xref: /freebsd/contrib/llvm-project/llvm/lib/MC/ELFObjectWriter.cpp (revision 4d3fc8b0570b29fb0d6ee9525f104d52176ff0d4)
1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements ELF object file writer information.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/ADT/iterator.h"
20 #include "llvm/BinaryFormat/ELF.h"
21 #include "llvm/MC/MCAsmBackend.h"
22 #include "llvm/MC/MCAsmInfo.h"
23 #include "llvm/MC/MCAsmLayout.h"
24 #include "llvm/MC/MCAssembler.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCELFObjectWriter.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/MC/MCFixup.h"
29 #include "llvm/MC/MCFixupKindInfo.h"
30 #include "llvm/MC/MCFragment.h"
31 #include "llvm/MC/MCObjectWriter.h"
32 #include "llvm/MC/MCSection.h"
33 #include "llvm/MC/MCSectionELF.h"
34 #include "llvm/MC/MCSymbol.h"
35 #include "llvm/MC/MCSymbolELF.h"
36 #include "llvm/MC/MCTargetOptions.h"
37 #include "llvm/MC/MCValue.h"
38 #include "llvm/MC/StringTableBuilder.h"
39 #include "llvm/Support/Alignment.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compression.h"
42 #include "llvm/Support/Endian.h"
43 #include "llvm/Support/EndianStream.h"
44 #include "llvm/Support/Error.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/Host.h"
47 #include "llvm/Support/LEB128.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/SMLoc.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstddef>
54 #include <cstdint>
55 #include <map>
56 #include <memory>
57 #include <string>
58 #include <utility>
59 #include <vector>
60 
61 using namespace llvm;
62 
63 #undef  DEBUG_TYPE
64 #define DEBUG_TYPE "reloc-info"
65 
66 namespace {
67 
68 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>;
69 
70 class ELFObjectWriter;
71 struct ELFWriter;
72 
73 bool isDwoSection(const MCSectionELF &Sec) {
74   return Sec.getName().endswith(".dwo");
75 }
76 
77 class SymbolTableWriter {
78   ELFWriter &EWriter;
79   bool Is64Bit;
80 
81   // indexes we are going to write to .symtab_shndx.
82   std::vector<uint32_t> ShndxIndexes;
83 
84   // The numbel of symbols written so far.
85   unsigned NumWritten;
86 
87   void createSymtabShndx();
88 
89   template <typename T> void write(T Value);
90 
91 public:
92   SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit);
93 
94   void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
95                    uint8_t other, uint32_t shndx, bool Reserved);
96 
97   ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
98 };
99 
100 struct ELFWriter {
101   ELFObjectWriter &OWriter;
102   support::endian::Writer W;
103 
104   enum DwoMode {
105     AllSections,
106     NonDwoOnly,
107     DwoOnly,
108   } Mode;
109 
110   static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
111   static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
112                          bool Used, bool Renamed);
113 
114   /// Helper struct for containing some precomputed information on symbols.
115   struct ELFSymbolData {
116     const MCSymbolELF *Symbol;
117     StringRef Name;
118     uint32_t SectionIndex;
119     uint32_t Order;
120   };
121 
122   /// @}
123   /// @name Symbol Table Data
124   /// @{
125 
126   StringTableBuilder StrTabBuilder{StringTableBuilder::ELF};
127 
128   /// @}
129 
130   // This holds the symbol table index of the last local symbol.
131   unsigned LastLocalSymbolIndex;
132   // This holds the .strtab section index.
133   unsigned StringTableIndex;
134   // This holds the .symtab section index.
135   unsigned SymbolTableIndex;
136 
137   // Sections in the order they are to be output in the section table.
138   std::vector<const MCSectionELF *> SectionTable;
139   unsigned addToSectionTable(const MCSectionELF *Sec);
140 
141   // TargetObjectWriter wrappers.
142   bool is64Bit() const;
143   bool usesRela(const MCSectionELF &Sec) const;
144 
145   uint64_t align(unsigned Alignment);
146 
147   bool maybeWriteCompression(uint32_t ChType, uint64_t Size,
148                              SmallVectorImpl<uint8_t> &CompressedContents,
149                              unsigned Alignment);
150 
151 public:
152   ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS,
153             bool IsLittleEndian, DwoMode Mode)
154       : OWriter(OWriter),
155         W(OS, IsLittleEndian ? support::little : support::big), Mode(Mode) {}
156 
157   void WriteWord(uint64_t Word) {
158     if (is64Bit())
159       W.write<uint64_t>(Word);
160     else
161       W.write<uint32_t>(Word);
162   }
163 
164   template <typename T> void write(T Val) {
165     W.write(Val);
166   }
167 
168   void writeHeader(const MCAssembler &Asm);
169 
170   void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
171                    ELFSymbolData &MSD, const MCAsmLayout &Layout);
172 
173   // Start and end offset of each section
174   using SectionOffsetsTy =
175       std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>;
176 
177   // Map from a signature symbol to the group section index
178   using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>;
179 
180   /// Compute the symbol table data
181   ///
182   /// \param Asm - The assembler.
183   /// \param SectionIndexMap - Maps a section to its index.
184   /// \param RevGroupMap - Maps a signature symbol to the group section.
185   void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
186                           const SectionIndexMapTy &SectionIndexMap,
187                           const RevGroupMapTy &RevGroupMap,
188                           SectionOffsetsTy &SectionOffsets);
189 
190   void writeAddrsigSection();
191 
192   MCSectionELF *createRelocationSection(MCContext &Ctx,
193                                         const MCSectionELF &Sec);
194 
195   void writeSectionHeader(const MCAsmLayout &Layout,
196                           const SectionIndexMapTy &SectionIndexMap,
197                           const SectionOffsetsTy &SectionOffsets);
198 
199   void writeSectionData(const MCAssembler &Asm, MCSection &Sec,
200                         const MCAsmLayout &Layout);
201 
202   void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
203                         uint64_t Address, uint64_t Offset, uint64_t Size,
204                         uint32_t Link, uint32_t Info, uint64_t Alignment,
205                         uint64_t EntrySize);
206 
207   void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
208 
209   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout);
210   void writeSection(const SectionIndexMapTy &SectionIndexMap,
211                     uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
212                     const MCSectionELF &Section);
213 };
214 
215 class ELFObjectWriter : public MCObjectWriter {
216   /// The target specific ELF writer instance.
