xref: /freebsd/contrib/llvm-project/llvm/lib/MC/MCAssembler.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/MC/MCAssembler.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Statistic.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCAsmLayout.h"
19 #include "llvm/MC/MCCodeEmitter.h"
20 #include "llvm/MC/MCCodeView.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCExpr.h"
24 #include "llvm/MC/MCFixup.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCFragment.h"
27 #include "llvm/MC/MCInst.h"
28 #include "llvm/MC/MCObjectWriter.h"
29 #include "llvm/MC/MCSection.h"
30 #include "llvm/MC/MCSectionELF.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/MC/MCValue.h"
33 #include "llvm/Support/Alignment.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/LEB128.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <cassert>
41 #include <cstdint>
42 #include <cstring>
43 #include <tuple>
44 #include <utility>
45 
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "assembler"
49 
50 namespace {
51 namespace stats {
52 
53 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
54 STATISTIC(EmittedRelaxableFragments,
55           "Number of emitted assembler fragments - relaxable");
56 STATISTIC(EmittedDataFragments,
57           "Number of emitted assembler fragments - data");
58 STATISTIC(EmittedCompactEncodedInstFragments,
59           "Number of emitted assembler fragments - compact encoded inst");
60 STATISTIC(EmittedAlignFragments,
61           "Number of emitted assembler fragments - align");
62 STATISTIC(EmittedFillFragments,
63           "Number of emitted assembler fragments - fill");
64 STATISTIC(EmittedOrgFragments,
65           "Number of emitted assembler fragments - org");
66 STATISTIC(evaluateFixup, "Number of evaluated fixups");
67 STATISTIC(FragmentLayouts, "Number of fragment layouts");
68 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
69 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
70 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
71 STATISTIC(PaddingFragmentsRelaxations,
72           "Number of Padding Fragments relaxations");
73 STATISTIC(PaddingFragmentsBytes,
74           "Total size of all padding from adding Fragments");
75 
76 } // end namespace stats
77 } // end anonymous namespace
78 
79 // FIXME FIXME FIXME: There are number of places in this file where we convert
80 // what is a 64-bit assembler value used for computation into a value in the
81 // object file, which may truncate it. We should detect that truncation where
82 // invalid and report errors back.
83 
84 /* *** */
85 
86 MCAssembler::MCAssembler(MCContext &Context,
87                          std::unique_ptr<MCAsmBackend> Backend,
88                          std::unique_ptr<MCCodeEmitter> Emitter,
89                          std::unique_ptr<MCObjectWriter> Writer)
90     : Context(Context), Backend(std::move(Backend)),
91       Emitter(std::move(Emitter)), Writer(std::move(Writer)),
92       BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
93       IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
94   VersionInfo.Major = 0; // Major version == 0 for "none specified"
95 }
96 
97 MCAssembler::~MCAssembler() = default;
98 
99 void MCAssembler::reset() {
100   Sections.clear();
101   Symbols.clear();
102   IndirectSymbols.clear();
103   DataRegions.clear();
104   LinkerOptions.clear();
105   FileNames.clear();
106   ThumbFuncs.clear();
107   BundleAlignSize = 0;
108   RelaxAll = false;
109   SubsectionsViaSymbols = false;
110   IncrementalLinkerCompatible = false;
111   ELFHeaderEFlags = 0;
112   LOHContainer.reset();
113   VersionInfo.Major = 0;
114   VersionInfo.SDKVersion = VersionTuple();
115 
116   // reset objects owned by us
117   if (getBackendPtr())
118     getBackendPtr()->reset();
119   if (getEmitterPtr())
120     getEmitterPtr()->reset();
121   if (getWriterPtr())
122     getWriterPtr()->reset();
123   getLOHContainer().reset();
124 }
125 
126 bool MCAssembler::registerSection(MCSection &Section) {
127   if (Section.isRegistered())
128     return false;
129   Sections.push_back(&Section);
130   Section.setIsRegistered(true);
131   return true;
132 }
133 
134 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
135   if (ThumbFuncs.count(Symbol))
136     return true;
137 
138   if (!Symbol->isVariable())
139     return false;
140 
141   const MCExpr *Expr = Symbol->getVariableValue();
142 
143   MCValue V;
144   if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
145     return false;
146 
147   if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
148     return false;
149 
150   const MCSymbolRefExpr *Ref = V.getSymA();
151   if (!Ref)
152     return false;
153 
154   if (Ref->getKind() != MCSymbolRefExpr::VK_None)
155     return false;
156 
157   const MCSymbol &Sym = Ref->getSymbol();
158   if (!isThumbFunc(&Sym))
159     return false;
160 
161   ThumbFuncs.insert(Symbol); // Cache it.
162   return true;
163 }
164 
165 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
166   // Non-temporary labels should always be visible to the linker.
167   if (!Symbol.isTemporary())
168     return true;
169 
170   // Absolute temporary labels are never visible.
171   if (!Symbol.isInSection())
172     return false;
173 
174   if (Symbol.isUsedInReloc())
175     return true;
176 
177   return false;
178 }
179 
180 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
181   // Linker visible symbols define atoms.
