xref: /freebsd/contrib/llvm-project/llvm/lib/MC/ELFObjectWriter.cpp (revision fcaf7f8644a9988098ac6be2165bce3ea4786e91)
1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements ELF object file writer information.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/ADT/iterator.h"
20 #include "llvm/BinaryFormat/ELF.h"
21 #include "llvm/MC/MCAsmBackend.h"
22 #include "llvm/MC/MCAsmInfo.h"
23 #include "llvm/MC/MCAsmLayout.h"
24 #include "llvm/MC/MCAssembler.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCELFObjectWriter.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/MC/MCFixup.h"
29 #include "llvm/MC/MCFixupKindInfo.h"
30 #include "llvm/MC/MCFragment.h"
31 #include "llvm/MC/MCObjectWriter.h"
32 #include "llvm/MC/MCSection.h"
33 #include "llvm/MC/MCSectionELF.h"
34 #include "llvm/MC/MCSymbol.h"
35 #include "llvm/MC/MCSymbolELF.h"
36 #include "llvm/MC/MCTargetOptions.h"
37 #include "llvm/MC/MCValue.h"
38 #include "llvm/MC/StringTableBuilder.h"
39 #include "llvm/Support/Alignment.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compression.h"
42 #include "llvm/Support/Endian.h"
43 #include "llvm/Support/EndianStream.h"
44 #include "llvm/Support/Error.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/Host.h"
47 #include "llvm/Support/LEB128.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/SMLoc.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstddef>
54 #include <cstdint>
55 #include <map>
56 #include <memory>
57 #include <string>
58 #include <utility>
59 #include <vector>
60 
61 using namespace llvm;
62 
63 #undef  DEBUG_TYPE
64 #define DEBUG_TYPE "reloc-info"
65 
66 namespace {
67 
68 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>;
69 
70 class ELFObjectWriter;
71 struct ELFWriter;
72 
73 bool isDwoSection(const MCSectionELF &Sec) {
74   return Sec.getName().endswith(".dwo");
75 }
76 
77 class SymbolTableWriter {
78   ELFWriter &EWriter;
79   bool Is64Bit;
80 
81   // indexes we are going to write to .symtab_shndx.
82   std::vector<uint32_t> ShndxIndexes;
83 
84   // The numbel of symbols written so far.
85   unsigned NumWritten;
86 
87   void createSymtabShndx();
88 
89   template <typename T> void write(T Value);
90 
91 public:
92   SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit);
93 
94   void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
95                    uint8_t other, uint32_t shndx, bool Reserved);
96 
97   ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
98 };
99 
100 struct ELFWriter {
101   ELFObjectWriter &OWriter;
102   support::endian::Writer W;
103 
104   enum DwoMode {
105     AllSections,
106     NonDwoOnly,
107     DwoOnly,
108   } Mode;
109 
110   static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
111   static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
112                          bool Used, bool Renamed);
113 
114   /// Helper struct for containing some precomputed information on symbols.
115   struct ELFSymbolData {
116     const MCSymbolELF *Symbol;
117     StringRef Name;
118     uint32_t SectionIndex;
119     uint32_t Order;
120   };
121 
122   /// @}
123   /// @name Symbol Table Data
124   /// @{
125 
126   StringTableBuilder StrTabBuilder{StringTableBuilder::ELF};
127 
128   /// @}
129 
130   // This holds the symbol table index of the last local symbol.
131   unsigned LastLocalSymbolIndex;
132   // This holds the .strtab section index.
133   unsigned StringTableIndex;
134   // This holds the .symtab section index.
135   unsigned SymbolTableIndex;
136 
137   // Sections in the order they are to be output in the section table.
138   std::vector<const MCSectionELF *> SectionTable;
139   unsigned addToSectionTable(const MCSectionELF *Sec);
140 
141   // TargetObjectWriter wrappers.
142   bool is64Bit() const;
143   bool usesRela(const MCSectionELF &Sec) const;
144 
145   uint64_t align(unsigned Alignment);
146 
147   bool maybeWriteCompression(uint32_t ChType, uint64_t Size,
148                              SmallVectorImpl<uint8_t> &CompressedContents,
149                              unsigned Alignment);
150 
151 public:
152   ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS,
153             bool IsLittleEndian, DwoMode Mode)
154       : OWriter(OWriter),
155         W(OS, IsLittleEndian ? support::little : support::big), Mode(Mode) {}
156 
157   void WriteWord(uint64_t Word) {
158     if (is64Bit())
159       W.write<uint64_t>(Word);
160     else
161       W.write<uint32_t>(Word);
162   }
163 
164   template <typename T> void write(T Val) {
165     W.write(Val);
166   }
167 
168   void writeHeader(const MCAssembler &Asm);
169 
170   void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
171                    ELFSymbolData &MSD, const MCAsmLayout &Layout);
172 
173   // Start and end offset of each section
174   using SectionOffsetsTy =
175       std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>;
176 
177   // Map from a signature symbol to the group section index
178   using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>;
179 
180   /// Compute the symbol table data
181   ///
182   /// \param Asm - The assembler.
183   /// \param SectionIndexMap - Maps a section to its index.
184   /// \param RevGroupMap - Maps a signature symbol to the group section.
185   void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
186                           const SectionIndexMapTy &SectionIndexMap,
187                           const RevGroupMapTy &RevGroupMap,
188                           SectionOffsetsTy &SectionOffsets);
189 
190   void writeAddrsigSection();
191 
192   MCSectionELF *createRelocationSection(MCContext &Ctx,
193                                         const MCSectionELF &Sec);
194 
195   void writeSectionHeader(const MCAsmLayout &Layout,
196                           const SectionIndexMapTy &SectionIndexMap,
197                           const SectionOffsetsTy &SectionOffsets);
198 
199   void writeSectionData(const MCAssembler &Asm, MCSection &Sec,
200                         const MCAsmLayout &Layout);
201 
202   void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
203                         uint64_t Address, uint64_t Offset, uint64_t Size,
204                         uint32_t Link, uint32_t Info, uint64_t Alignment,
205                         uint64_t EntrySize);
206 
207   void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
208 
209   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout);
210   void writeSection(const SectionIndexMapTy &SectionIndexMap,
211                     uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
212                     const MCSectionELF &Section);
213 };
214 
215 class ELFObjectWriter : public MCObjectWriter {
216   /// The target specific ELF writer instance.
