xref: /freebsd/contrib/llvm-project/llvm/lib/MC/MCAssembler.cpp (revision 56e766af41cd68310f5583bb893b13c006fcb44f)
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/MC/MCAssembler.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Statistic.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCAsmLayout.h"
19 #include "llvm/MC/MCCodeEmitter.h"
20 #include "llvm/MC/MCCodeView.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCExpr.h"
24 #include "llvm/MC/MCFixup.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCFragment.h"
27 #include "llvm/MC/MCInst.h"
28 #include "llvm/MC/MCObjectWriter.h"
29 #include "llvm/MC/MCSection.h"
30 #include "llvm/MC/MCSectionELF.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/MC/MCValue.h"
33 #include "llvm/Support/Alignment.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/LEB128.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <cassert>
41 #include <cstdint>
42 #include <cstring>
43 #include <tuple>
44 #include <utility>
45 
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "assembler"
49 
50 namespace {
51 namespace stats {
52 
53 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
54 STATISTIC(EmittedRelaxableFragments,
55           "Number of emitted assembler fragments - relaxable");
56 STATISTIC(EmittedDataFragments,
57           "Number of emitted assembler fragments - data");
58 STATISTIC(EmittedCompactEncodedInstFragments,
59           "Number of emitted assembler fragments - compact encoded inst");
60 STATISTIC(EmittedAlignFragments,
61           "Number of emitted assembler fragments - align");
62 STATISTIC(EmittedFillFragments,
63           "Number of emitted assembler fragments - fill");
64 STATISTIC(EmittedOrgFragments,
65           "Number of emitted assembler fragments - org");
66 STATISTIC(evaluateFixup, "Number of evaluated fixups");
67 STATISTIC(FragmentLayouts, "Number of fragment layouts");
68 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
69 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
70 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
71 
72 } // end namespace stats
73 } // end anonymous namespace
74 
75 // FIXME FIXME FIXME: There are number of places in this file where we convert
76 // what is a 64-bit assembler value used for computation into a value in the
77 // object file, which may truncate it. We should detect that truncation where
78 // invalid and report errors back.
79 
80 /* *** */
81 
82 MCAssembler::MCAssembler(MCContext &Context,
83                          std::unique_ptr<MCAsmBackend> Backend,
84                          std::unique_ptr<MCCodeEmitter> Emitter,
85                          std::unique_ptr<MCObjectWriter> Writer)
86     : Context(Context), Backend(std::move(Backend)),
87       Emitter(std::move(Emitter)), Writer(std::move(Writer)),
88       BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
89       IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
90   VersionInfo.Major = 0; // Major version == 0 for "none specified"
91 }
92 
93 MCAssembler::~MCAssembler() = default;
94 
95 void MCAssembler::reset() {
96   Sections.clear();
97   Symbols.clear();
98   IndirectSymbols.clear();
99   DataRegions.clear();
100   LinkerOptions.clear();
101   FileNames.clear();
102   ThumbFuncs.clear();
103   BundleAlignSize = 0;
104   RelaxAll = false;
105   SubsectionsViaSymbols = false;
106   IncrementalLinkerCompatible = false;
107   ELFHeaderEFlags = 0;
108   LOHContainer.reset();
109   VersionInfo.Major = 0;
110   VersionInfo.SDKVersion = VersionTuple();
111 
112   // reset objects owned by us
113   if (getBackendPtr())
114     getBackendPtr()->reset();
115   if (getEmitterPtr())
116     getEmitterPtr()->reset();
117   if (getWriterPtr())
118     getWriterPtr()->reset();
119   getLOHContainer().reset();
120 }
121 
122 bool MCAssembler::registerSection(MCSection &Section) {
123   if (Section.isRegistered())
124     return false;
125   Sections.push_back(&Section);
126   Section.setIsRegistered(true);
127   return true;
128 }
129 
130 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
131   if (ThumbFuncs.count(Symbol))
132     return true;
133 
134   if (!Symbol->isVariable())
135     return false;
136 
137   const MCExpr *Expr = Symbol->getVariableValue();
138 
139   MCValue V;
140   if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
141     return false;
142 
143   if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
144     return false;
145 
146   const MCSymbolRefExpr *Ref = V.getSymA();
147   if (!Ref)
148     return false;
149 
150   if (Ref->getKind() != MCSymbolRefExpr::VK_None)
151     return false;
152 
153   const MCSymbol &Sym = Ref->getSymbol();
154   if (!isThumbFunc(&Sym))
155     return false;
156 
157   ThumbFuncs.insert(Symbol); // Cache it.
158   return true;
159 }
160 
161 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
162   // Non-temporary labels should always be visible to the linker.
163   if (!Symbol.isTemporary())
164     return true;
165 
166   if (Symbol.isUsedInReloc())
167     return true;
168 
169   return false;
170 }
171 
172 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
173   // Linker visible symbols define atoms.
174   if (isSymbolLinkerVisible(S))
175     return &S;
176 
177   // Absolute and undefined symbols have no defining atom.
178   if (!S.isInSection())
179     return nullptr;
180 
181   // Non-linker visible symbols in sections which can't be atomized have no
182   // defining atom.
183   if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
184           *S.getFragment()->getParent()))
185     return nullptr;
186 
187   // Otherwise, return the atom for the containing fragment.