217   std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
218 
219   DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations;
220 
221   DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
222 
223   bool SeenGnuAbi = false;
224 
225   bool hasRelocationAddend() const;
226 
227   bool shouldRelocateWithSymbol(const MCAssembler &Asm,
228                                 const MCSymbolRefExpr *RefA,
229                                 const MCSymbolELF *Sym, uint64_t C,
230                                 unsigned Type) const;
231 
232 public:
233   ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW)
234       : TargetObjectWriter(std::move(MOTW)) {}
235 
236   void reset() override {
237     SeenGnuAbi = false;
238     Relocations.clear();
239     Renames.clear();
240     MCObjectWriter::reset();
241   }
242 
243   bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
244                                               const MCSymbol &SymA,
245                                               const MCFragment &FB, bool InSet,
246                                               bool IsPCRel) const override;
247 
248   virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc,
249                                const MCSectionELF *From,
250                                const MCSectionELF *To) {
251     return true;
252   }
253 
254   void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
255                         const MCFragment *Fragment, const MCFixup &Fixup,
256                         MCValue Target, uint64_t &FixedValue) override;
257 
258   void executePostLayoutBinding(MCAssembler &Asm,
259                                 const MCAsmLayout &Layout) override;
260 
261   void markGnuAbi() override { SeenGnuAbi = true; }
262   bool seenGnuAbi() const { return SeenGnuAbi; }
263 
264   friend struct ELFWriter;
265 };
266 
267 class ELFSingleObjectWriter : public ELFObjectWriter {
268   raw_pwrite_stream &OS;
269   bool IsLittleEndian;
270 
271 public:
272   ELFSingleObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
273                         raw_pwrite_stream &OS, bool IsLittleEndian)
274       : ELFObjectWriter(std::move(MOTW)), OS(OS),
275         IsLittleEndian(IsLittleEndian) {}
276 
277   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override {
278     return ELFWriter(*this, OS, IsLittleEndian, ELFWriter::AllSections)
279         .writeObject(Asm, Layout);
280   }
281 
282   friend struct ELFWriter;
283 };
284 
285 class ELFDwoObjectWriter : public ELFObjectWriter {
286   raw_pwrite_stream &OS, &DwoOS;
287   bool IsLittleEndian;
288 
289 public:
290   ELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
291                      raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS,
292                      bool IsLittleEndian)
293       : ELFObjectWriter(std::move(MOTW)), OS(OS), DwoOS(DwoOS),
294         IsLittleEndian(IsLittleEndian) {}
295 
296   bool checkRelocation(MCContext &Ctx, SMLoc Loc, const MCSectionELF *From,
297                        const MCSectionELF *To) override {
298     if (isDwoSection(*From)) {
299       Ctx.reportError(Loc, "A dwo section may not contain relocations");
300       return false;
301     }
302     if (To && isDwoSection(*To)) {
303       Ctx.reportError(Loc, "A relocation may not refer to a dwo section");
304       return false;
305     }
306     return true;
307   }
308 
309   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override {
310     uint64_t Size = ELFWriter(*this, OS, IsLittleEndian, ELFWriter::NonDwoOnly)
311                         .writeObject(Asm, Layout);
312     Size += ELFWriter(*this, DwoOS, IsLittleEndian, ELFWriter::DwoOnly)
313                 .writeObject(Asm, Layout);
314     return Size;
315   }
316 };
317 
318 } // end anonymous namespace
319 
320 uint64_t ELFWriter::align(unsigned Alignment) {
321   uint64_t Offset = W.OS.tell(), NewOffset = alignTo(Offset, Alignment);
322   W.OS.write_zeros(NewOffset - Offset);
323   return NewOffset;
324 }
325 
326 unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) {
327   SectionTable.push_back(Sec);
328   StrTabBuilder.add(Sec->getName());
329   return SectionTable.size();
330 }
331 
332 void SymbolTableWriter::createSymtabShndx() {
333   if (!ShndxIndexes.empty())
334     return;
335 
336   ShndxIndexes.resize(NumWritten);
337 }
338 
339 template <typename T> void SymbolTableWriter::write(T Value) {
340   EWriter.write(Value);
341 }
342 
343 SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit)
344     : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
345 
346 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
347                                     uint64_t size, uint8_t other,
348                                     uint32_t shndx, bool Reserved) {
349   bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
350 
351   if (LargeIndex)
352     createSymtabShndx();
353 
354   if (!ShndxIndexes.empty()) {
355     if (LargeIndex)
356       ShndxIndexes.push_back(shndx);
357     else
358       ShndxIndexes.push_back(0);
359   }
360 
361   uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
362 
363   if (Is64Bit) {
364     write(name);  // st_name
365     write(info);  // st_info
366     write(other); // st_other
367     write(Index); // st_shndx
368     write(value); // st_value
369     write(size);  // st_size
370   } else {
371     write(name);            // st_name
372     write(uint32_t(value)); // st_value
373     write(uint32_t(size));  // st_size
374     write(info);            // st_info
375     write(other);           // st_other
376     write(Index);           // st_shndx
377   }
378 
379   ++NumWritten;
380 }
381 
382 bool ELFWriter::is64Bit() const {
383   return OWriter.TargetObjectWriter->is64Bit();
384 }
385 
386 bool ELFWriter::usesRela(const MCSectionELF &Sec) const {
387   return OWriter.hasRelocationAddend() &&
388          Sec.getType() != ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
389 }
390 
391 // Emit the ELF header.
392 void ELFWriter::writeHeader(const MCAssembler &Asm) {
393   // ELF Header
394   // ----------
395   //
396   // Note
397   // ----
398   // emitWord method behaves differently for ELF32 and ELF64, writing
399   // 4 bytes in the former and 8 in the latter.