217   std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
218 
219   DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations;
220 
221   DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
222 
223   bool SeenGnuAbi = false;
224 
225   bool hasRelocationAddend() const;
226 
227   bool shouldRelocateWithSymbol(const MCAssembler &Asm,
228                                 const MCSymbolRefExpr *RefA,
229                                 const MCSymbolELF *Sym, uint64_t C,
230                                 unsigned Type) const;
231 
232 public:
233   ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW)
234       : TargetObjectWriter(std::move(MOTW)) {}
235 
236   void reset() override {
237     SeenGnuAbi = false;
238     Relocations.clear();
239     Renames.clear();
240     MCObjectWriter::reset();
241   }
242 
243   bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
244                                               const MCSymbol &SymA,
245                                               const MCFragment &FB, bool InSet,
246                                               bool IsPCRel) const override;
247 
248   virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc,
249                                const MCSectionELF *From,
250                                const MCSectionELF *To) {
251     return true;
252   }
253 
254   void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
255                         const MCFragment *Fragment, const MCFixup &Fixup,
256                         MCValue Target, uint64_t &FixedValue) override;
257 
258   void executePostLayoutBinding(MCAssembler &Asm,
259                                 const MCAsmLayout &Layout) override;
260 
261   void markGnuAbi() override { SeenGnuAbi = true; }
262   bool seenGnuAbi() const { return SeenGnuAbi; }
263 
264   friend struct ELFWriter;
265 };
266 
267 class ELFSingleObjectWriter : public ELFObjectWriter {
268   raw_pwrite_stream &OS;
269   bool IsLittleEndian;
270 
271 public:
272   ELFSingleObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
273                         raw_pwrite_stream &OS, bool IsLittleEndian)
274       : ELFObjectWriter(std::move(MOTW)), OS(OS),
275         IsLittleEndian(IsLittleEndian) {}
276 
277   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override {
278     return ELFWriter(*this, OS, IsLittleEndian, ELFWriter::AllSections)
279         .writeObject(Asm, Layout);
280   }
281 
282   friend struct ELFWriter;
283 };
284 
285 class ELFDwoObjectWriter : public ELFObjectWriter {
286   raw_pwrite_stream &OS, &DwoOS;
287   bool IsLittleEndian;
288 
289 public:
290   ELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
291                      raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS,
292                      bool IsLittleEndian)
293       : ELFObjectWriter(std::move(MOTW)), OS(OS), DwoOS(DwoOS),
294         IsLittleEndian(IsLittleEndian) {}
295 
296   virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc,
297                                const MCSectionELF *From,
298                                const MCSectionELF *To) override {
299     if (isDwoSection(*From)) {
300       Ctx.reportError(Loc, "A dwo section may not contain relocations");
301       return false;
302     }
303     if (To && isDwoSection(*To)) {
304       Ctx.reportError(Loc, "A relocation may not refer to a dwo section");
305       return false;
306     }
307     return true;
308   }
309 
310   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override {
311     uint64_t Size = ELFWriter(*this, OS, IsLittleEndian, ELFWriter::NonDwoOnly)
312                         .writeObject(Asm, Layout);
313     Size += ELFWriter(*this, DwoOS, IsLittleEndian, ELFWriter::DwoOnly)
314                 .writeObject(Asm, Layout);
315     return Size;
316   }
317 };
318 
319 } // end anonymous namespace
320 
321 uint64_t ELFWriter::align(unsigned Alignment) {
322   uint64_t Offset = W.OS.tell(), NewOffset = alignTo(Offset, Alignment);
323   W.OS.write_zeros(NewOffset - Offset);
324   return NewOffset;
325 }
326 
327 unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) {
328   SectionTable.push_back(Sec);
329   StrTabBuilder.add(Sec->getName());
330   return SectionTable.size();
331 }
332 
333 void SymbolTableWriter::createSymtabShndx() {
334   if (!ShndxIndexes.empty())
335     return;
336 
337   ShndxIndexes.resize(NumWritten);
338 }
339 
340 template <typename T> void SymbolTableWriter::write(T Value) {
341   EWriter.write(Value);
342 }
343 
344 SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit)
345     : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
346 
347 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
348                                     uint64_t size, uint8_t other,
349                                     uint32_t shndx, bool Reserved) {
350   bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
351 
352   if (LargeIndex)
353     createSymtabShndx();
354 
355   if (!ShndxIndexes.empty()) {
356     if (LargeIndex)
357       ShndxIndexes.push_back(shndx);
358     else
359       ShndxIndexes.push_back(0);
360   }
361 
362   uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
363 
364   if (Is64Bit) {
365     write(name);  // st_name
366     write(info);  // st_info
367     write(other); // st_other
368     write(Index); // st_shndx
369     write(value); // st_value
370     write(size);  // st_size
371   } else {
372     write(name);            // st_name
373     write(uint32_t(value)); // st_value
374     write(uint32_t(size));  // st_size
375     write(info);            // st_info
376     write(other);           // st_other
377     write(Index);           // st_shndx
378   }
379 
380   ++NumWritten;
381 }
382 
383 bool ELFWriter::is64Bit() const {
384   return OWriter.TargetObjectWriter->is64Bit();
385 }
386 
387 bool ELFWriter::usesRela(const MCSectionELF &Sec) const {
388   return OWriter.hasRelocationAddend() &&
389          Sec.getType() != ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
390 }
391 
392 // Emit the ELF header.
393 void ELFWriter::writeHeader(const MCAssembler &Asm) {
394   // ELF Header
395   // ----------
396   //
397   // Note
398   // ----
399   // emitWord method behaves differently for ELF32 and ELF64, writing
400   // 4 bytes in the former and 8 in the latter.