188   return S.getFragment()->getAtom();
189 }
190 
191 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
192                                 const MCFixup &Fixup, const MCFragment *DF,
193                                 MCValue &Target, uint64_t &Value,
194                                 bool &WasForced) const {
195   ++stats::evaluateFixup;
196 
197   // FIXME: This code has some duplication with recordRelocation. We should
198   // probably merge the two into a single callback that tries to evaluate a
199   // fixup and records a relocation if one is needed.
200 
201   // On error claim to have completely evaluated the fixup, to prevent any
202   // further processing from being done.
203   const MCExpr *Expr = Fixup.getValue();
204   MCContext &Ctx = getContext();
205   Value = 0;
206   WasForced = false;
207   if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
208     Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
209     return true;
210   }
211   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
212     if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
213       Ctx.reportError(Fixup.getLoc(),
214                       "unsupported subtraction of qualified symbol");
215       return true;
216     }
217   }
218 
219   assert(getBackendPtr() && "Expected assembler backend");
220   bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
221                   MCFixupKindInfo::FKF_IsTarget;
222 
223   if (IsTarget)
224     return getBackend().evaluateTargetFixup(*this, Layout, Fixup, DF, Target,
225                                             Value, WasForced);
226 
227   bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
228                  MCFixupKindInfo::FKF_IsPCRel;
229 
230   bool IsResolved = false;
231   if (IsPCRel) {
232     if (Target.getSymB()) {
233       IsResolved = false;
234     } else if (!Target.getSymA()) {
235       IsResolved = false;
236     } else {
237       const MCSymbolRefExpr *A = Target.getSymA();
238       const MCSymbol &SA = A->getSymbol();
239       if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
240         IsResolved = false;
241       } else if (auto *Writer = getWriterPtr()) {
242         IsResolved = Writer->isSymbolRefDifferenceFullyResolvedImpl(
243             *this, SA, *DF, false, true);
244       }
245     }
246   } else {
247     IsResolved = Target.isAbsolute();
248   }
249 
250   Value = Target.getConstant();
251 
252   if (const MCSymbolRefExpr *A = Target.getSymA()) {
253     const MCSymbol &Sym = A->getSymbol();
254     if (Sym.isDefined())
255       Value += Layout.getSymbolOffset(Sym);
256   }
257   if (const MCSymbolRefExpr *B = Target.getSymB()) {
258     const MCSymbol &Sym = B->getSymbol();
259     if (Sym.isDefined())
260       Value -= Layout.getSymbolOffset(Sym);
261   }
262 
263   bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
264                        MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
265   assert((ShouldAlignPC ? IsPCRel : true) &&
266     "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
267 
268   if (IsPCRel) {
269     uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
270 
271     // A number of ARM fixups in Thumb mode require that the effective PC
272     // address be determined as the 32-bit aligned version of the actual offset.
273     if (ShouldAlignPC) Offset &= ~0x3;
274     Value -= Offset;
275   }
276 
277   // Let the backend force a relocation if needed.
278   if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) {
279     IsResolved = false;
280     WasForced = true;
281   }
282 
283   return IsResolved;
284 }
285 
286 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
287                                           const MCFragment &F) const {
288   assert(getBackendPtr() && "Requires assembler backend");
289   switch (F.getKind()) {
290   case MCFragment::FT_Data:
291     return cast<MCDataFragment>(F).getContents().size();
292   case MCFragment::FT_Relaxable:
293     return cast<MCRelaxableFragment>(F).getContents().size();
294   case MCFragment::FT_CompactEncodedInst:
295     return cast<MCCompactEncodedInstFragment>(F).getContents().size();
296   case MCFragment::FT_Fill: {
297     auto &FF = cast<MCFillFragment>(F);
298     int64_t NumValues = 0;
299     if (!FF.getNumValues().evaluateAsAbsolute(NumValues, Layout)) {
300       getContext().reportError(FF.getLoc(),
301                                "expected assembly-time absolute expression");
302       return 0;
303     }
304     int64_t Size = NumValues * FF.getValueSize();
305     if (Size < 0) {
306       getContext().reportError(FF.getLoc(), "invalid number of bytes");
307       return 0;
308     }
309     return Size;
310   }
311 
312   case MCFragment::FT_LEB:
313     return cast<MCLEBFragment>(F).getContents().size();
314 
315   case MCFragment::FT_BoundaryAlign:
316     return cast<MCBoundaryAlignFragment>(F).getSize();
317 
318   case MCFragment::FT_SymbolId:
319     return 4;
320 
321   case MCFragment::FT_Align: {
322     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
323     unsigned Offset = Layout.getFragmentOffset(&AF);
324     unsigned Size = offsetToAlignment(Offset, Align(AF.getAlignment()));
325 
326     // Insert extra Nops for code alignment if the target define
327     // shouldInsertExtraNopBytesForCodeAlign target hook.
328     if (AF.getParent()->UseCodeAlign() && AF.hasEmitNops() &&
329         getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size))
330       return Size;
331 
332     // If we are padding with nops, force the padding to be larger than the
333     // minimum nop size.