182   if (isSymbolLinkerVisible(S))
183     return &S;
184 
185   // Absolute and undefined symbols have no defining atom.
186   if (!S.isInSection())
187     return nullptr;
188 
189   // Non-linker visible symbols in sections which can't be atomized have no
190   // defining atom.
191   if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
192           *S.getFragment()->getParent()))
193     return nullptr;
194 
195   // Otherwise, return the atom for the containing fragment.
196   return S.getFragment()->getAtom();
197 }
198 
199 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
200                                 const MCFixup &Fixup, const MCFragment *DF,
201                                 MCValue &Target, uint64_t &Value,
202                                 bool &WasForced) const {
203   ++stats::evaluateFixup;
204 
205   // FIXME: This code has some duplication with recordRelocation. We should
206   // probably merge the two into a single callback that tries to evaluate a
207   // fixup and records a relocation if one is needed.
208 
209   // On error claim to have completely evaluated the fixup, to prevent any
210   // further processing from being done.
211   const MCExpr *Expr = Fixup.getValue();
212   MCContext &Ctx = getContext();
213   Value = 0;
214   WasForced = false;
215   if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
216     Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
217     return true;
218   }
219   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
220     if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
221       Ctx.reportError(Fixup.getLoc(),
222                       "unsupported subtraction of qualified symbol");
223       return true;
224     }
225   }
226 
227   assert(getBackendPtr() && "Expected assembler backend");
228   bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
229                  MCFixupKindInfo::FKF_IsPCRel;
230 
231   bool IsResolved = false;
232   if (IsPCRel) {
233     if (Target.getSymB()) {
234       IsResolved = false;
235     } else if (!Target.getSymA()) {
236       IsResolved = false;
237     } else {
238       const MCSymbolRefExpr *A = Target.getSymA();
239       const MCSymbol &SA = A->getSymbol();
240       if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
241         IsResolved = false;
242       } else if (auto *Writer = getWriterPtr()) {
243         IsResolved = Writer->isSymbolRefDifferenceFullyResolvedImpl(
244             *this, SA, *DF, false, true);
245       }
246     }
247   } else {
248     IsResolved = Target.isAbsolute();
249   }
250 
251   Value = Target.getConstant();
252 
253   if (const MCSymbolRefExpr *A = Target.getSymA()) {
254     const MCSymbol &Sym = A->getSymbol();
255     if (Sym.isDefined())
256       Value += Layout.getSymbolOffset(Sym);
257   }
258   if (const MCSymbolRefExpr *B = Target.getSymB()) {
259     const MCSymbol &Sym = B->getSymbol();
260     if (Sym.isDefined())
261       Value -= Layout.getSymbolOffset(Sym);
262   }
263 
264   bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
265                        MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
266   assert((ShouldAlignPC ? IsPCRel : true) &&
267     "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
268 
269   if (IsPCRel) {
270     uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
271 
272     // A number of ARM fixups in Thumb mode require that the effective PC
273     // address be determined as the 32-bit aligned version of the actual offset.
274     if (ShouldAlignPC) Offset &= ~0x3;
275     Value -= Offset;
276   }
277 
278   // Let the backend force a relocation if needed.
279   if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) {
280     IsResolved = false;
281     WasForced = true;
282   }
283 
284   return IsResolved;
285 }
286 
287 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
288                                           const MCFragment &F) const {
289   assert(getBackendPtr() && "Requires assembler backend");
290   switch (F.getKind()) {
291   case MCFragment::FT_Data:
292     return cast<MCDataFragment>(F).getContents().size();
293   case MCFragment::FT_Relaxable:
294     return cast<MCRelaxableFragment>(F).getContents().size();
295   case MCFragment::FT_CompactEncodedInst:
296     return cast<MCCompactEncodedInstFragment>(F).getContents().size();
297   case MCFragment::FT_Fill: {
298     auto &FF = cast<MCFillFragment>(F);
299     int64_t NumValues = 0;
300     if (!FF.getNumValues().evaluateAsAbsolute(NumValues, Layout)) {
301       getContext().reportError(FF.getLoc(),
302                                "expected assembly-time absolute expression");
303       return 0;
304     }
305     int64_t Size = NumValues * FF.getValueSize();
306     if (Size < 0) {
307       getContext().reportError(FF.getLoc(), "invalid number of bytes");
308       return 0;
309     }
310     return Size;
311   }
312 
313   case MCFragment::FT_LEB:
314     return cast<MCLEBFragment>(F).getContents().size();
315 
316   case MCFragment::FT_Padding:
317     return cast<MCPaddingFragment>(F).getSize();
318 
319   case MCFragment::FT_SymbolId:
320     return 4;
321 
322   case MCFragment::FT_Align: {
323     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
324     unsigned Offset = Layout.getFragmentOffset(&AF);
325     unsigned Size = offsetToAlignment(Offset, Align(AF.getAlignment()));
326 
327     // Insert extra Nops for code alignment if the target define
328     // shouldInsertExtraNopBytesForCodeAlign target hook.
329     if (AF.getParent()->UseCodeAlign() && AF.hasEmitNops() &&
330         getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size))
331       return Size;
332 
333     // If we are padding with nops, force the padding to be larger than the
334     // minimum nop size.
