xref: /freebsd/contrib/llvm-project/llvm/lib/MC/MCAssembler.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/MC/MCAssembler.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Statistic.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCAsmLayout.h"
19 #include "llvm/MC/MCCodeEmitter.h"
20 #include "llvm/MC/MCCodeView.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCExpr.h"
24 #include "llvm/MC/MCFixup.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCFragment.h"
27 #include "llvm/MC/MCInst.h"
28 #include "llvm/MC/MCObjectWriter.h"
29 #include "llvm/MC/MCSection.h"
30 #include "llvm/MC/MCSymbol.h"
31 #include "llvm/MC/MCValue.h"
32 #include "llvm/Support/Alignment.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/EndianStream.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/LEB128.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <cassert>
40 #include <cstdint>
41 #include <tuple>
42 #include <utility>
43 
44 using namespace llvm;
45 
46 namespace llvm {
47 class MCSubtargetInfo;
48 }
49 
50 #define DEBUG_TYPE "assembler"
51 
52 namespace {
53 namespace stats {
54 
55 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
56 STATISTIC(EmittedRelaxableFragments,
57           "Number of emitted assembler fragments - relaxable");
58 STATISTIC(EmittedDataFragments,
59           "Number of emitted assembler fragments - data");
60 STATISTIC(EmittedCompactEncodedInstFragments,
61           "Number of emitted assembler fragments - compact encoded inst");
62 STATISTIC(EmittedAlignFragments,
63           "Number of emitted assembler fragments - align");
64 STATISTIC(EmittedFillFragments,
65           "Number of emitted assembler fragments - fill");
66 STATISTIC(EmittedNopsFragments, "Number of emitted assembler fragments - nops");
67 STATISTIC(EmittedOrgFragments, "Number of emitted assembler fragments - org");
68 STATISTIC(evaluateFixup, "Number of evaluated fixups");
69 STATISTIC(FragmentLayouts, "Number of fragment layouts");
70 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
71 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
72 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
73 
74 } // end namespace stats
75 } // end anonymous namespace
76 
77 // FIXME FIXME FIXME: There are number of places in this file where we convert
78 // what is a 64-bit assembler value used for computation into a value in the
79 // object file, which may truncate it. We should detect that truncation where
80 // invalid and report errors back.
81 
82 /* *** */
83 
84 MCAssembler::MCAssembler(MCContext &Context,
85                          std::unique_ptr<MCAsmBackend> Backend,
86                          std::unique_ptr<MCCodeEmitter> Emitter,
87                          std::unique_ptr<MCObjectWriter> Writer)
88     : Context(Context), Backend(std::move(Backend)),
89       Emitter(std::move(Emitter)), Writer(std::move(Writer)),
90       BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
91       IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
92   VersionInfo.Major = 0; // Major version == 0 for "none specified"
93   DarwinTargetVariantVersionInfo.Major = 0;
94 }
95 
96 MCAssembler::~MCAssembler() = default;
97 
98 void MCAssembler::reset() {
99   Sections.clear();
100   Symbols.clear();
101   IndirectSymbols.clear();
102   DataRegions.clear();
103   LinkerOptions.clear();
104   FileNames.clear();
105   ThumbFuncs.clear();
106   BundleAlignSize = 0;
107   RelaxAll = false;
108   SubsectionsViaSymbols = false;
109   IncrementalLinkerCompatible = false;
110   ELFHeaderEFlags = 0;
111   LOHContainer.reset();
112   VersionInfo.Major = 0;
113   VersionInfo.SDKVersion = VersionTuple();
114   DarwinTargetVariantVersionInfo.Major = 0;
115   DarwinTargetVariantVersionInfo.SDKVersion = VersionTuple();
116 
117   // reset objects owned by us
118   if (getBackendPtr())
119     getBackendPtr()->reset();
120   if (getEmitterPtr())
121     getEmitterPtr()->reset();
122   if (getWriterPtr())
123     getWriterPtr()->reset();
124   getLOHContainer().reset();
125 }
126 
127 bool MCAssembler::registerSection(MCSection &Section) {
128   if (Section.isRegistered())
129     return false;
130   Sections.push_back(&Section);
131   Section.setIsRegistered(true);
132   return true;
133 }
134 
135 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
136   if (ThumbFuncs.count(Symbol))
137     return true;
138 
139   if (!Symbol->isVariable())
140     return false;
141 
142   const MCExpr *Expr = Symbol->getVariableValue();
143 
144   MCValue V;
145   if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
146     return false;
147 
148   if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
149     return false;
150 
151   const MCSymbolRefExpr *Ref = V.getSymA();
152   if (!Ref)
153     return false;
154 
155   if (Ref->getKind() != MCSymbolRefExpr::VK_None)
156     return false;
157 
158   const MCSymbol &Sym = Ref->getSymbol();
159   if (!isThumbFunc(&Sym))
160     return false;
161 
162   ThumbFuncs.insert(Symbol); // Cache it.
163   return true;
164 }
165 
166 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
167   // Non-temporary labels should always be visible to the linker.
168   if (!Symbol.isTemporary())
169     return true;
170 
171   if (Symbol.isUsedInReloc())
172     return true;
173 
174   return false;
175 }
176 
177 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
178   // Linker visible symbols define atoms.
179   if (isSymbolLinkerVisible(S))
180     return &S;
181 
182   // Absolute and undefined symbols have no defining atom.
183   if (!S.isInSection())
184     return nullptr;
185 
186   // Non-linker visible symbols in sections which can't be atomized have no
187   // defining atom.
188   if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
189           *S.getFragment()->getParent()))
190     return nullptr;
191 
192   // Otherwise, return the atom for the containing fragment.
193   return S.getFragment()->getAtom();
194 }
195 
196 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout, const MCFixup &Fixup,
197                                 const MCFragment *DF, MCValue &Target,
198                                 const MCSubtargetInfo *STI, uint64_t &Value,
199                                 bool &WasForced) const {
200   ++stats::evaluateFixup;
201 
202   // FIXME: This code has some duplication with recordRelocation. We should
203   // probably merge the two into a single callback that tries to evaluate a
204   // fixup and records a relocation if one is needed.