401 
402   W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3]
403 
404   W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
405 
406   // e_ident[EI_DATA]
407   W.OS << char(W.Endian == support::little ? ELF::ELFDATA2LSB
408                                            : ELF::ELFDATA2MSB);
409 
410   W.OS << char(ELF::EV_CURRENT);        // e_ident[EI_VERSION]
411   // e_ident[EI_OSABI]
412   uint8_t OSABI = OWriter.TargetObjectWriter->getOSABI();
413   W.OS << char(OSABI == ELF::ELFOSABI_NONE && OWriter.seenGnuAbi()
414                    ? int(ELF::ELFOSABI_GNU)
415                    : OSABI);
416   // e_ident[EI_ABIVERSION]
417   W.OS << char(OWriter.TargetObjectWriter->getABIVersion());
418 
419   W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD);
420 
421   W.write<uint16_t>(ELF::ET_REL);             // e_type
422 
423   W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target
424 
425   W.write<uint32_t>(ELF::EV_CURRENT);         // e_version
426   WriteWord(0);                    // e_entry, no entry point in .o file
427   WriteWord(0);                    // e_phoff, no program header for .o
428   WriteWord(0);                     // e_shoff = sec hdr table off in bytes
429 
430   // e_flags = whatever the target wants
431   W.write<uint32_t>(Asm.getELFHeaderEFlags());
432 
433   // e_ehsize = ELF header size
434   W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr)
435                               : sizeof(ELF::Elf32_Ehdr));
436 
437   W.write<uint16_t>(0);                  // e_phentsize = prog header entry size
438   W.write<uint16_t>(0);                  // e_phnum = # prog header entries = 0
439 
440   // e_shentsize = Section header entry size
441   W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr)
442                               : sizeof(ELF::Elf32_Shdr));
443 
444   // e_shnum     = # of section header ents
445   W.write<uint16_t>(0);
446 
447   // e_shstrndx  = Section # of '.strtab'
448   assert(StringTableIndex < ELF::SHN_LORESERVE);
449   W.write<uint16_t>(StringTableIndex);
450 }
451 
452 uint64_t ELFWriter::SymbolValue(const MCSymbol &Sym,
453                                 const MCAsmLayout &Layout) {
454   if (Sym.isCommon())
455     return Sym.getCommonAlignment();
456 
457   uint64_t Res;
458   if (!Layout.getSymbolOffset(Sym, Res))
459     return 0;
460 
461   if (Layout.getAssembler().isThumbFunc(&Sym))
462     Res |= 1;
463 
464   return Res;
465 }
466 
467 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
468   uint8_t Type = newType;
469 
470   // Propagation rules:
471   // IFUNC > FUNC > OBJECT > NOTYPE
472   // TLS_OBJECT > OBJECT > NOTYPE
473   //
474   // dont let the new type degrade the old type
475   switch (origType) {
476   default:
477     break;
478   case ELF::STT_GNU_IFUNC:
479     if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
480         Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
481       Type = ELF::STT_GNU_IFUNC;
482     break;
483   case ELF::STT_FUNC:
484     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
485         Type == ELF::STT_TLS)
486       Type = ELF::STT_FUNC;
487     break;
488   case ELF::STT_OBJECT:
489     if (Type == ELF::STT_NOTYPE)
490       Type = ELF::STT_OBJECT;
491     break;
492   case ELF::STT_TLS:
493     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
494         Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
495       Type = ELF::STT_TLS;
496     break;
497   }
498 
499   return Type;
500 }
501 
502 static bool isIFunc(const MCSymbolELF *Symbol) {
503   while (Symbol->getType() != ELF::STT_GNU_IFUNC) {
504     const MCSymbolRefExpr *Value;
505     if (!Symbol->isVariable() ||
506         !(Value = dyn_cast<MCSymbolRefExpr>(Symbol->getVariableValue())) ||
507         Value->getKind() != MCSymbolRefExpr::VK_None ||
508         mergeTypeForSet(Symbol->getType(), ELF::STT_GNU_IFUNC) != ELF::STT_GNU_IFUNC)
509       return false;
510     Symbol = &cast<MCSymbolELF>(Value->getSymbol());
511   }
512   return true;
513 }
514 
515 void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
516                             ELFSymbolData &MSD, const MCAsmLayout &Layout) {
517   const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
518   const MCSymbolELF *Base =
519       cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
520 
521   // This has to be in sync with when computeSymbolTable uses SHN_ABS or
522   // SHN_COMMON.
523   bool IsReserved = !Base || Symbol.isCommon();
524 
525   // Binding and Type share the same byte as upper and lower nibbles
526   uint8_t Binding = Symbol.getBinding();
527   uint8_t Type = Symbol.getType();
528   if (isIFunc(&Symbol))
529     Type = ELF::STT_GNU_IFUNC;
530   if (Base) {
531     Type = mergeTypeForSet(Type, Base->getType());
532   }
533   uint8_t Info = (Binding << 4) | Type;
534 
535   // Other and Visibility share the same byte with Visibility using the lower
536   // 2 bits
537   uint8_t Visibility = Symbol.getVisibility();
538   uint8_t Other = Symbol.getOther() | Visibility;
539 
540   uint64_t Value = SymbolValue(*MSD.Symbol, Layout);
541   uint64_t Size = 0;
542 
543   const MCExpr *ESize = MSD.Symbol->getSize();
544   if (!ESize && Base) {
545     // For expressions like .set y, x+1, if y's size is unset, inherit from x.
546     ESize = Base->getSize();
547 
548     // For `.size x, 2; y = x; .size y, 1; z = y; z1 = z; .symver y, y@v1`, z,
549     // z1, and y@v1's st_size equals y's. However, `Base` is `x` which will give
550     // us 2. Follow the MCSymbolRefExpr assignment chain, which covers most
551     // needs. MCBinaryExpr is not handled.
552     const MCSymbolELF *Sym = &Symbol;
553     while (Sym->isVariable()) {
554       if (auto *Expr =
555               dyn_cast<MCSymbolRefExpr>(Sym->getVariableValue(false))) {
556         Sym = cast<MCSymbolELF>(&Expr->getSymbol());
557         if (!Sym->getSize())
558           continue;
559         ESize = Sym->getSize();
560       }
561       break;
562     }
563   }
564 
565   if (ESize) {
566     int64_t Res;
567     if (!ESize->evaluateKnownAbsolute(Res, Layout))
568       report_fatal_error("Size expression must be absolute.");
569     Size = Res;
570   }
571 
572   // Write out the symbol table entry
573   Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex,
574                      IsReserved);
575 }
576 
577 bool ELFWriter::isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
578                            bool Used, bool Renamed) {
579   if (Symbol.isVariable()) {
580     const MCExpr *Expr = Symbol.getVariableValue();
581     // Target Expressions that are always inlined do not appear in the symtab
582     if (const auto *T = dyn_cast<MCTargetExpr>(Expr))
583       if (T->inlineAssignedExpr())
584         return false;
585     if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
586       if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
587         return false;
588     }
589   }
590 
591   if (Used)
592     return true;
593 
594   if (Renamed)
595     return false;
596 
597   if (Symbol.isVariable() && Symbol.isUndefined()) {
598     // FIXME: this is here just to diagnose the case of a var = commmon_sym.
599     Layout.getBaseSymbol(Symbol);
600     return false;
601   }
602 
603   if (Symbol.isTemporary())
604     return false;
605 
606   if (Symbol.getType() == ELF::STT_SECTION)
607     return false;
608 
609   return true;
610 }
611 
612 void ELFWriter::computeSymbolTable(
613     MCAssembler &Asm, const MCAsmLayout &Layout,
614     const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
615     SectionOffsetsTy &SectionOffsets) {
616   MCContext &Ctx = Asm.getContext();
617   SymbolTableWriter Writer(*this, is64Bit());
618 
619   // Symbol table
620   unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
621   MCSectionELF *SymtabSection =
622       Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize);
623   SymtabSection->setAlignment(is64Bit() ? Align(8) : Align(4));
624   SymbolTableIndex = addToSectionTable(SymtabSection);
625 
626   uint64_t SecStart = align(SymtabSection->getAlignment());
627 
628   // The first entry is the undefined symbol entry.
629   Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
630 
631   std::vector<ELFSymbolData> LocalSymbolData;
632   std::vector<ELFSymbolData> ExternalSymbolData;
633   MutableArrayRef<std::pair<std::string, size_t>> FileNames =
634       Asm.getFileNames();
635   for (const std::pair<std::string, size_t> &F : FileNames)
636     StrTabBuilder.add(F.first);
637 
638   // Add the data for the symbols.
