xref: /freebsd/contrib/llvm-project/llvm/lib/MC/MCAssembler.cpp (revision 3e8eb5c7f4909209c042403ddee340b2ee7003a5)
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/MC/MCAssembler.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Statistic.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCAsmLayout.h"
19 #include "llvm/MC/MCCodeEmitter.h"
20 #include "llvm/MC/MCCodeView.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCExpr.h"
24 #include "llvm/MC/MCFixup.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCFragment.h"
27 #include "llvm/MC/MCInst.h"
28 #include "llvm/MC/MCObjectWriter.h"
29 #include "llvm/MC/MCSection.h"
30 #include "llvm/MC/MCSectionELF.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/MC/MCValue.h"
33 #include "llvm/Support/Alignment.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/EndianStream.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/LEB128.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <cassert>
42 #include <cstdint>
43 #include <cstring>
44 #include <tuple>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "assembler"
50 
51 namespace {
52 namespace stats {
53 
54 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
55 STATISTIC(EmittedRelaxableFragments,
56           "Number of emitted assembler fragments - relaxable");
57 STATISTIC(EmittedDataFragments,
58           "Number of emitted assembler fragments - data");
59 STATISTIC(EmittedCompactEncodedInstFragments,
60           "Number of emitted assembler fragments - compact encoded inst");
61 STATISTIC(EmittedAlignFragments,
62           "Number of emitted assembler fragments - align");
63 STATISTIC(EmittedFillFragments,
64           "Number of emitted assembler fragments - fill");
65 STATISTIC(EmittedNopsFragments, "Number of emitted assembler fragments - nops");
66 STATISTIC(EmittedOrgFragments, "Number of emitted assembler fragments - org");
67 STATISTIC(evaluateFixup, "Number of evaluated fixups");
68 STATISTIC(FragmentLayouts, "Number of fragment layouts");
69 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
70 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
71 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
72 
73 } // end namespace stats
74 } // end anonymous namespace
75 
76 // FIXME FIXME FIXME: There are number of places in this file where we convert
77 // what is a 64-bit assembler value used for computation into a value in the
78 // object file, which may truncate it. We should detect that truncation where
79 // invalid and report errors back.
80 
81 /* *** */
82 
83 MCAssembler::MCAssembler(MCContext &Context,
84                          std::unique_ptr<MCAsmBackend> Backend,
85                          std::unique_ptr<MCCodeEmitter> Emitter,
86                          std::unique_ptr<MCObjectWriter> Writer)
87     : Context(Context), Backend(std::move(Backend)),
88       Emitter(std::move(Emitter)), Writer(std::move(Writer)),
89       BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
90       IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
91   VersionInfo.Major = 0; // Major version == 0 for "none specified"
92   DarwinTargetVariantVersionInfo.Major = 0;
93 }
94 
95 MCAssembler::~MCAssembler() = default;
96 
97 void MCAssembler::reset() {
98   Sections.clear();
99   Symbols.clear();
100   IndirectSymbols.clear();
101   DataRegions.clear();
102   LinkerOptions.clear();
103   FileNames.clear();
104   ThumbFuncs.clear();
105   BundleAlignSize = 0;
106   RelaxAll = false;
107   SubsectionsViaSymbols = false;
108   IncrementalLinkerCompatible = false;
109   ELFHeaderEFlags = 0;
110   LOHContainer.reset();
111   VersionInfo.Major = 0;
112   VersionInfo.SDKVersion = VersionTuple();
113   DarwinTargetVariantVersionInfo.Major = 0;
114   DarwinTargetVariantVersionInfo.SDKVersion = VersionTuple();
115 
116   // reset objects owned by us
117   if (getBackendPtr())
118     getBackendPtr()->reset();
119   if (getEmitterPtr())
120     getEmitterPtr()->reset();
121   if (getWriterPtr())
122     getWriterPtr()->reset();
123   getLOHContainer().reset();
124 }
125 
126 bool MCAssembler::registerSection(MCSection &Section) {
127   if (Section.isRegistered())
128     return false;
129   Sections.push_back(&Section);
130   Section.setIsRegistered(true);
131   return true;
132 }
133 
134 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
135   if (ThumbFuncs.count(Symbol))
136     return true;
137 
138   if (!Symbol->isVariable())
139     return false;
140 
141   const MCExpr *Expr = Symbol->getVariableValue();
142 
143   MCValue V;
144   if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
145     return false;
146 
147   if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
148     return false;
149 
150   const MCSymbolRefExpr *Ref = V.getSymA();
151   if (!Ref)
152     return false;
153 
154   if (Ref->getKind() != MCSymbolRefExpr::VK_None)
155     return false;
156 
157   const MCSymbol &Sym = Ref->getSymbol();
158   if (!isThumbFunc(&Sym))
159     return false;
160 
161   ThumbFuncs.insert(Symbol); // Cache it.
162   return true;
163 }
164 
165 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
166   // Non-temporary labels should always be visible to the linker.
167   if (!Symbol.isTemporary())
168     return true;
169 
170   if (Symbol.isUsedInReloc())
171     return true;
172 
173   return false;
174 }
175 
176 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
177   // Linker visible symbols define atoms.
178   if (isSymbolLinkerVisible(S))
179     return &S;
180 
181   // Absolute and undefined symbols have no defining atom.
182   if (!S.isInSection())
183     return nullptr;
184 
185   // Non-linker visible symbols in sections which can't be atomized have no
186   // defining atom.
187   if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
188           *S.getFragment()->getParent()))
189     return nullptr;
190 
191   // Otherwise, return the atom for the containing fragment.
