaxableFragment &RF = cast<MCRelaxableFragment>(Frag);
995         Fixups = RF.getFixups();
996         Contents = RF.getContents();
997         STI = RF.getSubtargetInfo();
998         assert(!RF.hasInstructions() || STI != nullptr);
999         break;
1000       }
1001       case MCFragment::FT_CVDefRange: {
1002         MCCVDefRangeFragment &CF = cast<MCCVDefRangeFragment>(Frag);
1003         Fixups = CF.getFixups();
1004         Contents = CF.getContents();
1005         break;
1006       }
1007       case MCFragment::FT_Dwarf: {
1008         MCDwarfLineAddrFragment &DF = cast<MCDwarfLineAddrFragment>(Frag);
1009         Fixups = DF.getFixups();
1010         Contents = DF.getContents();
1011         break;
1012       }
1013       case MCFragment::FT_DwarfFrame: {
1014         MCDwarfCallFrameFragment &DF = cast<MCDwarfCallFrameFragment>(Frag);
1015         Fixups = DF.getFixups();
1016         Contents = DF.getContents();
1017         break;
1018       }
1019       case MCFragment::FT_LEB: {
1020         auto &LF = cast<MCLEBFragment>(Frag);
1021         Fixups = LF.getFixups();
1022         Contents = LF.getContents();
1023         break;
1024       }
1025       case MCFragment::FT_PseudoProbe: {
1026         MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(Frag);
1027         Fixups = PF.getFixups();
1028         Contents = PF.getContents();
1029         break;
1030       }
1031       }
1032       for (const MCFixup &Fixup : Fixups) {
1033         uint64_t FixedValue;
1034         bool IsResolved;
1035         MCValue Target;
1036         std::tie(Target, FixedValue, IsResolved) =
1037             handleFixup(Frag, Fixup, STI);
1038         getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
1039                                 IsResolved, STI);
1040       }
1041     }
1042   }
1043 }
1044 
1045 void MCAssembler::Finish() {
1046   layout();
1047 
1048   // Write the object file.
1049   stats::ObjectBytes += getWriter().writeObject(*this);
1050 
1051   HasLayout = false;
1052 }
1053 
1054 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
1055                                        const MCRelaxableFragment *DF) const {
1056   assert(getBackendPtr() && "Expected assembler backend");
1057   MCValue Target;
1058   uint64_t Value;
1059   bool WasForced;
1060   bool Resolved = evaluateFixup(Fixup, DF, Target, DF->getSubtargetInfo(),
1061                                 Value, WasForced);
1062   if (Target.getSymA() &&
1063       Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
1064       Fixup.getKind() == FK_Data_1)
1065     return false;
1066   return getBackend().fixupNeedsRelaxationAdvanced(*this, Fixup, Resolved,
1067                                                    Value, DF, WasForced);
1068 }
1069 
1070 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F) const {
1071   assert(getBackendPtr() && "Expected assembler backend");
1072   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
1073   // are intentionally pushing out inst fragments, or because we relaxed a
1074   // previous instruction to one that doesn't need relaxation.
1075   if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
1076     return false;
1077 
1078   for (const MCFixup &Fixup : F->getFixups())
1079     if (fixupNeedsRelaxation(Fixup, F))
1080       return true;
1081 
1082   return false;
1083 }
1084 
1085 bool MCAssembler::relaxInstruction(MCRelaxableFragment &F) {
1086   assert(getEmitterPtr() &&
1087          "Expected CodeEmitter defined for relaxInstruction");
1088   if (!fragmentNeedsRelaxation(&F))
1089     return false;
1090 
1091   ++stats::RelaxedInstructions;
1092 
1093   // FIXME-PERF: We could immediately lower out instructions if we can tell
1094   // they are fully resolved, to avoid retesting on later passes.
1095 
1096   // Relax the fragment.
1097 
1098   MCInst Relaxed = F.getInst();
1099   getBackend().relaxInstruction(Relaxed, *F.getSubtargetInfo());
1100 
1101   // Encode the new instruction.
1102   F.setInst(Relaxed);
1103   F.getFixups().clear();
1104   F.getContents().clear();
1105   getEmitter().encodeInstruction(Relaxed, F.getContents(), F.getFixups(),
1106                                  *F.getSubtargetInfo());
1107   return true;
1108 }
1109 
1110 bool MCAssembler::relaxLEB(MCLEBFragment &LF) {
1111   const unsigned OldSize = static_cast<unsigned>(LF.getContents().size());
1112   unsigned PadTo = OldSize;
1113   int64_t Value;
1114   SmallVectorImpl<char> &Data = LF.getContents();
1115   LF.getFixups().clear();
1116   // Use evaluateKnownAbsolute for Mach-O as a hack: .subsections_via_symbols
1117   // requires that .uleb128 A-B is foldable where A and B reside in different
1118   // fragments. This is used by __gcc_except_table.