400 
401   W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3]
402 
403   W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
404 
405   // e_ident[EI_DATA]
406   W.OS << char(W.Endian == support::little ? ELF::ELFDATA2LSB
407                                            : ELF::ELFDATA2MSB);
408 
409   W.OS << char(ELF::EV_CURRENT);        // e_ident[EI_VERSION]
410   // e_ident[EI_OSABI]
411   uint8_t OSABI = OWriter.TargetObjectWriter->getOSABI();
412   W.OS << char(OSABI == ELF::ELFOSABI_NONE && OWriter.seenGnuAbi()
413                    ? int(ELF::ELFOSABI_GNU)
414                    : OSABI);
415   // e_ident[EI_ABIVERSION]
416   W.OS << char(OWriter.TargetObjectWriter->getABIVersion());
417 
418   W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD);
419 
420   W.write<uint16_t>(ELF::ET_REL);             // e_type
421 
422   W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target
423 
424   W.write<uint32_t>(ELF::EV_CURRENT);         // e_version
425   WriteWord(0);                    // e_entry, no entry point in .o file
426   WriteWord(0);                    // e_phoff, no program header for .o
427   WriteWord(0);                     // e_shoff = sec hdr table off in bytes
428 
429   // e_flags = whatever the target wants
430   W.write<uint32_t>(Asm.getELFHeaderEFlags());
431 
432   // e_ehsize = ELF header size
433   W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr)
434                               : sizeof(ELF::Elf32_Ehdr));
435 
436   W.write<uint16_t>(0);                  // e_phentsize = prog header entry size
437   W.write<uint16_t>(0);                  // e_phnum = # prog header entries = 0
438 
439   // e_shentsize = Section header entry size
440   W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr)
441                               : sizeof(ELF::Elf32_Shdr));
442 
443   // e_shnum     = # of section header ents
444   W.write<uint16_t>(0);
445 
446   // e_shstrndx  = Section # of '.strtab'
447   assert(StringTableIndex < ELF::SHN_LORESERVE);
448   W.write<uint16_t>(StringTableIndex);
449 }
450 
451 uint64_t ELFWriter::SymbolValue(const MCSymbol &Sym,
452                                 const MCAsmLayout &Layout) {
453   if (Sym.isCommon())
454     return Sym.getCommonAlignment();
455 
456   uint64_t Res;
457   if (!Layout.getSymbolOffset(Sym, Res))
458     return 0;
459 
460   if (Layout.getAssembler().isThumbFunc(&Sym))
461     Res |= 1;
462 
463   return Res;
464 }
465 
466 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
467   uint8_t Type = newType;
468 
469   // Propagation rules:
470   // IFUNC > FUNC > OBJECT > NOTYPE
471   // TLS_OBJECT > OBJECT > NOTYPE
472   //
473   // dont let the new type degrade the old type
474   switch (origType) {
475   default:
476     break;
477   case ELF::STT_GNU_IFUNC:
478     if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
479         Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
480       Type = ELF::STT_GNU_IFUNC;
481     break;
482   case ELF::STT_FUNC:
483     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
484         Type == ELF::STT_TLS)
485       Type = ELF::STT_FUNC;
486     break;
487   case ELF::STT_OBJECT:
488     if (Type == ELF::STT_NOTYPE)
489       Type = ELF::STT_OBJECT;
490     break;
491   case ELF::STT_TLS:
492     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
493         Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
494       Type = ELF::STT_TLS;
495     break;
496   }
497 
498   return Type;
499 }
500 
501 static bool isIFunc(const MCSymbolELF *Symbol) {
502   while (Symbol->getType() != ELF::STT_GNU_IFUNC) {
503     const MCSymbolRefExpr *Value;
504     if (!Symbol->isVariable() ||
505         !(Value = dyn_cast<MCSymbolRefExpr>(Symbol->getVariableValue())) ||
506         Value->getKind() != MCSymbolRefExpr::VK_None ||
507         mergeTypeForSet(Symbol->getType(), ELF::STT_GNU_IFUNC) != ELF::STT_GNU_IFUNC)
508       return false;
509     Symbol = &cast<MCSymbolELF>(Value->getSymbol());
510   }
511   return true;
512 }
513 
514 void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
515                             ELFSymbolData &MSD, const MCAsmLayout &Layout) {
516   const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
517   const MCSymbolELF *Base =
518       cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
519 
520   // This has to be in sync with when computeSymbolTable uses SHN_ABS or
521   // SHN_COMMON.
522   bool IsReserved = !Base || Symbol.isCommon();
523 
524   // Binding and Type share the same byte as upper and lower nibbles
525   uint8_t Binding = Symbol.getBinding();
526   uint8_t Type = Symbol.getType();
527   if (isIFunc(&Symbol))
528     Type = ELF::STT_GNU_IFUNC;
529   if (Base) {
530     Type = mergeTypeForSet(Type, Base->getType());
531   }
532   uint8_t Info = (Binding << 4) | Type;
533 
534   // Other and Visibility share the same byte with Visibility using the lower
535   // 2 bits
536   uint8_t Visibility = Symbol.getVisibility();
537   uint8_t Other = Symbol.getOther() | Visibility;
538 
539   uint64_t Value = SymbolValue(*MSD.Symbol, Layout);
540   uint64_t Size = 0;
541 
542   const MCExpr *ESize = MSD.Symbol->getSize();
543   if (!ESize && Base) {
544     // For expressions like .set y, x+1, if y's size is unset, inherit from x.
545     ESize = Base->getSize();
546 
547     // For `.size x, 2; y = x; .size y, 1; z = y; z1 = z; .symver y, y@v1`, z,
548     // z1, and y@v1's st_size equals y's. However, `Base` is `x` which will give
549     // us 2. Follow the MCSymbolRefExpr assignment chain, which covers most
550     // needs. MCBinaryExpr is not handled.
551     const MCSymbolELF *Sym = &Symbol;
552     while (Sym->isVariable()) {
553       if (auto *Expr =
554               dyn_cast<MCSymbolRefExpr>(Sym->getVariableValue(false))) {
555         Sym = cast<MCSymbolELF>(&Expr->getSymbol());
556         if (!Sym->getSize())
557           continue;
558         ESize = Sym->getSize();
559       }
560       break;
561     }
562   }
563 
564   if (ESize) {
565     int64_t Res;
566     if (!ESize->evaluateKnownAbsolute(Res, Layout))
567       report_fatal_error("Size expression must be absolute.");
568     Size = Res;
569   }
570 
571   // Write out the symbol table entry
572   Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex,
573                      IsReserved);
574 }
575 
576 bool ELFWriter::isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
577                            bool Used, bool Renamed) {
578   if (Symbol.isVariable()) {
579     const MCExpr *Expr = Symbol.getVariableValue();
580     // Target Expressions that are always inlined do not appear in the symtab
581     if (const auto *T = dyn_cast<MCTargetExpr>(Expr))
582       if (T->inlineAssignedExpr())
583         return false;
584     if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
585       if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
586         return false;
587     }
588   }
589 
590   if (Used)
591     return true;
592 
593   if (Renamed)
594     return false;
595 
596   if (Symbol.isVariable() && Symbol.isUndefined()) {
597     // FIXME: this is here just to diagnose the case of a var = commmon_sym.