205 
206   // On error claim to have completely evaluated the fixup, to prevent any
207   // further processing from being done.
208   const MCExpr *Expr = Fixup.getValue();
209   MCContext &Ctx = getContext();
210   Value = 0;
211   WasForced = false;
212   if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
213     Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
214     return true;
215   }
216   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
217     if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
218       Ctx.reportError(Fixup.getLoc(),
219                       "unsupported subtraction of qualified symbol");
220       return true;
221     }
222   }
223 
224   assert(getBackendPtr() && "Expected assembler backend");
225   bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
226                   MCFixupKindInfo::FKF_IsTarget;
227 
228   if (IsTarget)
229     return getBackend().evaluateTargetFixup(*this, Layout, Fixup, DF, Target,
230                                             STI, Value, WasForced);
231 
232   unsigned FixupFlags = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags;
233   bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
234                  MCFixupKindInfo::FKF_IsPCRel;
235 
236   bool IsResolved = false;
237   if (IsPCRel) {
238     if (Target.getSymB()) {
239       IsResolved = false;
240     } else if (!Target.getSymA()) {
241       IsResolved = false;
242     } else {
243       const MCSymbolRefExpr *A = Target.getSymA();
244       const MCSymbol &SA = A->getSymbol();
245       if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
246         IsResolved = false;
247       } else if (auto *Writer = getWriterPtr()) {
248         IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) ||
249                      Writer->isSymbolRefDifferenceFullyResolvedImpl(
250                          *this, SA, *DF, false, true);
251       }
252     }
253   } else {
254     IsResolved = Target.isAbsolute();
255   }
256 
257   Value = Target.getConstant();
258 
259   if (const MCSymbolRefExpr *A = Target.getSymA()) {
260     const MCSymbol &Sym = A->getSymbol();
261     if (Sym.isDefined())
262       Value += Layout.getSymbolOffset(Sym);
263   }
264   if (const MCSymbolRefExpr *B = Target.getSymB()) {
265     const MCSymbol &Sym = B->getSymbol();
266     if (Sym.isDefined())
267       Value -= Layout.getSymbolOffset(Sym);
268   }
269 
270   bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
271                        MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
272   assert((ShouldAlignPC ? IsPCRel : true) &&
273     "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
274 
275   if (IsPCRel) {
276     uint64_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
277 
278     // A number of ARM fixups in Thumb mode require that the effective PC
279     // address be determined as the 32-bit aligned version of the actual offset.
280     if (ShouldAlignPC) Offset &= ~0x3;
281     Value -= Offset;
282   }
283 
284   // Let the backend force a relocation if needed.
285   if (IsResolved &&
286       getBackend().shouldForceRelocation(*this, Fixup, Target, STI)) {
287     IsResolved = false;
288     WasForced = true;
289   }
290 
291   // A linker relaxation target may emit ADD/SUB relocations for A-B+C. Let
292   // recordRelocation handle non-VK_None cases like A@plt-B+C.
293   if (!IsResolved && Target.getSymA() && Target.getSymB() &&
294       Target.getSymA()->getKind() == MCSymbolRefExpr::VK_None &&
295       getBackend().handleAddSubRelocations(Layout, *DF, Fixup, Target, Value))
296     return true;
297 
298   return IsResolved;
299 }
300 
301 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
302                                           const MCFragment &F) const {
303   assert(getBackendPtr() && "Requires assembler backend");
304   switch (F.getKind()) {
305   case MCFragment::FT_Data:
306     return cast<MCDataFragment>(F).getContents().size();
307   case MCFragment::FT_Relaxable:
308     return cast<MCRelaxableFragment>(F).getContents().size();
309   case MCFragment::FT_CompactEncodedInst:
310     return cast<MCCompactEncodedInstFragment>(F).getContents().size();
311   case MCFragment::FT_Fill: {
312     auto &FF = cast<MCFillFragment>(F);
313     int64_t NumValues = 0;
314     if (!FF.getNumValues().evaluateKnownAbsolute(NumValues, Layout)) {
315       getContext().reportError(FF.getLoc(),
316                                "expected assembly-time absolute expression");
317       return 0;
318     }
319     int64_t Size = NumValues * FF.getValueSize();
320     if (Size < 0) {
321       getContext().reportError(FF.getLoc(), "invalid number of bytes");
322       return 0;
323     }
324     return Size;
325   }
326 
327   case MCFragment::FT_Nops:
328     return cast<MCNopsFragment>(F).getNumBytes();
329 
330   case MCFragment::FT_LEB:
331     return cast<MCLEBFragment>(F).getContents().size();
332 
333   case MCFragment::FT_BoundaryAlign:
334     return cast<MCBoundaryAlignFragment>(F).getSize();
335 
336   case MCFragment::FT_SymbolId:
337     return 4;
338 
339   case MCFragment::FT_Align: {
340     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
341     unsigned Offset = Layout.getFragmentOffset(&AF);
342     unsigned Size = offsetToAlignment(Offset, AF.getAlignment());
343 
344     // Insert extra Nops for code alignment if the target define
345     // shouldInsertExtraNopBytesForCodeAlign target hook.
346     if (AF.getParent()->useCodeAlign() && AF.hasEmitNops() &&
347         getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size))
348       return Size;
349 
350     // If we are padding with nops, force the padding to be larger than the
351     // minimum nop size.