334     if (Size > 0 && AF.hasEmitNops()) {
335       while (Size % getBackend().getMinimumNopSize())
336         Size += AF.getAlignment();
337     }
338     if (Size > AF.getMaxBytesToEmit())
339       return 0;
340     return Size;
341   }
342 
343   case MCFragment::FT_Org: {
344     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
345     MCValue Value;
346     if (!OF.getOffset().evaluateAsValue(Value, Layout)) {
347       getContext().reportError(OF.getLoc(),
348                                "expected assembly-time absolute expression");
349         return 0;
350     }
351 
352     uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
353     int64_t TargetLocation = Value.getConstant();
354     if (const MCSymbolRefExpr *A = Value.getSymA()) {
355       uint64_t Val;
356       if (!Layout.getSymbolOffset(A->getSymbol(), Val)) {
357         getContext().reportError(OF.getLoc(), "expected absolute expression");
358         return 0;
359       }
360       TargetLocation += Val;
361     }
362     int64_t Size = TargetLocation - FragmentOffset;
363     if (Size < 0 || Size >= 0x40000000) {
364       getContext().reportError(
365           OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
366                            "' (at offset '" + Twine(FragmentOffset) + "')");
367       return 0;
368     }
369     return Size;
370   }
371 
372   case MCFragment::FT_Dwarf:
373     return cast<MCDwarfLineAddrFragment>(F).getContents().size();
374   case MCFragment::FT_DwarfFrame:
375     return cast<MCDwarfCallFrameFragment>(F).getContents().size();
376   case MCFragment::FT_CVInlineLines:
377     return cast<MCCVInlineLineTableFragment>(F).getContents().size();
378   case MCFragment::FT_CVDefRange:
379     return cast<MCCVDefRangeFragment>(F).getContents().size();
380   case MCFragment::FT_Dummy:
381     llvm_unreachable("Should not have been added");
382   }
383 
384   llvm_unreachable("invalid fragment kind");
385 }
386 
387 void MCAsmLayout::layoutFragment(MCFragment *F) {
388   MCFragment *Prev = F->getPrevNode();
389 
390   // We should never try to recompute something which is valid.
391   assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
392   // We should never try to compute the fragment layout if its predecessor
393   // isn't valid.
394   assert((!Prev || isFragmentValid(Prev)) &&
395          "Attempt to compute fragment before its predecessor!");
396 
397   ++stats::FragmentLayouts;
398 
399   // Compute fragment offset and size.
400   if (Prev)
401     F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
402   else
403     F->Offset = 0;
404   LastValidFragment[F->getParent()] = F;
405 
406   // If bundling is enabled and this fragment has instructions in it, it has to
407   // obey the bundling restrictions. With padding, we'll have:
408   //
409   //
410   //        BundlePadding
411   //             |||
412   // -------------------------------------
413   //   Prev  |##########|       F        |
414   // -------------------------------------
415   //                    ^
416   //                    |
417   //                    F->Offset
418   //
419   // The fragment's offset will point to after the padding, and its computed
420   // size won't include the padding.
421   //
422   // When the -mc-relax-all flag is used, we optimize bundling by writting the
423   // padding directly into fragments when the instructions are emitted inside
424   // the streamer. When the fragment is larger than the bundle size, we need to
425   // ensure that it's bundle aligned. This means that if we end up with
426   // multiple fragments, we must emit bundle padding between fragments.
427   //
428   // ".align N" is an example of a directive that introduces multiple
429   // fragments. We could add a special case to handle ".align N" by emitting
430   // within-fragment padding (which would produce less padding when N is less
431   // than the bundle size), but for now we don't.
432   //
433   if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
434     assert(isa<MCEncodedFragment>(F) &&
435            "Only MCEncodedFragment implementations have instructions");
436     MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
437     uint64_t FSize = Assembler.computeFragmentSize(*this, *EF);
438 
439     if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
440       report_fatal_error("Fragment can't be larger than a bundle size");
441 
442     uint64_t RequiredBundlePadding =
443         computeBundlePadding(Assembler, EF, EF->Offset, FSize);
444     if (RequiredBundlePadding > UINT8_MAX)
445       report_fatal_error("Padding cannot exceed 255 bytes");
446     EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
447     EF->Offset += RequiredBundlePadding;
448   }
449 }
450 
451 void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
452   bool New = !Symbol.isRegistered();
453   if (Created)
454     *Created = New;
455   if (New) {
456     Symbol.setIsRegistered(true);
457     Symbols.push_back(&Symbol);
458   }
459 }
460 
461 void MCAssembler::writeFragmentPadding(raw_ostream &OS,
462                                        const MCEncodedFragment &EF,
463                                        uint64_t FSize) const {
464   assert(getBackendPtr() && "Expected assembler backend");
465   // Should NOP padding be written out before this fragment?
466   unsigned BundlePadding = EF.getBundlePadding();
467   if (BundlePadding > 0) {
468     assert(isBundlingEnabled() &&
469            "Writing bundle padding with disabled bundling");
470     assert(EF.hasInstructions() &&
471            "Writing bundle padding for a fragment without instructions");
472 
473     unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
474     if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
475       // If the padding itself crosses a bundle boundary, it must be emitted
476       // in 2 pieces, since even nop instructions must not cross boundaries.
477       //             v--------------v   <- BundleAlignSize
478       //        v---------v             <- BundlePadding
479       // ----------------------------
480       // | Prev |####|####|    F    |
481       // ----------------------------
482       //        ^-------------------^   <- TotalLength
483       unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
484       if (!getBackend().writeNopData(OS, DistanceToBoundary))
485         report_fatal_error("unable to write NOP sequence of " +
486                            Twine(DistanceToBoundary) + " bytes");
487       BundlePadding -= DistanceToBoundary;
488     }
489     if (!getBackend().writeNopData(OS, BundlePadding))
490       report_fatal_error("unable to write NOP sequence of " +
491                          Twine(BundlePadding) + " bytes");
492   }
493 }
494 
495 /// Write the fragment \p F to the output file.
496 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
497                           const MCAsmLayout &Layout, const MCFragment &F) {
498   // FIXME: Embed in fragments instead?