192   return S.getFragment()->getAtom();
193 }
194 
195 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
196                                 const MCFixup &Fixup, const MCFragment *DF,
197                                 MCValue &Target, uint64_t &Value,
198                                 bool &WasForced) const {
199   ++stats::evaluateFixup;
200 
201   // FIXME: This code has some duplication with recordRelocation. We should
202   // probably merge the two into a single callback that tries to evaluate a
203   // fixup and records a relocation if one is needed.
204 
205   // On error claim to have completely evaluated the fixup, to prevent any
206   // further processing from being done.
207   const MCExpr *Expr = Fixup.getValue();
208   MCContext &Ctx = getContext();
209   Value = 0;
210   WasForced = false;
211   if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
212     Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
213     return true;
214   }
215   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
216     if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
217       Ctx.reportError(Fixup.getLoc(),
218                       "unsupported subtraction of qualified symbol");
219       return true;
220     }
221   }
222 
223   assert(getBackendPtr() && "Expected assembler backend");
224   bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
225                   MCFixupKindInfo::FKF_IsTarget;
226 
227   if (IsTarget)
228     return getBackend().evaluateTargetFixup(*this, Layout, Fixup, DF, Target,
229                                             Value, WasForced);
230 
231   unsigned FixupFlags = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags;
232   bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
233                  MCFixupKindInfo::FKF_IsPCRel;
234 
235   bool IsResolved = false;
236   if (IsPCRel) {
237     if (Target.getSymB()) {
238       IsResolved = false;
239     } else if (!Target.getSymA()) {
240       IsResolved = false;
241     } else {
242       const MCSymbolRefExpr *A = Target.getSymA();
243       const MCSymbol &SA = A->getSymbol();
244       if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
245         IsResolved = false;
246       } else if (auto *Writer = getWriterPtr()) {
247         IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) ||
248                      Writer->isSymbolRefDifferenceFullyResolvedImpl(
249                          *this, SA, *DF, false, true);
250       }
251     }
252   } else {
253     IsResolved = Target.isAbsolute();
254   }
255 
256   Value = Target.getConstant();
257 
258   if (const MCSymbolRefExpr *A = Target.getSymA()) {
259     const MCSymbol &Sym = A->getSymbol();
260     if (Sym.isDefined())
261       Value += Layout.getSymbolOffset(Sym);
262   }
263   if (const MCSymbolRefExpr *B = Target.getSymB()) {
264     const MCSymbol &Sym = B->getSymbol();
265     if (Sym.isDefined())
266       Value -= Layout.getSymbolOffset(Sym);
267   }
268 
269   bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
270                        MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
271   assert((ShouldAlignPC ? IsPCRel : true) &&
272     "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
273 
274   if (IsPCRel) {
275     uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
276 
277     // A number of ARM fixups in Thumb mode require that the effective PC
278     // address be determined as the 32-bit aligned version of the actual offset.
279     if (ShouldAlignPC) Offset &= ~0x3;
280     Value -= Offset;
281   }
282 
283   // Let the backend force a relocation if needed.
284   if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) {
285     IsResolved = false;
286     WasForced = true;
287   }
288 
289   return IsResolved;
290 }
291 
292 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
293                                           const MCFragment &F) const {
294   assert(getBackendPtr() && "Requires assembler backend");
295   switch (F.getKind()) {
296   case MCFragment::FT_Data:
297     return cast<MCDataFragment>(F).getContents().size();
298   case MCFragment::FT_Relaxable:
299     return cast<MCRelaxableFragment>(F).getContents().size();
300   case MCFragment::FT_CompactEncodedInst:
301     return cast<MCCompactEncodedInstFragment>(F).getContents().size();
302   case MCFragment::FT_Fill: {
303     auto &FF = cast<MCFillFragment>(F);
304     int64_t NumValues = 0;
305     if (!FF.getNumValues().evaluateAsAbsolute(NumValues, Layout)) {
306       getContext().reportError(FF.getLoc(),
307                                "expected assembly-time absolute expression");
308       return 0;
309     }
310     int64_t Size = NumValues * FF.getValueSize();
311     if (Size < 0) {
312       getContext().reportError(FF.getLoc(), "invalid number of bytes");
313       return 0;
314     }
315     return Size;
316   }
317 
318   case MCFragment::FT_Nops:
319     return cast<MCNopsFragment>(F).getNumBytes();
320 
321   case MCFragment::FT_LEB:
322     return cast<MCLEBFragment>(F).getContents().size();
323 
324   case MCFragment::FT_BoundaryAlign:
325     return cast<MCBoundaryAlignFragment>(F).getSize();
326 
327   case MCFragment::FT_SymbolId:
328     return 4;
329 
330   case MCFragment::FT_Align: {
331     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
332     unsigned Offset = Layout.getFragmentOffset(&AF);
333     unsigned Size = offsetToAlignment(Offset, Align(AF.getAlignment()));
334 
335     // Insert extra Nops for code alignment if the target define
336     // shouldInsertExtraNopBytesForCodeAlign target hook.
337     if (AF.getParent()->UseCodeAlign() && AF.hasEmitNops() &&
338         getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size))
339       return Size;
340 
341     // If we are padding with nops, force the padding to be larger than the
342     // minimum nop size.