352     if (Size > 0 && AF.hasEmitNops()) {
353       while (Size % getBackend().getMinimumNopSize())
354         Size += AF.getAlignment().value();
355     }
356     if (Size > AF.getMaxBytesToEmit())
357       return 0;
358     return Size;
359   }
360 
361   case MCFragment::FT_Org: {
362     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
363     MCValue Value;
364     if (!OF.getOffset().evaluateAsValue(Value, Layout)) {
365       getContext().reportError(OF.getLoc(),
366                                "expected assembly-time absolute expression");
367         return 0;
368     }
369 
370     uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
371     int64_t TargetLocation = Value.getConstant();
372     if (const MCSymbolRefExpr *A = Value.getSymA()) {
373       uint64_t Val;
374       if (!Layout.getSymbolOffset(A->getSymbol(), Val)) {
375         getContext().reportError(OF.getLoc(), "expected absolute expression");
376         return 0;
377       }
378       TargetLocation += Val;
379     }
380     int64_t Size = TargetLocation - FragmentOffset;
381     if (Size < 0 || Size >= 0x40000000) {
382       getContext().reportError(
383           OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
384                            "' (at offset '" + Twine(FragmentOffset) + "')");
385       return 0;
386     }
387     return Size;
388   }
389 
390   case MCFragment::FT_Dwarf:
391     return cast<MCDwarfLineAddrFragment>(F).getContents().size();
392   case MCFragment::FT_DwarfFrame:
393     return cast<MCDwarfCallFrameFragment>(F).getContents().size();
394   case MCFragment::FT_CVInlineLines:
395     return cast<MCCVInlineLineTableFragment>(F).getContents().size();
396   case MCFragment::FT_CVDefRange:
397     return cast<MCCVDefRangeFragment>(F).getContents().size();
398   case MCFragment::FT_PseudoProbe:
399     return cast<MCPseudoProbeAddrFragment>(F).getContents().size();
400   case MCFragment::FT_Dummy:
401     llvm_unreachable("Should not have been added");
402   }
403 
404   llvm_unreachable("invalid fragment kind");
405 }
406 
407 void MCAsmLayout::layoutFragment(MCFragment *F) {
408   MCFragment *Prev = F->getPrevNode();
409 
410   // We should never try to recompute something which is valid.
411   assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
412   // We should never try to compute the fragment layout if its predecessor
413   // isn't valid.
414   assert((!Prev || isFragmentValid(Prev)) &&
415          "Attempt to compute fragment before its predecessor!");
416 
417   assert(!F->IsBeingLaidOut && "Already being laid out!");
418   F->IsBeingLaidOut = true;
419 
420   ++stats::FragmentLayouts;
421 
422   // Compute fragment offset and size.
423   if (Prev)
424     F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
425   else
426     F->Offset = 0;
427   F->IsBeingLaidOut = false;
428   LastValidFragment[F->getParent()] = F;
429 
430   // If bundling is enabled and this fragment has instructions in it, it has to
431   // obey the bundling restrictions. With padding, we'll have:
432   //
433   //
434   //        BundlePadding
435   //             |||
436   // -------------------------------------
437   //   Prev  |##########|       F        |
438   // -------------------------------------
439   //                    ^
440   //                    |
441   //                    F->Offset
442   //
443   // The fragment's offset will point to after the padding, and its computed
444   // size won't include the padding.
445   //
446   // When the -mc-relax-all flag is used, we optimize bundling by writting the
447   // padding directly into fragments when the instructions are emitted inside
448   // the streamer. When the fragment is larger than the bundle size, we need to
449   // ensure that it's bundle aligned. This means that if we end up with
450   // multiple fragments, we must emit bundle padding between fragments.
451   //
452   // ".align N" is an example of a directive that introduces multiple
453   // fragments. We could add a special case to handle ".align N" by emitting
454   // within-fragment padding (which would produce less padding when N is less
455   // than the bundle size), but for now we don't.
456   //
457   if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
458     assert(isa<MCEncodedFragment>(F) &&
459            "Only MCEncodedFragment implementations have instructions");
460     MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
461     uint64_t FSize = Assembler.computeFragmentSize(*this, *EF);
462 
463     if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
464       report_fatal_error("Fragment can't be larger than a bundle size");
465 
466     uint64_t RequiredBundlePadding =
467         computeBundlePadding(Assembler, EF, EF->Offset, FSize);
468     if (RequiredBundlePadding > UINT8_MAX)
469       report_fatal_error("Padding cannot exceed 255 bytes");
470     EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
471     EF->Offset += RequiredBundlePadding;
472   }
473 }
474 
475 bool MCAssembler::registerSymbol(const MCSymbol &Symbol) {
476   bool Changed = !Symbol.isRegistered();
477   if (Changed) {
478     Symbol.setIsRegistered(true);
479     Symbols.push_back(&Symbol);
480   }
481   return Changed;
482 }
483 
484 void MCAssembler::writeFragmentPadding(raw_ostream &OS,
485                                        const MCEncodedFragment &EF,
486                                        uint64_t FSize) const {
487   assert(getBackendPtr() && "Expected assembler backend");
488   // Should NOP padding be written out before this fragment?
489   unsigned BundlePadding = EF.getBundlePadding();
490   if (BundlePadding > 0) {
491     assert(isBundlingEnabled() &&
492            "Writing bundle padding with disabled bundling");
493     assert(EF.hasInstructions() &&
494            "Writing bundle padding for a fragment without instructions");
495 
496     unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
497     const MCSubtargetInfo *STI = EF.getSubtargetInfo();
498     if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
499       // If the padding itself crosses a bundle boundary, it must be emitted
500       // in 2 pieces, since even nop instructions must not cross boundaries.
501       //             v--------------v   <- BundleAlignSize
502       //        v---------v             <- BundlePadding
503       // ----------------------------
504       // | Prev |####|####|    F    |
505       // ----------------------------
506       //        ^-------------------^   <- TotalLength
507       unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
508       if (!getBackend().writeNopData(OS, DistanceToBoundary, STI))
509         report_fatal_error("unable to write NOP sequence of " +
510                            Twine(DistanceToBoundary) + " bytes");
511       BundlePadding -= DistanceToBoundary;
512     }
513     if (!getBackend().writeNopData(OS, BundlePadding, STI))
514       report_fatal_error("unable to write NOP sequence of " +
515                          Twine(BundlePadding) + " bytes");
516   }
517 }
518 
519 /// Write the fragment \p F to the output file.
520 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
521                           const MCAsmLayout &Layout, const MCFragment &F) {
522   // FIXME: Embed in fragments instead?