499   uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
500 
501   support::endianness Endian = Asm.getBackend().Endian;
502 
503   if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
504     Asm.writeFragmentPadding(OS, *EF, FragmentSize);
505 
506   // This variable (and its dummy usage) is to participate in the assert at
507   // the end of the function.
508   uint64_t Start = OS.tell();
509   (void) Start;
510 
511   ++stats::EmittedFragments;
512 
513   switch (F.getKind()) {
514   case MCFragment::FT_Align: {
515     ++stats::EmittedAlignFragments;
516     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
517     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
518 
519     uint64_t Count = FragmentSize / AF.getValueSize();
520 
521     // FIXME: This error shouldn't actually occur (the front end should emit
522     // multiple .align directives to enforce the semantics it wants), but is
523     // severe enough that we want to report it. How to handle this?
524     if (Count * AF.getValueSize() != FragmentSize)
525       report_fatal_error("undefined .align directive, value size '" +
526                         Twine(AF.getValueSize()) +
527                         "' is not a divisor of padding size '" +
528                         Twine(FragmentSize) + "'");
529 
530     // See if we are aligning with nops, and if so do that first to try to fill
531     // the Count bytes.  Then if that did not fill any bytes or there are any
532     // bytes left to fill use the Value and ValueSize to fill the rest.
533     // If we are aligning with nops, ask that target to emit the right data.
534     if (AF.hasEmitNops()) {
535       if (!Asm.getBackend().writeNopData(OS, Count))
536         report_fatal_error("unable to write nop sequence of " +
537                           Twine(Count) + " bytes");
538       break;
539     }
540 
541     // Otherwise, write out in multiples of the value size.
542     for (uint64_t i = 0; i != Count; ++i) {
543       switch (AF.getValueSize()) {
544       default: llvm_unreachable("Invalid size!");
545       case 1: OS << char(AF.getValue()); break;
546       case 2:
547         support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
548         break;
549       case 4:
550         support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
551         break;
552       case 8:
553         support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
554         break;
555       }
556     }
557     break;
558   }
559 
560   case MCFragment::FT_Data:
561     ++stats::EmittedDataFragments;
562     OS << cast<MCDataFragment>(F).getContents();
563     break;
564 
565   case MCFragment::FT_Relaxable:
566     ++stats::EmittedRelaxableFragments;
567     OS << cast<MCRelaxableFragment>(F).getContents();
568     break;
569 
570   case MCFragment::FT_CompactEncodedInst:
571     ++stats::EmittedCompactEncodedInstFragments;
572     OS << cast<MCCompactEncodedInstFragment>(F).getContents();
573     break;
574 
575   case MCFragment::FT_Fill: {
576     ++stats::EmittedFillFragments;
577     const MCFillFragment &FF = cast<MCFillFragment>(F);
578     uint64_t V = FF.getValue();
579     unsigned VSize = FF.getValueSize();
580     const unsigned MaxChunkSize = 16;
581     char Data[MaxChunkSize];
582     assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size");
583     // Duplicate V into Data as byte vector to reduce number of
584     // writes done. As such, do endian conversion here.
585     for (unsigned I = 0; I != VSize; ++I) {
586       unsigned index = Endian == support::little ? I : (VSize - I - 1);
587       Data[I] = uint8_t(V >> (index * 8));
588     }
589     for (unsigned I = VSize; I < MaxChunkSize; ++I)
590       Data[I] = Data[I - VSize];
591 
592     // Set to largest multiple of VSize in Data.
593     const unsigned NumPerChunk = MaxChunkSize / VSize;
594     // Set ChunkSize to largest multiple of VSize in Data
595     const unsigned ChunkSize = VSize * NumPerChunk;
596 
597     // Do copies by chunk.
598     StringRef Ref(Data, ChunkSize);
599     for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
600       OS << Ref;
601 
602     // do remainder if needed.
603     unsigned TrailingCount = FragmentSize % ChunkSize;
604     if (TrailingCount)
605       OS.write(Data, TrailingCount);
606     break;
607   }
608 
609   case MCFragment::FT_LEB: {
610     const MCLEBFragment &LF = cast<MCLEBFragment>(F);
611     OS << LF.getContents();
612     break;
613   }
614 
615   case MCFragment::FT_BoundaryAlign: {
616     if (!Asm.getBackend().writeNopData(OS, FragmentSize))
617       report_fatal_error("unable to write nop sequence of " +
618                          Twine(FragmentSize) + " bytes");
619     break;
620   }
621 
622   case MCFragment::FT_SymbolId: {
623     const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
624     support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
625     break;
626   }
627 
628   case MCFragment::FT_Org: {
629     ++stats::EmittedOrgFragments;
630     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
631 
632     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
633       OS << char(OF.getValue());
634 
635     break;
636   }
637 
638   case MCFragment::FT_Dwarf: {
639     const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
640     OS << OF.getContents();
641     break;
642   }
643   case MCFragment::FT_DwarfFrame: {
644     const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
645     OS << CF.getContents();
646     break;
647   }
648   case MCFragment::FT_CVInlineLines: {
649     const auto &OF = cast<MCCVInlineLineTableFragment>(F);
650     OS << OF.getContents();
651     break;
652   }
653   case MCFragment::FT_CVDefRange: {
654     const auto &DRF = cast<MCCVDefRangeFragment>(F);
655     OS << DRF.getContents();
656     break;
657   }
658   case MCFragment::FT_Dummy:
659     llvm_unreachable("Should not have been added");
660   }
661 
662   assert(OS.tell() - Start == FragmentSize &&
663          "The stream should advance by fragment size");
664 }
665 
666 void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec,
667                                    const MCAsmLayout &Layout) const {
668   assert(getBackendPtr() && "Expected assembler backend");
669 
670   // Ignore virtual sections.