343     if (Size > 0 && AF.hasEmitNops()) {
344       while (Size % getBackend().getMinimumNopSize())
345         Size += AF.getAlignment();
346     }
347     if (Size > AF.getMaxBytesToEmit())
348       return 0;
349     return Size;
350   }
351 
352   case MCFragment::FT_Org: {
353     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
354     MCValue Value;
355     if (!OF.getOffset().evaluateAsValue(Value, Layout)) {
356       getContext().reportError(OF.getLoc(),
357                                "expected assembly-time absolute expression");
358         return 0;
359     }
360 
361     uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
362     int64_t TargetLocation = Value.getConstant();
363     if (const MCSymbolRefExpr *A = Value.getSymA()) {
364       uint64_t Val;
365       if (!Layout.getSymbolOffset(A->getSymbol(), Val)) {
366         getContext().reportError(OF.getLoc(), "expected absolute expression");
367         return 0;
368       }
369       TargetLocation += Val;
370     }
371     int64_t Size = TargetLocation - FragmentOffset;
372     if (Size < 0 || Size >= 0x40000000) {
373       getContext().reportError(
374           OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
375                            "' (at offset '" + Twine(FragmentOffset) + "')");
376       return 0;
377     }
378     return Size;
379   }
380 
381   case MCFragment::FT_Dwarf:
382     return cast<MCDwarfLineAddrFragment>(F).getContents().size();
383   case MCFragment::FT_DwarfFrame:
384     return cast<MCDwarfCallFrameFragment>(F).getContents().size();
385   case MCFragment::FT_CVInlineLines:
386     return cast<MCCVInlineLineTableFragment>(F).getContents().size();
387   case MCFragment::FT_CVDefRange:
388     return cast<MCCVDefRangeFragment>(F).getContents().size();
389   case MCFragment::FT_PseudoProbe:
390     return cast<MCPseudoProbeAddrFragment>(F).getContents().size();
391   case MCFragment::FT_Dummy:
392     llvm_unreachable("Should not have been added");
393   }
394 
395   llvm_unreachable("invalid fragment kind");
396 }
397 
398 void MCAsmLayout::layoutFragment(MCFragment *F) {
399   MCFragment *Prev = F->getPrevNode();
400 
401   // We should never try to recompute something which is valid.
402   assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
403   // We should never try to compute the fragment layout if its predecessor
404   // isn't valid.
405   assert((!Prev || isFragmentValid(Prev)) &&
406          "Attempt to compute fragment before its predecessor!");
407 
408   assert(!F->IsBeingLaidOut && "Already being laid out!");
409   F->IsBeingLaidOut = true;
410 
411   ++stats::FragmentLayouts;
412 
413   // Compute fragment offset and size.
414   if (Prev)
415     F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
416   else
417     F->Offset = 0;
418   F->IsBeingLaidOut = false;
419   LastValidFragment[F->getParent()] = F;
420 
421   // If bundling is enabled and this fragment has instructions in it, it has to
422   // obey the bundling restrictions. With padding, we'll have:
423   //
424   //
425   //        BundlePadding
426   //             |||
427   // -------------------------------------
428   //   Prev  |##########|       F        |
429   // -------------------------------------
430   //                    ^
431   //                    |
432   //                    F->Offset
433   //
434   // The fragment's offset will point to after the padding, and its computed
435   // size won't include the padding.
436   //
437   // When the -mc-relax-all flag is used, we optimize bundling by writting the
438   // padding directly into fragments when the instructions are emitted inside
439   // the streamer. When the fragment is larger than the bundle size, we need to
440   // ensure that it's bundle aligned. This means that if we end up with
441   // multiple fragments, we must emit bundle padding between fragments.
442   //
443   // ".align N" is an example of a directive that introduces multiple
444   // fragments. We could add a special case to handle ".align N" by emitting
445   // within-fragment padding (which would produce less padding when N is less
446   // than the bundle size), but for now we don't.
447   //
448   if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
449     assert(isa<MCEncodedFragment>(F) &&
450            "Only MCEncodedFragment implementations have instructions");
451     MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
452     uint64_t FSize = Assembler.computeFragmentSize(*this, *EF);
453 
454     if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
455       report_fatal_error("Fragment can't be larger than a bundle size");
456 
457     uint64_t RequiredBundlePadding =
458         computeBundlePadding(Assembler, EF, EF->Offset, FSize);
459     if (RequiredBundlePadding > UINT8_MAX)
460       report_fatal_error("Padding cannot exceed 255 bytes");
461     EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
462     EF->Offset += RequiredBundlePadding;
463   }
464 }
465 
466 void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
467   bool New = !Symbol.isRegistered();
468   if (Created)
469     *Created = New;
470   if (New) {
471     Symbol.setIsRegistered(true);
472     Symbols.push_back(&Symbol);
473   }
474 }
475 
476 void MCAssembler::writeFragmentPadding(raw_ostream &OS,
477                                        const MCEncodedFragment &EF,
478                                        uint64_t FSize) const {
479   assert(getBackendPtr() && "Expected assembler backend");
480   // Should NOP padding be written out before this fragment?
481   unsigned BundlePadding = EF.getBundlePadding();
482   if (BundlePadding > 0) {
483     assert(isBundlingEnabled() &&
484            "Writing bundle padding with disabled bundling");
485     assert(EF.hasInstructions() &&
486            "Writing bundle padding for a fragment without instructions");
487 
488     unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
489     const MCSubtargetInfo *STI = EF.getSubtargetInfo();
490     if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
491       // If the padding itself crosses a bundle boundary, it must be emitted
492       // in 2 pieces, since even nop instructions must not cross boundaries.
493       //             v--------------v   <- BundleAlignSize
494       //        v---------v             <- BundlePadding
495       // ----------------------------
496       // | Prev |####|####|    F    |
497       // ----------------------------
498       //        ^-------------------^   <- TotalLength
499       unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
500       if (!getBackend().writeNopData(OS, DistanceToBoundary, STI))
501         report_fatal_error("unable to write NOP sequence of " +
502                            Twine(DistanceToBoundary) + " bytes");
503       BundlePadding -= DistanceToBoundary;
504     }
505     if (!getBackend().writeNopData(OS, BundlePadding, STI))
506       report_fatal_error("unable to write NOP sequence of " +
507                          Twine(BundlePadding) + " bytes");
508   }
509 }
510 
511 /// Write the fragment \p F to the output file.