335     if (Size > 0 && AF.hasEmitNops()) {
336       while (Size % getBackend().getMinimumNopSize())
337         Size += AF.getAlignment();
338     }
339     if (Size > AF.getMaxBytesToEmit())
340       return 0;
341     return Size;
342   }
343 
344   case MCFragment::FT_Org: {
345     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
346     MCValue Value;
347     if (!OF.getOffset().evaluateAsValue(Value, Layout)) {
348       getContext().reportError(OF.getLoc(),
349                                "expected assembly-time absolute expression");
350         return 0;
351     }
352 
353     uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
354     int64_t TargetLocation = Value.getConstant();
355     if (const MCSymbolRefExpr *A = Value.getSymA()) {
356       uint64_t Val;
357       if (!Layout.getSymbolOffset(A->getSymbol(), Val)) {
358         getContext().reportError(OF.getLoc(), "expected absolute expression");
359         return 0;
360       }
361       TargetLocation += Val;
362     }
363     int64_t Size = TargetLocation - FragmentOffset;
364     if (Size < 0 || Size >= 0x40000000) {
365       getContext().reportError(
366           OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
367                            "' (at offset '" + Twine(FragmentOffset) + "')");
368       return 0;
369     }
370     return Size;
371   }
372 
373   case MCFragment::FT_Dwarf:
374     return cast<MCDwarfLineAddrFragment>(F).getContents().size();
375   case MCFragment::FT_DwarfFrame:
376     return cast<MCDwarfCallFrameFragment>(F).getContents().size();
377   case MCFragment::FT_CVInlineLines:
378     return cast<MCCVInlineLineTableFragment>(F).getContents().size();
379   case MCFragment::FT_CVDefRange:
380     return cast<MCCVDefRangeFragment>(F).getContents().size();
381   case MCFragment::FT_Dummy:
382     llvm_unreachable("Should not have been added");
383   }
384 
385   llvm_unreachable("invalid fragment kind");
386 }
387 
388 void MCAsmLayout::layoutFragment(MCFragment *F) {
389   MCFragment *Prev = F->getPrevNode();
390 
391   // We should never try to recompute something which is valid.
392   assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
393   // We should never try to compute the fragment layout if its predecessor
394   // isn't valid.
395   assert((!Prev || isFragmentValid(Prev)) &&
396          "Attempt to compute fragment before its predecessor!");
397 
398   ++stats::FragmentLayouts;
399 
400   // Compute fragment offset and size.
401   if (Prev)
402     F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
403   else
404     F->Offset = 0;
405   LastValidFragment[F->getParent()] = F;
406 
407   // If bundling is enabled and this fragment has instructions in it, it has to
408   // obey the bundling restrictions. With padding, we'll have:
409   //
410   //
411   //        BundlePadding
412   //             |||
413   // -------------------------------------
414   //   Prev  |##########|       F        |
415   // -------------------------------------
416   //                    ^
417   //                    |
418   //                    F->Offset
419   //
420   // The fragment's offset will point to after the padding, and its computed
421   // size won't include the padding.
422   //
423   // When the -mc-relax-all flag is used, we optimize bundling by writting the
424   // padding directly into fragments when the instructions are emitted inside
425   // the streamer. When the fragment is larger than the bundle size, we need to
426   // ensure that it's bundle aligned. This means that if we end up with
427   // multiple fragments, we must emit bundle padding between fragments.
428   //
429   // ".align N" is an example of a directive that introduces multiple
430   // fragments. We could add a special case to handle ".align N" by emitting
431   // within-fragment padding (which would produce less padding when N is less
432   // than the bundle size), but for now we don't.
433   //
434   if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
435     assert(isa<MCEncodedFragment>(F) &&
436            "Only MCEncodedFragment implementations have instructions");
437     MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
438     uint64_t FSize = Assembler.computeFragmentSize(*this, *EF);
439 
440     if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
441       report_fatal_error("Fragment can't be larger than a bundle size");
442 
443     uint64_t RequiredBundlePadding =
444         computeBundlePadding(Assembler, EF, EF->Offset, FSize);
445     if (RequiredBundlePadding > UINT8_MAX)
446       report_fatal_error("Padding cannot exceed 255 bytes");
447     EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
448     EF->Offset += RequiredBundlePadding;
449   }
450 }
451 
452 void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
453   bool New = !Symbol.isRegistered();
454   if (Created)
455     *Created = New;
456   if (New) {
457     Symbol.setIsRegistered(true);
458     Symbols.push_back(&Symbol);
459   }
460 }
461 
462 void MCAssembler::writeFragmentPadding(raw_ostream &OS,
463                                        const MCEncodedFragment &EF,
464                                        uint64_t FSize) const {
465   assert(getBackendPtr() && "Expected assembler backend");
466   // Should NOP padding be written out before this fragment?
467   unsigned BundlePadding = EF.getBundlePadding();
468   if (BundlePadding > 0) {
469     assert(isBundlingEnabled() &&
470            "Writing bundle padding with disabled bundling");
471     assert(EF.hasInstructions() &&
472            "Writing bundle padding for a fragment without instructions");
473 
474     unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
475     if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
476       // If the padding itself crosses a bundle boundary, it must be emitted
477       // in 2 pieces, since even nop instructions must not cross boundaries.