523   uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
524 
525   llvm::endianness Endian = Asm.getBackend().Endian;
526 
527   if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
528     Asm.writeFragmentPadding(OS, *EF, FragmentSize);
529 
530   // This variable (and its dummy usage) is to participate in the assert at
531   // the end of the function.
532   uint64_t Start = OS.tell();
533   (void) Start;
534 
535   ++stats::EmittedFragments;
536 
537   switch (F.getKind()) {
538   case MCFragment::FT_Align: {
539     ++stats::EmittedAlignFragments;
540     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
541     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
542 
543     uint64_t Count = FragmentSize / AF.getValueSize();
544 
545     // FIXME: This error shouldn't actually occur (the front end should emit
546     // multiple .align directives to enforce the semantics it wants), but is
547     // severe enough that we want to report it. How to handle this?
548     if (Count * AF.getValueSize() != FragmentSize)
549       report_fatal_error("undefined .align directive, value size '" +
550                         Twine(AF.getValueSize()) +
551                         "' is not a divisor of padding size '" +
552                         Twine(FragmentSize) + "'");
553 
554     // See if we are aligning with nops, and if so do that first to try to fill
555     // the Count bytes.  Then if that did not fill any bytes or there are any
556     // bytes left to fill use the Value and ValueSize to fill the rest.
557     // If we are aligning with nops, ask that target to emit the right data.
558     if (AF.hasEmitNops()) {
559       if (!Asm.getBackend().writeNopData(OS, Count, AF.getSubtargetInfo()))
560         report_fatal_error("unable to write nop sequence of " +
561                           Twine(Count) + " bytes");
562       break;
563     }
564 
565     // Otherwise, write out in multiples of the value size.
566     for (uint64_t i = 0; i != Count; ++i) {
567       switch (AF.getValueSize()) {
568       default: llvm_unreachable("Invalid size!");
569       case 1: OS << char(AF.getValue()); break;
570       case 2:
571         support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
572         break;
573       case 4:
574         support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
575         break;
576       case 8:
577         support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
578         break;
579       }
580     }
581     break;
582   }
583 
584   case MCFragment::FT_Data:
585     ++stats::EmittedDataFragments;
586     OS << cast<MCDataFragment>(F).getContents();
587     break;
588 
589   case MCFragment::FT_Relaxable:
590     ++stats::EmittedRelaxableFragments;
591     OS << cast<MCRelaxableFragment>(F).getContents();
592     break;
593 
594   case MCFragment::FT_CompactEncodedInst:
595     ++stats::EmittedCompactEncodedInstFragments;
596     OS << cast<MCCompactEncodedInstFragment>(F).getContents();
597     break;
598 
599   case MCFragment::FT_Fill: {
600     ++stats::EmittedFillFragments;
601     const MCFillFragment &FF = cast<MCFillFragment>(F);
602     uint64_t V = FF.getValue();
603     unsigned VSize = FF.getValueSize();
604     const unsigned MaxChunkSize = 16;
605     char Data[MaxChunkSize];
606     assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size");
607     // Duplicate V into Data as byte vector to reduce number of
608     // writes done. As such, do endian conversion here.
609     for (unsigned I = 0; I != VSize; ++I) {
610       unsigned index = Endian == llvm::endianness::little ? I : (VSize - I - 1);
611       Data[I] = uint8_t(V >> (index * 8));
612     }
613     for (unsigned I = VSize; I < MaxChunkSize; ++I)
614       Data[I] = Data[I - VSize];
615 
616     // Set to largest multiple of VSize in Data.
617     const unsigned NumPerChunk = MaxChunkSize / VSize;
618     // Set ChunkSize to largest multiple of VSize in Data
619     const unsigned ChunkSize = VSize * NumPerChunk;
620 
621     // Do copies by chunk.
622     StringRef Ref(Data, ChunkSize);
623     for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
624       OS << Ref;
625 
626     // do remainder if needed.
627     unsigned TrailingCount = FragmentSize % ChunkSize;
628     if (TrailingCount)
629       OS.write(Data, TrailingCount);
630     break;
631   }
632 
633   case MCFragment::FT_Nops: {
634     ++stats::EmittedNopsFragments;
635     const MCNopsFragment &NF = cast<MCNopsFragment>(F);
636 
637     int64_t NumBytes = NF.getNumBytes();
638     int64_t ControlledNopLength = NF.getControlledNopLength();
639     int64_t MaximumNopLength =
640         Asm.getBackend().getMaximumNopSize(*NF.getSubtargetInfo());
641 
642     assert(NumBytes > 0 && "Expected positive NOPs fragment size");
643     assert(ControlledNopLength >= 0 && "Expected non-negative NOP size");
644 
645     if (ControlledNopLength > MaximumNopLength) {
646       Asm.getContext().reportError(NF.getLoc(),
647                                    "illegal NOP size " +
648                                        std::to_string(ControlledNopLength) +
649                                        ". (expected within [0, " +
650                                        std::to_string(MaximumNopLength) + "])");
651       // Clamp the NOP length as reportError does not stop the execution
652       // immediately.