512 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
513                           const MCAsmLayout &Layout, const MCFragment &F) {
514   // FIXME: Embed in fragments instead?
515   uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
516 
517   support::endianness Endian = Asm.getBackend().Endian;
518 
519   if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
520     Asm.writeFragmentPadding(OS, *EF, FragmentSize);
521 
522   // This variable (and its dummy usage) is to participate in the assert at
523   // the end of the function.
524   uint64_t Start = OS.tell();
525   (void) Start;
526 
527   ++stats::EmittedFragments;
528 
529   switch (F.getKind()) {
530   case MCFragment::FT_Align: {
531     ++stats::EmittedAlignFragments;
532     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
533     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
534 
535     uint64_t Count = FragmentSize / AF.getValueSize();
536 
537     // FIXME: This error shouldn't actually occur (the front end should emit
538     // multiple .align directives to enforce the semantics it wants), but is
539     // severe enough that we want to report it. How to handle this?
540     if (Count * AF.getValueSize() != FragmentSize)
541       report_fatal_error("undefined .align directive, value size '" +
542                         Twine(AF.getValueSize()) +
543                         "' is not a divisor of padding size '" +
544                         Twine(FragmentSize) + "'");
545 
546     // See if we are aligning with nops, and if so do that first to try to fill
547     // the Count bytes.  Then if that did not fill any bytes or there are any
548     // bytes left to fill use the Value and ValueSize to fill the rest.
549     // If we are aligning with nops, ask that target to emit the right data.
550     if (AF.hasEmitNops()) {
551       if (!Asm.getBackend().writeNopData(OS, Count, AF.getSubtargetInfo()))
552         report_fatal_error("unable to write nop sequence of " +
553                           Twine(Count) + " bytes");
554       break;
555     }
556 
557     // Otherwise, write out in multiples of the value size.
558     for (uint64_t i = 0; i != Count; ++i) {
559       switch (AF.getValueSize()) {
560       default: llvm_unreachable("Invalid size!");
561       case 1: OS << char(AF.getValue()); break;
562       case 2:
563         support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
564         break;
565       case 4:
566         support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
567         break;
568       case 8:
569         support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
570         break;
571       }
572     }
573     break;
574   }
575 
576   case MCFragment::FT_Data:
577     ++stats::EmittedDataFragments;
578     OS << cast<MCDataFragment>(F).getContents();
579     break;
580 
581   case MCFragment::FT_Relaxable:
582     ++stats::EmittedRelaxableFragments;
583     OS << cast<MCRelaxableFragment>(F).getContents();
584     break;
585 
586   case MCFragment::FT_CompactEncodedInst:
587     ++stats::EmittedCompactEncodedInstFragments;
588     OS << cast<MCCompactEncodedInstFragment>(F).getContents();
589     break;
590 
591   case MCFragment::FT_Fill: {
592     ++stats::EmittedFillFragments;
593     const MCFillFragment &FF = cast<MCFillFragment>(F);
594     uint64_t V = FF.getValue();
595     unsigned VSize = FF.getValueSize();
596     const unsigned MaxChunkSize = 16;
597     char Data[MaxChunkSize];
598     assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size");
599     // Duplicate V into Data as byte vector to reduce number of
600     // writes done. As such, do endian conversion here.
601     for (unsigned I = 0; I != VSize; ++I) {
602       unsigned index = Endian == support::little ? I : (VSize - I - 1);
603       Data[I] = uint8_t(V >> (index * 8));
604     }
605     for (unsigned I = VSize; I < MaxChunkSize; ++I)
606       Data[I] = Data[I - VSize];
607 
608     // Set to largest multiple of VSize in Data.
609     const unsigned NumPerChunk = MaxChunkSize / VSize;
610     // Set ChunkSize to largest multiple of VSize in Data
611     const unsigned ChunkSize = VSize * NumPerChunk;
612 
613     // Do copies by chunk.
614     StringRef Ref(Data, ChunkSize);
615     for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
616       OS << Ref;
617 
618     // do remainder if needed.
619     unsigned TrailingCount = FragmentSize % ChunkSize;
620     if (TrailingCount)
621       OS.write(Data, TrailingCount);
622     break;
623   }
624 
625   case MCFragment::FT_Nops: {
626     ++stats::EmittedNopsFragments;
627     const MCNopsFragment &NF = cast<MCNopsFragment>(F);
628 
629     int64_t NumBytes = NF.getNumBytes();
630     int64_t ControlledNopLength = NF.getControlledNopLength();
631     int64_t MaximumNopLength =
632         Asm.getBackend().getMaximumNopSize(*NF.getSubtargetInfo());
633 
634     assert(NumBytes > 0 && "Expected positive NOPs fragment size");
635     assert(ControlledNopLength >= 0 && "Expected non-negative NOP size");
636 
637     if (ControlledNopLength > MaximumNopLength) {
638       Asm.getContext().reportError(NF.getLoc(),
639                                    "illegal NOP size " +
640                                        std::to_string(ControlledNopLength) +
641                                        ". (expected within [0, " +
642                                        std::to_string(MaximumNopLength) + "])");
643       // Clamp the NOP length as reportError does not stop the execution
644       // immediately.
