1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements ELF object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/BinaryFormat/ELF.h" 21 #include "llvm/MC/MCAsmBackend.h" 22 #include "llvm/MC/MCAsmInfo.h" 23 #include "llvm/MC/MCAsmLayout.h" 24 #include "llvm/MC/MCAssembler.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCELFObjectWriter.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/MC/MCFixup.h" 29 #include "llvm/MC/MCFixupKindInfo.h" 30 #include "llvm/MC/MCFragment.h" 31 #include "llvm/MC/MCObjectFileInfo.h" 32 #include "llvm/MC/MCObjectWriter.h" 33 #include "llvm/MC/MCSection.h" 34 #include "llvm/MC/MCSectionELF.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/MC/MCSymbolELF.h" 37 #include "llvm/MC/MCValue.h" 38 #include "llvm/MC/StringTableBuilder.h" 39 #include "llvm/Support/Alignment.h" 40 #include "llvm/Support/Allocator.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/Compression.h" 43 #include "llvm/Support/Endian.h" 44 #include "llvm/Support/Error.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/Host.h" 47 #include "llvm/Support/LEB128.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/SMLoc.h" 50 #include "llvm/Support/StringSaver.h" 51 #include "llvm/Support/SwapByteOrder.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <cstddef> 56 #include <cstdint> 57 #include <map> 58 #include <memory> 59 #include <string> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #undef DEBUG_TYPE 66 #define DEBUG_TYPE "reloc-info" 67 68 namespace { 69 70 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>; 71 72 class ELFObjectWriter; 73 struct ELFWriter; 74 75 bool isDwoSection(const MCSectionELF &Sec) { 76 return Sec.getSectionName().endswith(".dwo"); 77 } 78 79 class SymbolTableWriter { 80 ELFWriter &EWriter; 81 bool Is64Bit; 82 83 // indexes we are going to write to .symtab_shndx. 84 std::vector<uint32_t> ShndxIndexes; 85 86 // The numbel of symbols written so far. 87 unsigned NumWritten; 88 89 void createSymtabShndx(); 90 91 template <typename T> void write(T Value); 92 93 public: 94 SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit); 95 96 void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size, 97 uint8_t other, uint32_t shndx, bool Reserved); 98 99 ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; } 100 }; 101 102 struct ELFWriter { 103 ELFObjectWriter &OWriter; 104 support::endian::Writer W; 105 106 enum DwoMode { 107 AllSections, 108 NonDwoOnly, 109 DwoOnly, 110 } Mode; 111 112 static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout); 113 static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 114 bool Used, bool Renamed); 115 116 /// Helper struct for containing some precomputed information on symbols. 117 struct ELFSymbolData { 118 const MCSymbolELF *Symbol; 119 uint32_t SectionIndex; 120 StringRef Name; 121 122 // Support lexicographic sorting. 123 bool operator<(const ELFSymbolData &RHS) const { 124 unsigned LHSType = Symbol->getType(); 125 unsigned RHSType = RHS.Symbol->getType(); 126 if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION) 127 return false; 128 if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION) 129 return true; 130 if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION) 131 return SectionIndex < RHS.SectionIndex; 132 return Name < RHS.Name; 133 } 134 }; 135 136 /// @} 137 /// @name Symbol Table Data 138 /// @{ 139 140 StringTableBuilder StrTabBuilder{StringTableBuilder::ELF}; 141 142 /// @} 143 144 // This holds the symbol table index of the last local symbol. 145 unsigned LastLocalSymbolIndex; 146 // This holds the .strtab section index. 147 unsigned StringTableIndex; 148 // This holds the .symtab section index. 149 unsigned SymbolTableIndex; 150 151 // Sections in the order they are to be output in the section table. 152 std::vector<const MCSectionELF *> SectionTable; 153 unsigned addToSectionTable(const MCSectionELF *Sec); 154 155 // TargetObjectWriter wrappers. 156 bool is64Bit() const; 157 bool hasRelocationAddend() const; 158 159 void align(unsigned Alignment); 160 161 bool maybeWriteCompression(uint64_t Size, 162 SmallVectorImpl<char> &CompressedContents, 163 bool ZLibStyle, unsigned Alignment); 164 165 public: 166 ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS, 167 bool IsLittleEndian, DwoMode Mode) 168 : OWriter(OWriter), 169 W(OS, IsLittleEndian ? support::little : support::big), Mode(Mode) {} 170 171 void WriteWord(uint64_t Word) { 172 if (is64Bit()) 173 W.write<uint64_t>(Word); 174 else 175 W.write<uint32_t>(Word); 176 } 177 178 template <typename T> void write(T Val) { 179 W.write(Val); 180 } 181 182 void writeHeader(const MCAssembler &Asm); 183 184 void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 185 ELFSymbolData &MSD, const MCAsmLayout &Layout); 186 187 // Start and end offset of each section 188 using SectionOffsetsTy = 189 std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>; 190 191 // Map from a signature symbol to the group section index 192 using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>; 193 194 /// Compute the symbol table data 195 /// 196 /// \param Asm - The assembler. 197 /// \param SectionIndexMap - Maps a section to its index. 198 /// \param RevGroupMap - Maps a signature symbol to the group section. 199 void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout, 200 const SectionIndexMapTy &SectionIndexMap, 201 const RevGroupMapTy &RevGroupMap, 202 SectionOffsetsTy &SectionOffsets); 203 204 void writeAddrsigSection(); 205 206 MCSectionELF *createRelocationSection(MCContext &Ctx, 207 const MCSectionELF &Sec); 208 209 const MCSectionELF *createStringTable(MCContext &Ctx); 210 211 void writeSectionHeader(const MCAsmLayout &Layout, 212 const SectionIndexMapTy &SectionIndexMap, 213 const SectionOffsetsTy &SectionOffsets); 214 215 void writeSectionData(const MCAssembler &Asm, MCSection &Sec, 216 const MCAsmLayout &Layout); 217 218 void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 219 uint64_t Address, uint64_t Offset, uint64_t Size, 220 uint32_t Link, uint32_t Info, uint64_t Alignment, 221 uint64_t EntrySize); 222 223 void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec); 224 225 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout); 226 void writeSection(const SectionIndexMapTy &SectionIndexMap, 227 uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size, 228 const MCSectionELF &Section); 229 }; 230 231 class ELFObjectWriter : public MCObjectWriter { 232 /// The target specific ELF writer instance. 