xref: /freebsd/contrib/llvm-project/llvm/lib/MC/ELFObjectWriter.cpp (revision ac77b2621508c6a50ab01d07fe8d43795d908f05)
1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements ELF object file writer information.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/ADT/iterator.h"
21 #include "llvm/BinaryFormat/ELF.h"
22 #include "llvm/MC/MCAsmBackend.h"
23 #include "llvm/MC/MCAsmInfo.h"
24 #include "llvm/MC/MCAsmLayout.h"
25 #include "llvm/MC/MCAssembler.h"
26 #include "llvm/MC/MCContext.h"
27 #include "llvm/MC/MCELFObjectWriter.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/MC/MCFixup.h"
30 #include "llvm/MC/MCFixupKindInfo.h"
31 #include "llvm/MC/MCFragment.h"
32 #include "llvm/MC/MCObjectWriter.h"
33 #include "llvm/MC/MCSection.h"
34 #include "llvm/MC/MCSectionELF.h"
35 #include "llvm/MC/MCSymbol.h"
36 #include "llvm/MC/MCSymbolELF.h"
37 #include "llvm/MC/MCTargetOptions.h"
38 #include "llvm/MC/MCValue.h"
39 #include "llvm/MC/StringTableBuilder.h"
40 #include "llvm/Support/Alignment.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Compression.h"
43 #include "llvm/Support/Endian.h"
44 #include "llvm/Support/EndianStream.h"
45 #include "llvm/Support/Error.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/LEB128.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/SMLoc.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/TargetParser/Host.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstddef>
55 #include <cstdint>
56 #include <map>
57 #include <memory>
58 #include <string>
59 #include <utility>
60 #include <vector>
61 
62 using namespace llvm;
63 
64 #undef  DEBUG_TYPE
65 #define DEBUG_TYPE "reloc-info"
66 
67 namespace {
68 
69 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>;
70 
71 class ELFObjectWriter;
72 struct ELFWriter;
73 
74 bool isDwoSection(const MCSectionELF &Sec) {
75   return Sec.getName().ends_with(".dwo");
76 }
77 
78 class SymbolTableWriter {
79   ELFWriter &EWriter;
80   bool Is64Bit;
81 
82   // indexes we are going to write to .symtab_shndx.
83   std::vector<uint32_t> ShndxIndexes;
84 
85   // The numbel of symbols written so far.
86   unsigned NumWritten;
87 
88   void createSymtabShndx();
89 
90   template <typename T> void write(T Value);
91 
92 public:
93   SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit);
94 
95   void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
96                    uint8_t other, uint32_t shndx, bool Reserved);
97 
98   ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
99 };
100 
101 struct ELFWriter {
102   ELFObjectWriter &OWriter;
103   support::endian::Writer W;
104 
105   enum DwoMode {
106     AllSections,
107     NonDwoOnly,
108     DwoOnly,
109   } Mode;
110 
111   static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
112   static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
113                          bool Used, bool Renamed);
114 
115   /// Helper struct for containing some precomputed information on symbols.
116   struct ELFSymbolData {
117     const MCSymbolELF *Symbol;
118     StringRef Name;
119     uint32_t SectionIndex;
120     uint32_t Order;
121   };
122 
123   /// @}
124   /// @name Symbol Table Data
125   /// @{
126 
127   StringTableBuilder StrTabBuilder{StringTableBuilder::ELF};
128 
129   /// @}
130 
131   // This holds the symbol table index of the last local symbol.
132   unsigned LastLocalSymbolIndex = ~0u;
133   // This holds the .strtab section index.
134   unsigned StringTableIndex = ~0u;
135   // This holds the .symtab section index.
136   unsigned SymbolTableIndex = ~0u;
137 
138   // Sections in the order they are to be output in the section table.
139   std::vector<const MCSectionELF *> SectionTable;
140   unsigned addToSectionTable(const MCSectionELF *Sec);
141 
142   // TargetObjectWriter wrappers.
143   bool is64Bit() const;
144   bool usesRela(const MCSectionELF &Sec) const;
145 
146   uint64_t align(Align Alignment);
147 
148   bool maybeWriteCompression(uint32_t ChType, uint64_t Size,
149                              SmallVectorImpl<uint8_t> &CompressedContents,
150                              Align Alignment);
151 
152 public:
153   ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS,
154             bool IsLittleEndian, DwoMode Mode)
155       : OWriter(OWriter), W(OS, IsLittleEndian ? llvm::endianness::little
156                                                : llvm::endianness::big),
157         Mode(Mode) {}
158 
159   void WriteWord(uint64_t Word) {
160     if (is64Bit())
161       W.write<uint64_t>(Word);
162     else
163       W.write<uint32_t>(Word);
164   }
165 
166   template <typename T> void write(T Val) {
167     W.write(Val);
168   }
169 
170   void writeHeader(const MCAssembler &Asm);
171 
172   void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
173                    ELFSymbolData &MSD, const MCAsmLayout &Layout);
174 
175   // Start and end offset of each section
176   using SectionOffsetsTy =
177       std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>;
178 
179   // Map from a signature symbol to the group section index
180   using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>;
181 
182   /// Compute the symbol table data
183   ///
184   /// \param Asm - The assembler.
185   /// \param SectionIndexMap - Maps a section to its index.
186   /// \param RevGroupMap - Maps a signature symbol to the group section.
187   void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
188                           const SectionIndexMapTy &SectionIndexMap,
189                           const RevGroupMapTy &RevGroupMap,
190                           SectionOffsetsTy &SectionOffsets);
191 
192   void writeAddrsigSection();
193 
194   MCSectionELF *createRelocationSection(MCContext &Ctx,
195                                         const MCSectionELF &Sec);
196 
197   void createMemtagRelocs(MCAssembler &Asm);
198 
199   void writeSectionHeader(const MCAsmLayout &Layout,
200                           const SectionIndexMapTy &SectionIndexMap,
201                           const SectionOffsetsTy &SectionOffsets);
202 
203   void writeSectionData(const MCAssembler &Asm, MCSection &Sec,
204                         const MCAsmLayout &Layout);
205 
206   void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
207                         uint64_t Address, uint64_t Offset, uint64_t Size,
208                         uint32_t Link, uint32_t Info, MaybeAlign Alignment,
209                         uint64_t EntrySize);
210 
211   void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
212 
213   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout);
214   void writeSection(const SectionIndexMapTy &SectionIndexMap,
215                     uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
216                     const MCSectionELF &Section);
217 };
218 
219 class ELFObjectWriter : public MCObjectWriter {
220   /// The target specific ELF writer instance.