645       ControlledNopLength = MaximumNopLength;
646     }
647 
648     // Use maximum value if the size of each NOP is not specified
649     if (!ControlledNopLength)
650       ControlledNopLength = MaximumNopLength;
651 
652     while (NumBytes) {
653       uint64_t NumBytesToEmit =
654           (uint64_t)std::min(NumBytes, ControlledNopLength);
655       assert(NumBytesToEmit && "try to emit empty NOP instruction");
656       if (!Asm.getBackend().writeNopData(OS, NumBytesToEmit,
657                                          NF.getSubtargetInfo())) {
658         report_fatal_error("unable to write nop sequence of the remaining " +
659                            Twine(NumBytesToEmit) + " bytes");
660         break;
661       }
662       NumBytes -= NumBytesToEmit;
663     }
664     break;
665   }
666 
667   case MCFragment::FT_LEB: {
668     const MCLEBFragment &LF = cast<MCLEBFragment>(F);
669     OS << LF.getContents();
670     break;
671   }
672 
673   case MCFragment::FT_BoundaryAlign: {
674     const MCBoundaryAlignFragment &BF = cast<MCBoundaryAlignFragment>(F);
675     if (!Asm.getBackend().writeNopData(OS, FragmentSize, BF.getSubtargetInfo()))
676       report_fatal_error("unable to write nop sequence of " +
677                          Twine(FragmentSize) + " bytes");
678     break;
679   }
680 
681   case MCFragment::FT_SymbolId: {
682     const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
683     support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
684     break;
685   }
686 
687   case MCFragment::FT_Org: {
688     ++stats::EmittedOrgFragments;
689     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
690 
691     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
692       OS << char(OF.getValue());
693 
694     break;
695   }
696 
697   case MCFragment::FT_Dwarf: {
698     const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
699     OS << OF.getContents();
700     break;
701   }
702   case MCFragment::FT_DwarfFrame: {
703     const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
704     OS << CF.getContents();
705     break;
706   }
707   case MCFragment::FT_CVInlineLines: {
708     const auto &OF = cast<MCCVInlineLineTableFragment>(F);
709     OS << OF.getContents();
710     break;
711   }
712   case MCFragment::FT_CVDefRange: {
713     const auto &DRF = cast<MCCVDefRangeFragment>(F);
714     OS << DRF.getContents();
715     break;
716   }
717   case MCFragment::FT_PseudoProbe: {
718     const MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(F);
719     OS << PF.getContents();
720     break;
721   }
722   case MCFragment::FT_Dummy:
723     llvm_unreachable("Should not have been added");
724   }
725 
726   assert(OS.tell() - Start == FragmentSize &&
727          "The stream should advance by fragment size");
728 }
729 
730 void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec,
731                                    const MCAsmLayout &Layout) const {
732   assert(getBackendPtr() && "Expected assembler backend");
733 
734   // Ignore virtual sections.
735   if (Sec->isVirtualSection()) {
736     assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
737 
738     // Check that contents are only things legal inside a virtual section.
739     for (const MCFragment &F : *Sec) {
740       switch (F.getKind()) {
741       default: llvm_unreachable("Invalid fragment in virtual section!");
742       case MCFragment::FT_Data: {
743         // Check that we aren't trying to write a non-zero contents (or fixups)
744         // into a virtual section. This is to support clients which use standard
745         // directives to fill the contents of virtual sections.
746         const MCDataFragment &DF = cast<MCDataFragment>(F);
747         if (DF.fixup_begin() != DF.fixup_end())
748           getContext().reportError(SMLoc(), Sec->getVirtualSectionKind() +
749                                                 " section '" + Sec->getName() +
750                                                 "' cannot have fixups");
751         for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
752           if (DF.getContents()[i]) {
753             getContext().reportError(SMLoc(),
754                                      Sec->getVirtualSectionKind() +
755                                          " section '" + Sec->getName() +
756                                          "' cannot have non-zero initializers");
757             break;
758           }
759         break;
760       }
761       case MCFragment::FT_Align:
762         // Check that we aren't trying to write a non-zero value into a virtual
763         // section.
764         assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
765                 cast<MCAlignFragment>(F).getValue() == 0) &&
766                "Invalid align in virtual section!");
767         break;
768       case MCFragment::FT_Fill:
769         assert((cast<MCFillFragment>(F).getValue() == 0) &&
770                "Invalid fill in virtual section!");
771         break;
772       case MCFragment::FT_Org:
773         break;
774       }
775     }
776 
777     return;
778   }
779 
780   uint64_t Start = OS.tell();
781   (void)Start;
782 
783   for (const MCFragment &F : *Sec)
784     writeFragment(OS, *this, Layout, F);
785 
786   assert(getContext().hadError() ||
787          OS.tell() - Start == Layout.getSectionAddressSize(Sec));
788 }
789 
790 std::tuple<MCValue, uint64_t, bool>
791 MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F,
792                          const MCFixup &Fixup) {
793   // Evaluate the fixup.
794   MCValue Target;
795   uint64_t FixedValue;
796   bool WasForced;
797   bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue,
798                                   WasForced);
799   if (!IsResolved) {
800     // The fixup was unresolved, we need a relocation. Inform the object
801     // writer of the relocation, and give it an opportunity to adjust the
802     // fixup value if need be.
803     getWriter().recordRelocation(*this, Layout, &F, Fixup, Target, FixedValue);
804   }
805   return std::make_tuple(Target, FixedValue, IsResolved);
806 }
807 
808 void MCAssembler::layout(MCAsmLayout &Layout) {
809   assert(getBackendPtr() && "Expected assembler backend");
810   DEBUG_WITH_TYPE("mc-dump", {
811       errs() << "assembler backend - pre-layout\n--\n";
812       dump(); });
813 
814   // Create dummy fragments and assign section ordinals.
815   unsigned SectionIndex = 0;
816   for (MCSection &Sec : *this) {
817     // Create dummy fragments to eliminate any empty sections, this simplifies
818     // layout.
819     if (Sec.getFragmentList().empty())
820       new MCDataFragment(&Sec);
821 
822     Sec.setOrdinal(SectionIndex++);
823   }
824 
825   // Assign layout order indices to sections and fragments.