233 std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter; 234 235 DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations; 236 237 DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames; 238 239 bool EmitAddrsigSection = false; 240 std::vector<const MCSymbol *> AddrsigSyms; 241 242 bool hasRelocationAddend() const; 243 244 bool shouldRelocateWithSymbol(const MCAssembler &Asm, 245 const MCSymbolRefExpr *RefA, 246 const MCSymbolELF *Sym, uint64_t C, 247 unsigned Type) const; 248 249 public: 250 ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW) 251 : TargetObjectWriter(std::move(MOTW)) {} 252 253 void reset() override { 254 Relocations.clear(); 255 Renames.clear(); 256 MCObjectWriter::reset(); 257 } 258 259 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, 260 const MCSymbol &SymA, 261 const MCFragment &FB, bool InSet, 262 bool IsPCRel) const override; 263 264 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc, 265 const MCSectionELF *From, 266 const MCSectionELF *To) { 267 return true; 268 } 269 270 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, 271 const MCFragment *Fragment, const MCFixup &Fixup, 272 MCValue Target, uint64_t &FixedValue) override; 273 274 void executePostLayoutBinding(MCAssembler &Asm, 275 const MCAsmLayout &Layout) override; 276 277 void emitAddrsigSection() override { EmitAddrsigSection = true; } 278 void addAddrsigSymbol(const MCSymbol *Sym) override { 279 AddrsigSyms.push_back(Sym); 280 } 281 282 friend struct ELFWriter; 283 }; 284 285 class ELFSingleObjectWriter : public ELFObjectWriter { 286 raw_pwrite_stream &OS; 287 bool IsLittleEndian; 288 289 public: 290 ELFSingleObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 291 raw_pwrite_stream &OS, bool IsLittleEndian) 292 : ELFObjectWriter(std::move(MOTW)), OS(OS), 293 IsLittleEndian(IsLittleEndian) {} 294 295 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override { 296 return ELFWriter(*this, OS, IsLittleEndian, ELFWriter::AllSections) 297 .writeObject(Asm, Layout); 298 } 299 300 friend struct ELFWriter; 301 }; 302 303 class ELFDwoObjectWriter : public ELFObjectWriter { 304 raw_pwrite_stream &OS, &DwoOS; 305 bool IsLittleEndian; 306 307 public: 308 ELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 309 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, 310 bool IsLittleEndian) 311 : ELFObjectWriter(std::move(MOTW)), OS(OS), DwoOS(DwoOS), 312 IsLittleEndian(IsLittleEndian) {} 313 314 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc, 315 const MCSectionELF *From, 316 const MCSectionELF *To) override { 317 if (isDwoSection(*From)) { 318 Ctx.reportError(Loc, "A dwo section may not contain relocations"); 319 return false; 320 } 321 if (To && isDwoSection(*To)) { 322 Ctx.reportError(Loc, "A relocation may not refer to a dwo section"); 323 return false; 324 } 325 return true; 326 } 327 328 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override { 329 uint64_t Size = ELFWriter(*this, OS, IsLittleEndian, ELFWriter::NonDwoOnly) 330 .writeObject(Asm, Layout); 331 Size += ELFWriter(*this, DwoOS, IsLittleEndian, ELFWriter::DwoOnly) 332 .writeObject(Asm, Layout); 333 return Size; 334 } 335 }; 336 337 } // end anonymous namespace 338 339 void ELFWriter::align(unsigned Alignment) { 340 uint64_t Padding = offsetToAlignment(W.OS.tell(), Align(Alignment)); 341 W.OS.write_zeros(Padding); 342 } 343 344 unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) { 345 SectionTable.push_back(Sec); 346 StrTabBuilder.add(Sec->getSectionName()); 347 return SectionTable.size(); 348 } 349 350 void SymbolTableWriter::createSymtabShndx() { 351 if (!ShndxIndexes.empty()) 352 return; 353 354 ShndxIndexes.resize(NumWritten); 355 } 356 357 template <typename T> void SymbolTableWriter::write(T Value) { 358 EWriter.write(Value); 359 } 360 361 SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit) 362 : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {} 363 364 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value, 365 uint64_t size, uint8_t other, 366 uint32_t shndx, bool Reserved) { 367 bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved; 368 369 if (LargeIndex) 370 createSymtabShndx(); 371 372 if (!ShndxIndexes.empty()) { 373 if (LargeIndex) 374 ShndxIndexes.push_back(shndx); 375 else 376 ShndxIndexes.push_back(0); 377 } 378 379 uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx; 380 381 if (Is64Bit) { 382 write(name); // st_name 383 write(info); // st_info 384 write(other); // st_other 385 write(Index); // st_shndx 386 write(value); // st_value 387 write(size); // st_size 388 } else { 389 write(name); // st_name 390 write(uint32_t(value)); // st_value 391 write(uint32_t(size)); // st_size 392 write(info); // st_info 393 write(other); // st_other 394 write(Index); // st_shndx 395 } 396 397 ++NumWritten; 398 } 399 400 bool ELFWriter::is64Bit() const { 401 return OWriter.TargetObjectWriter->is64Bit(); 402 } 403 404 bool ELFWriter::hasRelocationAddend() const { 405 return OWriter.hasRelocationAddend(); 406 } 407 408 // Emit the ELF header. 409 void ELFWriter::writeHeader(const MCAssembler &Asm) { 410 // ELF Header 411 // ---------- 412 // 413 // Note 414 // ---- 415 // emitWord method behaves differently for ELF32 and ELF64, writing 416 // 4 bytes in the former and 8 in the latter. 