478       //             v--------------v   <- BundleAlignSize
479       //        v---------v             <- BundlePadding
480       // ----------------------------
481       // | Prev |####|####|    F    |
482       // ----------------------------
483       //        ^-------------------^   <- TotalLength
484       unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
485       if (!getBackend().writeNopData(OS, DistanceToBoundary))
486         report_fatal_error("unable to write NOP sequence of " +
487                            Twine(DistanceToBoundary) + " bytes");
488       BundlePadding -= DistanceToBoundary;
489     }
490     if (!getBackend().writeNopData(OS, BundlePadding))
491       report_fatal_error("unable to write NOP sequence of " +
492                          Twine(BundlePadding) + " bytes");
493   }
494 }
495 
496 /// Write the fragment \p F to the output file.
497 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
498                           const MCAsmLayout &Layout, const MCFragment &F) {
499   // FIXME: Embed in fragments instead?
500   uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
501 
502   support::endianness Endian = Asm.getBackend().Endian;
503 
504   if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
505     Asm.writeFragmentPadding(OS, *EF, FragmentSize);
506 
507   // This variable (and its dummy usage) is to participate in the assert at
508   // the end of the function.
509   uint64_t Start = OS.tell();
510   (void) Start;
511 
512   ++stats::EmittedFragments;
513 
514   switch (F.getKind()) {
515   case MCFragment::FT_Align: {
516     ++stats::EmittedAlignFragments;
517     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
518     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
519 
520     uint64_t Count = FragmentSize / AF.getValueSize();
521 
522     // FIXME: This error shouldn't actually occur (the front end should emit
523     // multiple .align directives to enforce the semantics it wants), but is
524     // severe enough that we want to report it. How to handle this?
525     if (Count * AF.getValueSize() != FragmentSize)
526       report_fatal_error("undefined .align directive, value size '" +
527                         Twine(AF.getValueSize()) +
528                         "' is not a divisor of padding size '" +
529                         Twine(FragmentSize) + "'");
530 
531     // See if we are aligning with nops, and if so do that first to try to fill
532     // the Count bytes.  Then if that did not fill any bytes or there are any
533     // bytes left to fill use the Value and ValueSize to fill the rest.
534     // If we are aligning with nops, ask that target to emit the right data.
535     if (AF.hasEmitNops()) {
536       if (!Asm.getBackend().writeNopData(OS, Count))
537         report_fatal_error("unable to write nop sequence of " +
538                           Twine(Count) + " bytes");
539       break;
540     }
541 
542     // Otherwise, write out in multiples of the value size.
543     for (uint64_t i = 0; i != Count; ++i) {
544       switch (AF.getValueSize()) {
545       default: llvm_unreachable("Invalid size!");
546       case 1: OS << char(AF.getValue()); break;
547       case 2:
548         support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
549         break;
550       case 4:
551         support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
552         break;
553       case 8:
554         support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
555         break;
556       }
557     }
558     break;
559   }
560 
561   case MCFragment::FT_Data:
562     ++stats::EmittedDataFragments;
563     OS << cast<MCDataFragment>(F).getContents();
564     break;
565 
566   case MCFragment::FT_Relaxable:
567     ++stats::EmittedRelaxableFragments;
568     OS << cast<MCRelaxableFragment>(F).getContents();
569     break;
570 
571   case MCFragment::FT_CompactEncodedInst:
572     ++stats::EmittedCompactEncodedInstFragments;
573     OS << cast<MCCompactEncodedInstFragment>(F).getContents();
574     break;
575 
576   case MCFragment::FT_Fill: {
577     ++stats::EmittedFillFragments;
578     const MCFillFragment &FF = cast<MCFillFragment>(F);
579     uint64_t V = FF.getValue();
580     unsigned VSize = FF.getValueSize();
581     const unsigned MaxChunkSize = 16;
582     char Data[MaxChunkSize];
583     // Duplicate V into Data as byte vector to reduce number of
584     // writes done. As such, do endian conversion here.
585     for (unsigned I = 0; I != VSize; ++I) {
586       unsigned index = Endian == support::little ? I : (VSize - I - 1);
587       Data[I] = uint8_t(V >> (index * 8));
588     }
589     for (unsigned I = VSize; I < MaxChunkSize; ++I)
590       Data[I] = Data[I - VSize];
591 
592     // Set to largest multiple of VSize in Data.
593     const unsigned NumPerChunk = MaxChunkSize / VSize;
594     // Set ChunkSize to largest multiple of VSize in Data
595     const unsigned ChunkSize = VSize * NumPerChunk;
596 
597     // Do copies by chunk.
598     StringRef Ref(Data, ChunkSize);
599     for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
600       OS << Ref;
601 
602     // do remainder if needed.