1119   bool Abs = getWriter().getSubsectionsViaSymbols()
1120                  ? LF.getValue().evaluateKnownAbsolute(Value, *this)
1121                  : LF.getValue().evaluateAsAbsolute(Value, *this);
1122   if (!Abs) {
1123     bool Relaxed, UseZeroPad;
1124     std::tie(Relaxed, UseZeroPad) = getBackend().relaxLEB128(*this, LF, Value);
1125     if (!Relaxed) {
1126       getContext().reportError(LF.getValue().getLoc(),
1127                                Twine(LF.isSigned() ? ".s" : ".u") +
1128                                    "leb128 expression is not absolute");
1129       LF.setValue(MCConstantExpr::create(0, Context));
1130     }
1131     uint8_t Tmp[10]; // maximum size: ceil(64/7)
1132     PadTo = std::max(PadTo, encodeULEB128(uint64_t(Value), Tmp));
1133     if (UseZeroPad)
1134       Value = 0;
1135   }
1136   Data.clear();
1137   raw_svector_ostream OSE(Data);
1138   // The compiler can generate EH table assembly that is impossible to assemble
1139   // without either adding padding to an LEB fragment or adding extra padding
1140   // to a later alignment fragment. To accommodate such tables, relaxation can
1141   // only increase an LEB fragment size here, not decrease it. See PR35809.
1142   if (LF.isSigned())
1143     encodeSLEB128(Value, OSE, PadTo);
1144   else
1145     encodeULEB128(Value, OSE, PadTo);
1146   return OldSize != LF.getContents().size();
1147 }
1148 
1149 /// Check if the branch crosses the boundary.
1150 ///
1151 /// \param StartAddr start address of the fused/unfused branch.
1152 /// \param Size size of the fused/unfused branch.
1153 /// \param BoundaryAlignment alignment requirement of the branch.
1154 /// \returns true if the branch cross the boundary.
1155 static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size,
1156                              Align BoundaryAlignment) {
1157   uint64_t EndAddr = StartAddr + Size;
1158   return (StartAddr >> Log2(BoundaryAlignment)) !=
1159          ((EndAddr - 1) >> Log2(BoundaryAlignment));
1160 }
1161 
1162 /// Check if the branch is against the boundary.
1163 ///
1164 /// \param StartAddr start address of the fused/unfused branch.
1165 /// \param Size size of the fused/unfused branch.
1166 /// \param BoundaryAlignment alignment requirement of the branch.
1167 /// \returns true if the branch is against the boundary.
1168 static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size,
1169                               Align BoundaryAlignment) {
1170   uint64_t EndAddr = StartAddr + Size;
1171   return (EndAddr & (BoundaryAlignment.value() - 1)) == 0;
1172 }
1173 
1174 /// Check if the branch needs padding.
1175 ///
1176 /// \param StartAddr start address of the fused/unfused branch.
1177 /// \param Size size of the fused/unfused branch.
1178 /// \param BoundaryAlignment alignment requirement of the branch.
1179 /// \returns true if the branch needs padding.
1180 static bool needPadding(uint64_t StartAddr, uint64_t Size,
1181                         Align BoundaryAlignment) {
1182   return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) ||
1183          isAgainstBoundary(StartAddr, Size, BoundaryAlignment);
1184 }
1185 
1186 bool MCAssembler::relaxBoundaryAlign(MCBoundaryAlignFragment &BF) {
1187   // BoundaryAlignFragment that doesn't need to align any fragment should not be
1188   // relaxed.
1189   if (!BF.getLastFragment())
1190     return false;
1191 
1192   uint64_t AlignedOffset = getFragmentOffset(BF);
1193   uint64_t AlignedSize = 0;
1194   for (const MCFragment *F = BF.getNext();; F = F->getNext()) {
1195     AlignedSize += computeFragmentSize(*F);
1196     if (F == BF.getLastFragment())
1197       break;
1198   }
1199 
1200   Align BoundaryAlignment = BF.getAlignment();
1201   uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment)
1202                          ? offsetToAlignment(AlignedOffset, BoundaryAlignment)
1203                          : 0U;
1204   if (NewSize == BF.getSize())
1205     return false;
1206   BF.setSize(NewSize);
1207   return true;
1208 }
1209 
1210 bool MCAssembler::relaxDwarfLineAddr(MCDwarfLineAddrFragment &DF) {
1211   bool WasRelaxed;
1212   if (getBackend().relaxDwarfLineAddr(*this, DF, WasRelaxed))
1213     return WasRelaxed;
1214 
1215   MCContext &Context = getContext();
1216   uint64_t OldSize = DF.getContents().size();
1217   int64_t AddrDelta;
1218   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, *this);
1219   assert(Abs && "We created a line delta with an invalid expression");
1220   (void)Abs;