417 418 W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3] 419 420 W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS] 421 422 // e_ident[EI_DATA] 423 W.OS << char(W.Endian == support::little ? ELF::ELFDATA2LSB 424 : ELF::ELFDATA2MSB); 425 426 W.OS << char(ELF::EV_CURRENT); // e_ident[EI_VERSION] 427 // e_ident[EI_OSABI] 428 W.OS << char(OWriter.TargetObjectWriter->getOSABI()); 429 // e_ident[EI_ABIVERSION] 430 W.OS << char(OWriter.TargetObjectWriter->getABIVersion()); 431 432 W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD); 433 434 W.write<uint16_t>(ELF::ET_REL); // e_type 435 436 W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target 437 438 W.write<uint32_t>(ELF::EV_CURRENT); // e_version 439 WriteWord(0); // e_entry, no entry point in .o file 440 WriteWord(0); // e_phoff, no program header for .o 441 WriteWord(0); // e_shoff = sec hdr table off in bytes 442 443 // e_flags = whatever the target wants 444 W.write<uint32_t>(Asm.getELFHeaderEFlags()); 445 446 // e_ehsize = ELF header size 447 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr) 448 : sizeof(ELF::Elf32_Ehdr)); 449 450 W.write<uint16_t>(0); // e_phentsize = prog header entry size 451 W.write<uint16_t>(0); // e_phnum = # prog header entries = 0 452 453 // e_shentsize = Section header entry size 454 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr) 455 : sizeof(ELF::Elf32_Shdr)); 456 457 // e_shnum = # of section header ents 458 W.write<uint16_t>(0); 459 460 // e_shstrndx = Section # of '.shstrtab' 461 assert(StringTableIndex < ELF::SHN_LORESERVE); 462 W.write<uint16_t>(StringTableIndex); 463 } 464 465 uint64_t ELFWriter::SymbolValue(const MCSymbol &Sym, 466 const MCAsmLayout &Layout) { 467 if (Sym.isCommon() && (Sym.isTargetCommon() || Sym.isExternal())) 468 return Sym.getCommonAlignment(); 469 470 uint64_t Res; 471 if (!Layout.getSymbolOffset(Sym, Res)) 472 return 0; 473 474 if (Layout.getAssembler().isThumbFunc(&Sym)) 475 Res |= 1; 476 477 return Res; 478 } 479 480 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) { 481 uint8_t Type = newType; 482 483 // Propagation rules: 484 // IFUNC > FUNC > OBJECT > NOTYPE 485 // TLS_OBJECT > OBJECT > NOTYPE 486 // 487 // dont let the new type degrade the old type 488 switch (origType) { 489 default: 490 break; 491 case ELF::STT_GNU_IFUNC: 492 if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT || 493 Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS) 494 Type = ELF::STT_GNU_IFUNC; 495 break; 496 case ELF::STT_FUNC: 497 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 498 Type == ELF::STT_TLS) 499 Type = ELF::STT_FUNC; 500 break; 501 case ELF::STT_OBJECT: 502 if (Type == ELF::STT_NOTYPE) 503 Type = ELF::STT_OBJECT; 504 break; 505 case ELF::STT_TLS: 506 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 507 Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC) 508 Type = ELF::STT_TLS; 509 break; 510 } 511 512 return Type; 513 } 514 515 static bool isIFunc(const MCSymbolELF *Symbol) { 516 while (Symbol->getType() != ELF::STT_GNU_IFUNC) { 517 const MCSymbolRefExpr *Value; 518 if (!Symbol->isVariable() || 519 !(Value = dyn_cast<MCSymbolRefExpr>(Symbol->getVariableValue())) || 520 Value->getKind() != MCSymbolRefExpr::VK_None || 521 mergeTypeForSet(Symbol->getType(), ELF::STT_GNU_IFUNC) != ELF::STT_GNU_IFUNC) 522 return false; 523 Symbol = &cast<MCSymbolELF>(Value->getSymbol()); 524 } 525 return true; 526 } 527 528 void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 529 ELFSymbolData &MSD, const MCAsmLayout &Layout) { 530 const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol); 531 const MCSymbolELF *Base = 532 cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol)); 533 534 // This has to be in sync with when computeSymbolTable uses SHN_ABS or 535 // SHN_COMMON. 536 bool IsReserved = !Base || Symbol.isCommon(); 537 538 // Binding and Type share the same byte as upper and lower nibbles 539 uint8_t Binding = Symbol.getBinding(); 540 uint8_t Type = Symbol.getType(); 541 if (isIFunc(&Symbol)) 542 Type = ELF::STT_GNU_IFUNC; 543 if (Base) { 544 Type = mergeTypeForSet(Type, Base->getType()); 545 } 546 uint8_t Info = (Binding << 4) | Type; 547 548 // Other and Visibility share the same byte with Visibility using the lower 549 // 2 bits 550 uint8_t Visibility = Symbol.getVisibility(); 551 uint8_t Other = Symbol.getOther() | Visibility; 552 553 uint64_t Value = SymbolValue(*MSD.Symbol, Layout); 554 uint64_t Size = 0; 555 556 const MCExpr *ESize = MSD.Symbol->getSize(); 557 if (!ESize && Base) 558 ESize = Base->getSize(); 559 560 if (ESize) { 561 int64_t Res; 562 if (!ESize->evaluateKnownAbsolute(Res, Layout)) 563 report_fatal_error("Size expression must be absolute."); 564 Size = Res; 565 } 566 567 // Write out the symbol table entry 568 Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex, 569 IsReserved); 570 } 571 572 bool ELFWriter::isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 573 bool Used, bool Renamed) { 574 if (Symbol.isVariable()) { 575 const MCExpr *Expr = Symbol.getVariableValue(); 576 // Target Expressions that are always inlined do not appear in the symtab 577 if (const auto *T = dyn_cast<MCTargetExpr>(Expr)) 578 if (T->inlineAssignedExpr()) 579 return false; 580 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) { 581 if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF) 582 return false; 583 } 584 } 585 586 if (Used) 587 return true; 588 589 if (Renamed) 590 return false; 591 592 if (Symbol.isVariable() && Symbol.isUndefined()) { 593 // FIXME: this is here just to diagnose the case of a var = commmon_sym. 594 Layout.getBaseSymbol(Symbol); 595 return false; 596 } 597 598 if (Symbol.isTemporary()) 599 return false; 600 601 if (Symbol.getType() == ELF::STT_SECTION) 602 return false; 603 604 return true; 605 } 606 607 void ELFWriter::computeSymbolTable( 608 MCAssembler &Asm, const MCAsmLayout &Layout, 609 const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap, 610 SectionOffsetsTy &SectionOffsets) { 611 MCContext &Ctx = Asm.getContext(); 612 SymbolTableWriter Writer(*this, is64Bit()); 613 614 // Symbol table 615 unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32; 616 MCSectionELF *SymtabSection = 617 Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, ""); 618 SymtabSection->setAlignment(is64Bit() ? Align(8) : Align(4)); 619 SymbolTableIndex = addToSectionTable(SymtabSection); 620 621 align(SymtabSection->getAlignment()); 622 uint64_t SecStart = W.OS.tell(); 623 624 // The first entry is the undefined symbol entry. 625 Writer.writeSymbol(0, 0, 0, 0, 0, 0, false); 626 627 std::vector<ELFSymbolData> LocalSymbolData; 628 std::vector<ELFSymbolData> ExternalSymbolData; 629 630 // Add the data for the symbols. 