653       ControlledNopLength = MaximumNopLength;
654     }
655 
656     // Use maximum value if the size of each NOP is not specified
657     if (!ControlledNopLength)
658       ControlledNopLength = MaximumNopLength;
659 
660     while (NumBytes) {
661       uint64_t NumBytesToEmit =
662           (uint64_t)std::min(NumBytes, ControlledNopLength);
663       assert(NumBytesToEmit && "try to emit empty NOP instruction");
664       if (!Asm.getBackend().writeNopData(OS, NumBytesToEmit,
665                                          NF.getSubtargetInfo())) {
666         report_fatal_error("unable to write nop sequence of the remaining " +
667                            Twine(NumBytesToEmit) + " bytes");
668         break;
669       }
670       NumBytes -= NumBytesToEmit;
671     }
672     break;
673   }
674 
675   case MCFragment::FT_LEB: {
676     const MCLEBFragment &LF = cast<MCLEBFragment>(F);
677     OS << LF.getContents();
678     break;
679   }
680 
681   case MCFragment::FT_BoundaryAlign: {
682     const MCBoundaryAlignFragment &BF = cast<MCBoundaryAlignFragment>(F);
683     if (!Asm.getBackend().writeNopData(OS, FragmentSize, BF.getSubtargetInfo()))
684       report_fatal_error("unable to write nop sequence of " +
685                          Twine(FragmentSize) + " bytes");
686     break;
687   }
688 
689   case MCFragment::FT_SymbolId: {
690     const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
691     support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
692     break;
693   }
694 
695   case MCFragment::FT_Org: {
696     ++stats::EmittedOrgFragments;
697     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
698 
699     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
700       OS << char(OF.getValue());
701 
702     break;
703   }
704 
705   case MCFragment::FT_Dwarf: {
706     const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
707     OS << OF.getContents();
708     break;
709   }
710   case MCFragment::FT_DwarfFrame: {
711     const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
712     OS << CF.getContents();
713     break;
714   }
715   case MCFragment::FT_CVInlineLines: {
716     const auto &OF = cast<MCCVInlineLineTableFragment>(F);
717     OS << OF.getContents();
718     break;
719   }
720   case MCFragment::FT_CVDefRange: {
721     const auto &DRF = cast<MCCVDefRangeFragment>(F);
722     OS << DRF.getContents();
723     break;
724   }
725   case MCFragment::FT_PseudoProbe: {
726     const MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(F);
727     OS << PF.getContents();
728     break;
729   }
730   case MCFragment::FT_Dummy:
731     llvm_unreachable("Should not have been added");
732   }
733 
734   assert(OS.tell() - Start == FragmentSize &&
735          "The stream should advance by fragment size");
736 }
737 
738 void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec,
739                                    const MCAsmLayout &Layout) const {
740   assert(getBackendPtr() && "Expected assembler backend");
741 
742   // Ignore virtual sections.
743   if (Sec->isVirtualSection()) {
744     assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
745 
746     // Check that contents are only things legal inside a virtual section.
747     for (const MCFragment &F : *Sec) {
748       switch (F.getKind()) {
749       default: llvm_unreachable("Invalid fragment in virtual section!");
750       case MCFragment::FT_Data: {
751         // Check that we aren't trying to write a non-zero contents (or fixups)
752         // into a virtual section. This is to support clients which use standard
753         // directives to fill the contents of virtual sections.
754         const MCDataFragment &DF = cast<MCDataFragment>(F);
755         if (DF.fixup_begin() != DF.fixup_end())
756           getContext().reportError(SMLoc(), Sec->getVirtualSectionKind() +
757                                                 " section '" + Sec->getName() +
758                                                 "' cannot have fixups");
759         for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
760           if (DF.getContents()[i]) {
761             getContext().reportError(SMLoc(),
762                                      Sec->getVirtualSectionKind() +
763                                          " section '" + Sec->getName() +
764                                          "' cannot have non-zero initializers");
765             break;
766           }
767         break;
768       }
769       case MCFragment::FT_Align:
770         // Check that we aren't trying to write a non-zero value into a virtual
771         // section.
772         assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
773                 cast<MCAlignFragment>(F).getValue() == 0) &&
774                "Invalid align in virtual section!");
775         break;
776       case MCFragment::FT_Fill:
777         assert((cast<MCFillFragment>(F).getValue() == 0) &&
778                "Invalid fill in virtual section!");
779         break;
780       case MCFragment::FT_Org:
781         break;
782       }
783     }
784 
785     return;
786   }
787 
788   uint64_t Start = OS.tell();
789   (void)Start;
790 
791   for (const MCFragment &F : *Sec)
792     writeFragment(OS, *this, Layout, F);
793 
794   assert(getContext().hadError() ||
795          OS.tell() - Start == Layout.getSectionAddressSize(Sec));
796 }
797 
798 std::tuple<MCValue, uint64_t, bool>
799 MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F,
800                          const MCFixup &Fixup, const MCSubtargetInfo *STI) {
801   // Evaluate the fixup.
802   MCValue Target;
803   uint64_t FixedValue;
804   bool WasForced;
805   bool IsResolved =
806       evaluateFixup(Layout, Fixup, &F, Target, STI, FixedValue, WasForced);
807   if (!IsResolved) {
808     // The fixup was unresolved, we need a relocation. Inform the object
809     // writer of the relocation, and give it an opportunity to adjust the
810     // fixup value if need be.
811     getWriter().recordRelocation(*this, Layout, &F, Fixup, Target, FixedValue);
812   }
813   return std::make_tuple(Target, FixedValue, IsResolved);
814 }
815 
816 void MCAssembler::layout(MCAsmLayout &Layout) {
817   assert(getBackendPtr() && "Expected assembler backend");
818   DEBUG_WITH_TYPE("mc-dump", {
819       errs() << "assembler backend - pre-layout\n--\n";
820       dump(); });
821 
822   // Create dummy fragments and assign section ordinals.
823   unsigned SectionIndex = 0;
824   for (MCSection &Sec : *this) {
825     // Create dummy fragments to eliminate any empty sections, this simplifies
826     // layout.
827     if (Sec.getFragmentList().empty())
828       new MCDataFragment(&Sec);
829 
830     Sec.setOrdinal(SectionIndex++);
831   }
832 
833   // Assign layout order indices to sections and fragments.
834   for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
835     MCSection *Sec = Layout.getSectionOrder()[i];
836     Sec->setLayoutOrder(i);
837 
838     unsigned FragmentIndex = 0;
839     for (MCFragment &Frag : *Sec)
840       Frag.setLayoutOrder(FragmentIndex++);
841   }
842 
843   // Layout until everything fits.
844   while (layoutOnce(Layout)) {
845     if (getContext().hadError())
846       return;
847     // Size of fragments in one section can depend on the size of fragments in
848     // another. If any fragment has changed size, we have to re-layout (and
849     // as a result possibly further relax) all.