639   bool HasLargeSectionIndex = false;
640   for (auto It : llvm::enumerate(Asm.symbols())) {
641     const auto &Symbol = cast<MCSymbolELF>(It.value());
642     bool Used = Symbol.isUsedInReloc();
643     bool WeakrefUsed = Symbol.isWeakrefUsedInReloc();
644     bool isSignature = Symbol.isSignature();
645 
646     if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
647                     OWriter.Renames.count(&Symbol)))
648       continue;
649 
650     if (Symbol.isTemporary() && Symbol.isUndefined()) {
651       Ctx.reportError(SMLoc(), "Undefined temporary symbol " + Symbol.getName());
652       continue;
653     }
654 
655     ELFSymbolData MSD;
656     MSD.Symbol = cast<MCSymbolELF>(&Symbol);
657     MSD.Order = It.index();
658 
659     bool Local = Symbol.getBinding() == ELF::STB_LOCAL;
660     assert(Local || !Symbol.isTemporary());
661 
662     if (Symbol.isAbsolute()) {
663       MSD.SectionIndex = ELF::SHN_ABS;
664     } else if (Symbol.isCommon()) {
665       if (Symbol.isTargetCommon()) {
666         MSD.SectionIndex = Symbol.getIndex();
667       } else {
668         assert(!Local);
669         MSD.SectionIndex = ELF::SHN_COMMON;
670       }
671     } else if (Symbol.isUndefined()) {
672       if (isSignature && !Used) {
673         MSD.SectionIndex = RevGroupMap.lookup(&Symbol);
674         if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
675           HasLargeSectionIndex = true;
676       } else {
677         MSD.SectionIndex = ELF::SHN_UNDEF;
678       }
679     } else {
680       const MCSectionELF &Section =
681           static_cast<const MCSectionELF &>(Symbol.getSection());
682 
683       // We may end up with a situation when section symbol is technically
684       // defined, but should not be. That happens because we explicitly
685       // pre-create few .debug_* sections to have accessors.
686       // And if these sections were not really defined in the code, but were
687       // referenced, we simply error out.
688       if (!Section.isRegistered()) {
689         assert(static_cast<const MCSymbolELF &>(Symbol).getType() ==
690                ELF::STT_SECTION);
691         Ctx.reportError(SMLoc(),
692                         "Undefined section reference: " + Symbol.getName());
693         continue;
694       }
695 
696       if (Mode == NonDwoOnly && isDwoSection(Section))
697         continue;
698       MSD.SectionIndex = SectionIndexMap.lookup(&Section);
699       assert(MSD.SectionIndex && "Invalid section index!");
700       if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
701         HasLargeSectionIndex = true;
702     }
703 
704     StringRef Name = Symbol.getName();
705 
706     // Sections have their own string table
707     if (Symbol.getType() != ELF::STT_SECTION) {
708       MSD.Name = Name;
709       StrTabBuilder.add(Name);
710     }
711 
712     if (Local)
713       LocalSymbolData.push_back(MSD);
714     else
715       ExternalSymbolData.push_back(MSD);
716   }
717 
718   // This holds the .symtab_shndx section index.
719   unsigned SymtabShndxSectionIndex = 0;
720 
721   if (HasLargeSectionIndex) {
722     MCSectionELF *SymtabShndxSection =
723         Ctx.getELFSection(".symtab_shndx", ELF::SHT_SYMTAB_SHNDX, 0, 4);
724     SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection);
725     SymtabShndxSection->setAlignment(Align(4));
726   }
727 
728   StrTabBuilder.finalize();
729 
730   // Make the first STT_FILE precede previous local symbols.
731   unsigned Index = 1;
732   auto FileNameIt = FileNames.begin();
733   if (!FileNames.empty())
734     FileNames[0].second = 0;
735 
736   for (ELFSymbolData &MSD : LocalSymbolData) {
737     // Emit STT_FILE symbols before their associated local symbols.
738     for (; FileNameIt != FileNames.end() && FileNameIt->second <= MSD.Order;
739          ++FileNameIt) {
740       Writer.writeSymbol(StrTabBuilder.getOffset(FileNameIt->first),
741                          ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
742                          ELF::SHN_ABS, true);
743       ++Index;
744     }
745 
746     unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION
747                                ? 0
748                                : StrTabBuilder.getOffset(MSD.Name);
749     MSD.Symbol->setIndex(Index++);
750     writeSymbol(Writer, StringIndex, MSD, Layout);
751   }
752   for (; FileNameIt != FileNames.end(); ++FileNameIt) {
753     Writer.writeSymbol(StrTabBuilder.getOffset(FileNameIt->first),
754                        ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
755                        ELF::SHN_ABS, true);
756     ++Index;
757   }
758 
759   // Write the symbol table entries.
760   LastLocalSymbolIndex = Index;
761 
762   for (ELFSymbolData &MSD : ExternalSymbolData) {
763     unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name);
764     MSD.Symbol->setIndex(Index++);
765     writeSymbol(Writer, StringIndex, MSD, Layout);
766     assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL);
767   }
768 
769   uint64_t SecEnd = W.OS.tell();
770   SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd);
771 
772   ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes();
773   if (ShndxIndexes.empty()) {
774     assert(SymtabShndxSectionIndex == 0);
775     return;
776   }
777   assert(SymtabShndxSectionIndex != 0);
778 
779   SecStart = W.OS.tell();
780   const MCSectionELF *SymtabShndxSection =
781       SectionTable[SymtabShndxSectionIndex - 1];
782   for (uint32_t Index : ShndxIndexes)
783     write(Index);
784   SecEnd = W.OS.tell();
785   SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
786 }
787 
788 void ELFWriter::writeAddrsigSection() {
789   for (const MCSymbol *Sym : OWriter.AddrsigSyms)
790     encodeULEB128(Sym->getIndex(), W.OS);
791 }
792 
793 MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx,
794                                                  const MCSectionELF &Sec) {
795   if (OWriter.Relocations[&Sec].empty())
796     return nullptr;
797 
798   const StringRef SectionName = Sec.getName();
799   bool Rela = usesRela(Sec);
800   std::string RelaSectionName = Rela ? ".rela" : ".rel";
801   RelaSectionName += SectionName;
802 
803   unsigned EntrySize;
804   if (Rela)
805     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
806   else
807     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
808 
809   unsigned Flags = ELF::SHF_INFO_LINK;
810   if (Sec.getFlags() & ELF::SHF_GROUP)
811     Flags = ELF::SHF_GROUP;
812 
813   MCSectionELF *RelaSection = Ctx.createELFRelSection(
814       RelaSectionName, Rela ? ELF::SHT_RELA : ELF::SHT_REL, Flags, EntrySize,
815       Sec.getGroup(), &Sec);
816   RelaSection->setAlignment(is64Bit() ? Align(8) : Align(4));
817   return RelaSection;
818 }
819 
820 // Include the debug info compression header.