603     unsigned TrailingCount = FragmentSize % ChunkSize;
604     if (TrailingCount)
605       OS.write(Data, TrailingCount);
606     break;
607   }
608 
609   case MCFragment::FT_LEB: {
610     const MCLEBFragment &LF = cast<MCLEBFragment>(F);
611     OS << LF.getContents();
612     break;
613   }
614 
615   case MCFragment::FT_Padding: {
616     if (!Asm.getBackend().writeNopData(OS, FragmentSize))
617       report_fatal_error("unable to write nop sequence of " +
618                          Twine(FragmentSize) + " bytes");
619     break;
620   }
621 
622   case MCFragment::FT_SymbolId: {
623     const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
624     support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
625     break;
626   }
627 
628   case MCFragment::FT_Org: {
629     ++stats::EmittedOrgFragments;
630     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
631 
632     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
633       OS << char(OF.getValue());
634 
635     break;
636   }
637 
638   case MCFragment::FT_Dwarf: {
639     const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
640     OS << OF.getContents();
641     break;
642   }
643   case MCFragment::FT_DwarfFrame: {
644     const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
645     OS << CF.getContents();
646     break;
647   }
648   case MCFragment::FT_CVInlineLines: {
649     const auto &OF = cast<MCCVInlineLineTableFragment>(F);
650     OS << OF.getContents();
651     break;
652   }
653   case MCFragment::FT_CVDefRange: {
654     const auto &DRF = cast<MCCVDefRangeFragment>(F);
655     OS << DRF.getContents();
656     break;
657   }
658   case MCFragment::FT_Dummy:
659     llvm_unreachable("Should not have been added");
660   }
661 
662   assert(OS.tell() - Start == FragmentSize &&
663          "The stream should advance by fragment size");
664 }
665 
666 void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec,
667                                    const MCAsmLayout &Layout) const {
668   assert(getBackendPtr() && "Expected assembler backend");
669 
670   // Ignore virtual sections.
671   if (Sec->isVirtualSection()) {
672     assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
673 
674     // Check that contents are only things legal inside a virtual section.
675     for (const MCFragment &F : *Sec) {
676       switch (F.getKind()) {
677       default: llvm_unreachable("Invalid fragment in virtual section!");
678       case MCFragment::FT_Data: {
679         // Check that we aren't trying to write a non-zero contents (or fixups)
680         // into a virtual section. This is to support clients which use standard
681         // directives to fill the contents of virtual sections.
682         const MCDataFragment &DF = cast<MCDataFragment>(F);
683         if (DF.fixup_begin() != DF.fixup_end())
684           report_fatal_error("cannot have fixups in virtual section!");
685         for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
686           if (DF.getContents()[i]) {
687             if (auto *ELFSec = dyn_cast<const MCSectionELF>(Sec))
688               report_fatal_error("non-zero initializer found in section '" +
689                   ELFSec->getSectionName() + "'");
690             else
691               report_fatal_error("non-zero initializer found in virtual section");
692           }
693         break;
694       }
695       case MCFragment::FT_Align:
696         // Check that we aren't trying to write a non-zero value into a virtual
697         // section.
698         assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
699                 cast<MCAlignFragment>(F).getValue() == 0) &&
700                "Invalid align in virtual section!");
701         break;
702       case MCFragment::FT_Fill:
703         assert((cast<MCFillFragment>(F).getValue() == 0) &&
704                "Invalid fill in virtual section!");
705         break;
706       }
707     }
708 
709     return;
710   }
711 
712   uint64_t Start = OS.tell();
713   (void)Start;
714 
715   for (const MCFragment &F : *Sec)
716     writeFragment(OS, *this, Layout, F);
717 
718   assert(OS.tell() - Start == Layout.getSectionAddressSize(Sec));
719 }
720 
721 std::tuple<MCValue, uint64_t, bool>
722 MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F,
723                          const MCFixup &Fixup) {
724   // Evaluate the fixup.
725   MCValue Target;
726   uint64_t FixedValue;
727   bool WasForced;
728   bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue,
729                                   WasForced);
730   if (!IsResolved) {
731     // The fixup was unresolved, we need a relocation. Inform the object
732     // writer of the relocation, and give it an opportunity to adjust the
733     // fixup value if need be.
734     if (Target.getSymA() && Target.getSymB() &&
735         getBackend().requiresDiffExpressionRelocations()) {
736       // The fixup represents the difference between two symbols, which the
737       // backend has indicated must be resolved at link time. Split up the fixup
738       // into two relocations, one for the add, and one for the sub, and emit
739       // both of these. The constant will be associated with the add half of the
740       // expression.
741       MCFixup FixupAdd = MCFixup::createAddFor(Fixup);
742       MCValue TargetAdd =
743           MCValue::get(Target.getSymA(), nullptr, Target.getConstant());
744       getWriter().recordRelocation(*this, Layout, &F, FixupAdd, TargetAdd,
745                                    FixedValue);
746       MCFixup FixupSub = MCFixup::createSubFor(Fixup);
747       MCValue TargetSub = MCValue::get(Target.getSymB());
748       getWriter().recordRelocation(*this, Layout, &F, FixupSub, TargetSub,
749                                    FixedValue);
750     } else {
751       getWriter().recordRelocation(*this, Layout, &F, Fixup, Target,
752                                    FixedValue);
753     }
754   }
755   return std::make_tuple(Target, FixedValue, IsResolved);
756 }
757 
758 void MCAssembler::layout(MCAsmLayout &Layout) {
759   assert(getBackendPtr() && "Expected assembler backend");
760   DEBUG_WITH_TYPE("mc-dump", {
761       errs() << "assembler backend - pre-layout\n--\n";
762       dump(); });
763 
764   // Create dummy fragments and assign section ordinals.