631 bool HasLargeSectionIndex = false; 632 for (const MCSymbol &S : Asm.symbols()) { 633 const auto &Symbol = cast<MCSymbolELF>(S); 634 bool Used = Symbol.isUsedInReloc(); 635 bool WeakrefUsed = Symbol.isWeakrefUsedInReloc(); 636 bool isSignature = Symbol.isSignature(); 637 638 if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature, 639 OWriter.Renames.count(&Symbol))) 640 continue; 641 642 if (Symbol.isTemporary() && Symbol.isUndefined()) { 643 Ctx.reportError(SMLoc(), "Undefined temporary symbol"); 644 continue; 645 } 646 647 ELFSymbolData MSD; 648 MSD.Symbol = cast<MCSymbolELF>(&Symbol); 649 650 bool Local = Symbol.getBinding() == ELF::STB_LOCAL; 651 assert(Local || !Symbol.isTemporary()); 652 653 if (Symbol.isAbsolute()) { 654 MSD.SectionIndex = ELF::SHN_ABS; 655 } else if (Symbol.isCommon()) { 656 if (Symbol.isTargetCommon()) { 657 MSD.SectionIndex = Symbol.getIndex(); 658 } else { 659 assert(!Local); 660 MSD.SectionIndex = ELF::SHN_COMMON; 661 } 662 } else if (Symbol.isUndefined()) { 663 if (isSignature && !Used) { 664 MSD.SectionIndex = RevGroupMap.lookup(&Symbol); 665 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 666 HasLargeSectionIndex = true; 667 } else { 668 MSD.SectionIndex = ELF::SHN_UNDEF; 669 } 670 } else { 671 const MCSectionELF &Section = 672 static_cast<const MCSectionELF &>(Symbol.getSection()); 673 674 // We may end up with a situation when section symbol is technically 675 // defined, but should not be. That happens because we explicitly 676 // pre-create few .debug_* sections to have accessors. 677 // And if these sections were not really defined in the code, but were 678 // referenced, we simply error out. 679 if (!Section.isRegistered()) { 680 assert(static_cast<const MCSymbolELF &>(Symbol).getType() == 681 ELF::STT_SECTION); 682 Ctx.reportError(SMLoc(), 683 "Undefined section reference: " + Symbol.getName()); 684 continue; 685 } 686 687 if (Mode == NonDwoOnly && isDwoSection(Section)) 688 continue; 689 MSD.SectionIndex = SectionIndexMap.lookup(&Section); 690 assert(MSD.SectionIndex && "Invalid section index!"); 691 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 692 HasLargeSectionIndex = true; 693 } 694 695 StringRef Name = Symbol.getName(); 696 697 // Sections have their own string table 698 if (Symbol.getType() != ELF::STT_SECTION) { 699 MSD.Name = Name; 700 StrTabBuilder.add(Name); 701 } 702 703 if (Local) 704 LocalSymbolData.push_back(MSD); 705 else 706 ExternalSymbolData.push_back(MSD); 707 } 708 709 // This holds the .symtab_shndx section index. 710 unsigned SymtabShndxSectionIndex = 0; 711 712 if (HasLargeSectionIndex) { 713 MCSectionELF *SymtabShndxSection = 714 Ctx.getELFSection(".symtab_shndx", ELF::SHT_SYMTAB_SHNDX, 0, 4, ""); 715 SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection); 716 SymtabShndxSection->setAlignment(Align(4)); 717 } 718 719 ArrayRef<std::string> FileNames = Asm.getFileNames(); 720 for (const std::string &Name : FileNames) 721 StrTabBuilder.add(Name); 722 723 StrTabBuilder.finalize(); 724 725 // File symbols are emitted first and handled separately from normal symbols, 726 // i.e. a non-STT_FILE symbol with the same name may appear. 727 for (const std::string &Name : FileNames) 728 Writer.writeSymbol(StrTabBuilder.getOffset(Name), 729 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, 730 ELF::SHN_ABS, true); 731 732 // Symbols are required to be in lexicographic order. 733 array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end()); 734 array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end()); 735 736 // Set the symbol indices. Local symbols must come before all other 737 // symbols with non-local bindings. 738 unsigned Index = FileNames.size() + 1; 739 740 for (ELFSymbolData &MSD : LocalSymbolData) { 741 unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION 742 ? 0 743 : StrTabBuilder.getOffset(MSD.Name); 744 MSD.Symbol->setIndex(Index++); 745 writeSymbol(Writer, StringIndex, MSD, Layout); 746 } 747 748 // Write the symbol table entries. 749 LastLocalSymbolIndex = Index; 750 751 for (ELFSymbolData &MSD : ExternalSymbolData) { 752 unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name); 753 MSD.Symbol->setIndex(Index++); 754 writeSymbol(Writer, StringIndex, MSD, Layout); 755 assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL); 756 } 757 758 uint64_t SecEnd = W.OS.tell(); 759 SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd); 760 761 ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes(); 762 if (ShndxIndexes.empty()) { 763 assert(SymtabShndxSectionIndex == 0); 764 return; 765 } 766 assert(SymtabShndxSectionIndex != 0); 767 768 SecStart = W.OS.tell(); 769 const MCSectionELF *SymtabShndxSection = 770 SectionTable[SymtabShndxSectionIndex - 1]; 771 for (uint32_t Index : ShndxIndexes) 772 write(Index); 773 SecEnd = W.OS.tell(); 774 SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd); 775 } 776 777 void ELFWriter::writeAddrsigSection() { 778 for (const MCSymbol *Sym : OWriter.AddrsigSyms) 779 encodeULEB128(Sym->getIndex(), W.OS); 780 } 781 782 MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx, 783 const MCSectionELF &Sec) { 784 if (OWriter.Relocations[&Sec].empty()) 785 return nullptr; 786 787 const StringRef SectionName = Sec.getSectionName(); 788 std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel"; 789 RelaSectionName += SectionName; 790 791 unsigned EntrySize; 792 if (hasRelocationAddend()) 793 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela); 794 else 795 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel); 796 797 unsigned Flags = 0; 798 if (Sec.getFlags() & ELF::SHF_GROUP) 799 Flags = ELF::SHF_GROUP; 800 801 MCSectionELF *RelaSection = Ctx.createELFRelSection( 802 RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL, 803 Flags, EntrySize, Sec.getGroup(), &Sec); 804 RelaSection->setAlignment(is64Bit() ? Align(8) : Align(4)); 805 return RelaSection; 806 } 807 808 // Include the debug info compression header. 809 bool ELFWriter::maybeWriteCompression( 810 uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle, 811 unsigned Alignment) { 812 if (ZLibStyle) { 813 uint64_t HdrSize = 814 is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr); 815 if (Size <= HdrSize + CompressedContents.size()) 816 return false; 817 // Platform specific header is followed by compressed data. 818 if (is64Bit()) { 819 // Write Elf64_Chdr header. 820 write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB)); 821 write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field. 822 write(static_cast<ELF::Elf64_Xword>(Size)); 823 write(static_cast<ELF::Elf64_Xword>(Alignment)); 824 } else { 825 // Write Elf32_Chdr header otherwise. 