598     Layout.getBaseSymbol(Symbol);
599     return false;
600   }
601 
602   if (Symbol.isTemporary())
603     return false;
604 
605   if (Symbol.getType() == ELF::STT_SECTION)
606     return false;
607 
608   return true;
609 }
610 
611 void ELFWriter::computeSymbolTable(
612     MCAssembler &Asm, const MCAsmLayout &Layout,
613     const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
614     SectionOffsetsTy &SectionOffsets) {
615   MCContext &Ctx = Asm.getContext();
616   SymbolTableWriter Writer(*this, is64Bit());
617 
618   // Symbol table
619   unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
620   MCSectionELF *SymtabSection =
621       Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize);
622   SymtabSection->setAlignment(is64Bit() ? Align(8) : Align(4));
623   SymbolTableIndex = addToSectionTable(SymtabSection);
624 
625   uint64_t SecStart = align(SymtabSection->getAlignment());
626 
627   // The first entry is the undefined symbol entry.
628   Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
629 
630   std::vector<ELFSymbolData> LocalSymbolData;
631   std::vector<ELFSymbolData> ExternalSymbolData;
632   MutableArrayRef<std::pair<std::string, size_t>> FileNames =
633       Asm.getFileNames();
634   for (const std::pair<std::string, size_t> &F : FileNames)
635     StrTabBuilder.add(F.first);
636 
637   // Add the data for the symbols.
638   bool HasLargeSectionIndex = false;
639   for (auto It : llvm::enumerate(Asm.symbols())) {
640     const auto &Symbol = cast<MCSymbolELF>(It.value());
641     bool Used = Symbol.isUsedInReloc();
642     bool WeakrefUsed = Symbol.isWeakrefUsedInReloc();
643     bool isSignature = Symbol.isSignature();
644 
645     if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
646                     OWriter.Renames.count(&Symbol)))
647       continue;
648 
649     if (Symbol.isTemporary() && Symbol.isUndefined()) {
650       Ctx.reportError(SMLoc(), "Undefined temporary symbol " + Symbol.getName());
651       continue;
652     }
653 
654     ELFSymbolData MSD;
655     MSD.Symbol = cast<MCSymbolELF>(&Symbol);
656     MSD.Order = It.index();
657 
658     bool Local = Symbol.getBinding() == ELF::STB_LOCAL;
659     assert(Local || !Symbol.isTemporary());
660 
661     if (Symbol.isAbsolute()) {
662       MSD.SectionIndex = ELF::SHN_ABS;
663     } else if (Symbol.isCommon()) {
664       if (Symbol.isTargetCommon()) {
665         MSD.SectionIndex = Symbol.getIndex();
666       } else {
667         assert(!Local);
668         MSD.SectionIndex = ELF::SHN_COMMON;
669       }
670     } else if (Symbol.isUndefined()) {
671       if (isSignature && !Used) {
672         MSD.SectionIndex = RevGroupMap.lookup(&Symbol);
673         if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
674           HasLargeSectionIndex = true;
675       } else {
676         MSD.SectionIndex = ELF::SHN_UNDEF;
677       }
678     } else {
679       const MCSectionELF &Section =
680           static_cast<const MCSectionELF &>(Symbol.getSection());
681 
682       // We may end up with a situation when section symbol is technically
683       // defined, but should not be. That happens because we explicitly
684       // pre-create few .debug_* sections to have accessors.
685       // And if these sections were not really defined in the code, but were
686       // referenced, we simply error out.
687       if (!Section.isRegistered()) {
688         assert(static_cast<const MCSymbolELF &>(Symbol).getType() ==
689                ELF::STT_SECTION);
690         Ctx.reportError(SMLoc(),
691                         "Undefined section reference: " + Symbol.getName());
692         continue;
693       }
694 
695       if (Mode == NonDwoOnly && isDwoSection(Section))
696         continue;
697       MSD.SectionIndex = SectionIndexMap.lookup(&Section);
698       assert(MSD.SectionIndex && "Invalid section index!");
699       if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
700         HasLargeSectionIndex = true;
701     }
702 
703     StringRef Name = Symbol.getName();
704 
705     // Sections have their own string table
706     if (Symbol.getType() != ELF::STT_SECTION) {
707       MSD.Name = Name;
708       StrTabBuilder.add(Name);
709     }
710 
711     if (Local)
712       LocalSymbolData.push_back(MSD);
713     else
714       ExternalSymbolData.push_back(MSD);
715   }
716 
717   // This holds the .symtab_shndx section index.
718   unsigned SymtabShndxSectionIndex = 0;
719 
720   if (HasLargeSectionIndex) {
721     MCSectionELF *SymtabShndxSection =
722         Ctx.getELFSection(".symtab_shndx", ELF::SHT_SYMTAB_SHNDX, 0, 4);
723     SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection);
724     SymtabShndxSection->setAlignment(Align(4));
725   }
726 
727   StrTabBuilder.finalize();
728 
729   // Make the first STT_FILE precede previous local symbols.
730   unsigned Index = 1;
731   auto FileNameIt = FileNames.begin();
732   if (!FileNames.empty())
733     FileNames[0].second = 0;
734 
735   for (ELFSymbolData &MSD : LocalSymbolData) {
736     // Emit STT_FILE symbols before their associated local symbols.
737     for (; FileNameIt != FileNames.end() && FileNameIt->second <= MSD.Order;
738          ++FileNameIt) {
739       Writer.writeSymbol(StrTabBuilder.getOffset(FileNameIt->first),
740                          ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
741                          ELF::SHN_ABS, true);
742       ++Index;
743     }
744 
745     unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION
746                                ? 0
747                                : StrTabBuilder.getOffset(MSD.Name);
748     MSD.Symbol->setIndex(Index++);
749     writeSymbol(Writer, StringIndex, MSD, Layout);
750   }
751   for (; FileNameIt != FileNames.end(); ++FileNameIt) {
752     Writer.writeSymbol(StrTabBuilder.getOffset(FileNameIt->first),
753                        ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
754                        ELF::SHN_ABS, true);
755     ++Index;
756   }
757 
758   // Write the symbol table entries.