850     for (MCSection &Sec : *this)
851       Layout.invalidateFragmentsFrom(&*Sec.begin());
852   }
853 
854   DEBUG_WITH_TYPE("mc-dump", {
855       errs() << "assembler backend - post-relaxation\n--\n";
856       dump(); });
857 
858   // Finalize the layout, including fragment lowering.
859   finishLayout(Layout);
860 
861   DEBUG_WITH_TYPE("mc-dump", {
862       errs() << "assembler backend - final-layout\n--\n";
863       dump(); });
864 
865   // Allow the object writer a chance to perform post-layout binding (for
866   // example, to set the index fields in the symbol data).
867   getWriter().executePostLayoutBinding(*this, Layout);
868 
869   // Evaluate and apply the fixups, generating relocation entries as necessary.
870   for (MCSection &Sec : *this) {
871     for (MCFragment &Frag : Sec) {
872       ArrayRef<MCFixup> Fixups;
873       MutableArrayRef<char> Contents;
874       const MCSubtargetInfo *STI = nullptr;
875 
876       // Process MCAlignFragment and MCEncodedFragmentWithFixups here.
877       switch (Frag.getKind()) {
878       default:
879         continue;
880       case MCFragment::FT_Align: {
881         MCAlignFragment &AF = cast<MCAlignFragment>(Frag);
882         // Insert fixup type for code alignment if the target define
883         // shouldInsertFixupForCodeAlign target hook.
884         if (Sec.useCodeAlign() && AF.hasEmitNops())
885           getBackend().shouldInsertFixupForCodeAlign(*this, Layout, AF);
886         continue;
887       }
888       case MCFragment::FT_Data: {
889         MCDataFragment &DF = cast<MCDataFragment>(Frag);
890         Fixups = DF.getFixups();
891         Contents = DF.getContents();
892         STI = DF.getSubtargetInfo();
893         assert(!DF.hasInstructions() || STI != nullptr);
894         break;
895       }
896       case MCFragment::FT_Relaxable: {
897         MCRelaxableFragment &RF = cast<MCRelaxableFragment>(Frag);
898         Fixups = RF.getFixups();
899         Contents = RF.getContents();
900         STI = RF.getSubtargetInfo();
901         assert(!RF.hasInstructions() || STI != nullptr);
902         break;
903       }
904       case MCFragment::FT_CVDefRange: {
905         MCCVDefRangeFragment &CF = cast<MCCVDefRangeFragment>(Frag);
906         Fixups = CF.getFixups();
907         Contents = CF.getContents();
908         break;
909       }
910       case MCFragment::FT_Dwarf: {
911         MCDwarfLineAddrFragment &DF = cast<MCDwarfLineAddrFragment>(Frag);
912         Fixups = DF.getFixups();
913         Contents = DF.getContents();
914         break;
915       }
916       case MCFragment::FT_DwarfFrame: {
917         MCDwarfCallFrameFragment &DF = cast<MCDwarfCallFrameFragment>(Frag);
918         Fixups = DF.getFixups();
919         Contents = DF.getContents();
920         break;
921       }
922       case MCFragment::FT_LEB: {
923         auto &LF = cast<MCLEBFragment>(Frag);
924         Fixups = LF.getFixups();
925         Contents = LF.getContents();
926         break;
927       }
928       case MCFragment::FT_PseudoProbe: {
929         MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(Frag);
930         Fixups = PF.getFixups();
931         Contents = PF.getContents();
932         break;
933       }
934       }
935       for (const MCFixup &Fixup : Fixups) {
936         uint64_t FixedValue;
937         bool IsResolved;
938         MCValue Target;
939         std::tie(Target, FixedValue, IsResolved) =
940             handleFixup(Layout, Frag, Fixup, STI);
941         getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
942                                 IsResolved, STI);
943       }
944     }
945   }
946 }
947 
948 void MCAssembler::Finish() {
949   // Create the layout object.
950   MCAsmLayout Layout(*this);
951   layout(Layout);
952 
953   // Write the object file.
954   stats::ObjectBytes += getWriter().writeObject(*this, Layout);
955 }
956 
957 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
958                                        const MCRelaxableFragment *DF,
959                                        const MCAsmLayout &Layout) const {
960   assert(getBackendPtr() && "Expected assembler backend");
961   MCValue Target;
962   uint64_t Value;
963   bool WasForced;
964   bool Resolved = evaluateFixup(Layout, Fixup, DF, Target,
965                                 DF->getSubtargetInfo(), Value, WasForced);
966   if (Target.getSymA() &&
967       Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
968       Fixup.getKind() == FK_Data_1)
969     return false;
970   return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
971                                                    Layout, WasForced);
972 }
973 
974 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
975                                           const MCAsmLayout &Layout) const {
976   assert(getBackendPtr() && "Expected assembler backend");
977   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
978   // are intentionally pushing out inst fragments, or because we relaxed a
979   // previous instruction to one that doesn't need relaxation.
980   if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
981     return false;
982 
983   for (const MCFixup &Fixup : F->getFixups())
984     if (fixupNeedsRelaxation(Fixup, F, Layout))
985       return true;
986 
987   return false;
988 }
989 
990 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
991                                    MCRelaxableFragment &F) {
992   assert(getEmitterPtr() &&
993          "Expected CodeEmitter defined for relaxInstruction");
994   if (!fragmentNeedsRelaxation(&F, Layout))
995     return false;
996 
997   ++stats::RelaxedInstructions;
998 
999   // FIXME-PERF: We could immediately lower out instructions if we can tell
1000   // they are fully resolved, to avoid retesting on later passes.
1001 
1002   // Relax the fragment.
1003 
1004   MCInst Relaxed = F.getInst();
1005   getBackend().relaxInstruction(Relaxed, *F.getSubtargetInfo());
1006 
1007   // Encode the new instruction.