221   std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
222 
223   DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations;
224 
225   DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
226 
227   bool SeenGnuAbi = false;
228 
229   std::optional<uint8_t> OverrideABIVersion;
230 
231   bool hasRelocationAddend() const;
232 
233   bool shouldRelocateWithSymbol(const MCAssembler &Asm, const MCValue &Val,
234                                 const MCSymbolELF *Sym, uint64_t C,
235                                 unsigned Type) const;
236 
237 public:
238   ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW)
239       : TargetObjectWriter(std::move(MOTW)) {}
240 
241   void reset() override {
242     SeenGnuAbi = false;
243     OverrideABIVersion.reset();
244     Relocations.clear();
245     Renames.clear();
246     MCObjectWriter::reset();
247   }
248 
249   bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
250                                               const MCSymbol &SymA,
251                                               const MCFragment &FB, bool InSet,
252                                               bool IsPCRel) const override;
253 
254   virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc,
255                                const MCSectionELF *From,
256                                const MCSectionELF *To) {
257     return true;
258   }
259 
260   void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
261                         const MCFragment *Fragment, const MCFixup &Fixup,
262                         MCValue Target, uint64_t &FixedValue) override;
263 
264   void executePostLayoutBinding(MCAssembler &Asm,
265                                 const MCAsmLayout &Layout) override;
266 
267   void markGnuAbi() override { SeenGnuAbi = true; }
268   bool seenGnuAbi() const { return SeenGnuAbi; }
269 
270   bool seenOverrideABIVersion() const { return OverrideABIVersion.has_value(); }
271   uint8_t getOverrideABIVersion() const { return OverrideABIVersion.value(); }
272   void setOverrideABIVersion(uint8_t V) override { OverrideABIVersion = V; }
273 
274   friend struct ELFWriter;
275 };
276 
277 class ELFSingleObjectWriter : public ELFObjectWriter {
278   raw_pwrite_stream &OS;
279   bool IsLittleEndian;
280 
281 public:
282   ELFSingleObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
283                         raw_pwrite_stream &OS, bool IsLittleEndian)
284       : ELFObjectWriter(std::move(MOTW)), OS(OS),
285         IsLittleEndian(IsLittleEndian) {}
286 
287   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override {
288     return ELFWriter(*this, OS, IsLittleEndian, ELFWriter::AllSections)
289         .writeObject(Asm, Layout);
290   }
291 
292   friend struct ELFWriter;
293 };
294 
295 class ELFDwoObjectWriter : public ELFObjectWriter {
296   raw_pwrite_stream &OS, &DwoOS;
297   bool IsLittleEndian;
298 
299 public:
300   ELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
301                      raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS,
302                      bool IsLittleEndian)
303       : ELFObjectWriter(std::move(MOTW)), OS(OS), DwoOS(DwoOS),
304         IsLittleEndian(IsLittleEndian) {}
305 
306   bool checkRelocation(MCContext &Ctx, SMLoc Loc, const MCSectionELF *From,
307                        const MCSectionELF *To) override {
308     if (isDwoSection(*From)) {
309       Ctx.reportError(Loc, "A dwo section may not contain relocations");
310       return false;
311     }
312     if (To && isDwoSection(*To)) {
313       Ctx.reportError(Loc, "A relocation may not refer to a dwo section");
314       return false;
315     }
316     return true;
317   }
318 
319   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override {
320     uint64_t Size = ELFWriter(*this, OS, IsLittleEndian, ELFWriter::NonDwoOnly)
321                         .writeObject(Asm, Layout);
322     Size += ELFWriter(*this, DwoOS, IsLittleEndian, ELFWriter::DwoOnly)
323                 .writeObject(Asm, Layout);
324     return Size;
325   }
326 };
327 
328 } // end anonymous namespace
329 
330 uint64_t ELFWriter::align(Align Alignment) {
331   uint64_t Offset = W.OS.tell();
332   uint64_t NewOffset = alignTo(Offset, Alignment);
333   W.OS.write_zeros(NewOffset - Offset);
334   return NewOffset;
335 }
336 
337 unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) {
338   SectionTable.push_back(Sec);
339   StrTabBuilder.add(Sec->getName());
340   return SectionTable.size();
341 }
342 
343 void SymbolTableWriter::createSymtabShndx() {
344   if (!ShndxIndexes.empty())
345     return;
346 
347   ShndxIndexes.resize(NumWritten);
348 }
349 
350 template <typename T> void SymbolTableWriter::write(T Value) {
351   EWriter.write(Value);
352 }
353 
354 SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit)
355     : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
356 
357 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
358                                     uint64_t size, uint8_t other,
359                                     uint32_t shndx, bool Reserved) {
360   bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
361 
362   if (LargeIndex)
363     createSymtabShndx();
364 
365   if (!ShndxIndexes.empty()) {
366     if (LargeIndex)
367       ShndxIndexes.push_back(shndx);
368     else
369       ShndxIndexes.push_back(0);
370   }
371 
372   uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
373 
374   if (Is64Bit) {
375     write(name);  // st_name
376     write(info);  // st_info
377     write(other); // st_other
378     write(Index); // st_shndx
379     write(value); // st_value
380     write(size);  // st_size
381   } else {
382     write(name);            // st_name
383     write(uint32_t(value)); // st_value
384     write(uint32_t(size));  // st_size
385     write(info);            // st_info
386     write(other);           // st_other
387     write(Index);           // st_shndx
388   }
389 
390   ++NumWritten;
391 }
392 
393 bool ELFWriter::is64Bit() const {
394   return OWriter.TargetObjectWriter->is64Bit();
395 }
396 
397 bool ELFWriter::usesRela(const MCSectionELF &Sec) const {
398   return OWriter.hasRelocationAddend() &&
399          Sec.getType() != ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
400 }
401 
402 // Emit the ELF header.
403 void ELFWriter::writeHeader(const MCAssembler &Asm) {
404   // ELF Header
405   // ----------
406   //
407   // Note
408   // ----
409   // emitWord method behaves differently for ELF32 and ELF64, writing
410   // 4 bytes in the former and 8 in the latter.