765   unsigned SectionIndex = 0;
766   for (MCSection &Sec : *this) {
767     // Create dummy fragments to eliminate any empty sections, this simplifies
768     // layout.
769     if (Sec.getFragmentList().empty())
770       new MCDataFragment(&Sec);
771 
772     Sec.setOrdinal(SectionIndex++);
773   }
774 
775   // Assign layout order indices to sections and fragments.
776   for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
777     MCSection *Sec = Layout.getSectionOrder()[i];
778     Sec->setLayoutOrder(i);
779 
780     unsigned FragmentIndex = 0;
781     for (MCFragment &Frag : *Sec)
782       Frag.setLayoutOrder(FragmentIndex++);
783   }
784 
785   // Layout until everything fits.
786   while (layoutOnce(Layout))
787     if (getContext().hadError())
788       return;
789 
790   DEBUG_WITH_TYPE("mc-dump", {
791       errs() << "assembler backend - post-relaxation\n--\n";
792       dump(); });
793 
794   // Finalize the layout, including fragment lowering.
795   finishLayout(Layout);
796 
797   DEBUG_WITH_TYPE("mc-dump", {
798       errs() << "assembler backend - final-layout\n--\n";
799       dump(); });
800 
801   // Allow the object writer a chance to perform post-layout binding (for
802   // example, to set the index fields in the symbol data).
803   getWriter().executePostLayoutBinding(*this, Layout);
804 
805   // Evaluate and apply the fixups, generating relocation entries as necessary.
806   for (MCSection &Sec : *this) {
807     for (MCFragment &Frag : Sec) {
808       // Data and relaxable fragments both have fixups.  So only process
809       // those here.
810       // FIXME: Is there a better way to do this?  MCEncodedFragmentWithFixups
811       // being templated makes this tricky.
812       if (isa<MCEncodedFragment>(&Frag) &&
813           isa<MCCompactEncodedInstFragment>(&Frag))
814         continue;
815       if (!isa<MCEncodedFragment>(&Frag) && !isa<MCCVDefRangeFragment>(&Frag) &&
816           !isa<MCAlignFragment>(&Frag))
817         continue;
818       ArrayRef<MCFixup> Fixups;
819       MutableArrayRef<char> Contents;
820       const MCSubtargetInfo *STI = nullptr;
821       if (auto *FragWithFixups = dyn_cast<MCDataFragment>(&Frag)) {
822         Fixups = FragWithFixups->getFixups();
823         Contents = FragWithFixups->getContents();
824         STI = FragWithFixups->getSubtargetInfo();
825         assert(!FragWithFixups->hasInstructions() || STI != nullptr);
826       } else if (auto *FragWithFixups = dyn_cast<MCRelaxableFragment>(&Frag)) {
827         Fixups = FragWithFixups->getFixups();
828         Contents = FragWithFixups->getContents();
829         STI = FragWithFixups->getSubtargetInfo();
830         assert(!FragWithFixups->hasInstructions() || STI != nullptr);
831       } else if (auto *FragWithFixups = dyn_cast<MCCVDefRangeFragment>(&Frag)) {
832         Fixups = FragWithFixups->getFixups();
833         Contents = FragWithFixups->getContents();
834       } else if (auto *FragWithFixups = dyn_cast<MCDwarfLineAddrFragment>(&Frag)) {
835         Fixups = FragWithFixups->getFixups();
836         Contents = FragWithFixups->getContents();
837       } else if (auto *AF = dyn_cast<MCAlignFragment>(&Frag)) {
838         // Insert fixup type for code alignment if the target define
839         // shouldInsertFixupForCodeAlign target hook.
840         if (Sec.UseCodeAlign() && AF->hasEmitNops()) {
841           getBackend().shouldInsertFixupForCodeAlign(*this, Layout, *AF);
842         }
843         continue;
844       } else if (auto *FragWithFixups =
845                      dyn_cast<MCDwarfCallFrameFragment>(&Frag)) {
846         Fixups = FragWithFixups->getFixups();
847         Contents = FragWithFixups->getContents();
848       } else
849         llvm_unreachable("Unknown fragment with fixups!");
850       for (const MCFixup &Fixup : Fixups) {
851         uint64_t FixedValue;
852         bool IsResolved;
853         MCValue Target;
854         std::tie(Target, FixedValue, IsResolved) =
855             handleFixup(Layout, Frag, Fixup);
856         getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
857                                 IsResolved, STI);
858       }
859     }
860   }
861 }
862 
863 void MCAssembler::Finish() {
864   // Create the layout object.
865   MCAsmLayout Layout(*this);
866   layout(Layout);
867 
868   // Write the object file.