821 bool ELFWriter::maybeWriteCompression(
822     uint32_t ChType, uint64_t Size,
823     SmallVectorImpl<uint8_t> &CompressedContents, unsigned Alignment) {
824   uint64_t HdrSize =
825       is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr);
826   if (Size <= HdrSize + CompressedContents.size())
827     return false;
828   // Platform specific header is followed by compressed data.
829   if (is64Bit()) {
830     // Write Elf64_Chdr header.
831     write(static_cast<ELF::Elf64_Word>(ChType));
832     write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field.
833     write(static_cast<ELF::Elf64_Xword>(Size));
834     write(static_cast<ELF::Elf64_Xword>(Alignment));
835   } else {
836     // Write Elf32_Chdr header otherwise.
837     write(static_cast<ELF::Elf32_Word>(ChType));
838     write(static_cast<ELF::Elf32_Word>(Size));
839     write(static_cast<ELF::Elf32_Word>(Alignment));
840   }
841   return true;
842 }
843 
844 void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
845                                  const MCAsmLayout &Layout) {
846   MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
847   StringRef SectionName = Section.getName();
848 
849   auto &MC = Asm.getContext();
850   const auto &MAI = MC.getAsmInfo();
851 
852   bool CompressionEnabled =
853       MAI->compressDebugSections() != DebugCompressionType::None;
854   if (!CompressionEnabled || !SectionName.startswith(".debug_")) {
855     Asm.writeSectionData(W.OS, &Section, Layout);
856     return;
857   }
858 
859   assert(MAI->compressDebugSections() == DebugCompressionType::Z &&
860          "expected zlib style compression");
861 
862   SmallVector<char, 128> UncompressedData;
863   raw_svector_ostream VecOS(UncompressedData);
864   Asm.writeSectionData(VecOS, &Section, Layout);
865 
866   SmallVector<uint8_t, 128> Compressed;
867   const uint32_t ChType = ELF::ELFCOMPRESS_ZLIB;
868   compression::zlib::compress(
869       makeArrayRef(reinterpret_cast<uint8_t *>(UncompressedData.data()),
870                    UncompressedData.size()),
871       Compressed);
872 
873   if (!maybeWriteCompression(ChType, UncompressedData.size(), Compressed,
874                              Sec.getAlignment())) {
875     W.OS << UncompressedData;
876     return;
877   }
878 
879   Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED);
880   // Alignment field should reflect the requirements of
881   // the compressed section header.
882   Section.setAlignment(is64Bit() ? Align(8) : Align(4));
883   W.OS << toStringRef(Compressed);
884 }
885 
886 void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
887                                  uint64_t Address, uint64_t Offset,
888                                  uint64_t Size, uint32_t Link, uint32_t Info,
889                                  uint64_t Alignment, uint64_t EntrySize) {
890   W.write<uint32_t>(Name);        // sh_name: index into string table
891   W.write<uint32_t>(Type);        // sh_type
892   WriteWord(Flags);     // sh_flags
893   WriteWord(Address);   // sh_addr
894   WriteWord(Offset);    // sh_offset
895   WriteWord(Size);      // sh_size
896   W.write<uint32_t>(Link);        // sh_link
897   W.write<uint32_t>(Info);        // sh_info
898   WriteWord(Alignment); // sh_addralign
899   WriteWord(EntrySize); // sh_entsize
900 }
901 
902 void ELFWriter::writeRelocations(const MCAssembler &Asm,
903                                        const MCSectionELF &Sec) {
904   std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec];
905 
906   // We record relocations by pushing to the end of a vector. Reverse the vector
907   // to get the relocations in the order they were created.
908   // In most cases that is not important, but it can be for special sections
909   // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
910   std::reverse(Relocs.begin(), Relocs.end());
911 
912   // Sort the relocation entries. MIPS needs this.
913   OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs);
914 
915   const bool Rela = usesRela(Sec);
916   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
917     const ELFRelocationEntry &Entry = Relocs[e - i - 1];
918     unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0;
919 
920     if (is64Bit()) {
921       write(Entry.Offset);
922       if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
923         write(uint32_t(Index));
924 
925         write(OWriter.TargetObjectWriter->getRSsym(Entry.Type));
926         write(OWriter.TargetObjectWriter->getRType3(Entry.Type));
927         write(OWriter.TargetObjectWriter->getRType2(Entry.Type));
928         write(OWriter.TargetObjectWriter->getRType(Entry.Type));
929       } else {
930         struct ELF::Elf64_Rela ERE64;
931         ERE64.setSymbolAndType(Index, Entry.Type);
932         write(ERE64.r_info);
933       }
934       if (Rela)
935         write(Entry.Addend);
936     } else {
937       write(uint32_t(Entry.Offset));
938 
939       struct ELF::Elf32_Rela ERE32;
940       ERE32.setSymbolAndType(Index, Entry.Type);
941       write(ERE32.r_info);
942 
943       if (Rela)
944         write(uint32_t(Entry.Addend));
945 
946       if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
947         if (uint32_t RType =
948                 OWriter.TargetObjectWriter->getRType2(Entry.Type)) {
949           write(uint32_t(Entry.Offset));
950 
951           ERE32.setSymbolAndType(0, RType);
952           write(ERE32.r_info);
953           write(uint32_t(0));
954         }
955         if (uint32_t RType =
956                 OWriter.TargetObjectWriter->getRType3(Entry.Type)) {
957           write(uint32_t(Entry.Offset));
958 
959           ERE32.setSymbolAndType(0, RType);
960           write(ERE32.r_info);
961           write(uint32_t(0));
962         }
963       }
964     }
965   }
966 }
967 
968 void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
969                              uint32_t GroupSymbolIndex, uint64_t Offset,
970                              uint64_t Size, const MCSectionELF &Section) {
971   uint64_t sh_link = 0;
972   uint64_t sh_info = 0;
973 
974   switch(Section.getType()) {
975   default:
976     // Nothing to do.
977     break;
978 
979   case ELF::SHT_DYNAMIC:
980     llvm_unreachable("SHT_DYNAMIC in a relocatable object");
981 
982   case ELF::SHT_REL:
983   case ELF::SHT_RELA: {
984     sh_link = SymbolTableIndex;
985     assert(sh_link && ".symtab not found");
986     const MCSection *InfoSection = Section.getLinkedToSection();
987     sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection));
988     break;
989   }
990 
991   case ELF::SHT_SYMTAB:
992     sh_link = StringTableIndex;
993     sh_info = LastLocalSymbolIndex;
994     break;
995 
996   case ELF::SHT_SYMTAB_SHNDX:
997   case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
998   case ELF::SHT_LLVM_ADDRSIG:
999     sh_link = SymbolTableIndex;
1000     break;
1001 
1002   case ELF::SHT_GROUP:
1003     sh_link = SymbolTableIndex;
1004     sh_info = GroupSymbolIndex;
1005     break;
1006   }
1007 
1008   if (Section.getFlags() & ELF::SHF_LINK_ORDER) {
1009     // If the value in the associated metadata is not a definition, Sym will be
1010     // undefined. Represent this with sh_link=0.