826   for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
827     MCSection *Sec = Layout.getSectionOrder()[i];
828     Sec->setLayoutOrder(i);
829 
830     unsigned FragmentIndex = 0;
831     for (MCFragment &Frag : *Sec)
832       Frag.setLayoutOrder(FragmentIndex++);
833   }
834 
835   // Layout until everything fits.
836   while (layoutOnce(Layout)) {
837     if (getContext().hadError())
838       return;
839     // Size of fragments in one section can depend on the size of fragments in
840     // another. If any fragment has changed size, we have to re-layout (and
841     // as a result possibly further relax) all.
842     for (MCSection &Sec : *this)
843       Layout.invalidateFragmentsFrom(&*Sec.begin());
844   }
845 
846   DEBUG_WITH_TYPE("mc-dump", {
847       errs() << "assembler backend - post-relaxation\n--\n";
848       dump(); });
849 
850   // Finalize the layout, including fragment lowering.
851   finishLayout(Layout);
852 
853   DEBUG_WITH_TYPE("mc-dump", {
854       errs() << "assembler backend - final-layout\n--\n";
855       dump(); });
856 
857   // Allow the object writer a chance to perform post-layout binding (for
858   // example, to set the index fields in the symbol data).
859   getWriter().executePostLayoutBinding(*this, Layout);
860 
861   // Evaluate and apply the fixups, generating relocation entries as necessary.
862   for (MCSection &Sec : *this) {
863     for (MCFragment &Frag : Sec) {
864       ArrayRef<MCFixup> Fixups;
865       MutableArrayRef<char> Contents;
866       const MCSubtargetInfo *STI = nullptr;
867 
868       // Process MCAlignFragment and MCEncodedFragmentWithFixups here.
869       switch (Frag.getKind()) {
870       default:
871         continue;
872       case MCFragment::FT_Align: {
873         MCAlignFragment &AF = cast<MCAlignFragment>(Frag);
874         // Insert fixup type for code alignment if the target define
875         // shouldInsertFixupForCodeAlign target hook.
876         if (Sec.UseCodeAlign() && AF.hasEmitNops())
877           getBackend().shouldInsertFixupForCodeAlign(*this, Layout, AF);
878         continue;
879       }
880       case MCFragment::FT_Data: {
881         MCDataFragment &DF = cast<MCDataFragment>(Frag);
882         Fixups = DF.getFixups();
883         Contents = DF.getContents();
884         STI = DF.getSubtargetInfo();
885         assert(!DF.hasInstructions() || STI != nullptr);
886         break;
887       }
888       case MCFragment::FT_Relaxable: {
889         MCRelaxableFragment &RF = cast<MCRelaxableFragment>(Frag);
890         Fixups = RF.getFixups();
891         Contents = RF.getContents();
892         STI = RF.getSubtargetInfo();
893         assert(!RF.hasInstructions() || STI != nullptr);
894         break;
895       }
896       case MCFragment::FT_CVDefRange: {
897         MCCVDefRangeFragment &CF = cast<MCCVDefRangeFragment>(Frag);
898         Fixups = CF.getFixups();
899         Contents = CF.getContents();
900         break;
901       }
902       case MCFragment::FT_Dwarf: {
903         MCDwarfLineAddrFragment &DF = cast<MCDwarfLineAddrFragment>(Frag);
904         Fixups = DF.getFixups();
905         Contents = DF.getContents();
906         break;
907       }
908       case MCFragment::FT_DwarfFrame: {
909         MCDwarfCallFrameFragment &DF = cast<MCDwarfCallFrameFragment>(Frag);
910         Fixups = DF.getFixups();
911         Contents = DF.getContents();
912         break;
913       }
914       case MCFragment::FT_PseudoProbe: {
915         MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(Frag);
916         Fixups = PF.getFixups();
917         Contents = PF.getContents();
918         break;
919       }
920       }
921       for (const MCFixup &Fixup : Fixups) {
922         uint64_t FixedValue;
923         bool IsResolved;
924         MCValue Target;
925         std::tie(Target, FixedValue, IsResolved) =
926             handleFixup(Layout, Frag, Fixup);
927         getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
928                                 IsResolved, STI);
929       }
930     }
931   }
932 }
933 
934 void MCAssembler::Finish() {
935   // Create the layout object.
936   MCAsmLayout Layout(*this);
937   layout(Layout);
938 
939   // Write the object file.
940   stats::ObjectBytes += getWriter().writeObject(*this, Layout);
941 }
942 
943 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
944                                        const MCRelaxableFragment *DF,
945                                        const MCAsmLayout &Layout) const {
946   assert(getBackendPtr() && "Expected assembler backend");
947   MCValue Target;
948   uint64_t Value;
949   bool WasForced;
950   bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced);
951   if (Target.getSymA() &&
952       Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
953       Fixup.getKind() == FK_Data_1)
954     return false;
955   return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
956                                                    Layout, WasForced);
957 }
958 
959 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
960                                           const MCAsmLayout &Layout) const {
961   assert(getBackendPtr() && "Expected assembler backend");
962   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
963   // are intentionally pushing out inst fragments, or because we relaxed a
964   // previous instruction to one that doesn't need relaxation.
965   if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
966     return false;
967 
968   for (const MCFixup &Fixup : F->getFixups())
969     if (fixupNeedsRelaxation(Fixup, F, Layout))
970       return true;
971 
972   return false;
973 }
974 
975 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
976                                    MCRelaxableFragment &F) {
977   assert(getEmitterPtr() &&
978          "Expected CodeEmitter defined for relaxInstruction");
979   if (!fragmentNeedsRelaxation(&F, Layout))
980     return false;
981 
982   ++stats::RelaxedInstructions;
983 
984   // FIXME-PERF: We could immediately lower out instructions if we can tell
985   // they are fully resolved, to avoid retesting on later passes.