1221   int64_t LineDelta;
1222   LineDelta = DF.getLineDelta();
1223   SmallVectorImpl<char> &Data = DF.getContents();
1224   Data.clear();
1225   DF.getFixups().clear();
1226 
1227   MCDwarfLineAddr::encode(Context, getDWARFLinetableParams(), LineDelta,
1228                           AddrDelta, Data);
1229   return OldSize != Data.size();
1230 }
1231 
1232 bool MCAssembler::relaxDwarfCallFrameFragment(MCDwarfCallFrameFragment &DF) {
1233   bool WasRelaxed;
1234   if (getBackend().relaxDwarfCFA(*this, DF, WasRelaxed))
1235     return WasRelaxed;
1236 
1237   MCContext &Context = getContext();
1238   int64_t Value;
1239   bool Abs = DF.getAddrDelta().evaluateAsAbsolute(Value, *this);
1240   if (!Abs) {
1241     getContext().reportError(DF.getAddrDelta().getLoc(),
1242                              "invalid CFI advance_loc expression");
1243     DF.setAddrDelta(MCConstantExpr::create(0, Context));
1244     return false;
1245   }
1246 
1247   SmallVectorImpl<char> &Data = DF.getContents();
1248   uint64_t OldSize = Data.size();
1249   Data.clear();
1250   DF.getFixups().clear();
1251 
1252   MCDwarfFrameEmitter::encodeAdvanceLoc(Context, Value, Data);
1253   return OldSize != Data.size();
1254 }
1255 
1256 bool MCAssembler::relaxCVInlineLineTable(MCCVInlineLineTableFragment &F) {
1257   unsigned OldSize = F.getContents().size();
1258   getContext().getCVContext().encodeInlineLineTable(*this, F);
1259   return OldSize != F.getContents().size();
1260 }
1261 
1262 bool MCAssembler::relaxCVDefRange(MCCVDefRangeFragment &F) {
1263   unsigned OldSize = F.getContents().size();
1264   getContext().getCVContext().encodeDefRange(*this, F);
1265   return OldSize != F.getContents().size();
1266 }
1267 
1268 bool MCAssembler::relaxPseudoProbeAddr(MCPseudoProbeAddrFragment &PF) {
1269   uint64_t OldSize = PF.getContents().size();
1270   int64_t AddrDelta;
1271   bool Abs = PF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, *this);
1272   assert(Abs && "We created a pseudo probe with an invalid expression");
1273   (void)Abs;
1274   SmallVectorImpl<char> &Data = PF.getContents();
1275   Data.clear();
1276   raw_svector_ostream OSE(Data);
1277   PF.getFixups().clear();
1278 
1279   // AddrDelta is a signed integer
1280   encodeSLEB128(AddrDelta, OSE, OldSize);
1281   return OldSize != Data.size();
1282 }
1283 
1284 bool MCAssembler::relaxFragment(MCFragment &F) {
1285   switch(F.getKind()) {
1286   default:
1287     return false;
1288   case MCFragment::FT_Relaxable:
1289     assert(!getRelaxAll() &&
1290            "Did not expect a MCRelaxableFragment in RelaxAll mode");
1291     return relaxInstruction(cast<MCRelaxableFragment>(F));
1292   case MCFragment::FT_Dwarf:
1293     return relaxDwarfLineAddr(cast<MCDwarfLineAddrFragment>(F));
1294   case MCFragment::FT_DwarfFrame:
1295     return relaxDwarfCallFrameFragment(cast<MCDwarfCallFrameFragment>(F));
1296   case MCFragment::FT_LEB:
1297     return relaxLEB(cast<MCLEBFragment>(F));
1298   case MCFragment::FT_BoundaryAlign:
1299     return relaxBoundaryAlign(cast<MCBoundaryAlignFragment>(F));
1300   case MCFragment::FT_CVInlineLines:
1301     return relaxCVInlineLineTable(cast<MCCVInlineLineTableFragment>(F));
1302   case MCFragment::FT_CVDefRange:
1303     return relaxCVDefRange(cast<MCCVDefRangeFragment>(F));
1304   case MCFragment::FT_PseudoProbe:
1305     return relaxPseudoProbeAddr(cast<MCPseudoProbeAddrFragment>(F));
1306   }
1307 }
1308 
1309 bool MCAssembler::layoutOnce() {
1310   ++stats::RelaxationSteps;
1311 
1312   bool Changed = false;
1313   for (MCSection &Sec : *this)
1314     for (MCFragment &Frag : Sec)
1315       if (relaxFragment(Frag))
1316         Changed = true;
1317   return Changed;
1318 }
1319 
1320 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1321 LLVM_DUMP_METHOD void MCAssembler::dump() const{
1322   raw_ostream &OS = errs();
1323 
1324   OS << "<MCAssembler\n";
1325   OS << "  Sections:[\n    ";
1326   bool First = true;
1327   for (const MCSection &Sec : *this) {
1328     if (First)
1329       First = false;
1330     else
1331       OS << ",\n    ";
1332     Sec.dump();
1333   }
1334   OS << "],\n";
1335   OS << "  Symbols:[";
1336 
1337   First = true;
1338   for (const MCSymbol &Sym : symbols()) {
1339     if (First)
1340       First = false;
1341     else
1342       OS << ",\n           ";
1343     OS << "(";
1344     Sym.dump();
1345     OS << ", Index:" << Sym.getIndex() << ", ";
1346     OS << ")";
1347   }
1348   OS << "]>\n";
1349 }
1350 #endif
1351