1011     const MCSymbol *Sym = Section.getLinkedToSymbol();
1012     if (Sym && Sym->isInSection()) {
1013       const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection());
1014       sh_link = SectionIndexMap.lookup(Sec);
1015     }
1016   }
1017 
1018   WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getName()),
1019                    Section.getType(), Section.getFlags(), 0, Offset, Size,
1020                    sh_link, sh_info, Section.getAlignment(),
1021                    Section.getEntrySize());
1022 }
1023 
1024 void ELFWriter::writeSectionHeader(
1025     const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
1026     const SectionOffsetsTy &SectionOffsets) {
1027   const unsigned NumSections = SectionTable.size();
1028 
1029   // Null section first.
1030   uint64_t FirstSectionSize =
1031       (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
1032   WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0);
1033 
1034   for (const MCSectionELF *Section : SectionTable) {
1035     uint32_t GroupSymbolIndex;
1036     unsigned Type = Section->getType();
1037     if (Type != ELF::SHT_GROUP)
1038       GroupSymbolIndex = 0;
1039     else
1040       GroupSymbolIndex = Section->getGroup()->getIndex();
1041 
1042     const std::pair<uint64_t, uint64_t> &Offsets =
1043         SectionOffsets.find(Section)->second;
1044     uint64_t Size;
1045     if (Type == ELF::SHT_NOBITS)
1046       Size = Layout.getSectionAddressSize(Section);
1047     else
1048       Size = Offsets.second - Offsets.first;
1049 
1050     writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size,
1051                  *Section);
1052   }
1053 }
1054 
1055 uint64_t ELFWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) {
1056   uint64_t StartOffset = W.OS.tell();
1057 
1058   MCContext &Ctx = Asm.getContext();
1059   MCSectionELF *StrtabSection =
1060       Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
1061   StringTableIndex = addToSectionTable(StrtabSection);
1062 
1063   RevGroupMapTy RevGroupMap;
1064   SectionIndexMapTy SectionIndexMap;
1065 
1066   std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers;
1067 
1068   // Write out the ELF header ...
1069   writeHeader(Asm);
1070 
1071   // ... then the sections ...
1072   SectionOffsetsTy SectionOffsets;
1073   std::vector<MCSectionELF *> Groups;
1074   std::vector<MCSectionELF *> Relocations;
1075   for (MCSection &Sec : Asm) {
1076     MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1077     if (Mode == NonDwoOnly && isDwoSection(Section))
1078       continue;
1079     if (Mode == DwoOnly && !isDwoSection(Section))
1080       continue;
1081 
1082     // Remember the offset into the file for this section.
1083     const uint64_t SecStart = align(Section.getAlignment());
1084 
1085     const MCSymbolELF *SignatureSymbol = Section.getGroup();
1086     writeSectionData(Asm, Section, Layout);
1087 
1088     uint64_t SecEnd = W.OS.tell();
1089     SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd);
1090 
1091     MCSectionELF *RelSection = createRelocationSection(Ctx, Section);
1092 
1093     if (SignatureSymbol) {
1094       unsigned &GroupIdx = RevGroupMap[SignatureSymbol];
1095       if (!GroupIdx) {
1096         MCSectionELF *Group =
1097             Ctx.createELFGroupSection(SignatureSymbol, Section.isComdat());
1098         GroupIdx = addToSectionTable(Group);
1099         Group->setAlignment(Align(4));
1100         Groups.push_back(Group);
1101       }
1102       std::vector<const MCSectionELF *> &Members =
1103           GroupMembers[SignatureSymbol];
1104       Members.push_back(&Section);
1105       if (RelSection)
1106         Members.push_back(RelSection);
1107     }
1108 
1109     SectionIndexMap[&Section] = addToSectionTable(&Section);
1110     if (RelSection) {
1111       SectionIndexMap[RelSection] = addToSectionTable(RelSection);
1112       Relocations.push_back(RelSection);
1113     }
1114 
1115     OWriter.TargetObjectWriter->addTargetSectionFlags(Ctx, Section);
1116   }
1117 
1118   for (MCSectionELF *Group : Groups) {
1119     // Remember the offset into the file for this section.
1120     const uint64_t SecStart = align(Group->getAlignment());
1121 
1122     const MCSymbol *SignatureSymbol = Group->getGroup();
1123     assert(SignatureSymbol);
1124     write(uint32_t(Group->isComdat() ? unsigned(ELF::GRP_COMDAT) : 0));
1125     for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) {
1126       uint32_t SecIndex = SectionIndexMap.lookup(Member);
1127       write(SecIndex);
1128     }
1129 
1130     uint64_t SecEnd = W.OS.tell();
1131     SectionOffsets[Group] = std::make_pair(SecStart, SecEnd);
1132   }
1133 
1134   if (Mode == DwoOnly) {
1135     // dwo files don't have symbol tables or relocations, but they do have
1136     // string tables.
1137     StrTabBuilder.finalize();
1138   } else {
1139     MCSectionELF *AddrsigSection;
1140     if (OWriter.EmitAddrsigSection) {
1141       AddrsigSection = Ctx.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG,
1142                                          ELF::SHF_EXCLUDE);
1143       addToSectionTable(AddrsigSection);
1144     }
1145 
1146     // Compute symbol table information.
1147     computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap,
1148                        SectionOffsets);
1149 
1150     for (MCSectionELF *RelSection : Relocations) {
1151       // Remember the offset into the file for this section.
1152       const uint64_t SecStart = align(RelSection->getAlignment());
1153 
1154       writeRelocations(Asm,
1155                        cast<MCSectionELF>(*RelSection->getLinkedToSection()));
1156 
1157       uint64_t SecEnd = W.OS.tell();
1158       SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd);
1159     }
1160 
1161     if (OWriter.EmitAddrsigSection) {
1162       uint64_t SecStart = W.OS.tell();
1163       writeAddrsigSection();
1164       uint64_t SecEnd = W.OS.tell();
1165       SectionOffsets[AddrsigSection] = std::make_pair(SecStart, SecEnd);
1166     }
1167   }
1168 
1169   {
1170     uint64_t SecStart = W.OS.tell();
1171     StrTabBuilder.write(W.OS);
1172     SectionOffsets[StrtabSection] = std::make_pair(SecStart, W.OS.tell());
1173   }
1174 
1175   const uint64_t SectionHeaderOffset = align(is64Bit() ? 8 : 4);
1176 
1177   // ... then the section header table ...