671   if (Sec->isVirtualSection()) {
672     assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
673 
674     // Check that contents are only things legal inside a virtual section.
675     for (const MCFragment &F : *Sec) {
676       switch (F.getKind()) {
677       default: llvm_unreachable("Invalid fragment in virtual section!");
678       case MCFragment::FT_Data: {
679         // Check that we aren't trying to write a non-zero contents (or fixups)
680         // into a virtual section. This is to support clients which use standard
681         // directives to fill the contents of virtual sections.
682         const MCDataFragment &DF = cast<MCDataFragment>(F);
683         if (DF.fixup_begin() != DF.fixup_end())
684           report_fatal_error("cannot have fixups in virtual section!");
685         for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
686           if (DF.getContents()[i]) {
687             if (auto *ELFSec = dyn_cast<const MCSectionELF>(Sec))
688               report_fatal_error("non-zero initializer found in section '" +
689                   ELFSec->getSectionName() + "'");
690             else
691               report_fatal_error("non-zero initializer found in virtual section");
692           }
693         break;
694       }
695       case MCFragment::FT_Align:
696         // Check that we aren't trying to write a non-zero value into a virtual
697         // section.
698         assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
699                 cast<MCAlignFragment>(F).getValue() == 0) &&
700                "Invalid align in virtual section!");
701         break;
702       case MCFragment::FT_Fill:
703         assert((cast<MCFillFragment>(F).getValue() == 0) &&
704                "Invalid fill in virtual section!");
705         break;
706       }
707     }
708 
709     return;
710   }
711 
712   uint64_t Start = OS.tell();
713   (void)Start;
714 
715   for (const MCFragment &F : *Sec)
716     writeFragment(OS, *this, Layout, F);
717 
718   assert(OS.tell() - Start == Layout.getSectionAddressSize(Sec));
719 }
720 
721 std::tuple<MCValue, uint64_t, bool>
722 MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F,
723                          const MCFixup &Fixup) {
724   // Evaluate the fixup.
725   MCValue Target;
726   uint64_t FixedValue;
727   bool WasForced;
728   bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue,
729                                   WasForced);
730   if (!IsResolved) {
731     // The fixup was unresolved, we need a relocation. Inform the object
732     // writer of the relocation, and give it an opportunity to adjust the
733     // fixup value if need be.
734     if (Target.getSymA() && Target.getSymB() &&
735         getBackend().requiresDiffExpressionRelocations()) {
736       // The fixup represents the difference between two symbols, which the
737       // backend has indicated must be resolved at link time. Split up the fixup
738       // into two relocations, one for the add, and one for the sub, and emit
739       // both of these. The constant will be associated with the add half of the
740       // expression.
741       MCFixup FixupAdd = MCFixup::createAddFor(Fixup);
742       MCValue TargetAdd =
743           MCValue::get(Target.getSymA(), nullptr, Target.getConstant());
744       getWriter().recordRelocation(*this, Layout, &F, FixupAdd, TargetAdd,
745                                    FixedValue);
746       MCFixup FixupSub = MCFixup::createSubFor(Fixup);
747       MCValue TargetSub = MCValue::get(Target.getSymB());
748       getWriter().recordRelocation(*this, Layout, &F, FixupSub, TargetSub,
749                                    FixedValue);
750     } else {
751       getWriter().recordRelocation(*this, Layout, &F, Fixup, Target,
752                                    FixedValue);
753     }
754   }
755   return std::make_tuple(Target, FixedValue, IsResolved);
756 }
757 
758 void MCAssembler::layout(MCAsmLayout &Layout) {
759   assert(getBackendPtr() && "Expected assembler backend");
760   DEBUG_WITH_TYPE("mc-dump", {
761       errs() << "assembler backend - pre-layout\n--\n";
762       dump(); });
763 
764   // Create dummy fragments and assign section ordinals.
765   unsigned SectionIndex = 0;
766   for (MCSection &Sec : *this) {
767     // Create dummy fragments to eliminate any empty sections, this simplifies
768     // layout.
769     if (Sec.getFragmentList().empty())
770       new MCDataFragment(&Sec);
771 
772     Sec.setOrdinal(SectionIndex++);
773   }
774 
775   // Assign layout order indices to sections and fragments.
776   for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
777     MCSection *Sec = Layout.getSectionOrder()[i];
778     Sec->setLayoutOrder(i);
779 
780     unsigned FragmentIndex = 0;
781     for (MCFragment &Frag : *Sec)
782       Frag.setLayoutOrder(FragmentIndex++);
783   }
784 
785   // Layout until everything fits.
786   while (layoutOnce(Layout))
787     if (getContext().hadError())
788       return;
789 
790   DEBUG_WITH_TYPE("mc-dump", {
791       errs() << "assembler backend - post-relaxation\n--\n";
792       dump(); });
793 
794   // Finalize the layout, including fragment lowering.
795   finishLayout(Layout);
796 
797   DEBUG_WITH_TYPE("mc-dump", {
798       errs() << "assembler backend - final-layout\n--\n";
799       dump(); });
800 
801   // Allow the object writer a chance to perform post-layout binding (for
802   // example, to set the index fields in the symbol data).