1008   F.setInst(Relaxed);
1009   F.getFixups().clear();
1010   F.getContents().clear();
1011   getEmitter().encodeInstruction(Relaxed, F.getContents(), F.getFixups(),
1012                                  *F.getSubtargetInfo());
1013   return true;
1014 }
1015 
1016 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
1017   const unsigned OldSize = static_cast<unsigned>(LF.getContents().size());
1018   unsigned PadTo = OldSize;
1019   int64_t Value;
1020   SmallVectorImpl<char> &Data = LF.getContents();
1021   LF.getFixups().clear();
1022   // Use evaluateKnownAbsolute for Mach-O as a hack: .subsections_via_symbols
1023   // requires that .uleb128 A-B is foldable where A and B reside in different
1024   // fragments. This is used by __gcc_except_table.
1025   bool Abs = getSubsectionsViaSymbols()
1026                  ? LF.getValue().evaluateKnownAbsolute(Value, Layout)
1027                  : LF.getValue().evaluateAsAbsolute(Value, Layout);
1028   if (!Abs) {
1029     bool Relaxed, UseZeroPad;
1030     std::tie(Relaxed, UseZeroPad) = getBackend().relaxLEB128(LF, Layout, Value);
1031     if (!Relaxed) {
1032       getContext().reportError(LF.getValue().getLoc(),
1033                                Twine(LF.isSigned() ? ".s" : ".u") +
1034                                    "leb128 expression is not absolute");
1035       LF.setValue(MCConstantExpr::create(0, Context));
1036     }
1037     uint8_t Tmp[10]; // maximum size: ceil(64/7)
1038     PadTo = std::max(PadTo, encodeULEB128(uint64_t(Value), Tmp));
1039     if (UseZeroPad)
1040       Value = 0;
1041   }
1042   Data.clear();
1043   raw_svector_ostream OSE(Data);
1044   // The compiler can generate EH table assembly that is impossible to assemble
1045   // without either adding padding to an LEB fragment or adding extra padding
1046   // to a later alignment fragment. To accommodate such tables, relaxation can
1047   // only increase an LEB fragment size here, not decrease it. See PR35809.
1048   if (LF.isSigned())
1049     encodeSLEB128(Value, OSE, PadTo);
1050   else
1051     encodeULEB128(Value, OSE, PadTo);
1052   return OldSize != LF.getContents().size();
1053 }
1054 
1055 /// Check if the branch crosses the boundary.
1056 ///
1057 /// \param StartAddr start address of the fused/unfused branch.
1058 /// \param Size size of the fused/unfused branch.
1059 /// \param BoundaryAlignment alignment requirement of the branch.
1060 /// \returns true if the branch cross the boundary.
1061 static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size,
1062                              Align BoundaryAlignment) {
1063   uint64_t EndAddr = StartAddr + Size;
1064   return (StartAddr >> Log2(BoundaryAlignment)) !=
1065          ((EndAddr - 1) >> Log2(BoundaryAlignment));
1066 }
1067 
1068 /// Check if the branch is against the boundary.
1069 ///
1070 /// \param StartAddr start address of the fused/unfused branch.
1071 /// \param Size size of the fused/unfused branch.
1072 /// \param BoundaryAlignment alignment requirement of the branch.
1073 /// \returns true if the branch is against the boundary.
1074 static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size,
1075                               Align BoundaryAlignment) {
1076   uint64_t EndAddr = StartAddr + Size;
1077   return (EndAddr & (BoundaryAlignment.value() - 1)) == 0;
1078 }
1079 
1080 /// Check if the branch needs padding.
1081 ///
1082 /// \param StartAddr start address of the fused/unfused branch.
1083 /// \param Size size of the fused/unfused branch.
1084 /// \param BoundaryAlignment alignment requirement of the branch.
1085 /// \returns true if the branch needs padding.
1086 static bool needPadding(uint64_t StartAddr, uint64_t Size,
1087                         Align BoundaryAlignment) {
1088   return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) ||
1089          isAgainstBoundary(StartAddr, Size, BoundaryAlignment);
1090 }
1091 
1092 bool MCAssembler::relaxBoundaryAlign(MCAsmLayout &Layout,
1093                                      MCBoundaryAlignFragment &BF) {
1094   // BoundaryAlignFragment that doesn't need to align any fragment should not be
1095   // relaxed.
1096   if (!BF.getLastFragment())
1097     return false;
1098 
1099   uint64_t AlignedOffset = Layout.getFragmentOffset(&BF);
1100   uint64_t AlignedSize = 0;
1101   for (const MCFragment *F = BF.getLastFragment(); F != &BF;
1102        F = F->getPrevNode())
1103     AlignedSize += computeFragmentSize(Layout, *F);
1104 
1105   Align BoundaryAlignment = BF.getAlignment();
1106   uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment)
1107                          ? offsetToAlignment(AlignedOffset, BoundaryAlignment)
1108                          : 0U;
1109   if (NewSize == BF.getSize())
1110     return false;
1111   BF.setSize(NewSize);
1112   Layout.invalidateFragmentsFrom(&BF);
1113   return true;
1114 }
1115 
1116 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
1117                                      MCDwarfLineAddrFragment &DF) {
1118 
1119   bool WasRelaxed;
1120   if (getBackend().relaxDwarfLineAddr(DF, Layout, WasRelaxed))
1121     return WasRelaxed;
1122 
1123   MCContext &Context = Layout.getAssembler().getContext();
1124   uint64_t OldSize = DF.getContents().size();
1125   int64_t AddrDelta;
1126   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1127   assert(Abs && "We created a line delta with an invalid expression");
1128   (void)Abs;
1129   int64_t LineDelta;
1130   LineDelta = DF.getLineDelta();
1131   SmallVectorImpl<char> &Data = DF.getContents();
1132   Data.clear();
1133   DF.getFixups().clear();
1134 
1135   MCDwarfLineAddr::encode(Context, getDWARFLinetableParams(), LineDelta,
1136                           AddrDelta, Data);
1137   return OldSize != Data.size();
1138 }
1139 
1140 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