411 
412   W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3]
413 
414   W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
415 
416   // e_ident[EI_DATA]
417   W.OS << char(W.Endian == llvm::endianness::little ? ELF::ELFDATA2LSB
418                                                     : ELF::ELFDATA2MSB);
419 
420   W.OS << char(ELF::EV_CURRENT);        // e_ident[EI_VERSION]
421   // e_ident[EI_OSABI]
422   uint8_t OSABI = OWriter.TargetObjectWriter->getOSABI();
423   W.OS << char(OSABI == ELF::ELFOSABI_NONE && OWriter.seenGnuAbi()
424                    ? int(ELF::ELFOSABI_GNU)
425                    : OSABI);
426   // e_ident[EI_ABIVERSION]
427   W.OS << char(OWriter.seenOverrideABIVersion()
428                    ? OWriter.getOverrideABIVersion()
429                    : OWriter.TargetObjectWriter->getABIVersion());
430 
431   W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD);
432 
433   W.write<uint16_t>(ELF::ET_REL);             // e_type
434 
435   W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target
436 
437   W.write<uint32_t>(ELF::EV_CURRENT);         // e_version
438   WriteWord(0);                    // e_entry, no entry point in .o file
439   WriteWord(0);                    // e_phoff, no program header for .o
440   WriteWord(0);                     // e_shoff = sec hdr table off in bytes
441 
442   // e_flags = whatever the target wants
443   W.write<uint32_t>(Asm.getELFHeaderEFlags());
444 
445   // e_ehsize = ELF header size
446   W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr)
447                               : sizeof(ELF::Elf32_Ehdr));
448 
449   W.write<uint16_t>(0);                  // e_phentsize = prog header entry size
450   W.write<uint16_t>(0);                  // e_phnum = # prog header entries = 0
451 
452   // e_shentsize = Section header entry size
453   W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr)
454                               : sizeof(ELF::Elf32_Shdr));
455 
456   // e_shnum     = # of section header ents
457   W.write<uint16_t>(0);
458 
459   // e_shstrndx  = Section # of '.strtab'
460   assert(StringTableIndex < ELF::SHN_LORESERVE);
461   W.write<uint16_t>(StringTableIndex);
462 }
463 
464 uint64_t ELFWriter::SymbolValue(const MCSymbol &Sym,
465                                 const MCAsmLayout &Layout) {
466   if (Sym.isCommon())
467     return Sym.getCommonAlignment()->value();
468 
469   uint64_t Res;
470   if (!Layout.getSymbolOffset(Sym, Res))
471     return 0;
472 
473   if (Layout.getAssembler().isThumbFunc(&Sym))
474     Res |= 1;
475 
476   return Res;
477 }
478 
479 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
480   uint8_t Type = newType;
481 
482   // Propagation rules:
483   // IFUNC > FUNC > OBJECT > NOTYPE
484   // TLS_OBJECT > OBJECT > NOTYPE
485   //
486   // dont let the new type degrade the old type
487   switch (origType) {
488   default:
489     break;
490   case ELF::STT_GNU_IFUNC:
491     if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
492         Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
493       Type = ELF::STT_GNU_IFUNC;
494     break;
495   case ELF::STT_FUNC:
496     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
497         Type == ELF::STT_TLS)
498       Type = ELF::STT_FUNC;
499     break;
500   case ELF::STT_OBJECT:
501     if (Type == ELF::STT_NOTYPE)
502       Type = ELF::STT_OBJECT;
503     break;
504   case ELF::STT_TLS:
505     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
506         Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
507       Type = ELF::STT_TLS;
508     break;
509   }
510 
511   return Type;
512 }
513 
514 static bool isIFunc(const MCSymbolELF *Symbol) {
515   while (Symbol->getType() != ELF::STT_GNU_IFUNC) {
516     const MCSymbolRefExpr *Value;
517     if (!Symbol->isVariable() ||
518         !(Value = dyn_cast<MCSymbolRefExpr>(Symbol->getVariableValue())) ||
519         Value->getKind() != MCSymbolRefExpr::VK_None ||
520         mergeTypeForSet(Symbol->getType(), ELF::STT_GNU_IFUNC) != ELF::STT_GNU_IFUNC)
521       return false;
522     Symbol = &cast<MCSymbolELF>(Value->getSymbol());
523   }
524   return true;
525 }
526 
527 void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
528                             ELFSymbolData &MSD, const MCAsmLayout &Layout) {
529   const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
530   const MCSymbolELF *Base =
531       cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
532 
533   // This has to be in sync with when computeSymbolTable uses SHN_ABS or
534   // SHN_COMMON.
535   bool IsReserved = !Base || Symbol.isCommon();
536 
537   // Binding and Type share the same byte as upper and lower nibbles
538   uint8_t Binding = Symbol.getBinding();
539   uint8_t Type = Symbol.getType();
540   if (isIFunc(&Symbol))
541     Type = ELF::STT_GNU_IFUNC;
542   if (Base) {
543     Type = mergeTypeForSet(Type, Base->getType());
544   }
545   uint8_t Info = (Binding << 4) | Type;
546 
547   // Other and Visibility share the same byte with Visibility using the lower
548   // 2 bits
549   uint8_t Visibility = Symbol.getVisibility();
550   uint8_t Other = Symbol.getOther() | Visibility;
551 
552   uint64_t Value = SymbolValue(*MSD.Symbol, Layout);
553   uint64_t Size = 0;
554 
555   const MCExpr *ESize = MSD.Symbol->getSize();
556   if (!ESize && Base) {
557     // For expressions like .set y, x+1, if y's size is unset, inherit from x.
558     ESize = Base->getSize();
559 
560     // For `.size x, 2; y = x; .size y, 1; z = y; z1 = z; .symver y, y@v1`, z,
561     // z1, and y@v1's st_size equals y's. However, `Base` is `x` which will give
562     // us 2. Follow the MCSymbolRefExpr assignment chain, which covers most
563     // needs. MCBinaryExpr is not handled.
564     const MCSymbolELF *Sym = &Symbol;
565     while (Sym->isVariable()) {
566       if (auto *Expr =
567               dyn_cast<MCSymbolRefExpr>(Sym->getVariableValue(false))) {
568         Sym = cast<MCSymbolELF>(&Expr->getSymbol());
569         if (!Sym->getSize())
570           continue;
571         ESize = Sym->getSize();
572       }
573       break;
574     }
575   }
576 
577   if (ESize) {
578     int64_t Res;
579     if (!ESize->evaluateKnownAbsolute(Res, Layout))
580       report_fatal_error("Size expression must be absolute.");
581     Size = Res;
582   }
583 
584   // Write out the symbol table entry
585   Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex,
586                      IsReserved);
587 }
588 
589 bool ELFWriter::isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
590                            bool Used, bool Renamed) {
591   if (Symbol.isVariable()) {
592     const MCExpr *Expr = Symbol.getVariableValue();
593     // Target Expressions that are always inlined do not appear in the symtab
594     if (const auto *T = dyn_cast<MCTargetExpr>(Expr))
595       if (T->inlineAssignedExpr())
596         return false;
597     if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
598       if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
599         return false;
600     }
601   }
602 
603   if (Used)
604     return true;
605 
606   if (Renamed)
607     return false;
608 
609   if (Symbol.isVariable() && Symbol.isUndefined()) {
610     // FIXME: this is here just to diagnose the case of a var = commmon_sym.
611     Layout.getBaseSymbol(Symbol);
612     return false;
613   }
614 
615   if (Symbol.isTemporary())
616     return false;
617 
618   if (Symbol.getType() == ELF::STT_SECTION)
619     return false;
620 
621   return true;
622 }
623 
624 void ELFWriter::createMemtagRelocs(MCAssembler &Asm) {
625   MCSectionELF *MemtagRelocs = nullptr;
626   for (const MCSymbol &Sym : Asm.symbols()) {
627     const auto &SymE = cast<MCSymbolELF>(Sym);
628     if (!SymE.isMemtag())
629       continue;
630     if (MemtagRelocs == nullptr) {
631       MemtagRelocs = OWriter.TargetObjectWriter->getMemtagRelocsSection(Asm.getContext());
632       if (MemtagRelocs == nullptr)
633         report_fatal_error("Tagged globals are not available on this architecture.");
634       Asm.registerSection(*MemtagRelocs);
635     }
636     ELFRelocationEntry Rec(0, &SymE, ELF::R_AARCH64_NONE, 0, nullptr, 0);
637     OWriter.Relocations[MemtagRelocs].push_back(Rec);
638   }
639 }
640 
641 void ELFWriter::computeSymbolTable(
642     MCAssembler &Asm, const MCAsmLayout &Layout,
643     const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
644     SectionOffsetsTy &SectionOffsets) {
645   MCContext &Ctx = Asm.getContext();
646   SymbolTableWriter Writer(*this, is64Bit());
647 
648   // Symbol table
649   unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
650   MCSectionELF *SymtabSection =
651       Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize);
652   SymtabSection->setAlignment(is64Bit() ? Align(8) : Align(4));
653   SymbolTableIndex = addToSectionTable(SymtabSection);
654 
655   uint64_t SecStart = align(SymtabSection->getAlign());
656 
657   // The first entry is the undefined symbol entry.