759   LastLocalSymbolIndex = Index;
760 
761   for (ELFSymbolData &MSD : ExternalSymbolData) {
762     unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name);
763     MSD.Symbol->setIndex(Index++);
764     writeSymbol(Writer, StringIndex, MSD, Layout);
765     assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL);
766   }
767 
768   uint64_t SecEnd = W.OS.tell();
769   SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd);
770 
771   ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes();
772   if (ShndxIndexes.empty()) {
773     assert(SymtabShndxSectionIndex == 0);
774     return;
775   }
776   assert(SymtabShndxSectionIndex != 0);
777 
778   SecStart = W.OS.tell();
779   const MCSectionELF *SymtabShndxSection =
780       SectionTable[SymtabShndxSectionIndex - 1];
781   for (uint32_t Index : ShndxIndexes)
782     write(Index);
783   SecEnd = W.OS.tell();
784   SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
785 }
786 
787 void ELFWriter::writeAddrsigSection() {
788   for (const MCSymbol *Sym : OWriter.AddrsigSyms)
789     encodeULEB128(Sym->getIndex(), W.OS);
790 }
791 
792 MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx,
793                                                  const MCSectionELF &Sec) {
794   if (OWriter.Relocations[&Sec].empty())
795     return nullptr;
796 
797   const StringRef SectionName = Sec.getName();
798   bool Rela = usesRela(Sec);
799   std::string RelaSectionName = Rela ? ".rela" : ".rel";
800   RelaSectionName += SectionName;
801 
802   unsigned EntrySize;
803   if (Rela)
804     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
805   else
806     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
807 
808   unsigned Flags = ELF::SHF_INFO_LINK;
809   if (Sec.getFlags() & ELF::SHF_GROUP)
810     Flags = ELF::SHF_GROUP;
811 
812   MCSectionELF *RelaSection = Ctx.createELFRelSection(
813       RelaSectionName, Rela ? ELF::SHT_RELA : ELF::SHT_REL, Flags, EntrySize,
814       Sec.getGroup(), &Sec);
815   RelaSection->setAlignment(is64Bit() ? Align(8) : Align(4));
816   return RelaSection;
817 }
818 
819 // Include the debug info compression header.
820 bool ELFWriter::maybeWriteCompression(
821     uint32_t ChType, uint64_t Size,
822     SmallVectorImpl<uint8_t> &CompressedContents, unsigned Alignment) {
823   uint64_t HdrSize =
824       is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr);
825   if (Size <= HdrSize + CompressedContents.size())
826     return false;
827   // Platform specific header is followed by compressed data.
828   if (is64Bit()) {
829     // Write Elf64_Chdr header.
830     write(static_cast<ELF::Elf64_Word>(ChType));
831     write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field.
832     write(static_cast<ELF::Elf64_Xword>(Size));
833     write(static_cast<ELF::Elf64_Xword>(Alignment));
834   } else {
835     // Write Elf32_Chdr header otherwise.
836     write(static_cast<ELF::Elf32_Word>(ChType));
837     write(static_cast<ELF::Elf32_Word>(Size));
838     write(static_cast<ELF::Elf32_Word>(Alignment));
839   }
840   return true;
841 }
842 
843 void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
844                                  const MCAsmLayout &Layout) {
845   MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
846   StringRef SectionName = Section.getName();
847 
848   auto &MC = Asm.getContext();
849   const auto &MAI = MC.getAsmInfo();
850 
851   bool CompressionEnabled =
852       MAI->compressDebugSections() != DebugCompressionType::None;
853   if (!CompressionEnabled || !SectionName.startswith(".debug_")) {
854     Asm.writeSectionData(W.OS, &Section, Layout);
855     return;
856   }
857 
858   assert(MAI->compressDebugSections() == DebugCompressionType::Z &&
859          "expected zlib style compression");
860 
861   SmallVector<char, 128> UncompressedData;
862   raw_svector_ostream VecOS(UncompressedData);
863   Asm.writeSectionData(VecOS, &Section, Layout);
864 
865   SmallVector<uint8_t, 128> Compressed;
866   const uint32_t ChType = ELF::ELFCOMPRESS_ZLIB;
867   compression::zlib::compress(
868       makeArrayRef(reinterpret_cast<uint8_t *>(UncompressedData.data()),
869                    UncompressedData.size()),
870       Compressed);
871 
872   if (!maybeWriteCompression(ChType, UncompressedData.size(), Compressed,
873                              Sec.getAlignment())) {
874     W.OS << UncompressedData;
875     return;
876   }
877 
878   Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED);
879   // Alignment field should reflect the requirements of
880   // the compressed section header.
881   Section.setAlignment(is64Bit() ? Align(8) : Align(4));
882   W.OS << toStringRef(Compressed);
883 }
884 
885 void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
886                                  uint64_t Address, uint64_t Offset,
887                                  uint64_t Size, uint32_t Link, uint32_t Info,
888                                  uint64_t Alignment, uint64_t EntrySize) {
889   W.write<uint32_t>(Name);        // sh_name: index into string table
890   W.write<uint32_t>(Type);        // sh_type
891   WriteWord(Flags);     // sh_flags
892   WriteWord(Address);   // sh_addr
893   WriteWord(Offset);    // sh_offset
894   WriteWord(Size);      // sh_size
895   W.write<uint32_t>(Link);        // sh_link
896   W.write<uint32_t>(Info);        // sh_info
897   WriteWord(Alignment); // sh_addralign
898   WriteWord(EntrySize); // sh_entsize
899 }
900 
901 void ELFWriter::writeRelocations(const MCAssembler &Asm,
902                                        const MCSectionELF &Sec) {
903   std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec];
904 
905   // We record relocations by pushing to the end of a vector. Reverse the vector
906   // to get the relocations in the order they were created.
907   // In most cases that is not important, but it can be for special sections
908   // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
909   std::reverse(Relocs.begin(), Relocs.end());
910 
911   // Sort the relocation entries. MIPS needs this.
912   OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs);
913 
914   const bool Rela = usesRela(Sec);
915   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
916     const ELFRelocationEntry &Entry = Relocs[e - i - 1];
917     unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0;
918 
919     if (is64Bit()) {
920       write(Entry.Offset);
921       if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
922         write(uint32_t(Index));
923 
924         write(OWriter.TargetObjectWriter->getRSsym(Entry.Type));
925         write(OWriter.TargetObjectWriter->getRType3(Entry.Type));
926         write(OWriter.TargetObjectWriter->getRType2(Entry.Type));
927         write(OWriter.TargetObjectWriter->getRType(Entry.Type));
928       } else {
929         struct ELF::Elf64_Rela ERE64;
930         ERE64.setSymbolAndType(Index, Entry.Type);
931         write(ERE64.r_info);
932       }
933       if (Rela)
934         write(Entry.Addend);
935     } else {
936       write(uint32_t(Entry.Offset));
937 
938       struct ELF::Elf32_Rela ERE32;
939       ERE32.setSymbolAndType(Index, Entry.Type);
940       write(ERE32.r_info);
941 
942       if (Rela)
943         write(uint32_t(Entry.Addend));
944 
945       if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
946         if (uint32_t RType =
947                 OWriter.TargetObjectWriter->getRType2(Entry.Type)) {
948           write(uint32_t(Entry.Offset));
949 
950           ERE32.setSymbolAndType(0, RType);
951           write(ERE32.r_info);
952           write(uint32_t(0));
953         }
954         if (uint32_t RType =
955                 OWriter.TargetObjectWriter->getRType3(Entry.Type)) {
956           write(uint32_t(Entry.Offset));
957 
958           ERE32.setSymbolAndType(0, RType);
959           write(ERE32.r_info);
960           write(uint32_t(0));
961         }
962       }
963     }
964   }
965 }
966 
967 void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
968                              uint32_t GroupSymbolIndex, uint64_t Offset,
969                              uint64_t Size, const MCSectionELF &Section) {
970   uint64_t sh_link = 0;
971   uint64_t sh_info = 0;
972 
973   switch(Section.getType()) {
974   default:
975     // Nothing to do.