826 write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB)); 827 write(static_cast<ELF::Elf32_Word>(Size)); 828 write(static_cast<ELF::Elf32_Word>(Alignment)); 829 } 830 return true; 831 } 832 833 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section, 834 // useful for consumers to preallocate a buffer to decompress into. 835 const StringRef Magic = "ZLIB"; 836 if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size()) 837 return false; 838 W.OS << Magic; 839 support::endian::write(W.OS, Size, support::big); 840 return true; 841 } 842 843 void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec, 844 const MCAsmLayout &Layout) { 845 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 846 StringRef SectionName = Section.getSectionName(); 847 848 auto &MC = Asm.getContext(); 849 const auto &MAI = MC.getAsmInfo(); 850 851 // Compressing debug_frame requires handling alignment fragments which is 852 // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow 853 // for writing to arbitrary buffers) for little benefit. 854 bool CompressionEnabled = 855 MAI->compressDebugSections() != DebugCompressionType::None; 856 if (!CompressionEnabled || !SectionName.startswith(".debug_") || 857 SectionName == ".debug_frame") { 858 Asm.writeSectionData(W.OS, &Section, Layout); 859 return; 860 } 861 862 assert((MAI->compressDebugSections() == DebugCompressionType::Z || 863 MAI->compressDebugSections() == DebugCompressionType::GNU) && 864 "expected zlib or zlib-gnu style compression"); 865 866 SmallVector<char, 128> UncompressedData; 867 raw_svector_ostream VecOS(UncompressedData); 868 Asm.writeSectionData(VecOS, &Section, Layout); 869 870 SmallVector<char, 128> CompressedContents; 871 if (Error E = zlib::compress( 872 StringRef(UncompressedData.data(), UncompressedData.size()), 873 CompressedContents)) { 874 consumeError(std::move(E)); 875 W.OS << UncompressedData; 876 return; 877 } 878 879 bool ZlibStyle = MAI->compressDebugSections() == DebugCompressionType::Z; 880 if (!maybeWriteCompression(UncompressedData.size(), CompressedContents, 881 ZlibStyle, Sec.getAlignment())) { 882 W.OS << UncompressedData; 883 return; 884 } 885 886 if (ZlibStyle) { 887 // Set the compressed flag. That is zlib style. 888 Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED); 889 // Alignment field should reflect the requirements of 890 // the compressed section header. 891 Section.setAlignment(is64Bit() ? Align(8) : Align(4)); 892 } else { 893 // Add "z" prefix to section name. This is zlib-gnu style. 894 MC.renameELFSection(&Section, (".z" + SectionName.drop_front(1)).str()); 895 } 896 W.OS << CompressedContents; 897 } 898 899 void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 900 uint64_t Address, uint64_t Offset, 901 uint64_t Size, uint32_t Link, uint32_t Info, 902 uint64_t Alignment, uint64_t EntrySize) { 903 W.write<uint32_t>(Name); // sh_name: index into string table 904 W.write<uint32_t>(Type); // sh_type 905 WriteWord(Flags); // sh_flags 906 WriteWord(Address); // sh_addr 907 WriteWord(Offset); // sh_offset 908 WriteWord(Size); // sh_size 909 W.write<uint32_t>(Link); // sh_link 910 W.write<uint32_t>(Info); // sh_info 911 WriteWord(Alignment); // sh_addralign 912 WriteWord(EntrySize); // sh_entsize 913 } 914 915 void ELFWriter::writeRelocations(const MCAssembler &Asm, 916 const MCSectionELF &Sec) { 917 std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec]; 918 919 // We record relocations by pushing to the end of a vector. Reverse the vector 920 // to get the relocations in the order they were created. 921 // In most cases that is not important, but it can be for special sections 922 // (.eh_frame) or specific relocations (TLS optimizations on SystemZ). 923 std::reverse(Relocs.begin(), Relocs.end()); 924 925 // Sort the relocation entries. MIPS needs this. 926 OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs); 927 928 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 929 const ELFRelocationEntry &Entry = Relocs[e - i - 1]; 930 unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0; 931 932 if (is64Bit()) { 933 write(Entry.Offset); 934 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 935 write(uint32_t(Index)); 936 937 write(OWriter.TargetObjectWriter->getRSsym(Entry.Type)); 938 write(OWriter.TargetObjectWriter->getRType3(Entry.Type)); 939 write(OWriter.TargetObjectWriter->getRType2(Entry.Type)); 940 write(OWriter.TargetObjectWriter->getRType(Entry.Type)); 941 } else { 942 struct ELF::Elf64_Rela ERE64; 943 ERE64.setSymbolAndType(Index, Entry.Type); 944 write(ERE64.r_info); 945 } 946 if (hasRelocationAddend()) 947 write(Entry.Addend); 948 } else { 949 write(uint32_t(Entry.Offset)); 950 951 struct ELF::Elf32_Rela ERE32; 952 ERE32.setSymbolAndType(Index, Entry.Type); 953 write(ERE32.r_info); 954 955 if (hasRelocationAddend()) 956 write(uint32_t(Entry.Addend)); 957 958 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 959 if (uint32_t RType = 960 OWriter.TargetObjectWriter->getRType2(Entry.Type)) { 961 write(uint32_t(Entry.Offset)); 962 963 ERE32.setSymbolAndType(0, RType); 964 write(ERE32.r_info); 965 write(uint32_t(0)); 966 } 967 if (uint32_t RType = 968 OWriter.TargetObjectWriter->getRType3(Entry.Type)) { 969 write(uint32_t(Entry.Offset)); 970 971 ERE32.setSymbolAndType(0, RType); 972 write(ERE32.r_info); 973 write(uint32_t(0)); 974 } 975 } 976 } 977 } 978 } 979 980 const MCSectionELF *ELFWriter::createStringTable(MCContext &Ctx) { 981 const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1]; 982 StrTabBuilder.write(W.OS); 983 return StrtabSection; 984 } 985 986 void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap, 987 uint32_t GroupSymbolIndex, uint64_t Offset, 988 uint64_t Size, const MCSectionELF &Section) { 989 uint64_t sh_link = 0; 990 uint64_t sh_info = 0; 991 992 switch(Section.getType()) { 993 default: 994 // Nothing to do. 995 break; 996 997 case ELF::SHT_DYNAMIC: 998 llvm_unreachable("SHT_DYNAMIC in a relocatable object"); 999 1000 case ELF::SHT_REL: 1001 case ELF::SHT_RELA: { 1002 sh_link = SymbolTableIndex; 1003 assert(sh_link && ".symtab not found"); 1004 const MCSection *InfoSection = Section.getAssociatedSection(); 1005 sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection)); 1006 break; 1007 } 1008 1009 case ELF::SHT_SYMTAB: 