658   Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
659 
660   std::vector<ELFSymbolData> LocalSymbolData;
661   std::vector<ELFSymbolData> ExternalSymbolData;
662   MutableArrayRef<std::pair<std::string, size_t>> FileNames =
663       Asm.getFileNames();
664   for (const std::pair<std::string, size_t> &F : FileNames)
665     StrTabBuilder.add(F.first);
666 
667   // Add the data for the symbols.
668   bool HasLargeSectionIndex = false;
669   for (auto It : llvm::enumerate(Asm.symbols())) {
670     const auto &Symbol = cast<MCSymbolELF>(It.value());
671     bool Used = Symbol.isUsedInReloc();
672     bool WeakrefUsed = Symbol.isWeakrefUsedInReloc();
673     bool isSignature = Symbol.isSignature();
674 
675     if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
676                     OWriter.Renames.count(&Symbol)))
677       continue;
678 
679     if (Symbol.isTemporary() && Symbol.isUndefined()) {
680       Ctx.reportError(SMLoc(), "Undefined temporary symbol " + Symbol.getName());
681       continue;
682     }
683 
684     ELFSymbolData MSD;
685     MSD.Symbol = cast<MCSymbolELF>(&Symbol);
686     MSD.Order = It.index();
687 
688     bool Local = Symbol.getBinding() == ELF::STB_LOCAL;
689     assert(Local || !Symbol.isTemporary());
690 
691     if (Symbol.isAbsolute()) {
692       MSD.SectionIndex = ELF::SHN_ABS;
693     } else if (Symbol.isCommon()) {
694       if (Symbol.isTargetCommon()) {
695         MSD.SectionIndex = Symbol.getIndex();
696       } else {
697         assert(!Local);
698         MSD.SectionIndex = ELF::SHN_COMMON;
699       }
700     } else if (Symbol.isUndefined()) {
701       if (isSignature && !Used) {
702         MSD.SectionIndex = RevGroupMap.lookup(&Symbol);
703         if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
704           HasLargeSectionIndex = true;
705       } else {
706         MSD.SectionIndex = ELF::SHN_UNDEF;
707       }
708     } else {
709       const MCSectionELF &Section =
710           static_cast<const MCSectionELF &>(Symbol.getSection());
711 
712       // We may end up with a situation when section symbol is technically
713       // defined, but should not be. That happens because we explicitly
714       // pre-create few .debug_* sections to have accessors.
715       // And if these sections were not really defined in the code, but were
716       // referenced, we simply error out.
717       if (!Section.isRegistered()) {
718         assert(static_cast<const MCSymbolELF &>(Symbol).getType() ==
719                ELF::STT_SECTION);
720         Ctx.reportError(SMLoc(),
721                         "Undefined section reference: " + Symbol.getName());
722         continue;
723       }
724 
725       if (Mode == NonDwoOnly && isDwoSection(Section))
726         continue;
727       MSD.SectionIndex = SectionIndexMap.lookup(&Section);
728       assert(MSD.SectionIndex && "Invalid section index!");
729       if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
730         HasLargeSectionIndex = true;
731     }
732 
733     StringRef Name = Symbol.getName();
734 
735     // Sections have their own string table
736     if (Symbol.getType() != ELF::STT_SECTION) {
737       MSD.Name = Name;
738       StrTabBuilder.add(Name);
739     }
740 
741     if (Local)
742       LocalSymbolData.push_back(MSD);
743     else
744       ExternalSymbolData.push_back(MSD);
745   }
746 
747   // This holds the .symtab_shndx section index.
748   unsigned SymtabShndxSectionIndex = 0;
749 
750   if (HasLargeSectionIndex) {
751     MCSectionELF *SymtabShndxSection =
752         Ctx.getELFSection(".symtab_shndx", ELF::SHT_SYMTAB_SHNDX, 0, 4);
753     SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection);
754     SymtabShndxSection->setAlignment(Align(4));
755   }
756 
757   StrTabBuilder.finalize();
758 
759   // Make the first STT_FILE precede previous local symbols.
760   unsigned Index = 1;
761   auto FileNameIt = FileNames.begin();
762   if (!FileNames.empty())
763     FileNames[0].second = 0;
764 
765   for (ELFSymbolData &MSD : LocalSymbolData) {
766     // Emit STT_FILE symbols before their associated local symbols.
767     for (; FileNameIt != FileNames.end() && FileNameIt->second <= MSD.Order;
768          ++FileNameIt) {
769       Writer.writeSymbol(StrTabBuilder.getOffset(FileNameIt->first),
770                          ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
771                          ELF::SHN_ABS, true);
772       ++Index;
773     }
774 
775     unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION
776                                ? 0
777                                : StrTabBuilder.getOffset(MSD.Name);
778     MSD.Symbol->setIndex(Index++);
779     writeSymbol(Writer, StringIndex, MSD, Layout);
780   }
781   for (; FileNameIt != FileNames.end(); ++FileNameIt) {
782     Writer.writeSymbol(StrTabBuilder.getOffset(FileNameIt->first),
783                        ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
784                        ELF::SHN_ABS, true);
785     ++Index;
786   }
787 
788   // Write the symbol table entries.
789   LastLocalSymbolIndex = Index;
790 
791   for (ELFSymbolData &MSD : ExternalSymbolData) {
792     unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name);
793     MSD.Symbol->setIndex(Index++);
794     writeSymbol(Writer, StringIndex, MSD, Layout);
795     assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL);
796   }
797 
798   uint64_t SecEnd = W.OS.tell();
799   SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd);
800 
801   ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes();
802   if (ShndxIndexes.empty()) {
803     assert(SymtabShndxSectionIndex == 0);
804     return;
805   }
806   assert(SymtabShndxSectionIndex != 0);
807 
808   SecStart = W.OS.tell();
809   const MCSectionELF *SymtabShndxSection =
810       SectionTable[SymtabShndxSectionIndex - 1];
811   for (uint32_t Index : ShndxIndexes)
812     write(Index);
813   SecEnd = W.OS.tell();
814   SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
815 }
816 
817 void ELFWriter::writeAddrsigSection() {
818   for (const MCSymbol *Sym : OWriter.AddrsigSyms)
819     if (Sym->getIndex() != 0)
820       encodeULEB128(Sym->getIndex(), W.OS);
821 }
822 
823 MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx,
824                                                  const MCSectionELF &Sec) {
825   if (OWriter.Relocations[&Sec].empty())
826     return nullptr;
827 
828   const StringRef SectionName = Sec.getName();
829   bool Rela = usesRela(Sec);
830   std::string RelaSectionName = Rela ? ".rela" : ".rel";
831   RelaSectionName += SectionName;
832 
833   unsigned EntrySize;
834   if (Rela)
835     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
836   else
837     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
838 
839   unsigned Flags = ELF::SHF_INFO_LINK;
840   if (Sec.getFlags() & ELF::SHF_GROUP)
841     Flags = ELF::SHF_GROUP;
842 
843   MCSectionELF *RelaSection = Ctx.createELFRelSection(
844       RelaSectionName, Rela ? ELF::SHT_RELA : ELF::SHT_REL, Flags, EntrySize,
845       Sec.getGroup(), &Sec);
846   RelaSection->setAlignment(is64Bit() ? Align(8) : Align(4));
847   return RelaSection;
848 }
849 
850 // Include the debug info compression header.