976     break;
977 
978   case ELF::SHT_DYNAMIC:
979     llvm_unreachable("SHT_DYNAMIC in a relocatable object");
980 
981   case ELF::SHT_REL:
982   case ELF::SHT_RELA: {
983     sh_link = SymbolTableIndex;
984     assert(sh_link && ".symtab not found");
985     const MCSection *InfoSection = Section.getLinkedToSection();
986     sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection));
987     break;
988   }
989 
990   case ELF::SHT_SYMTAB:
991     sh_link = StringTableIndex;
992     sh_info = LastLocalSymbolIndex;
993     break;
994 
995   case ELF::SHT_SYMTAB_SHNDX:
996   case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
997   case ELF::SHT_LLVM_ADDRSIG:
998     sh_link = SymbolTableIndex;
999     break;
1000 
1001   case ELF::SHT_GROUP:
1002     sh_link = SymbolTableIndex;
1003     sh_info = GroupSymbolIndex;
1004     break;
1005   }
1006 
1007   if (Section.getFlags() & ELF::SHF_LINK_ORDER) {
1008     // If the value in the associated metadata is not a definition, Sym will be
1009     // undefined. Represent this with sh_link=0.
1010     const MCSymbol *Sym = Section.getLinkedToSymbol();
1011     if (Sym && Sym->isInSection()) {
1012       const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection());
1013       sh_link = SectionIndexMap.lookup(Sec);
1014     }
1015   }
1016 
1017   WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getName()),
1018                    Section.getType(), Section.getFlags(), 0, Offset, Size,
1019                    sh_link, sh_info, Section.getAlignment(),
1020                    Section.getEntrySize());
1021 }
1022 
1023 void ELFWriter::writeSectionHeader(
1024     const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
1025     const SectionOffsetsTy &SectionOffsets) {
1026   const unsigned NumSections = SectionTable.size();
1027 
1028   // Null section first.
1029   uint64_t FirstSectionSize =
1030       (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
1031   WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0);
1032 
1033   for (const MCSectionELF *Section : SectionTable) {
1034     uint32_t GroupSymbolIndex;
1035     unsigned Type = Section->getType();
1036     if (Type != ELF::SHT_GROUP)
1037       GroupSymbolIndex = 0;
1038     else
1039       GroupSymbolIndex = Section->getGroup()->getIndex();
1040 
1041     const std::pair<uint64_t, uint64_t> &Offsets =
1042         SectionOffsets.find(Section)->second;
1043     uint64_t Size;
1044     if (Type == ELF::SHT_NOBITS)
1045       Size = Layout.getSectionAddressSize(Section);
1046     else
1047       Size = Offsets.second - Offsets.first;
1048 
1049     writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size,
1050                  *Section);
1051   }
1052 }
1053 
1054 uint64_t ELFWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) {
1055   uint64_t StartOffset = W.OS.tell();
1056 
1057   MCContext &Ctx = Asm.getContext();
1058   MCSectionELF *StrtabSection =
1059       Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
1060   StringTableIndex = addToSectionTable(StrtabSection);
1061 
1062   RevGroupMapTy RevGroupMap;
1063   SectionIndexMapTy SectionIndexMap;
1064 
1065   std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers;
1066 
1067   // Write out the ELF header ...
1068   writeHeader(Asm);
1069 
1070   // ... then the sections ...
1071   SectionOffsetsTy SectionOffsets;
1072   std::vector<MCSectionELF *> Groups;
1073   std::vector<MCSectionELF *> Relocations;
1074   for (MCSection &Sec : Asm) {
1075     MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1076     if (Mode == NonDwoOnly && isDwoSection(Section))
1077       continue;
1078     if (Mode == DwoOnly && !isDwoSection(Section))
1079       continue;
1080 
1081     // Remember the offset into the file for this section.
1082     const uint64_t SecStart = align(Section.getAlignment());
1083 
1084     const MCSymbolELF *SignatureSymbol = Section.getGroup();
1085     writeSectionData(Asm, Section, Layout);
1086 
1087     uint64_t SecEnd = W.OS.tell();
1088     SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd);
1089 
1090     MCSectionELF *RelSection = createRelocationSection(Ctx, Section);
1091 
1092     if (SignatureSymbol) {
1093       unsigned &GroupIdx = RevGroupMap[SignatureSymbol];
1094       if (!GroupIdx) {
1095         MCSectionELF *Group =
1096             Ctx.createELFGroupSection(SignatureSymbol, Section.isComdat());
1097         GroupIdx = addToSectionTable(Group);
1098         Group->setAlignment(Align(4));
1099         Groups.push_back(Group);
1100       }
1101       std::vector<const MCSectionELF *> &Members =
1102           GroupMembers[SignatureSymbol];
1103       Members.push_back(&Section);
1104       if (RelSection)
1105         Members.push_back(RelSection);
1106     }
1107 
1108     SectionIndexMap[&Section] = addToSectionTable(&Section);
1109     if (RelSection) {
1110       SectionIndexMap[RelSection] = addToSectionTable(RelSection);
1111       Relocations.push_back(RelSection);
1112     }
1113 
1114     OWriter.TargetObjectWriter->addTargetSectionFlags(Ctx, Section);
1115   }
1116 
1117   for (MCSectionELF *Group : Groups) {
1118     // Remember the offset into the file for this section.
1119     const uint64_t SecStart = align(Group->getAlignment());
1120 
1121     const MCSymbol *SignatureSymbol = Group->getGroup();
1122     assert(SignatureSymbol);
1123     write(uint32_t(Group->isComdat() ? unsigned(ELF::GRP_COMDAT) : 0));
1124     for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) {
1125       uint32_t SecIndex = SectionIndexMap.lookup(Member);
1126       write(SecIndex);
1127     }
1128 
1129     uint64_t SecEnd = W.OS.tell();
1130     SectionOffsets[Group] = std::make_pair(SecStart, SecEnd);
1131   }
1132 
1133   if (Mode == DwoOnly) {
1134     // dwo files don't have symbol tables or relocations, but they do have
1135     // string tables.