1178   writeSectionHeader(Layout, SectionIndexMap, SectionOffsets);
1179 
1180   uint16_t NumSections = support::endian::byte_swap<uint16_t>(
1181       (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF
1182                                                       : SectionTable.size() + 1,
1183       W.Endian);
1184   unsigned NumSectionsOffset;
1185 
1186   auto &Stream = static_cast<raw_pwrite_stream &>(W.OS);
1187   if (is64Bit()) {
1188     uint64_t Val =
1189         support::endian::byte_swap<uint64_t>(SectionHeaderOffset, W.Endian);
1190     Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1191                   offsetof(ELF::Elf64_Ehdr, e_shoff));
1192     NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum);
1193   } else {
1194     uint32_t Val =
1195         support::endian::byte_swap<uint32_t>(SectionHeaderOffset, W.Endian);
1196     Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1197                   offsetof(ELF::Elf32_Ehdr, e_shoff));
1198     NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum);
1199   }
1200   Stream.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections),
1201                 NumSectionsOffset);
1202 
1203   return W.OS.tell() - StartOffset;
1204 }
1205 
1206 bool ELFObjectWriter::hasRelocationAddend() const {
1207   return TargetObjectWriter->hasRelocationAddend();
1208 }
1209 
1210 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
1211                                                const MCAsmLayout &Layout) {
1212   // The presence of symbol versions causes undefined symbols and
1213   // versions declared with @@@ to be renamed.
1214   for (const MCAssembler::Symver &S : Asm.Symvers) {
1215     StringRef AliasName = S.Name;
1216     const auto &Symbol = cast<MCSymbolELF>(*S.Sym);
1217     size_t Pos = AliasName.find('@');
1218     assert(Pos != StringRef::npos);
1219 
1220     StringRef Prefix = AliasName.substr(0, Pos);
1221     StringRef Rest = AliasName.substr(Pos);
1222     StringRef Tail = Rest;
1223     if (Rest.startswith("@@@"))
1224       Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1);
1225 
1226     auto *Alias =
1227         cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail));
1228     Asm.registerSymbol(*Alias);
1229     const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext());
1230     Alias->setVariableValue(Value);
1231 
1232     // Aliases defined with .symvar copy the binding from the symbol they alias.
1233     // This is the first place we are able to copy this information.
1234     Alias->setBinding(Symbol.getBinding());
1235     Alias->setVisibility(Symbol.getVisibility());
1236     Alias->setOther(Symbol.getOther());
1237 
1238     if (!Symbol.isUndefined() && S.KeepOriginalSym)
1239       continue;
1240 
1241     if (Symbol.isUndefined() && Rest.startswith("@@") &&
1242         !Rest.startswith("@@@")) {
1243       Asm.getContext().reportError(S.Loc, "default version symbol " +
1244                                               AliasName + " must be defined");
1245       continue;
1246     }
1247 
1248     if (Renames.count(&Symbol) && Renames[&Symbol] != Alias) {
1249       Asm.getContext().reportError(S.Loc, Twine("multiple versions for ") +
1250                                               Symbol.getName());
1251       continue;
1252     }
1253 
1254     Renames.insert(std::make_pair(&Symbol, Alias));
1255   }
1256 
1257   for (const MCSymbol *&Sym : AddrsigSyms) {
1258     if (const MCSymbol *R = Renames.lookup(cast<MCSymbolELF>(Sym)))
1259       Sym = R;
1260     if (Sym->isInSection() && Sym->getName().startswith(".L"))
1261       Sym = Sym->getSection().getBeginSymbol();
1262     Sym->setUsedInReloc();
1263   }
1264 }
1265 
1266 // It is always valid to create a relocation with a symbol. It is preferable
1267 // to use a relocation with a section if that is possible. Using the section
1268 // allows us to omit some local symbols from the symbol table.
1269 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
1270                                                const MCSymbolRefExpr *RefA,
1271                                                const MCSymbolELF *Sym,
1272                                                uint64_t C,
1273                                                unsigned Type) const {
1274   // A PCRel relocation to an absolute value has no symbol (or section). We
1275   // represent that with a relocation to a null section.
1276   if (!RefA)
1277     return false;
1278 
1279   MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
1280   switch (Kind) {
1281   default:
1282     break;
1283   // The .odp creation emits a relocation against the symbol ".TOC." which
1284   // create a R_PPC64_TOC relocation. However the relocation symbol name
1285   // in final object creation should be NULL, since the symbol does not
1286   // really exist, it is just the reference to TOC base for the current
1287   // object file. Since the symbol is undefined, returning false results
1288   // in a relocation with a null section which is the desired result.
1289   case MCSymbolRefExpr::VK_PPC_TOCBASE:
1290     return false;
1291 
1292   // These VariantKind cause the relocation to refer to something other than
1293   // the symbol itself, like a linker generated table. Since the address of
1294   // symbol is not relevant, we cannot replace the symbol with the
1295   // section and patch the difference in the addend.
1296   case MCSymbolRefExpr::VK_GOT:
1297   case MCSymbolRefExpr::VK_PLT:
1298   case MCSymbolRefExpr::VK_GOTPCREL:
1299   case MCSymbolRefExpr::VK_GOTPCREL_NORELAX:
1300   case MCSymbolRefExpr::VK_PPC_GOT_LO:
1301   case MCSymbolRefExpr::VK_PPC_GOT_HI:
1302   case MCSymbolRefExpr::VK_PPC_GOT_HA:
1303     return true;
1304   }
1305 
1306   // An undefined symbol is not in any section, so the relocation has to point
1307   // to the symbol itself.
1308   assert(Sym && "Expected a symbol");
1309   if (Sym->isUndefined())
1310     return true;
1311 
1312   unsigned Binding = Sym->getBinding();
1313   switch(Binding) {
1314   default:
1315     llvm_unreachable("Invalid Binding");
1316   case ELF::STB_LOCAL:
1317     break;
1318   case ELF::STB_WEAK:
1319     // If the symbol is weak, it might be overridden by a symbol in another
1320     // file. The relocation has to point to the symbol so that the linker
1321     // can update it.
1322     return true;
1323   case ELF::STB_GLOBAL:
1324   case ELF::STB_GNU_UNIQUE:
1325     // Global ELF symbols can be preempted by the dynamic linker. The relocation
1326     // has to point to the symbol for a reason analogous to the STB_WEAK case.
1327     return true;
1328   }
1329 
1330   // Keep symbol type for a local ifunc because it may result in an IRELATIVE
1331   // reloc that the dynamic loader will use to resolve the address at startup
1332   // time.
1333   if (Sym->getType() == ELF::STT_GNU_IFUNC)
1334     return true;
1335 
1336   // If a relocation points to a mergeable section, we have to be careful.
1337   // If the offset is zero, a relocation with the section will encode the
1338   // same information. With a non-zero offset, the situation is different.
1339   // For example, a relocation can point 42 bytes past the end of a string.
1340   // If we change such a relocation to use the section, the linker would think
1341   // that it pointed to another string and subtracting 42 at runtime will
1342   // produce the wrong value.