803   getWriter().executePostLayoutBinding(*this, Layout);
804 
805   // Evaluate and apply the fixups, generating relocation entries as necessary.
806   for (MCSection &Sec : *this) {
807     for (MCFragment &Frag : Sec) {
808       // Data and relaxable fragments both have fixups.  So only process
809       // those here.
810       // FIXME: Is there a better way to do this?  MCEncodedFragmentWithFixups
811       // being templated makes this tricky.
812       if (isa<MCEncodedFragment>(&Frag) &&
813           isa<MCCompactEncodedInstFragment>(&Frag))
814         continue;
815       if (!isa<MCEncodedFragment>(&Frag) && !isa<MCCVDefRangeFragment>(&Frag) &&
816           !isa<MCAlignFragment>(&Frag))
817         continue;
818       ArrayRef<MCFixup> Fixups;
819       MutableArrayRef<char> Contents;
820       const MCSubtargetInfo *STI = nullptr;
821       if (auto *FragWithFixups = dyn_cast<MCDataFragment>(&Frag)) {
822         Fixups = FragWithFixups->getFixups();
823         Contents = FragWithFixups->getContents();
824         STI = FragWithFixups->getSubtargetInfo();
825         assert(!FragWithFixups->hasInstructions() || STI != nullptr);
826       } else if (auto *FragWithFixups = dyn_cast<MCRelaxableFragment>(&Frag)) {
827         Fixups = FragWithFixups->getFixups();
828         Contents = FragWithFixups->getContents();
829         STI = FragWithFixups->getSubtargetInfo();
830         assert(!FragWithFixups->hasInstructions() || STI != nullptr);
831       } else if (auto *FragWithFixups = dyn_cast<MCCVDefRangeFragment>(&Frag)) {
832         Fixups = FragWithFixups->getFixups();
833         Contents = FragWithFixups->getContents();
834       } else if (auto *FragWithFixups = dyn_cast<MCDwarfLineAddrFragment>(&Frag)) {
835         Fixups = FragWithFixups->getFixups();
836         Contents = FragWithFixups->getContents();
837       } else if (auto *AF = dyn_cast<MCAlignFragment>(&Frag)) {
838         // Insert fixup type for code alignment if the target define
839         // shouldInsertFixupForCodeAlign target hook.
840         if (Sec.UseCodeAlign() && AF->hasEmitNops()) {
841           getBackend().shouldInsertFixupForCodeAlign(*this, Layout, *AF);
842         }
843         continue;
844       } else if (auto *FragWithFixups =
845                      dyn_cast<MCDwarfCallFrameFragment>(&Frag)) {
846         Fixups = FragWithFixups->getFixups();
847         Contents = FragWithFixups->getContents();
848       } else
849         llvm_unreachable("Unknown fragment with fixups!");
850       for (const MCFixup &Fixup : Fixups) {
851         uint64_t FixedValue;
852         bool IsResolved;
853         MCValue Target;
854         std::tie(Target, FixedValue, IsResolved) =
855             handleFixup(Layout, Frag, Fixup);
856         getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
857                                 IsResolved, STI);
858       }
859     }
860   }
861 }
862 
863 void MCAssembler::Finish() {
864   // Create the layout object.
865   MCAsmLayout Layout(*this);
866   layout(Layout);
867 
868   // Write the object file.
869   stats::ObjectBytes += getWriter().writeObject(*this, Layout);
870 }
871 
872 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
873                                        const MCRelaxableFragment *DF,
874                                        const MCAsmLayout &Layout) const {
875   assert(getBackendPtr() && "Expected assembler backend");
876   MCValue Target;
877   uint64_t Value;
878   bool WasForced;
879   bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced);
880   if (Target.getSymA() &&
881       Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
882       Fixup.getKind() == FK_Data_1)
883     return false;
884   return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
885                                                    Layout, WasForced);
886 }
887 
888 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
889                                           const MCAsmLayout &Layout) const {
890   assert(getBackendPtr() && "Expected assembler backend");
891   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
892   // are intentionally pushing out inst fragments, or because we relaxed a
893   // previous instruction to one that doesn't need relaxation.
894   if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
895     return false;
896 
897   for (const MCFixup &Fixup : F->getFixups())
898     if (fixupNeedsRelaxation(Fixup, F, Layout))
899       return true;
900 
901   return false;
902 }
903 
904 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
905                                    MCRelaxableFragment &F) {
906   assert(getEmitterPtr() &&
907          "Expected CodeEmitter defined for relaxInstruction");
908   if (!fragmentNeedsRelaxation(&F, Layout))
909     return false;
910 
911   ++stats::RelaxedInstructions;
912 
913   // FIXME-PERF: We could immediately lower out instructions if we can tell
914   // they are fully resolved, to avoid retesting on later passes.
915 
916   // Relax the fragment.
917 
918   MCInst Relaxed;
919   getBackend().relaxInstruction(F.getInst(), *F.getSubtargetInfo(), Relaxed);
920 
921   // Encode the new instruction.
922   //
923   // FIXME-PERF: If it matters, we could let the target do this. It can
924   // probably do so more efficiently in many cases.
925   SmallVector<MCFixup, 4> Fixups;
926   SmallString<256> Code;
927   raw_svector_ostream VecOS(Code);
928   getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, *F.getSubtargetInfo());
929 
930   // Update the fragment.