851 bool ELFWriter::maybeWriteCompression(
852     uint32_t ChType, uint64_t Size,
853     SmallVectorImpl<uint8_t> &CompressedContents, Align Alignment) {
854   uint64_t HdrSize =
855       is64Bit() ? sizeof(ELF::Elf64_Chdr) : sizeof(ELF::Elf32_Chdr);
856   if (Size <= HdrSize + CompressedContents.size())
857     return false;
858   // Platform specific header is followed by compressed data.
859   if (is64Bit()) {
860     // Write Elf64_Chdr header.
861     write(static_cast<ELF::Elf64_Word>(ChType));
862     write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field.
863     write(static_cast<ELF::Elf64_Xword>(Size));
864     write(static_cast<ELF::Elf64_Xword>(Alignment.value()));
865   } else {
866     // Write Elf32_Chdr header otherwise.
867     write(static_cast<ELF::Elf32_Word>(ChType));
868     write(static_cast<ELF::Elf32_Word>(Size));
869     write(static_cast<ELF::Elf32_Word>(Alignment.value()));
870   }
871   return true;
872 }
873 
874 void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
875                                  const MCAsmLayout &Layout) {
876   MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
877   StringRef SectionName = Section.getName();
878 
879   auto &MC = Asm.getContext();
880   const auto &MAI = MC.getAsmInfo();
881 
882   const DebugCompressionType CompressionType = MAI->compressDebugSections();
883   if (CompressionType == DebugCompressionType::None ||
884       !SectionName.starts_with(".debug_")) {
885     Asm.writeSectionData(W.OS, &Section, Layout);
886     return;
887   }
888 
889   SmallVector<char, 128> UncompressedData;
890   raw_svector_ostream VecOS(UncompressedData);
891   Asm.writeSectionData(VecOS, &Section, Layout);
892   ArrayRef<uint8_t> Uncompressed =
893       ArrayRef(reinterpret_cast<uint8_t *>(UncompressedData.data()),
894                UncompressedData.size());
895 
896   SmallVector<uint8_t, 128> Compressed;
897   uint32_t ChType;
898   switch (CompressionType) {
899   case DebugCompressionType::None:
900     llvm_unreachable("has been handled");
901   case DebugCompressionType::Zlib:
902     ChType = ELF::ELFCOMPRESS_ZLIB;
903     break;
904   case DebugCompressionType::Zstd:
905     ChType = ELF::ELFCOMPRESS_ZSTD;
906     break;
907   }
908   compression::compress(compression::Params(CompressionType), Uncompressed,
909                         Compressed);
910   if (!maybeWriteCompression(ChType, UncompressedData.size(), Compressed,
911                              Sec.getAlign())) {
912     W.OS << UncompressedData;
913     return;
914   }
915 
916   Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED);
917   // Alignment field should reflect the requirements of
918   // the compressed section header.
919   Section.setAlignment(is64Bit() ? Align(8) : Align(4));
920   W.OS << toStringRef(Compressed);
921 }
922 
923 void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
924                                  uint64_t Address, uint64_t Offset,
925                                  uint64_t Size, uint32_t Link, uint32_t Info,
926                                  MaybeAlign Alignment, uint64_t EntrySize) {
927   W.write<uint32_t>(Name);        // sh_name: index into string table
928   W.write<uint32_t>(Type);        // sh_type
929   WriteWord(Flags);     // sh_flags
930   WriteWord(Address);   // sh_addr
931   WriteWord(Offset);    // sh_offset
932   WriteWord(Size);      // sh_size
933   W.write<uint32_t>(Link);        // sh_link
934   W.write<uint32_t>(Info);        // sh_info
935   WriteWord(Alignment ? Alignment->value() : 0); // sh_addralign
936   WriteWord(EntrySize); // sh_entsize
937 }
938 
939 void ELFWriter::writeRelocations(const MCAssembler &Asm,
940                                        const MCSectionELF &Sec) {
941   std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec];
942 
943   // We record relocations by pushing to the end of a vector. Reverse the vector
944   // to get the relocations in the order they were created.
945   // In most cases that is not important, but it can be for special sections
946   // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
947   std::reverse(Relocs.begin(), Relocs.end());
948 
949   // Sort the relocation entries. MIPS needs this.
950   OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs);
951 
952   const bool Rela = usesRela(Sec);
953   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
954     const ELFRelocationEntry &Entry = Relocs[e - i - 1];
955     unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0;
956 
957     if (is64Bit()) {
958       write(Entry.Offset);
959       if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
960         write(uint32_t(Index));
961 
962         write(OWriter.TargetObjectWriter->getRSsym(Entry.Type));
963         write(OWriter.TargetObjectWriter->getRType3(Entry.Type));
964         write(OWriter.TargetObjectWriter->getRType2(Entry.Type));
965         write(OWriter.TargetObjectWriter->getRType(Entry.Type));
966       } else {
967         struct ELF::Elf64_Rela ERE64;
968         ERE64.setSymbolAndType(Index, Entry.Type);
969         write(ERE64.r_info);
970       }
971       if (Rela)
972         write(Entry.Addend);
973     } else {
974       write(uint32_t(Entry.Offset));
975 
976       struct ELF::Elf32_Rela ERE32;
977       ERE32.setSymbolAndType(Index, Entry.Type);
978       write(ERE32.r_info);
979 
980       if (Rela)
981         write(uint32_t(Entry.Addend));
982 
983       if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
984         if (uint32_t RType =
985                 OWriter.TargetObjectWriter->getRType2(Entry.Type)) {
986           write(uint32_t(Entry.Offset));
987 
988           ERE32.setSymbolAndType(0, RType);
989           write(ERE32.r_info);
990           write(uint32_t(0));
991         }
992         if (uint32_t RType =
993                 OWriter.TargetObjectWriter->getRType3(Entry.Type)) {
994           write(uint32_t(Entry.Offset));
995 
996           ERE32.setSymbolAndType(0, RType);
997           write(ERE32.r_info);
998           write(uint32_t(0));
999         }
1000       }
1001     }
1002   }
1003 }
1004 
1005 void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
1006                              uint32_t GroupSymbolIndex, uint64_t Offset,
1007                              uint64_t Size, const MCSectionELF &Section) {
1008   uint64_t sh_link = 0;
1009   uint64_t sh_info = 0;
1010 
1011   switch(Section.getType()) {
1012   default:
1013     // Nothing to do.
1014     break;
1015 
1016   case ELF::SHT_DYNAMIC:
1017     llvm_unreachable("SHT_DYNAMIC in a relocatable object");
1018 
1019   case ELF::SHT_REL:
1020   case ELF::SHT_RELA: {
1021     sh_link = SymbolTableIndex;
1022     assert(sh_link && ".symtab not found");
1023     const MCSection *InfoSection = Section.getLinkedToSection();
1024     sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection));
1025     break;
1026   }
1027 
1028   case ELF::SHT_SYMTAB:
1029     sh_link = StringTableIndex;
1030     sh_info = LastLocalSymbolIndex;
1031     break;
1032 
1033   case ELF::SHT_SYMTAB_SHNDX:
1034   case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
1035   case ELF::SHT_LLVM_ADDRSIG:
1036     sh_link = SymbolTableIndex;
1037     break;
1038 
1039   case ELF::SHT_GROUP:
1040     sh_link = SymbolTableIndex;
1041     sh_info = GroupSymbolIndex;
1042     break;
1043   }
1044 
1045   if (Section.getFlags() & ELF::SHF_LINK_ORDER) {
1046     // If the value in the associated metadata is not a definition, Sym will be
1047     // undefined. Represent this with sh_link=0.