1141                                               MCDwarfCallFrameFragment &DF) {
1142   bool WasRelaxed;
1143   if (getBackend().relaxDwarfCFA(DF, Layout, WasRelaxed))
1144     return WasRelaxed;
1145 
1146   MCContext &Context = Layout.getAssembler().getContext();
1147   int64_t Value;
1148   bool Abs = DF.getAddrDelta().evaluateAsAbsolute(Value, Layout);
1149   if (!Abs) {
1150     getContext().reportError(DF.getAddrDelta().getLoc(),
1151                              "invalid CFI advance_loc expression");
1152     DF.setAddrDelta(MCConstantExpr::create(0, Context));
1153     return false;
1154   }
1155 
1156   SmallVectorImpl<char> &Data = DF.getContents();
1157   uint64_t OldSize = Data.size();
1158   Data.clear();
1159   DF.getFixups().clear();
1160 
1161   MCDwarfFrameEmitter::encodeAdvanceLoc(Context, Value, Data);
1162   return OldSize != Data.size();
1163 }
1164 
1165 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout,
1166                                          MCCVInlineLineTableFragment &F) {
1167   unsigned OldSize = F.getContents().size();
1168   getContext().getCVContext().encodeInlineLineTable(Layout, F);
1169   return OldSize != F.getContents().size();
1170 }
1171 
1172 bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout,
1173                                   MCCVDefRangeFragment &F) {
1174   unsigned OldSize = F.getContents().size();
1175   getContext().getCVContext().encodeDefRange(Layout, F);
1176   return OldSize != F.getContents().size();
1177 }
1178 
1179 bool MCAssembler::relaxPseudoProbeAddr(MCAsmLayout &Layout,
1180                                        MCPseudoProbeAddrFragment &PF) {
1181   uint64_t OldSize = PF.getContents().size();
1182   int64_t AddrDelta;
1183   bool Abs = PF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1184   assert(Abs && "We created a pseudo probe with an invalid expression");
1185   (void)Abs;
1186   SmallVectorImpl<char> &Data = PF.getContents();
1187   Data.clear();
1188   raw_svector_ostream OSE(Data);
1189   PF.getFixups().clear();
1190 
1191   // AddrDelta is a signed integer
1192   encodeSLEB128(AddrDelta, OSE, OldSize);
1193   return OldSize != Data.size();
1194 }
1195 
1196 bool MCAssembler::relaxFragment(MCAsmLayout &Layout, MCFragment &F) {
1197   switch(F.getKind()) {
1198   default:
1199     return false;
1200   case MCFragment::FT_Relaxable:
1201     assert(!getRelaxAll() &&
1202            "Did not expect a MCRelaxableFragment in RelaxAll mode");
1203     return relaxInstruction(Layout, cast<MCRelaxableFragment>(F));
1204   case MCFragment::FT_Dwarf:
1205     return relaxDwarfLineAddr(Layout, cast<MCDwarfLineAddrFragment>(F));
1206   case MCFragment::FT_DwarfFrame:
1207     return relaxDwarfCallFrameFragment(Layout,
1208                                        cast<MCDwarfCallFrameFragment>(F));
1209   case MCFragment::FT_LEB:
1210     return relaxLEB(Layout, cast<MCLEBFragment>(F));
1211   case MCFragment::FT_BoundaryAlign:
1212     return relaxBoundaryAlign(Layout, cast<MCBoundaryAlignFragment>(F));
1213   case MCFragment::FT_CVInlineLines:
1214     return relaxCVInlineLineTable(Layout, cast<MCCVInlineLineTableFragment>(F));
1215   case MCFragment::FT_CVDefRange:
1216     return relaxCVDefRange(Layout, cast<MCCVDefRangeFragment>(F));
1217   case MCFragment::FT_PseudoProbe:
1218     return relaxPseudoProbeAddr(Layout, cast<MCPseudoProbeAddrFragment>(F));
1219   }
1220 }
1221 
1222 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
1223   // Holds the first fragment which needed relaxing during this layout. It will
1224   // remain NULL if none were relaxed.
1225   // When a fragment is relaxed, all the fragments following it should get
1226   // invalidated because their offset is going to change.
1227   MCFragment *FirstRelaxedFragment = nullptr;
1228 
1229   // Attempt to relax all the fragments in the section.
1230   for (MCFragment &Frag : Sec) {
1231     // Check if this is a fragment that needs relaxation.
1232     bool RelaxedFrag = relaxFragment(Layout, Frag);
1233     if (RelaxedFrag && !FirstRelaxedFragment)
1234       FirstRelaxedFragment = &Frag;
1235   }
1236   if (FirstRelaxedFragment) {
1237     Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
1238     return true;
1239   }
1240   return false;
1241 }
1242 
1243 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
1244   ++stats::RelaxationSteps;
1245 
1246   bool WasRelaxed = false;
1247   for (MCSection &Sec : *this) {
1248     while (layoutSectionOnce(Layout, Sec))
1249       WasRelaxed = true;
1250   }
1251 
1252   return WasRelaxed;
1253 }
1254 
1255 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
1256   assert(getBackendPtr() && "Expected assembler backend");
1257   // The layout is done. Mark every fragment as valid.
1258   for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
1259     MCSection &Section = *Layout.getSectionOrder()[i];
1260     Layout.getFragmentOffset(&*Section.getFragmentList().rbegin());
1261     computeFragmentSize(Layout, *Section.getFragmentList().rbegin());
1262   }
1263   getBackend().finishLayout(*this, Layout);
1264 }
1265 
1266 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1267 LLVM_DUMP_METHOD void MCAssembler::dump() const{
1268   raw_ostream &OS = errs();
1269 
1270   OS << "<MCAssembler\n";
1271   OS << "  Sections:[\n    ";
1272   for (const_iterator it = begin(), ie = end(); it != ie; ++it) {
1273     if (it != begin()) OS << ",\n    ";
1274     it->dump();
1275   }
1276   OS << "],\n";
1277   OS << "  Symbols:[";
1278 
1279   for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1280     if (it != symbol_begin()) OS << ",\n           ";
1281     OS << "(";
1282     it->dump();
1283     OS << ", Index:" << it->getIndex() << ", ";
1284     OS << ")";
1285   }
1286   OS << "]>\n";
1287 }
1288 #endif
1289