931   F.setInst(Relaxed);
932   F.getContents() = Code;
933   F.getFixups() = Fixups;
934 
935   return true;
936 }
937 
938 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
939   uint64_t OldSize = LF.getContents().size();
940   int64_t Value;
941   bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
942   if (!Abs)
943     report_fatal_error("sleb128 and uleb128 expressions must be absolute");
944   SmallString<8> &Data = LF.getContents();
945   Data.clear();
946   raw_svector_ostream OSE(Data);
947   // The compiler can generate EH table assembly that is impossible to assemble
948   // without either adding padding to an LEB fragment or adding extra padding
949   // to a later alignment fragment. To accommodate such tables, relaxation can
950   // only increase an LEB fragment size here, not decrease it. See PR35809.
951   if (LF.isSigned())
952     encodeSLEB128(Value, OSE, OldSize);
953   else
954     encodeULEB128(Value, OSE, OldSize);
955   return OldSize != LF.getContents().size();
956 }
957 
958 /// Check if the branch crosses the boundary.
959 ///
960 /// \param StartAddr start address of the fused/unfused branch.
961 /// \param Size size of the fused/unfused branch.
962 /// \param BoundaryAlignment alignment requirement of the branch.
963 /// \returns true if the branch cross the boundary.
964 static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size,
965                              Align BoundaryAlignment) {
966   uint64_t EndAddr = StartAddr + Size;
967   return (StartAddr >> Log2(BoundaryAlignment)) !=
968          ((EndAddr - 1) >> Log2(BoundaryAlignment));
969 }
970 
971 /// Check if the branch is against the boundary.
972 ///
973 /// \param StartAddr start address of the fused/unfused branch.
974 /// \param Size size of the fused/unfused branch.
975 /// \param BoundaryAlignment alignment requirement of the branch.
976 /// \returns true if the branch is against the boundary.
977 static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size,
978                               Align BoundaryAlignment) {
979   uint64_t EndAddr = StartAddr + Size;
980   return (EndAddr & (BoundaryAlignment.value() - 1)) == 0;
981 }
982 
983 /// Check if the branch needs padding.
984 ///
985 /// \param StartAddr start address of the fused/unfused branch.
986 /// \param Size size of the fused/unfused branch.
987 /// \param BoundaryAlignment alignment requirement of the branch.
988 /// \returns true if the branch needs padding.
989 static bool needPadding(uint64_t StartAddr, uint64_t Size,
990                         Align BoundaryAlignment) {
991   return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) ||
992          isAgainstBoundary(StartAddr, Size, BoundaryAlignment);
993 }
994 
995 bool MCAssembler::relaxBoundaryAlign(MCAsmLayout &Layout,
996                                      MCBoundaryAlignFragment &BF) {
997   // The MCBoundaryAlignFragment that doesn't emit NOP should not be relaxed.
998   if (!BF.canEmitNops())
999     return false;
1000 
1001   uint64_t AlignedOffset = Layout.getFragmentOffset(BF.getNextNode());
1002   uint64_t AlignedSize = 0;
1003   const MCFragment *F = BF.getNextNode();
1004   // If the branch is unfused, it is emitted into one fragment, otherwise it is
1005   // emitted into two fragments at most, the next MCBoundaryAlignFragment(if
1006   // exists) also marks the end of the branch.
1007   for (auto i = 0, N = BF.isFused() ? 2 : 1;
1008        i != N && !isa<MCBoundaryAlignFragment>(F); ++i, F = F->getNextNode()) {
1009     AlignedSize += computeFragmentSize(Layout, *F);
1010   }
1011   uint64_t OldSize = BF.getSize();
1012   AlignedOffset -= OldSize;
1013   Align BoundaryAlignment = BF.getAlignment();
1014   uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment)
1015                          ? offsetToAlignment(AlignedOffset, BoundaryAlignment)
1016                          : 0U;
1017   if (NewSize == OldSize)
1018     return false;
1019   BF.setSize(NewSize);
1020   Layout.invalidateFragmentsFrom(&BF);
1021   return true;
1022 }
1023 
1024 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
1025                                      MCDwarfLineAddrFragment &DF) {
1026   MCContext &Context = Layout.getAssembler().getContext();
1027   uint64_t OldSize = DF.getContents().size();
1028   int64_t AddrDelta;
1029   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1030   assert(Abs && "We created a line delta with an invalid expression");
1031   (void)Abs;
1032   int64_t LineDelta;
1033   LineDelta = DF.getLineDelta();
1034   SmallVectorImpl<char> &Data = DF.getContents();
1035   Data.clear();
1036   raw_svector_ostream OSE(Data);
1037   DF.getFixups().clear();
1038 
1039   if (!getBackend().requiresDiffExpressionRelocations()) {
1040     MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
1041                             AddrDelta, OSE);
1042   } else {
1043     uint32_t Offset;
1044     uint32_t Size;
1045     bool SetDelta = MCDwarfLineAddr::FixedEncode(Context,
1046                                                  getDWARFLinetableParams(),
1047                                                  LineDelta, AddrDelta,
1048                                                  OSE, &Offset, &Size);
1049     // Add Fixups for address delta or new address.