1048     const MCSymbol *Sym = Section.getLinkedToSymbol();
1049     if (Sym && Sym->isInSection()) {
1050       const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection());
1051       sh_link = SectionIndexMap.lookup(Sec);
1052     }
1053   }
1054 
1055   WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getName()),
1056                    Section.getType(), Section.getFlags(), 0, Offset, Size,
1057                    sh_link, sh_info, Section.getAlign(),
1058                    Section.getEntrySize());
1059 }
1060 
1061 void ELFWriter::writeSectionHeader(
1062     const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
1063     const SectionOffsetsTy &SectionOffsets) {
1064   const unsigned NumSections = SectionTable.size();
1065 
1066   // Null section first.
1067   uint64_t FirstSectionSize =
1068       (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
1069   WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, std::nullopt, 0);
1070 
1071   for (const MCSectionELF *Section : SectionTable) {
1072     uint32_t GroupSymbolIndex;
1073     unsigned Type = Section->getType();
1074     if (Type != ELF::SHT_GROUP)
1075       GroupSymbolIndex = 0;
1076     else
1077       GroupSymbolIndex = Section->getGroup()->getIndex();
1078 
1079     const std::pair<uint64_t, uint64_t> &Offsets =
1080         SectionOffsets.find(Section)->second;
1081     uint64_t Size;
1082     if (Type == ELF::SHT_NOBITS)
1083       Size = Layout.getSectionAddressSize(Section);
1084     else
1085       Size = Offsets.second - Offsets.first;
1086 
1087     writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size,
1088                  *Section);
1089   }
1090 }
1091 
1092 uint64_t ELFWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) {
1093   uint64_t StartOffset = W.OS.tell();
1094 
1095   MCContext &Ctx = Asm.getContext();
1096   MCSectionELF *StrtabSection =
1097       Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
1098   StringTableIndex = addToSectionTable(StrtabSection);
1099 
1100   createMemtagRelocs(Asm);
1101 
1102   RevGroupMapTy RevGroupMap;
1103   SectionIndexMapTy SectionIndexMap;
1104 
1105   std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers;
1106 
1107   // Write out the ELF header ...
1108   writeHeader(Asm);
1109 
1110   // ... then the sections ...
1111   SectionOffsetsTy SectionOffsets;
1112   std::vector<MCSectionELF *> Groups;
1113   std::vector<MCSectionELF *> Relocations;
1114   for (MCSection &Sec : Asm) {
1115     MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1116     if (Mode == NonDwoOnly && isDwoSection(Section))
1117       continue;
1118     if (Mode == DwoOnly && !isDwoSection(Section))
1119       continue;
1120 
1121     // Remember the offset into the file for this section.
1122     const uint64_t SecStart = align(Section.getAlign());
1123 
1124     const MCSymbolELF *SignatureSymbol = Section.getGroup();
1125     writeSectionData(Asm, Section, Layout);
1126 
1127     uint64_t SecEnd = W.OS.tell();
1128     SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd);
1129 
1130     MCSectionELF *RelSection = createRelocationSection(Ctx, Section);
1131 
1132     if (SignatureSymbol) {
1133       unsigned &GroupIdx = RevGroupMap[SignatureSymbol];
1134       if (!GroupIdx) {
1135         MCSectionELF *Group =
1136             Ctx.createELFGroupSection(SignatureSymbol, Section.isComdat());
1137         GroupIdx = addToSectionTable(Group);
1138         Group->setAlignment(Align(4));
1139         Groups.push_back(Group);
1140       }
1141       std::vector<const MCSectionELF *> &Members =
1142           GroupMembers[SignatureSymbol];
1143       Members.push_back(&Section);
1144       if (RelSection)
1145         Members.push_back(RelSection);
1146     }
1147 
1148     SectionIndexMap[&Section] = addToSectionTable(&Section);
1149     if (RelSection) {
1150       SectionIndexMap[RelSection] = addToSectionTable(RelSection);
1151       Relocations.push_back(RelSection);
1152     }
1153 
1154     OWriter.TargetObjectWriter->addTargetSectionFlags(Ctx, Section);
1155   }
1156 
1157   for (MCSectionELF *Group : Groups) {
1158     // Remember the offset into the file for this section.
1159     const uint64_t SecStart = align(Group->getAlign());
1160 
1161     const MCSymbol *SignatureSymbol = Group->getGroup();
1162     assert(SignatureSymbol);
1163     write(uint32_t(Group->isComdat() ? unsigned(ELF::GRP_COMDAT) : 0));
1164     for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) {
1165       uint32_t SecIndex = SectionIndexMap.lookup(Member);
1166       write(SecIndex);
1167     }
1168 
1169     uint64_t SecEnd = W.OS.tell();
1170     SectionOffsets[Group] = std::make_pair(SecStart, SecEnd);
1171   }
1172 
1173   if (Mode == DwoOnly) {
1174     // dwo files don't have symbol tables or relocations, but they do have
1175     // string tables.
1176     StrTabBuilder.finalize();
1177   } else {
1178     MCSectionELF *AddrsigSection;
1179     if (OWriter.EmitAddrsigSection) {
1180       AddrsigSection = Ctx.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG,
1181                                          ELF::SHF_EXCLUDE);
1182       addToSectionTable(AddrsigSection);
1183     }
1184 
1185     // Compute symbol table information.
1186     computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap,
1187                        SectionOffsets);
1188 
1189     for (MCSectionELF *RelSection : Relocations) {
1190       // Remember the offset into the file for this section.
1191       const uint64_t SecStart = align(RelSection->getAlign());
1192 
1193       writeRelocations(Asm,
1194                        cast<MCSectionELF>(*RelSection->getLinkedToSection()));
1195 
1196       uint64_t SecEnd = W.OS.tell();
1197       SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd);
1198     }
1199 
1200     if (OWriter.EmitAddrsigSection) {
1201       uint64_t SecStart = W.OS.tell();
1202       writeAddrsigSection();
1203       uint64_t SecEnd = W.OS.tell();
1204       SectionOffsets[AddrsigSection] = std::make_pair(SecStart, SecEnd);
1205     }
1206   }
1207 
1208   {
1209     uint64_t SecStart = W.OS.tell();
1210     StrTabBuilder.write(W.OS);
1211     SectionOffsets[StrtabSection] = std::make_pair(SecStart, W.OS.tell());
1212   }
1213 
1214   const uint64_t SectionHeaderOffset = align(is64Bit() ? Align(8) : Align(4));
1215 
1216   // ... then the section header table ...