1136     StrTabBuilder.finalize();
1137   } else {
1138     MCSectionELF *AddrsigSection;
1139     if (OWriter.EmitAddrsigSection) {
1140       AddrsigSection = Ctx.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG,
1141                                          ELF::SHF_EXCLUDE);
1142       addToSectionTable(AddrsigSection);
1143     }
1144 
1145     // Compute symbol table information.
1146     computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap,
1147                        SectionOffsets);
1148 
1149     for (MCSectionELF *RelSection : Relocations) {
1150       // Remember the offset into the file for this section.
1151       const uint64_t SecStart = align(RelSection->getAlignment());
1152 
1153       writeRelocations(Asm,
1154                        cast<MCSectionELF>(*RelSection->getLinkedToSection()));
1155 
1156       uint64_t SecEnd = W.OS.tell();
1157       SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd);
1158     }
1159 
1160     if (OWriter.EmitAddrsigSection) {
1161       uint64_t SecStart = W.OS.tell();
1162       writeAddrsigSection();
1163       uint64_t SecEnd = W.OS.tell();
1164       SectionOffsets[AddrsigSection] = std::make_pair(SecStart, SecEnd);
1165     }
1166   }
1167 
1168   {
1169     uint64_t SecStart = W.OS.tell();
1170     StrTabBuilder.write(W.OS);
1171     SectionOffsets[StrtabSection] = std::make_pair(SecStart, W.OS.tell());
1172   }
1173 
1174   const uint64_t SectionHeaderOffset = align(is64Bit() ? 8 : 4);
1175 
1176   // ... then the section header table ...
1177   writeSectionHeader(Layout, SectionIndexMap, SectionOffsets);
1178 
1179   uint16_t NumSections = support::endian::byte_swap<uint16_t>(
1180       (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF
1181                                                       : SectionTable.size() + 1,
1182       W.Endian);
1183   unsigned NumSectionsOffset;
1184 
1185   auto &Stream = static_cast<raw_pwrite_stream &>(W.OS);
1186   if (is64Bit()) {
1187     uint64_t Val =
1188         support::endian::byte_swap<uint64_t>(SectionHeaderOffset, W.Endian);
1189     Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1190                   offsetof(ELF::Elf64_Ehdr, e_shoff));
1191     NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum);
1192   } else {
1193     uint32_t Val =
1194         support::endian::byte_swap<uint32_t>(SectionHeaderOffset, W.Endian);
1195     Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1196                   offsetof(ELF::Elf32_Ehdr, e_shoff));
1197     NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum);
1198   }
1199   Stream.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections),
1200                 NumSectionsOffset);
1201 
1202   return W.OS.tell() - StartOffset;
1203 }
1204 
1205 bool ELFObjectWriter::hasRelocationAddend() const {
1206   return TargetObjectWriter->hasRelocationAddend();
1207 }
1208 
1209 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
1210                                                const MCAsmLayout &Layout) {
1211   // The presence of symbol versions causes undefined symbols and
1212   // versions declared with @@@ to be renamed.
1213   for (const MCAssembler::Symver &S : Asm.Symvers) {
1214     StringRef AliasName = S.Name;
1215     const auto &Symbol = cast<MCSymbolELF>(*S.Sym);
1216     size_t Pos = AliasName.find('@');
1217     assert(Pos != StringRef::npos);
1218 
1219     StringRef Prefix = AliasName.substr(0, Pos);
1220     StringRef Rest = AliasName.substr(Pos);
1221     StringRef Tail = Rest;
1222     if (Rest.startswith("@@@"))
1223       Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1);
1224 
1225     auto *Alias =
1226         cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail));
1227     Asm.registerSymbol(*Alias);
1228     const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext());
1229     Alias->setVariableValue(Value);
1230 
1231     // Aliases defined with .symvar copy the binding from the symbol they alias.
1232     // This is the first place we are able to copy this information.
1233     Alias->setBinding(Symbol.getBinding());
1234     Alias->setVisibility(Symbol.getVisibility());
1235     Alias->setOther(Symbol.getOther());
1236 
1237     if (!Symbol.isUndefined() && S.KeepOriginalSym)
1238       continue;
1239 
1240     if (Symbol.isUndefined() && Rest.startswith("@@") &&
1241         !Rest.startswith("@@@")) {
1242       Asm.getContext().reportError(S.Loc, "default version symbol " +
1243                                               AliasName + " must be defined");
1244       continue;
1245     }
1246 
1247     if (Renames.count(&Symbol) && Renames[&Symbol] != Alias) {
1248       Asm.getContext().reportError(S.Loc, Twine("multiple versions for ") +
1249                                               Symbol.getName());
1250       continue;
1251     }
1252 
1253     Renames.insert(std::make_pair(&Symbol, Alias));
1254   }
1255 
1256   for (const MCSymbol *&Sym : AddrsigSyms) {
1257     if (const MCSymbol *R = Renames.lookup(cast<MCSymbolELF>(Sym)))
1258       Sym = R;
1259     if (Sym->isInSection() && Sym->getName().startswith(".L"))
1260       Sym = Sym->getSection().getBeginSymbol();
1261     Sym->setUsedInReloc();
1262   }
1263 }
1264 
1265 // It is always valid to create a relocation with a symbol. It is preferable
1266 // to use a relocation with a section if that is possible. Using the section
1267 // allows us to omit some local symbols from the symbol table.
1268 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
1269                                                const MCSymbolRefExpr *RefA,
1270                                                const MCSymbolELF *Sym,
1271                                                uint64_t C,
1272                                                unsigned Type) const {
1273   // A PCRel relocation to an absolute value has no symbol (or section). We
1274   // represent that with a relocation to a null section.
1275   if (!RefA)
1276     return false;
1277 
1278   MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
1279   switch (Kind) {
1280   default:
1281     break;
1282   // The .odp creation emits a relocation against the symbol ".TOC." which
1283   // create a R_PPC64_TOC relocation. However the relocation symbol name
1284   // in final object creation should be NULL, since the symbol does not
1285   // really exist, it is just the reference to TOC base for the current
1286   // object file. Since the symbol is undefined, returning false results
1287   // in a relocation with a null section which is the desired result.