1050     const MCExpr *FixupExpr;
1051     if (SetDelta) {
1052       FixupExpr = &DF.getAddrDelta();
1053     } else {
1054       const MCBinaryExpr *ABE = cast<MCBinaryExpr>(&DF.getAddrDelta());
1055       FixupExpr = ABE->getLHS();
1056     }
1057     DF.getFixups().push_back(
1058         MCFixup::create(Offset, FixupExpr,
1059                         MCFixup::getKindForSize(Size, false /*isPCRel*/)));
1060   }
1061 
1062   return OldSize != Data.size();
1063 }
1064 
1065 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
1066                                               MCDwarfCallFrameFragment &DF) {
1067   MCContext &Context = Layout.getAssembler().getContext();
1068   uint64_t OldSize = DF.getContents().size();
1069   int64_t AddrDelta;
1070   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1071   assert(Abs && "We created call frame with an invalid expression");
1072   (void) Abs;
1073   SmallVectorImpl<char> &Data = DF.getContents();
1074   Data.clear();
1075   raw_svector_ostream OSE(Data);
1076   DF.getFixups().clear();
1077 
1078   if (getBackend().requiresDiffExpressionRelocations()) {
1079     uint32_t Offset;
1080     uint32_t Size;
1081     MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE, &Offset,
1082                                           &Size);
1083     if (Size) {
1084       DF.getFixups().push_back(MCFixup::create(
1085           Offset, &DF.getAddrDelta(),
1086           MCFixup::getKindForSizeInBits(Size /*In bits.*/, false /*isPCRel*/)));
1087     }
1088   } else {
1089     MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
1090   }
1091 
1092   return OldSize != Data.size();
1093 }
1094 
1095 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout,
1096                                          MCCVInlineLineTableFragment &F) {
1097   unsigned OldSize = F.getContents().size();
1098   getContext().getCVContext().encodeInlineLineTable(Layout, F);
1099   return OldSize != F.getContents().size();
1100 }
1101 
1102 bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout,
1103                                   MCCVDefRangeFragment &F) {
1104   unsigned OldSize = F.getContents().size();
1105   getContext().getCVContext().encodeDefRange(Layout, F);
1106   return OldSize != F.getContents().size();
1107 }
1108 
1109 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
1110   // Holds the first fragment which needed relaxing during this layout. It will
1111   // remain NULL if none were relaxed.
1112   // When a fragment is relaxed, all the fragments following it should get
1113   // invalidated because their offset is going to change.
1114   MCFragment *FirstRelaxedFragment = nullptr;
1115 
1116   // Attempt to relax all the fragments in the section.
1117   for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) {
1118     // Check if this is a fragment that needs relaxation.
1119     bool RelaxedFrag = false;
1120     switch(I->getKind()) {
1121     default:
1122       break;
1123     case MCFragment::FT_Relaxable:
1124       assert(!getRelaxAll() &&
1125              "Did not expect a MCRelaxableFragment in RelaxAll mode");
1126       RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
1127       break;
1128     case MCFragment::FT_Dwarf:
1129       RelaxedFrag = relaxDwarfLineAddr(Layout,
1130                                        *cast<MCDwarfLineAddrFragment>(I));
1131       break;
1132     case MCFragment::FT_DwarfFrame:
1133       RelaxedFrag =
1134         relaxDwarfCallFrameFragment(Layout,
1135                                     *cast<MCDwarfCallFrameFragment>(I));
1136       break;
1137     case MCFragment::FT_LEB:
1138       RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
1139       break;
1140     case MCFragment::FT_BoundaryAlign:
1141       RelaxedFrag =
1142           relaxBoundaryAlign(Layout, *cast<MCBoundaryAlignFragment>(I));
1143       break;
1144     case MCFragment::FT_CVInlineLines:
1145       RelaxedFrag =
1146           relaxCVInlineLineTable(Layout, *cast<MCCVInlineLineTableFragment>(I));
1147       break;
1148     case MCFragment::FT_CVDefRange:
1149       RelaxedFrag = relaxCVDefRange(Layout, *cast<MCCVDefRangeFragment>(I));
1150       break;
1151     }
1152     if (RelaxedFrag && !FirstRelaxedFragment)
1153       FirstRelaxedFragment = &*I;
1154   }
1155   if (FirstRelaxedFragment) {
1156     Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
1157     return true;
1158   }
1159   return false;
1160 }
1161 
1162 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
1163   ++stats::RelaxationSteps;
1164 
1165   bool WasRelaxed = false;
1166   for (iterator it = begin(), ie = end(); it != ie; ++it) {
1167     MCSection &Sec = *it;
1168     while (layoutSectionOnce(Layout, Sec))
1169       WasRelaxed = true;
1170   }
1171 
1172   return WasRelaxed;
1173 }
1174 
1175 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
1176   assert(getBackendPtr() && "Expected assembler backend");
1177   // The layout is done. Mark every fragment as valid.
1178   for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
1179     MCSection &Section = *Layout.getSectionOrder()[i];
1180     Layout.getFragmentOffset(&*Section.getFragmentList().rbegin());
1181     computeFragmentSize(Layout, *Section.getFragmentList().rbegin());
1182   }
1183   getBackend().finishLayout(*this, Layout);
1184 }
1185 
1186 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1187 LLVM_DUMP_METHOD void MCAssembler::dump() const{
1188   raw_ostream &OS = errs();
1189 
1190   OS << "<MCAssembler\n";
1191   OS << "  Sections:[\n    ";
1192   for (const_iterator it = begin(), ie = end(); it != ie; ++it) {
1193     if (it != begin()) OS << ",\n    ";
1194     it->dump();
1195   }
1196   OS << "],\n";
1197   OS << "  Symbols:[";
1198 
1199   for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1200     if (it != symbol_begin()) OS << ",\n           ";
1201     OS << "(";
1202     it->dump();
1203     OS << ", Index:" << it->getIndex() << ", ";
1204     OS << ")";
1205   }
1206   OS << "]>\n";
1207 }
1208 #endif
1209