986 
987   // Relax the fragment.
988 
989   MCInst Relaxed = F.getInst();
990   getBackend().relaxInstruction(Relaxed, *F.getSubtargetInfo());
991 
992   // Encode the new instruction.
993   //
994   // FIXME-PERF: If it matters, we could let the target do this. It can
995   // probably do so more efficiently in many cases.
996   SmallVector<MCFixup, 4> Fixups;
997   SmallString<256> Code;
998   raw_svector_ostream VecOS(Code);
999   getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, *F.getSubtargetInfo());
1000 
1001   // Update the fragment.
1002   F.setInst(Relaxed);
1003   F.getContents() = Code;
1004   F.getFixups() = Fixups;
1005 
1006   return true;
1007 }
1008 
1009 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
1010   uint64_t OldSize = LF.getContents().size();
1011   int64_t Value;
1012   bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
1013   if (!Abs)
1014     report_fatal_error("sleb128 and uleb128 expressions must be absolute");
1015   SmallString<8> &Data = LF.getContents();
1016   Data.clear();
1017   raw_svector_ostream OSE(Data);
1018   // The compiler can generate EH table assembly that is impossible to assemble
1019   // without either adding padding to an LEB fragment or adding extra padding
1020   // to a later alignment fragment. To accommodate such tables, relaxation can
1021   // only increase an LEB fragment size here, not decrease it. See PR35809.
1022   if (LF.isSigned())
1023     encodeSLEB128(Value, OSE, OldSize);
1024   else
1025     encodeULEB128(Value, OSE, OldSize);
1026   return OldSize != LF.getContents().size();
1027 }
1028 
1029 /// Check if the branch crosses the boundary.
1030 ///
1031 /// \param StartAddr start address of the fused/unfused branch.
1032 /// \param Size size of the fused/unfused branch.
1033 /// \param BoundaryAlignment alignment requirement of the branch.
1034 /// \returns true if the branch cross the boundary.
1035 static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size,
1036                              Align BoundaryAlignment) {
1037   uint64_t EndAddr = StartAddr + Size;
1038   return (StartAddr >> Log2(BoundaryAlignment)) !=
1039          ((EndAddr - 1) >> Log2(BoundaryAlignment));
1040 }
1041 
1042 /// Check if the branch is against the boundary.
1043 ///
1044 /// \param StartAddr start address of the fused/unfused branch.
1045 /// \param Size size of the fused/unfused branch.
1046 /// \param BoundaryAlignment alignment requirement of the branch.
1047 /// \returns true if the branch is against the boundary.
1048 static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size,
1049                               Align BoundaryAlignment) {
1050   uint64_t EndAddr = StartAddr + Size;
1051   return (EndAddr & (BoundaryAlignment.value() - 1)) == 0;
1052 }
1053 
1054 /// Check if the branch needs padding.
1055 ///
1056 /// \param StartAddr start address of the fused/unfused branch.
1057 /// \param Size size of the fused/unfused branch.
1058 /// \param BoundaryAlignment alignment requirement of the branch.
1059 /// \returns true if the branch needs padding.
1060 static bool needPadding(uint64_t StartAddr, uint64_t Size,
1061                         Align BoundaryAlignment) {
1062   return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) ||
1063          isAgainstBoundary(StartAddr, Size, BoundaryAlignment);
1064 }
1065 
1066 bool MCAssembler::relaxBoundaryAlign(MCAsmLayout &Layout,
1067                                      MCBoundaryAlignFragment &BF) {
1068   // BoundaryAlignFragment that doesn't need to align any fragment should not be
1069   // relaxed.
1070   if (!BF.getLastFragment())
1071     return false;
1072 
1073   uint64_t AlignedOffset = Layout.getFragmentOffset(&BF);
1074   uint64_t AlignedSize = 0;
1075   for (const MCFragment *F = BF.getLastFragment(); F != &BF;
1076        F = F->getPrevNode())
1077     AlignedSize += computeFragmentSize(Layout, *F);
1078 
1079   Align BoundaryAlignment = BF.getAlignment();
1080   uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment)
1081                          ? offsetToAlignment(AlignedOffset, BoundaryAlignment)
1082                          : 0U;
1083   if (NewSize == BF.getSize())
1084     return false;
1085   BF.setSize(NewSize);
1086   Layout.invalidateFragmentsFrom(&BF);
1087   return true;
1088 }
1089 
1090 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
1091                                      MCDwarfLineAddrFragment &DF) {
1092 
1093   bool WasRelaxed;
1094   if (getBackend().relaxDwarfLineAddr(DF, Layout, WasRelaxed))
1095     return WasRelaxed;
1096 
1097   MCContext &Context = Layout.getAssembler().getContext();
1098   uint64_t OldSize = DF.getContents().size();
1099   int64_t AddrDelta;
1100   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1101   assert(Abs && "We created a line delta with an invalid expression");
1102   (void)Abs;
1103   int64_t LineDelta;
1104   LineDelta = DF.getLineDelta();
1105   SmallVectorImpl<char> &Data = DF.getContents();
1106   Data.clear();
1107   raw_svector_ostream OSE(Data);
1108   DF.getFixups().clear();
1109 
1110   MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
1111                           AddrDelta, OSE);
1112   return OldSize != Data.size();
1113 }
1114 
1115 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
1116                                               MCDwarfCallFrameFragment &DF) {
1117   bool WasRelaxed;
1118   if (getBackend().relaxDwarfCFA(DF, Layout, WasRelaxed))
1119     return WasRelaxed;