1010 sh_link = StringTableIndex; 1011 sh_info = LastLocalSymbolIndex; 1012 break; 1013 1014 case ELF::SHT_SYMTAB_SHNDX: 1015 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: 1016 case ELF::SHT_LLVM_ADDRSIG: 1017 sh_link = SymbolTableIndex; 1018 break; 1019 1020 case ELF::SHT_GROUP: 1021 sh_link = SymbolTableIndex; 1022 sh_info = GroupSymbolIndex; 1023 break; 1024 } 1025 1026 if (Section.getFlags() & ELF::SHF_LINK_ORDER) { 1027 const MCSymbol *Sym = Section.getAssociatedSymbol(); 1028 const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection()); 1029 sh_link = SectionIndexMap.lookup(Sec); 1030 } 1031 1032 WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()), 1033 Section.getType(), Section.getFlags(), 0, Offset, Size, 1034 sh_link, sh_info, Section.getAlignment(), 1035 Section.getEntrySize()); 1036 } 1037 1038 void ELFWriter::writeSectionHeader( 1039 const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap, 1040 const SectionOffsetsTy &SectionOffsets) { 1041 const unsigned NumSections = SectionTable.size(); 1042 1043 // Null section first. 1044 uint64_t FirstSectionSize = 1045 (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0; 1046 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0); 1047 1048 for (const MCSectionELF *Section : SectionTable) { 1049 uint32_t GroupSymbolIndex; 1050 unsigned Type = Section->getType(); 1051 if (Type != ELF::SHT_GROUP) 1052 GroupSymbolIndex = 0; 1053 else 1054 GroupSymbolIndex = Section->getGroup()->getIndex(); 1055 1056 const std::pair<uint64_t, uint64_t> &Offsets = 1057 SectionOffsets.find(Section)->second; 1058 uint64_t Size; 1059 if (Type == ELF::SHT_NOBITS) 1060 Size = Layout.getSectionAddressSize(Section); 1061 else 1062 Size = Offsets.second - Offsets.first; 1063 1064 writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size, 1065 *Section); 1066 } 1067 } 1068 1069 uint64_t ELFWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) { 1070 uint64_t StartOffset = W.OS.tell(); 1071 1072 MCContext &Ctx = Asm.getContext(); 1073 MCSectionELF *StrtabSection = 1074 Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0); 1075 StringTableIndex = addToSectionTable(StrtabSection); 1076 1077 RevGroupMapTy RevGroupMap; 1078 SectionIndexMapTy SectionIndexMap; 1079 1080 std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers; 1081 1082 // Write out the ELF header ... 1083 writeHeader(Asm); 1084 1085 // ... then the sections ... 1086 SectionOffsetsTy SectionOffsets; 1087 std::vector<MCSectionELF *> Groups; 1088 std::vector<MCSectionELF *> Relocations; 1089 for (MCSection &Sec : Asm) { 1090 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 1091 if (Mode == NonDwoOnly && isDwoSection(Section)) 1092 continue; 1093 if (Mode == DwoOnly && !isDwoSection(Section)) 1094 continue; 1095 1096 align(Section.getAlignment()); 1097 1098 // Remember the offset into the file for this section. 1099 uint64_t SecStart = W.OS.tell(); 1100 1101 const MCSymbolELF *SignatureSymbol = Section.getGroup(); 1102 writeSectionData(Asm, Section, Layout); 1103 1104 uint64_t SecEnd = W.OS.tell(); 1105 SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd); 1106 1107 MCSectionELF *RelSection = createRelocationSection(Ctx, Section); 1108 1109 if (SignatureSymbol) { 1110 Asm.registerSymbol(*SignatureSymbol); 1111 unsigned &GroupIdx = RevGroupMap[SignatureSymbol]; 1112 if (!GroupIdx) { 1113 MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol); 1114 GroupIdx = addToSectionTable(Group); 1115 Group->setAlignment(Align(4)); 1116 Groups.push_back(Group); 1117 } 1118 std::vector<const MCSectionELF *> &Members = 1119 GroupMembers[SignatureSymbol]; 1120 Members.push_back(&Section); 1121 if (RelSection) 1122 Members.push_back(RelSection); 1123 } 1124 1125 SectionIndexMap[&Section] = addToSectionTable(&Section); 1126 if (RelSection) { 1127 SectionIndexMap[RelSection] = addToSectionTable(RelSection); 1128 Relocations.push_back(RelSection); 1129 } 1130 1131 OWriter.TargetObjectWriter->addTargetSectionFlags(Ctx, Section); 1132 } 1133 1134 MCSectionELF *CGProfileSection = nullptr; 1135 if (!Asm.CGProfile.empty()) { 1136 CGProfileSection = Ctx.getELFSection(".llvm.call-graph-profile", 1137 ELF::SHT_LLVM_CALL_GRAPH_PROFILE, 1138 ELF::SHF_EXCLUDE, 16, ""); 1139 SectionIndexMap[CGProfileSection] = addToSectionTable(CGProfileSection); 1140 } 1141 1142 for (MCSectionELF *Group : Groups) { 1143 align(Group->getAlignment()); 1144 1145 // Remember the offset into the file for this section. 1146 uint64_t SecStart = W.OS.tell(); 1147 1148 const MCSymbol *SignatureSymbol = Group->getGroup(); 1149 assert(SignatureSymbol); 1150 write(uint32_t(ELF::GRP_COMDAT)); 1151 for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) { 1152 uint32_t SecIndex = SectionIndexMap.lookup(Member); 1153 write(SecIndex); 1154 } 1155 1156 uint64_t SecEnd = W.OS.tell(); 1157 SectionOffsets[Group] = std::make_pair(SecStart, SecEnd); 1158 } 1159 1160 if (Mode == DwoOnly) { 1161 // dwo files don't have symbol tables or relocations, but they do have 1162 // string tables. 1163 StrTabBuilder.finalize(); 1164 } else { 1165 MCSectionELF *AddrsigSection; 1166 if (OWriter.EmitAddrsigSection) { 1167 AddrsigSection = Ctx.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG, 1168 ELF::SHF_EXCLUDE); 1169 addToSectionTable(AddrsigSection); 1170 } 1171 1172 // Compute symbol table information. 1173 computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, 1174 SectionOffsets); 1175 1176 for (MCSectionELF *RelSection : Relocations) { 1177 align(RelSection->getAlignment()); 1178 1179 // Remember the offset into the file for this section. 1180 uint64_t SecStart = W.OS.tell(); 1181 1182 writeRelocations(Asm, 1183 cast<MCSectionELF>(*RelSection->getAssociatedSection())); 1184 1185 uint64_t SecEnd = W.OS.tell(); 1186 SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd); 1187 } 1188 1189 if (OWriter.EmitAddrsigSection) { 1190 uint64_t SecStart = W.OS.tell(); 1191 writeAddrsigSection(); 1192 uint64_t SecEnd = W.OS.tell(); 1193 SectionOffsets[AddrsigSection] = std::make_pair(SecStart, SecEnd); 1194 } 1195 } 1196 1197 if (CGProfileSection) { 1198 uint64_t SecStart = W.OS.tell(); 1199 for (const MCAssembler::CGProfileEntry &CGPE : Asm.CGProfile) { 1200 W.write<uint32_t>(CGPE.From->getSymbol().getIndex()); 1201 W.write<uint32_t>(CGPE.To->getSymbol().getIndex()); 1202 W.write<uint64_t>(CGPE.Count); 1203 } 1204 uint64_t SecEnd = W.OS.tell(); 1205 SectionOffsets[CGProfileSection] = std::make_pair(SecStart, SecEnd); 1206 } 1207 1208 { 1209 uint64_t SecStart = W.OS.tell(); 1210 const MCSectionELF *Sec = createStringTable(Ctx); 1211 uint64_t SecEnd = W.OS.tell(); 1212 SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd); 1213 } 1214 1215 uint64_t NaturalAlignment = is64Bit() ? 