1217   writeSectionHeader(Layout, SectionIndexMap, SectionOffsets);
1218 
1219   uint16_t NumSections = support::endian::byte_swap<uint16_t>(
1220       (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF
1221                                                       : SectionTable.size() + 1,
1222       W.Endian);
1223   unsigned NumSectionsOffset;
1224 
1225   auto &Stream = static_cast<raw_pwrite_stream &>(W.OS);
1226   if (is64Bit()) {
1227     uint64_t Val =
1228         support::endian::byte_swap<uint64_t>(SectionHeaderOffset, W.Endian);
1229     Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1230                   offsetof(ELF::Elf64_Ehdr, e_shoff));
1231     NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum);
1232   } else {
1233     uint32_t Val =
1234         support::endian::byte_swap<uint32_t>(SectionHeaderOffset, W.Endian);
1235     Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1236                   offsetof(ELF::Elf32_Ehdr, e_shoff));
1237     NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum);
1238   }
1239   Stream.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections),
1240                 NumSectionsOffset);
1241 
1242   return W.OS.tell() - StartOffset;
1243 }
1244 
1245 bool ELFObjectWriter::hasRelocationAddend() const {
1246   return TargetObjectWriter->hasRelocationAddend();
1247 }
1248 
1249 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
1250                                                const MCAsmLayout &Layout) {
1251   // The presence of symbol versions causes undefined symbols and
1252   // versions declared with @@@ to be renamed.
1253   for (const MCAssembler::Symver &S : Asm.Symvers) {
1254     StringRef AliasName = S.Name;
1255     const auto &Symbol = cast<MCSymbolELF>(*S.Sym);
1256     size_t Pos = AliasName.find('@');
1257     assert(Pos != StringRef::npos);
1258 
1259     StringRef Prefix = AliasName.substr(0, Pos);
1260     StringRef Rest = AliasName.substr(Pos);
1261     StringRef Tail = Rest;
1262     if (Rest.starts_with("@@@"))
1263       Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1);
1264 
1265     auto *Alias =
1266         cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail));
1267     Asm.registerSymbol(*Alias);
1268     const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext());
1269     Alias->setVariableValue(Value);
1270 
1271     // Aliases defined with .symvar copy the binding from the symbol they alias.
1272     // This is the first place we are able to copy this information.
1273     Alias->setBinding(Symbol.getBinding());
1274     Alias->setVisibility(Symbol.getVisibility());
1275     Alias->setOther(Symbol.getOther());
1276 
1277     if (!Symbol.isUndefined() && S.KeepOriginalSym)
1278       continue;
1279 
1280     if (Symbol.isUndefined() && Rest.starts_with("@@") &&
1281         !Rest.starts_with("@@@")) {
1282       Asm.getContext().reportError(S.Loc, "default version symbol " +
1283                                               AliasName + " must be defined");
1284       continue;
1285     }
1286 
1287     if (Renames.count(&Symbol) && Renames[&Symbol] != Alias) {
1288       Asm.getContext().reportError(S.Loc, Twine("multiple versions for ") +
1289                                               Symbol.getName());
1290       continue;
1291     }
1292 
1293     Renames.insert(std::make_pair(&Symbol, Alias));
1294   }
1295 
1296   for (const MCSymbol *&Sym : AddrsigSyms) {
1297     if (const MCSymbol *R = Renames.lookup(cast<MCSymbolELF>(Sym)))
1298       Sym = R;
1299     if (Sym->isInSection() && Sym->getName().starts_with(".L"))
1300       Sym = Sym->getSection().getBeginSymbol();
1301     Sym->setUsedInReloc();
1302   }
1303 }
1304 
1305 // It is always valid to create a relocation with a symbol. It is preferable
1306 // to use a relocation with a section if that is possible. Using the section
1307 // allows us to omit some local symbols from the symbol table.
1308 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
1309                                                const MCValue &Val,
1310                                                const MCSymbolELF *Sym,
1311                                                uint64_t C,
1312                                                unsigned Type) const {
1313   const MCSymbolRefExpr *RefA = Val.getSymA();
1314   // A PCRel relocation to an absolute value has no symbol (or section). We
1315   // represent that with a relocation to a null section.
1316   if (!RefA)
1317     return false;
1318 
1319   MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
1320   switch (Kind) {
1321   default:
1322     break;
1323   // The .odp creation emits a relocation against the symbol ".TOC." which
1324   // create a R_PPC64_TOC relocation. However the relocation symbol name
1325   // in final object creation should be NULL, since the symbol does not
1326   // really exist, it is just the reference to TOC base for the current
1327   // object file. Since the symbol is undefined, returning false results
1328   // in a relocation with a null section which is the desired result.
1329   case MCSymbolRefExpr::VK_PPC_TOCBASE:
1330     return false;
1331 
1332   // These VariantKind cause the relocation to refer to something other than
1333   // the symbol itself, like a linker generated table. Since the address of
1334   // symbol is not relevant, we cannot replace the symbol with the
1335   // section and patch the difference in the addend.
1336   case MCSymbolRefExpr::VK_GOT:
1337   case MCSymbolRefExpr::VK_PLT:
1338   case MCSymbolRefExpr::VK_GOTPCREL:
1339   case MCSymbolRefExpr::VK_GOTPCREL_NORELAX:
1340   case MCSymbolRefExpr::VK_PPC_GOT_LO:
1341   case MCSymbolRefExpr::VK_PPC_GOT_HI:
1342   case MCSymbolRefExpr::VK_PPC_GOT_HA:
1343     return true;
1344   }
1345 
1346   // An undefined symbol is not in any section, so the relocation has to point
1347   // to the symbol itself.
1348   assert(Sym && "Expected a symbol");
1349   if (Sym->isUndefined())
1350     return true;
1351 
1352   // For memory-tagged symbols, ensure that the relocation uses the symbol. For
1353   // tagged symbols, we emit an empty relocation (R_AARCH64_NONE) in a special
1354   // section (SHT_AARCH64_MEMTAG_GLOBALS_STATIC) to indicate to the linker that
1355   // this global needs to be tagged. In addition, the linker needs to know
1356   // whether to emit a special addend when relocating `end` symbols, and this
1357   // can only be determined by the attributes of the symbol itself.
1358   if (Sym->isMemtag())
1359     return true;
1360 
1361   unsigned Binding = Sym->getBinding();
1362   switch(Binding) {
1363   default:
1364     llvm_unreachable("Invalid Binding");
1365   case ELF::STB_LOCAL:
1366     break;
1367   case ELF::STB_WEAK:
1368     // If the symbol is weak, it might be overridden by a symbol in another
1369     // file. The relocation has to point to the symbol so that the linker
1370     // can update it.
1371     return true;
1372   case ELF::STB_GLOBAL:
1373   case ELF::STB_GNU_UNIQUE:
1374     // Global ELF symbols can be preempted by the dynamic linker. The relocation
1375     // has to point to the symbol for a reason analogous to the STB_WEAK case.
1376     return true;
1377   }
1378 
1379   // Keep symbol type for a local ifunc because it may result in an IRELATIVE
1380   // reloc that the dynamic loader will use to resolve the address at startup
1381   // time.
1382   if (Sym->getType() == ELF::STT_GNU_IFUNC)
1383     return true;
1384 
1385   // If a relocation points to a mergeable section, we have to be careful.