1343   if (Sym->isInSection()) {
1344     auto &Sec = cast<MCSectionELF>(Sym->getSection());
1345     unsigned Flags = Sec.getFlags();
1346     if (Flags & ELF::SHF_MERGE) {
1347       if (C != 0)
1348         return true;
1349 
1350       // gold<2.34 incorrectly ignored the addend for R_386_GOTOFF (9)
1351       // (http://sourceware.org/PR16794).
1352       if (TargetObjectWriter->getEMachine() == ELF::EM_386 &&
1353           Type == ELF::R_386_GOTOFF)
1354         return true;
1355 
1356       // ld.lld handles R_MIPS_HI16/R_MIPS_LO16 separately, not as a whole, so
1357       // it doesn't know that an R_MIPS_HI16 with implicit addend 1 and an
1358       // R_MIPS_LO16 with implicit addend -32768 represents 32768, which is in
1359       // range of a MergeInputSection. We could introduce a new RelExpr member
1360       // (like R_RISCV_PC_INDIRECT for R_RISCV_PCREL_HI20 / R_RISCV_PCREL_LO12)
1361       // but the complexity is unnecessary given that GNU as keeps the original
1362       // symbol for this case as well.
1363       if (TargetObjectWriter->getEMachine() == ELF::EM_MIPS &&
1364           !hasRelocationAddend())
1365         return true;
1366     }
1367 
1368     // Most TLS relocations use a got, so they need the symbol. Even those that
1369     // are just an offset (@tpoff), require a symbol in gold versions before
1370     // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
1371     // http://sourceware.org/PR16773.
1372     if (Flags & ELF::SHF_TLS)
1373       return true;
1374   }
1375 
1376   // If the symbol is a thumb function the final relocation must set the lowest
1377   // bit. With a symbol that is done by just having the symbol have that bit
1378   // set, so we would lose the bit if we relocated with the section.
1379   // FIXME: We could use the section but add the bit to the relocation value.
1380   if (Asm.isThumbFunc(Sym))
1381     return true;
1382 
1383   if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
1384     return true;
1385   return false;
1386 }
1387 
1388 void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
1389                                        const MCAsmLayout &Layout,
1390                                        const MCFragment *Fragment,
1391                                        const MCFixup &Fixup, MCValue Target,
1392                                        uint64_t &FixedValue) {
1393   MCAsmBackend &Backend = Asm.getBackend();
1394   bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
1395                  MCFixupKindInfo::FKF_IsPCRel;
1396   const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
1397   uint64_t C = Target.getConstant();
1398   uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
1399   MCContext &Ctx = Asm.getContext();
1400 
1401   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
1402     const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
1403     if (SymB.isUndefined()) {
1404       Ctx.reportError(Fixup.getLoc(),
1405                       Twine("symbol '") + SymB.getName() +
1406                           "' can not be undefined in a subtraction expression");
1407       return;
1408     }
1409 
1410     assert(!SymB.isAbsolute() && "Should have been folded");
1411     const MCSection &SecB = SymB.getSection();
1412     if (&SecB != &FixupSection) {
1413       Ctx.reportError(Fixup.getLoc(),
1414                       "Cannot represent a difference across sections");
1415       return;
1416     }
1417 
1418     assert(!IsPCRel && "should have been folded");
1419     IsPCRel = true;
1420     C += FixupOffset - Layout.getSymbolOffset(SymB);
1421   }
1422 
1423   // We either rejected the fixup or folded B into C at this point.
1424   const MCSymbolRefExpr *RefA = Target.getSymA();
1425   const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
1426 
1427   bool ViaWeakRef = false;
1428   if (SymA && SymA->isVariable()) {
1429     const MCExpr *Expr = SymA->getVariableValue();
1430     if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
1431       if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
1432         SymA = cast<MCSymbolELF>(&Inner->getSymbol());
1433         ViaWeakRef = true;
1434       }
1435     }
1436   }
1437 
1438   const MCSectionELF *SecA = (SymA && SymA->isInSection())
1439                                  ? cast<MCSectionELF>(&SymA->getSection())
1440                                  : nullptr;
1441   if (!checkRelocation(Ctx, Fixup.getLoc(), &FixupSection, SecA))
1442     return;
1443 
1444   unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel);
1445   const auto *Parent = cast<MCSectionELF>(Fragment->getParent());
1446   // Emiting relocation with sybmol for CG Profile to  help with --cg-profile.
1447   bool RelocateWithSymbol =
1448       shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type) ||
1449       (Parent->getType() == ELF::SHT_LLVM_CALL_GRAPH_PROFILE);
1450   uint64_t Addend = 0;
1451 
1452   FixedValue = !RelocateWithSymbol && SymA && !SymA->isUndefined()
1453                    ? C + Layout.getSymbolOffset(*SymA)
1454                    : C;
1455   if (hasRelocationAddend()) {
1456     Addend = FixedValue;
1457     FixedValue = 0;
1458   }
1459 
1460   if (!RelocateWithSymbol) {
1461     const auto *SectionSymbol =
1462         SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr;
1463     if (SectionSymbol)
1464       SectionSymbol->setUsedInReloc();
1465     ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA, C);
1466     Relocations[&FixupSection].push_back(Rec);
1467     return;
1468   }
1469 
1470   const MCSymbolELF *RenamedSymA = SymA;
1471   if (SymA) {
1472     if (const MCSymbolELF *R = Renames.lookup(SymA))
1473       RenamedSymA = R;
1474 
1475     if (ViaWeakRef)
1476       RenamedSymA->setIsWeakrefUsedInReloc();
1477     else
1478       RenamedSymA->setUsedInReloc();
1479   }
1480   ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA, C);
1481   Relocations[&FixupSection].push_back(Rec);
1482 }
1483 
1484 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
1485     const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
1486     bool InSet, bool IsPCRel) const {
1487   const auto &SymA = cast<MCSymbolELF>(SA);
1488   if (IsPCRel) {
1489     assert(!InSet);
1490     if (SymA.getBinding() != ELF::STB_LOCAL ||
1491         SymA.getType() == ELF::STT_GNU_IFUNC)
1492       return false;
1493   }
1494   return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB,
1495                                                                 InSet, IsPCRel);
1496 }
1497 
1498 std::unique_ptr<MCObjectWriter>
1499 llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
1500                             raw_pwrite_stream &OS, bool IsLittleEndian) {
1501   return std::make_unique<ELFSingleObjectWriter>(std::move(MOTW), OS,
1502                                                   IsLittleEndian);
1503 }
1504 
1505 std::unique_ptr<MCObjectWriter>
1506 llvm::createELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
1507                                raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS,
1508                                bool IsLittleEndian) {
1509   return std::make_unique<ELFDwoObjectWriter>(std::move(MOTW), OS, DwoOS,
1510                                                IsLittleEndian);
1511 }
1512