8 : 4; 1216 align(NaturalAlignment); 1217 1218 const uint64_t SectionHeaderOffset = W.OS.tell(); 1219 1220 // ... then the section header table ... 1221 writeSectionHeader(Layout, SectionIndexMap, SectionOffsets); 1222 1223 uint16_t NumSections = support::endian::byte_swap<uint16_t>( 1224 (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF 1225 : SectionTable.size() + 1, 1226 W.Endian); 1227 unsigned NumSectionsOffset; 1228 1229 auto &Stream = static_cast<raw_pwrite_stream &>(W.OS); 1230 if (is64Bit()) { 1231 uint64_t Val = 1232 support::endian::byte_swap<uint64_t>(SectionHeaderOffset, W.Endian); 1233 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1234 offsetof(ELF::Elf64_Ehdr, e_shoff)); 1235 NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum); 1236 } else { 1237 uint32_t Val = 1238 support::endian::byte_swap<uint32_t>(SectionHeaderOffset, W.Endian); 1239 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1240 offsetof(ELF::Elf32_Ehdr, e_shoff)); 1241 NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum); 1242 } 1243 Stream.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections), 1244 NumSectionsOffset); 1245 1246 return W.OS.tell() - StartOffset; 1247 } 1248 1249 bool ELFObjectWriter::hasRelocationAddend() const { 1250 return TargetObjectWriter->hasRelocationAddend(); 1251 } 1252 1253 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 1254 const MCAsmLayout &Layout) { 1255 // The presence of symbol versions causes undefined symbols and 1256 // versions declared with @@@ to be renamed. 1257 for (const std::pair<StringRef, const MCSymbol *> &P : Asm.Symvers) { 1258 StringRef AliasName = P.first; 1259 const auto &Symbol = cast<MCSymbolELF>(*P.second); 1260 size_t Pos = AliasName.find('@'); 1261 assert(Pos != StringRef::npos); 1262 1263 StringRef Prefix = AliasName.substr(0, Pos); 1264 StringRef Rest = AliasName.substr(Pos); 1265 StringRef Tail = Rest; 1266 if (Rest.startswith("@@@")) 1267 Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1); 1268 1269 auto *Alias = 1270 cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail)); 1271 Asm.registerSymbol(*Alias); 1272 const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext()); 1273 Alias->setVariableValue(Value); 1274 1275 // Aliases defined with .symvar copy the binding from the symbol they alias. 1276 // This is the first place we are able to copy this information. 1277 Alias->setExternal(Symbol.isExternal()); 1278 Alias->setBinding(Symbol.getBinding()); 1279 Alias->setOther(Symbol.getOther()); 1280 1281 if (!Symbol.isUndefined() && !Rest.startswith("@@@")) 1282 continue; 1283 1284 // FIXME: Get source locations for these errors or diagnose them earlier. 1285 if (Symbol.isUndefined() && Rest.startswith("@@") && 1286 !Rest.startswith("@@@")) { 1287 Asm.getContext().reportError(SMLoc(), "versioned symbol " + AliasName + 1288 " must be defined"); 1289 continue; 1290 } 1291 1292 if (Renames.count(&Symbol) && Renames[&Symbol] != Alias) { 1293 Asm.getContext().reportError( 1294 SMLoc(), llvm::Twine("multiple symbol versions defined for ") + 1295 Symbol.getName()); 1296 continue; 1297 } 1298 1299 Renames.insert(std::make_pair(&Symbol, Alias)); 1300 } 1301 1302 for (const MCSymbol *&Sym : AddrsigSyms) { 1303 if (const MCSymbol *R = Renames.lookup(cast<MCSymbolELF>(Sym))) 1304 Sym = R; 1305 if (Sym->isInSection() && Sym->getName().startswith(".L")) 1306 Sym = Sym->getSection().getBeginSymbol(); 1307 Sym->setUsedInReloc(); 1308 } 1309 } 1310 1311 // It is always valid to create a relocation with a symbol. It is preferable 1312 // to use a relocation with a section if that is possible. Using the section 1313 // allows us to omit some local symbols from the symbol table. 1314 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm, 1315 const MCSymbolRefExpr *RefA, 1316 const MCSymbolELF *Sym, 1317 uint64_t C, 1318 unsigned Type) const { 1319 // A PCRel relocation to an absolute value has no symbol (or section). We 1320 // represent that with a relocation to a null section. 1321 if (!RefA) 1322 return false; 1323 1324 MCSymbolRefExpr::VariantKind Kind = RefA->getKind(); 1325 switch (Kind) { 1326 default: 1327 break; 1328 // The .odp creation emits a relocation against the symbol ".TOC." which 1329 // create a R_PPC64_TOC relocation. However the relocation symbol name 1330 // in final object creation should be NULL, since the symbol does not 1331 // really exist, it is just the reference to TOC base for the current 1332 // object file. Since the symbol is undefined, returning false results 1333 // in a relocation with a null section which is the desired result. 1334 case MCSymbolRefExpr::VK_PPC_TOCBASE: 1335 return false; 1336 1337 // These VariantKind cause the relocation to refer to something other than 1338 // the symbol itself, like a linker generated table. Since the address of 1339 // symbol is not relevant, we cannot replace the symbol with the 1340 // section and patch the difference in the addend. 1341 case MCSymbolRefExpr::VK_GOT: 1342 case MCSymbolRefExpr::VK_PLT: 1343 case MCSymbolRefExpr::VK_GOTPCREL: 1344 case MCSymbolRefExpr::VK_PPC_GOT_LO: 1345 case MCSymbolRefExpr::VK_PPC_GOT_HI: 1346 case MCSymbolRefExpr::VK_PPC_GOT_HA: 1347 return true; 1348 } 1349 1350 // An undefined symbol is not in any section, so the relocation has to point 1351 // to the symbol itself. 1352 assert(Sym && "Expected a symbol"); 1353 if (Sym->isUndefined()) 1354 return true; 1355 1356 unsigned Binding = Sym->getBinding(); 1357 switch(Binding) { 1358 default: 1359 llvm_unreachable("Invalid Binding"); 1360 case ELF::STB_LOCAL: 1361 break; 1362 case ELF::STB_WEAK: 1363 // If the symbol is weak, it might be overridden by a symbol in another 1364 // file. The relocation has to point to the symbol so that the linker 1365 // can update it. 1366 return true; 1367 case ELF::STB_GLOBAL: 1368 // Global ELF symbols can be preempted by the dynamic linker. The relocation 1369 // has to point to the symbol for a reason analogous to the STB_WEAK case. 1370 return true; 1371 } 1372 1373 // Keep symbol type for a local ifunc because it may result in an IRELATIVE 1374 // reloc that the dynamic loader will use to resolve the address at startup 1375 // time. 1376 if (Sym->getType() == ELF::STT_GNU_IFUNC) 1377 return true; 1378 1379 // If a relocation points to a mergeable section, we have to be careful. 