1386   // If the offset is zero, a relocation with the section will encode the
1387   // same information. With a non-zero offset, the situation is different.
1388   // For example, a relocation can point 42 bytes past the end of a string.
1389   // If we change such a relocation to use the section, the linker would think
1390   // that it pointed to another string and subtracting 42 at runtime will
1391   // produce the wrong value.
1392   if (Sym->isInSection()) {
1393     auto &Sec = cast<MCSectionELF>(Sym->getSection());
1394     unsigned Flags = Sec.getFlags();
1395     if (Flags & ELF::SHF_MERGE) {
1396       if (C != 0)
1397         return true;
1398 
1399       // gold<2.34 incorrectly ignored the addend for R_386_GOTOFF (9)
1400       // (http://sourceware.org/PR16794).
1401       if (TargetObjectWriter->getEMachine() == ELF::EM_386 &&
1402           Type == ELF::R_386_GOTOFF)
1403         return true;
1404 
1405       // ld.lld handles R_MIPS_HI16/R_MIPS_LO16 separately, not as a whole, so
1406       // it doesn't know that an R_MIPS_HI16 with implicit addend 1 and an
1407       // R_MIPS_LO16 with implicit addend -32768 represents 32768, which is in
1408       // range of a MergeInputSection. We could introduce a new RelExpr member
1409       // (like R_RISCV_PC_INDIRECT for R_RISCV_PCREL_HI20 / R_RISCV_PCREL_LO12)
1410       // but the complexity is unnecessary given that GNU as keeps the original
1411       // symbol for this case as well.
1412       if (TargetObjectWriter->getEMachine() == ELF::EM_MIPS &&
1413           !hasRelocationAddend())
1414         return true;
1415     }
1416 
1417     // Most TLS relocations use a got, so they need the symbol. Even those that
1418     // are just an offset (@tpoff), require a symbol in gold versions before
1419     // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
1420     // http://sourceware.org/PR16773.
1421     if (Flags & ELF::SHF_TLS)
1422       return true;
1423   }
1424 
1425   // If the symbol is a thumb function the final relocation must set the lowest
1426   // bit. With a symbol that is done by just having the symbol have that bit
1427   // set, so we would lose the bit if we relocated with the section.
1428   // FIXME: We could use the section but add the bit to the relocation value.
1429   if (Asm.isThumbFunc(Sym))
1430     return true;
1431 
1432   if (TargetObjectWriter->needsRelocateWithSymbol(Val, *Sym, Type))
1433     return true;
1434   return false;
1435 }
1436 
1437 void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
1438                                        const MCAsmLayout &Layout,
1439                                        const MCFragment *Fragment,
1440                                        const MCFixup &Fixup, MCValue Target,
1441                                        uint64_t &FixedValue) {
1442   MCAsmBackend &Backend = Asm.getBackend();
1443   bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
1444                  MCFixupKindInfo::FKF_IsPCRel;
1445   const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
1446   uint64_t C = Target.getConstant();
1447   uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
1448   MCContext &Ctx = Asm.getContext();
1449 
1450   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
1451     const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
1452     if (SymB.isUndefined()) {
1453       Ctx.reportError(Fixup.getLoc(),
1454                       Twine("symbol '") + SymB.getName() +
1455                           "' can not be undefined in a subtraction expression");
1456       return;
1457     }
1458 
1459     assert(!SymB.isAbsolute() && "Should have been folded");
1460     const MCSection &SecB = SymB.getSection();
1461     if (&SecB != &FixupSection) {
1462       Ctx.reportError(Fixup.getLoc(),
1463                       "Cannot represent a difference across sections");
1464       return;
1465     }
1466 
1467     assert(!IsPCRel && "should have been folded");
1468     IsPCRel = true;
1469     C += FixupOffset - Layout.getSymbolOffset(SymB);
1470   }
1471 
1472   // We either rejected the fixup or folded B into C at this point.
1473   const MCSymbolRefExpr *RefA = Target.getSymA();
1474   const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
1475 
1476   bool ViaWeakRef = false;
1477   if (SymA && SymA->isVariable()) {
1478     const MCExpr *Expr = SymA->getVariableValue();
1479     if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
1480       if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
1481         SymA = cast<MCSymbolELF>(&Inner->getSymbol());
1482         ViaWeakRef = true;
1483       }
1484     }
1485   }
1486 
1487   const MCSectionELF *SecA = (SymA && SymA->isInSection())
1488                                  ? cast<MCSectionELF>(&SymA->getSection())
1489                                  : nullptr;
1490   if (!checkRelocation(Ctx, Fixup.getLoc(), &FixupSection, SecA))
1491     return;
1492 
1493   unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel);
1494   const auto *Parent = cast<MCSectionELF>(Fragment->getParent());
1495   // Emiting relocation with sybmol for CG Profile to  help with --cg-profile.
1496   bool RelocateWithSymbol =
1497       shouldRelocateWithSymbol(Asm, Target, SymA, C, Type) ||
1498       (Parent->getType() == ELF::SHT_LLVM_CALL_GRAPH_PROFILE);
1499   uint64_t Addend = 0;
1500 
1501   FixedValue = !RelocateWithSymbol && SymA && !SymA->isUndefined()
1502                    ? C + Layout.getSymbolOffset(*SymA)
1503                    : C;
1504   if (hasRelocationAddend()) {
1505     Addend = FixedValue;
1506     FixedValue = 0;
1507   }
1508 
1509   if (!RelocateWithSymbol) {
1510     const auto *SectionSymbol =
1511         SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr;
1512     if (SectionSymbol)
1513       SectionSymbol->setUsedInReloc();
1514     ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA, C);
1515     Relocations[&FixupSection].push_back(Rec);
1516     return;
1517   }
1518 
1519   const MCSymbolELF *RenamedSymA = SymA;
1520   if (SymA) {
1521     if (const MCSymbolELF *R = Renames.lookup(SymA))
1522       RenamedSymA = R;
1523 
1524     if (ViaWeakRef)
1525       RenamedSymA->setIsWeakrefUsedInReloc();
1526     else
1527       RenamedSymA->setUsedInReloc();
1528   }
1529   ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA, C);
1530   Relocations[&FixupSection].push_back(Rec);
1531 }
1532 
1533 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
1534     const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
1535     bool InSet, bool IsPCRel) const {
1536   const auto &SymA = cast<MCSymbolELF>(SA);
1537   if (IsPCRel) {
1538     assert(!InSet);
1539     if (SymA.getBinding() != ELF::STB_LOCAL ||
1540         SymA.getType() == ELF::STT_GNU_IFUNC)
1541       return false;
1542   }
1543   return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB,
1544                                                                 InSet, IsPCRel);
1545 }
1546 
1547 std::unique_ptr<MCObjectWriter>
1548 llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
1549                             raw_pwrite_stream &OS, bool IsLittleEndian) {
1550   return std::make_unique<ELFSingleObjectWriter>(std::move(MOTW), OS,
1551                                                   IsLittleEndian);
1552 }
1553 
1554 std::unique_ptr<MCObjectWriter>
1555 llvm::createELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
1556                                raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS,
1557                                bool IsLittleEndian) {
1558   return std::make_unique<ELFDwoObjectWriter>(std::move(MOTW), OS, DwoOS,
1559                                                IsLittleEndian);
1560 }
1561