869   stats::ObjectBytes += getWriter().writeObject(*this, Layout);
870 }
871 
872 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
873                                        const MCRelaxableFragment *DF,
874                                        const MCAsmLayout &Layout) const {
875   assert(getBackendPtr() && "Expected assembler backend");
876   MCValue Target;
877   uint64_t Value;
878   bool WasForced;
879   bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced);
880   if (Target.getSymA() &&
881       Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
882       Fixup.getKind() == FK_Data_1)
883     return false;
884   return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
885                                                    Layout, WasForced);
886 }
887 
888 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
889                                           const MCAsmLayout &Layout) const {
890   assert(getBackendPtr() && "Expected assembler backend");
891   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
892   // are intentionally pushing out inst fragments, or because we relaxed a
893   // previous instruction to one that doesn't need relaxation.
894   if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
895     return false;
896 
897   for (const MCFixup &Fixup : F->getFixups())
898     if (fixupNeedsRelaxation(Fixup, F, Layout))
899       return true;
900 
901   return false;
902 }
903 
904 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
905                                    MCRelaxableFragment &F) {
906   assert(getEmitterPtr() &&
907          "Expected CodeEmitter defined for relaxInstruction");
908   if (!fragmentNeedsRelaxation(&F, Layout))
909     return false;
910 
911   ++stats::RelaxedInstructions;
912 
913   // FIXME-PERF: We could immediately lower out instructions if we can tell
914   // they are fully resolved, to avoid retesting on later passes.
915 
916   // Relax the fragment.
917 
918   MCInst Relaxed;
919   getBackend().relaxInstruction(F.getInst(), *F.getSubtargetInfo(), Relaxed);
920 
921   // Encode the new instruction.
922   //
923   // FIXME-PERF: If it matters, we could let the target do this. It can
924   // probably do so more efficiently in many cases.
925   SmallVector<MCFixup, 4> Fixups;
926   SmallString<256> Code;
927   raw_svector_ostream VecOS(Code);
928   getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, *F.getSubtargetInfo());
929 
930   // Update the fragment.
931   F.setInst(Relaxed);
932   F.getContents() = Code;
933   F.getFixups() = Fixups;
934 
935   return true;
936 }
937 
938 bool MCAssembler::relaxPaddingFragment(MCAsmLayout &Layout,
939                                        MCPaddingFragment &PF) {
940   assert(getBackendPtr() && "Expected assembler backend");
941   uint64_t OldSize = PF.getSize();
942   if (!getBackend().relaxFragment(&PF, Layout))
943     return false;
944   uint64_t NewSize = PF.getSize();
945 
946   ++stats::PaddingFragmentsRelaxations;
947   stats::PaddingFragmentsBytes += NewSize;
948   stats::PaddingFragmentsBytes -= OldSize;
949   return true;
950 }
951 
952 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
953   uint64_t OldSize = LF.getContents().size();
954   int64_t Value;
955   bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
956   if (!Abs)
957     report_fatal_error("sleb128 and uleb128 expressions must be absolute");
958   SmallString<8> &Data = LF.getContents();
959   Data.clear();
960   raw_svector_ostream OSE(Data);
961   // The compiler can generate EH table assembly that is impossible to assemble
962   // without either adding padding to an LEB fragment or adding extra padding
963   // to a later alignment fragment. To accommodate such tables, relaxation can
964   // only increase an LEB fragment size here, not decrease it. See PR35809.
965   if (LF.isSigned())
966     encodeSLEB128(Value, OSE, OldSize);
967   else
968     encodeULEB128(Value, OSE, OldSize);
969   return OldSize != LF.getContents().size();
970 }
971 
972 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
973                                      MCDwarfLineAddrFragment &DF) {
974   MCContext &Context = Layout.getAssembler().getContext();
975   uint64_t OldSize = DF.getContents().size();
976   int64_t AddrDelta;
977   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
978   assert(Abs && "We created a line delta with an invalid expression");
979   (void)Abs;
980   int64_t LineDelta;
981   LineDelta = DF.getLineDelta();
982   SmallVectorImpl<char> &Data = DF.getContents();
983   Data.clear();
984   raw_svector_ostream OSE(Data);
985   DF.getFixups().clear();
986 
987   if (!getBackend().requiresDiffExpressionRelocations()) {
988     MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
989                             AddrDelta, OSE);
990   } else {
991     uint32_t Offset;
992     uint32_t Size;
993     bool SetDelta = MCDwarfLineAddr::FixedEncode(Context,
994                                                  getDWARFLinetableParams(),
995                                                  LineDelta, AddrDelta,
996                                                  OSE, &Offset, &Size);
997     // Add Fixups for address delta or new address.