1120 
1121   MCContext &Context = Layout.getAssembler().getContext();
1122   uint64_t OldSize = DF.getContents().size();
1123   int64_t AddrDelta;
1124   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1125   assert(Abs && "We created call frame with an invalid expression");
1126   (void) Abs;
1127   SmallVectorImpl<char> &Data = DF.getContents();
1128   Data.clear();
1129   raw_svector_ostream OSE(Data);
1130   DF.getFixups().clear();
1131 
1132   MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
1133   return OldSize != Data.size();
1134 }
1135 
1136 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout,
1137                                          MCCVInlineLineTableFragment &F) {
1138   unsigned OldSize = F.getContents().size();
1139   getContext().getCVContext().encodeInlineLineTable(Layout, F);
1140   return OldSize != F.getContents().size();
1141 }
1142 
1143 bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout,
1144                                   MCCVDefRangeFragment &F) {
1145   unsigned OldSize = F.getContents().size();
1146   getContext().getCVContext().encodeDefRange(Layout, F);
1147   return OldSize != F.getContents().size();
1148 }
1149 
1150 bool MCAssembler::relaxPseudoProbeAddr(MCAsmLayout &Layout,
1151                                        MCPseudoProbeAddrFragment &PF) {
1152   uint64_t OldSize = PF.getContents().size();
1153   int64_t AddrDelta;
1154   bool Abs = PF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1155   assert(Abs && "We created a pseudo probe with an invalid expression");
1156   (void)Abs;
1157   SmallVectorImpl<char> &Data = PF.getContents();
1158   Data.clear();
1159   raw_svector_ostream OSE(Data);
1160   PF.getFixups().clear();
1161 
1162   // AddrDelta is a signed integer
1163   encodeSLEB128(AddrDelta, OSE, OldSize);
1164   return OldSize != Data.size();
1165 }
1166 
1167 bool MCAssembler::relaxFragment(MCAsmLayout &Layout, MCFragment &F) {
1168   switch(F.getKind()) {
1169   default:
1170     return false;
1171   case MCFragment::FT_Relaxable:
1172     assert(!getRelaxAll() &&
1173            "Did not expect a MCRelaxableFragment in RelaxAll mode");
1174     return relaxInstruction(Layout, cast<MCRelaxableFragment>(F));
1175   case MCFragment::FT_Dwarf:
1176     return relaxDwarfLineAddr(Layout, cast<MCDwarfLineAddrFragment>(F));
1177   case MCFragment::FT_DwarfFrame:
1178     return relaxDwarfCallFrameFragment(Layout,
1179                                        cast<MCDwarfCallFrameFragment>(F));
1180   case MCFragment::FT_LEB:
1181     return relaxLEB(Layout, cast<MCLEBFragment>(F));
1182   case MCFragment::FT_BoundaryAlign:
1183     return relaxBoundaryAlign(Layout, cast<MCBoundaryAlignFragment>(F));
1184   case MCFragment::FT_CVInlineLines:
1185     return relaxCVInlineLineTable(Layout, cast<MCCVInlineLineTableFragment>(F));
1186   case MCFragment::FT_CVDefRange:
1187     return relaxCVDefRange(Layout, cast<MCCVDefRangeFragment>(F));
1188   case MCFragment::FT_PseudoProbe:
1189     return relaxPseudoProbeAddr(Layout, cast<MCPseudoProbeAddrFragment>(F));
1190   }
1191 }
1192 
1193 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
1194   // Holds the first fragment which needed relaxing during this layout. It will
1195   // remain NULL if none were relaxed.
1196   // When a fragment is relaxed, all the fragments following it should get
1197   // invalidated because their offset is going to change.
1198   MCFragment *FirstRelaxedFragment = nullptr;
1199 
1200   // Attempt to relax all the fragments in the section.
1201   for (MCFragment &Frag : Sec) {
1202     // Check if this is a fragment that needs relaxation.
1203     bool RelaxedFrag = relaxFragment(Layout, Frag);
1204     if (RelaxedFrag && !FirstRelaxedFragment)
1205       FirstRelaxedFragment = &Frag;
1206   }
1207   if (FirstRelaxedFragment) {
1208     Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
1209     return true;
1210   }
1211   return false;
1212 }
1213 
1214 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
1215   ++stats::RelaxationSteps;
1216 
1217   bool WasRelaxed = false;
1218   for (MCSection &Sec : *this) {
1219     while (layoutSectionOnce(Layout, Sec))
1220       WasRelaxed = true;
1221   }
1222 
1223   return WasRelaxed;
1224 }
1225 
1226 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
1227   assert(getBackendPtr() && "Expected assembler backend");
1228   // The layout is done. Mark every fragment as valid.
1229   for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
1230     MCSection &Section = *Layout.getSectionOrder()[i];
1231     Layout.getFragmentOffset(&*Section.getFragmentList().rbegin());
1232     computeFragmentSize(Layout, *Section.getFragmentList().rbegin());
1233   }
1234   getBackend().finishLayout(*this, Layout);
1235 }
1236 
1237 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1238 LLVM_DUMP_METHOD void MCAssembler::dump() const{
1239   raw_ostream &OS = errs();
1240 
1241   OS << "<MCAssembler\n";
1242   OS << "  Sections:[\n    ";
1243   for (const_iterator it = begin(), ie = end(); it != ie; ++it) {
1244     if (it != begin()) OS << ",\n    ";
1245     it->dump();
1246   }
1247   OS << "],\n";
1248   OS << "  Symbols:[";
1249 
1250   for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1251     if (it != symbol_begin()) OS << ",\n           ";
1252     OS << "(";
1253     it->dump();
1254     OS << ", Index:" << it->getIndex() << ", ";
1255     OS << ")";
1256   }
1257   OS << "]>\n";
1258 }
1259 #endif
1260