1380 // If the offset is zero, a relocation with the section will encode the 1381 // same information. With a non-zero offset, the situation is different. 1382 // For example, a relocation can point 42 bytes past the end of a string. 1383 // If we change such a relocation to use the section, the linker would think 1384 // that it pointed to another string and subtracting 42 at runtime will 1385 // produce the wrong value. 1386 if (Sym->isInSection()) { 1387 auto &Sec = cast<MCSectionELF>(Sym->getSection()); 1388 unsigned Flags = Sec.getFlags(); 1389 if (Flags & ELF::SHF_MERGE) { 1390 if (C != 0) 1391 return true; 1392 1393 // It looks like gold has a bug (http://sourceware.org/PR16794) and can 1394 // only handle section relocations to mergeable sections if using RELA. 1395 if (!hasRelocationAddend()) 1396 return true; 1397 } 1398 1399 // Most TLS relocations use a got, so they need the symbol. Even those that 1400 // are just an offset (@tpoff), require a symbol in gold versions before 1401 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed 1402 // http://sourceware.org/PR16773. 1403 if (Flags & ELF::SHF_TLS) 1404 return true; 1405 } 1406 1407 // If the symbol is a thumb function the final relocation must set the lowest 1408 // bit. With a symbol that is done by just having the symbol have that bit 1409 // set, so we would lose the bit if we relocated with the section. 1410 // FIXME: We could use the section but add the bit to the relocation value. 1411 if (Asm.isThumbFunc(Sym)) 1412 return true; 1413 1414 if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type)) 1415 return true; 1416 return false; 1417 } 1418 1419 void ELFObjectWriter::recordRelocation(MCAssembler &Asm, 1420 const MCAsmLayout &Layout, 1421 const MCFragment *Fragment, 1422 const MCFixup &Fixup, MCValue Target, 1423 uint64_t &FixedValue) { 1424 MCAsmBackend &Backend = Asm.getBackend(); 1425 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags & 1426 MCFixupKindInfo::FKF_IsPCRel; 1427 const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent()); 1428 uint64_t C = Target.getConstant(); 1429 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 1430 MCContext &Ctx = Asm.getContext(); 1431 1432 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 1433 const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol()); 1434 if (SymB.isUndefined()) { 1435 Ctx.reportError(Fixup.getLoc(), 1436 Twine("symbol '") + SymB.getName() + 1437 "' can not be undefined in a subtraction expression"); 1438 return; 1439 } 1440 1441 assert(!SymB.isAbsolute() && "Should have been folded"); 1442 const MCSection &SecB = SymB.getSection(); 1443 if (&SecB != &FixupSection) { 1444 Ctx.reportError(Fixup.getLoc(), 1445 "Cannot represent a difference across sections"); 1446 return; 1447 } 1448 1449 assert(!IsPCRel && "should have been folded"); 1450 IsPCRel = true; 1451 C += FixupOffset - Layout.getSymbolOffset(SymB); 1452 } 1453 1454 // We either rejected the fixup or folded B into C at this point. 1455 const MCSymbolRefExpr *RefA = Target.getSymA(); 1456 const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr; 1457 1458 bool ViaWeakRef = false; 1459 if (SymA && SymA->isVariable()) { 1460 const MCExpr *Expr = SymA->getVariableValue(); 1461 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) { 1462 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) { 1463 SymA = cast<MCSymbolELF>(&Inner->getSymbol()); 1464 ViaWeakRef = true; 1465 } 1466 } 1467 } 1468 1469 const MCSectionELF *SecA = (SymA && SymA->isInSection()) 1470 ? cast<MCSectionELF>(&SymA->getSection()) 1471 : nullptr; 1472 if (!checkRelocation(Ctx, Fixup.getLoc(), &FixupSection, SecA)) 1473 return; 1474 1475 unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel); 1476 bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type); 1477 uint64_t Addend = 0; 1478 1479 FixedValue = !RelocateWithSymbol && SymA && !SymA->isUndefined() 1480 ? C + Layout.getSymbolOffset(*SymA) 1481 : C; 1482 if (hasRelocationAddend()) { 1483 Addend = FixedValue; 1484 FixedValue = 0; 1485 } 1486 1487 if (!RelocateWithSymbol) { 1488 const auto *SectionSymbol = 1489 SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr; 1490 if (SectionSymbol) 1491 SectionSymbol->setUsedInReloc(); 1492 ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA, C); 1493 Relocations[&FixupSection].push_back(Rec); 1494 return; 1495 } 1496 1497 const MCSymbolELF *RenamedSymA = SymA; 1498 if (SymA) { 1499 if (const MCSymbolELF *R = Renames.lookup(SymA)) 1500 RenamedSymA = R; 1501 1502 if (ViaWeakRef) 1503 RenamedSymA->setIsWeakrefUsedInReloc(); 1504 else 1505 RenamedSymA->setUsedInReloc(); 1506 } 1507 ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA, C); 1508 Relocations[&FixupSection].push_back(Rec); 1509 } 1510 1511 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( 1512 const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB, 1513 bool InSet, bool IsPCRel) const { 1514 const auto &SymA = cast<MCSymbolELF>(SA); 1515 if (IsPCRel) { 1516 assert(!InSet); 1517 if (SymA.getBinding() != ELF::STB_LOCAL || 1518 SymA.getType() == ELF::STT_GNU_IFUNC) 1519 return false; 1520 } 1521 return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB, 1522 InSet, IsPCRel); 1523 } 1524 1525 std::unique_ptr<MCObjectWriter> 1526 llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1527 raw_pwrite_stream &OS, bool IsLittleEndian) { 1528 return std::make_unique<ELFSingleObjectWriter>(std::move(MOTW), OS, 1529 IsLittleEndian); 1530 } 1531 1532 std::unique_ptr<MCObjectWriter> 1533 llvm::createELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1534 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, 1535 bool IsLittleEndian) { 1536 return std::make_unique<ELFDwoObjectWriter>(std::move(MOTW), OS, DwoOS, 1537 IsLittleEndian); 1538 } 1539