998     const MCExpr *FixupExpr;
999     if (SetDelta) {
1000       FixupExpr = &DF.getAddrDelta();
1001     } else {
1002       const MCBinaryExpr *ABE = cast<MCBinaryExpr>(&DF.getAddrDelta());
1003       FixupExpr = ABE->getLHS();
1004     }
1005     DF.getFixups().push_back(
1006         MCFixup::create(Offset, FixupExpr,
1007                         MCFixup::getKindForSize(Size, false /*isPCRel*/)));
1008   }
1009 
1010   return OldSize != Data.size();
1011 }
1012 
1013 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
1014                                               MCDwarfCallFrameFragment &DF) {
1015   MCContext &Context = Layout.getAssembler().getContext();
1016   uint64_t OldSize = DF.getContents().size();
1017   int64_t AddrDelta;
1018   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1019   assert(Abs && "We created call frame with an invalid expression");
1020   (void) Abs;
1021   SmallVectorImpl<char> &Data = DF.getContents();
1022   Data.clear();
1023   raw_svector_ostream OSE(Data);
1024   DF.getFixups().clear();
1025 
1026   if (getBackend().requiresDiffExpressionRelocations()) {
1027     uint32_t Offset;
1028     uint32_t Size;
1029     MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE, &Offset,
1030                                           &Size);
1031     if (Size) {
1032       DF.getFixups().push_back(MCFixup::create(
1033           Offset, &DF.getAddrDelta(),
1034           MCFixup::getKindForSizeInBits(Size /*In bits.*/, false /*isPCRel*/)));
1035     }
1036   } else {
1037     MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
1038   }
1039 
1040   return OldSize != Data.size();
1041 }
1042 
1043 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout,
1044                                          MCCVInlineLineTableFragment &F) {
1045   unsigned OldSize = F.getContents().size();
1046   getContext().getCVContext().encodeInlineLineTable(Layout, F);
1047   return OldSize != F.getContents().size();
1048 }
1049 
1050 bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout,
1051                                   MCCVDefRangeFragment &F) {
1052   unsigned OldSize = F.getContents().size();
1053   getContext().getCVContext().encodeDefRange(Layout, F);
1054   return OldSize != F.getContents().size();
1055 }
1056 
1057 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
1058   // Holds the first fragment which needed relaxing during this layout. It will
1059   // remain NULL if none were relaxed.
1060   // When a fragment is relaxed, all the fragments following it should get
1061   // invalidated because their offset is going to change.
1062   MCFragment *FirstRelaxedFragment = nullptr;
1063 
1064   // Attempt to relax all the fragments in the section.
1065   for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) {
1066     // Check if this is a fragment that needs relaxation.
1067     bool RelaxedFrag = false;
1068     switch(I->getKind()) {
1069     default:
1070       break;
1071     case MCFragment::FT_Relaxable:
1072       assert(!getRelaxAll() &&
1073              "Did not expect a MCRelaxableFragment in RelaxAll mode");
1074       RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
1075       break;
1076     case MCFragment::FT_Dwarf:
1077       RelaxedFrag = relaxDwarfLineAddr(Layout,
1078                                        *cast<MCDwarfLineAddrFragment>(I));
1079       break;
1080     case MCFragment::FT_DwarfFrame:
1081       RelaxedFrag =
1082         relaxDwarfCallFrameFragment(Layout,
1083                                     *cast<MCDwarfCallFrameFragment>(I));
1084       break;
1085     case MCFragment::FT_LEB:
1086       RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
1087       break;
1088     case MCFragment::FT_Padding:
1089       RelaxedFrag = relaxPaddingFragment(Layout, *cast<MCPaddingFragment>(I));
1090       break;
1091     case MCFragment::FT_CVInlineLines:
1092       RelaxedFrag =
1093           relaxCVInlineLineTable(Layout, *cast<MCCVInlineLineTableFragment>(I));
1094       break;
1095     case MCFragment::FT_CVDefRange:
1096       RelaxedFrag = relaxCVDefRange(Layout, *cast<MCCVDefRangeFragment>(I));
1097       break;
1098     }
1099     if (RelaxedFrag && !FirstRelaxedFragment)
1100       FirstRelaxedFragment = &*I;
1101   }
1102   if (FirstRelaxedFragment) {
1103     Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
1104     return true;
1105   }
1106   return false;
1107 }
1108 
1109 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
1110   ++stats::RelaxationSteps;
1111 
1112   bool WasRelaxed = false;
1113   for (iterator it = begin(), ie = end(); it != ie; ++it) {
1114     MCSection &Sec = *it;
1115     while (layoutSectionOnce(Layout, Sec))
1116       WasRelaxed = true;
1117   }
1118 
1119   return WasRelaxed;
1120 }
1121 
1122 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
1123   assert(getBackendPtr() && "Expected assembler backend");
1124   // The layout is done. Mark every fragment as valid.
1125   for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
1126     MCSection &Section = *Layout.getSectionOrder()[i];
1127     Layout.getFragmentOffset(&*Section.rbegin());
1128     computeFragmentSize(Layout, *Section.rbegin());
1129   }
1130   getBackend().finishLayout(*this, Layout);
1131 }
1132 
1133 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1134 LLVM_DUMP_METHOD void MCAssembler::dump() const{
1135   raw_ostream &OS = errs();
1136 
1137   OS << "<MCAssembler\n";
1138   OS << "  Sections:[\n    ";
1139   for (const_iterator it = begin(), ie = end(); it != ie; ++it) {
1140     if (it != begin()) OS << ",\n    ";
1141     it->dump();
1142   }
1143   OS << "],\n";
1144   OS << "  Symbols:[";
1145 
1146   for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1147     if (it != symbol_begin()) OS << ",\n           ";
1148     OS << "(";
1149     it->dump();
1150     OS << ", Index:" << it->getIndex() << ", ";
1151     OS << ")";
1152   }
1153   OS << "]>\n";
1154 }
1155 #endif
1156