1288   case MCSymbolRefExpr::VK_PPC_TOCBASE:
1289     return false;
1290 
1291   // These VariantKind cause the relocation to refer to something other than
1292   // the symbol itself, like a linker generated table. Since the address of
1293   // symbol is not relevant, we cannot replace the symbol with the
1294   // section and patch the difference in the addend.
1295   case MCSymbolRefExpr::VK_GOT:
1296   case MCSymbolRefExpr::VK_PLT:
1297   case MCSymbolRefExpr::VK_GOTPCREL:
1298   case MCSymbolRefExpr::VK_GOTPCREL_NORELAX:
1299   case MCSymbolRefExpr::VK_PPC_GOT_LO:
1300   case MCSymbolRefExpr::VK_PPC_GOT_HI:
1301   case MCSymbolRefExpr::VK_PPC_GOT_HA:
1302     return true;
1303   }
1304 
1305   // An undefined symbol is not in any section, so the relocation has to point
1306   // to the symbol itself.
1307   assert(Sym && "Expected a symbol");
1308   if (Sym->isUndefined())
1309     return true;
1310 
1311   unsigned Binding = Sym->getBinding();
1312   switch(Binding) {
1313   default:
1314     llvm_unreachable("Invalid Binding");
1315   case ELF::STB_LOCAL:
1316     break;
1317   case ELF::STB_WEAK:
1318     // If the symbol is weak, it might be overridden by a symbol in another
1319     // file. The relocation has to point to the symbol so that the linker
1320     // can update it.
1321     return true;
1322   case ELF::STB_GLOBAL:
1323   case ELF::STB_GNU_UNIQUE:
1324     // Global ELF symbols can be preempted by the dynamic linker. The relocation
1325     // has to point to the symbol for a reason analogous to the STB_WEAK case.
1326     return true;
1327   }
1328 
1329   // Keep symbol type for a local ifunc because it may result in an IRELATIVE
1330   // reloc that the dynamic loader will use to resolve the address at startup
1331   // time.
1332   if (Sym->getType() == ELF::STT_GNU_IFUNC)
1333     return true;
1334 
1335   // If a relocation points to a mergeable section, we have to be careful.
1336   // If the offset is zero, a relocation with the section will encode the
1337   // same information. With a non-zero offset, the situation is different.
1338   // For example, a relocation can point 42 bytes past the end of a string.
1339   // If we change such a relocation to use the section, the linker would think
1340   // that it pointed to another string and subtracting 42 at runtime will
1341   // produce the wrong value.
1342   if (Sym->isInSection()) {
1343     auto &Sec = cast<MCSectionELF>(Sym->getSection());
1344     unsigned Flags = Sec.getFlags();
1345     if (Flags & ELF::SHF_MERGE) {
1346       if (C != 0)
1347         return true;
1348 
1349       // gold<2.34 incorrectly ignored the addend for R_386_GOTOFF (9)
1350       // (http://sourceware.org/PR16794).
1351       if (TargetObjectWriter->getEMachine() == ELF::EM_386 &&
1352           Type == ELF::R_386_GOTOFF)
1353         return true;
1354 
1355       // ld.lld handles R_MIPS_HI16/R_MIPS_LO16 separately, not as a whole, so
1356       // it doesn't know that an R_MIPS_HI16 with implicit addend 1 and an
1357       // R_MIPS_LO16 with implicit addend -32768 represents 32768, which is in
1358       // range of a MergeInputSection. We could introduce a new RelExpr member
1359       // (like R_RISCV_PC_INDIRECT for R_RISCV_PCREL_HI20 / R_RISCV_PCREL_LO12)
1360       // but the complexity is unnecessary given that GNU as keeps the original
1361       // symbol for this case as well.
1362       if (TargetObjectWriter->getEMachine() == ELF::EM_MIPS &&
1363           !hasRelocationAddend())
1364         return true;
1365     }
1366 
1367     // Most TLS relocations use a got, so they need the symbol. Even those that
1368     // are just an offset (@tpoff), require a symbol in gold versions before
1369     // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
1370     // http://sourceware.org/PR16773.
1371     if (Flags & ELF::SHF_TLS)
1372       return true;
1373   }
1374 
1375   // If the symbol is a thumb function the final relocation must set the lowest
1376   // bit. With a symbol that is done by just having the symbol have that bit
1377   // set, so we would lose the bit if we relocated with the section.
1378   // FIXME: We could use the section but add the bit to the relocation value.
1379   if (Asm.isThumbFunc(Sym))
1380     return true;
1381 
1382   if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
1383     return true;
1384   return false;
1385 }
1386 
1387 void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
1388                                        const MCAsmLayout &Layout,
1389                                        const MCFragment *Fragment,
1390                                        const MCFixup &Fixup, MCValue Target,
1391                                        uint64_t &FixedValue) {
1392   MCAsmBackend &Backend = Asm.getBackend();
1393   bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
1394                  MCFixupKindInfo::FKF_IsPCRel;
1395   const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
1396   uint64_t C = Target.getConstant();
1397   uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
1398   MCContext &Ctx = Asm.getContext();
1399 
1400   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
1401     const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
1402     if (SymB.isUndefined()) {
1403       Ctx.reportError(Fixup.getLoc(),
1404                       Twine("symbol '") + SymB.getName() +
1405                           "' can not be undefined in a subtraction expression");
1406       return;
1407     }
1408 
1409     assert(!SymB.isAbsolute() && "Should have been folded");
1410     const MCSection &SecB = SymB.getSection();
1411     if (&SecB != &FixupSection) {
1412       Ctx.reportError(Fixup.getLoc(),
1413                       "Cannot represent a difference across sections");
1414       return;
1415     }
1416 
1417     assert(!IsPCRel && "should have been folded");
1418     IsPCRel = true;
1419     C += FixupOffset - Layout.getSymbolOffset(SymB);
1420   }
1421 
1422   // We either rejected the fixup or folded B into C at this point.
1423   const MCSymbolRefExpr *RefA = Target.getSymA();
1424   const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
1425 
1426   bool ViaWeakRef = false;
1427   if (SymA && SymA->isVariable()) {
1428     const MCExpr *Expr = SymA->getVariableValue();
1429     if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
1430       if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
1431         SymA = cast<MCSymbolELF>(&Inner->getSymbol());
1432         ViaWeakRef = true;
1433       }
1434     }
1435   }
1436 
1437   const MCSectionELF *SecA = (SymA && SymA->isInSection())
1438                                  ? cast<MCSectionELF>(&SymA->getSection())
1439                                  : nullptr;
1440   if (!checkRelocation(Ctx, Fixup.getLoc(), &FixupSection, SecA))
1441     return;
1442 
1443   unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel);
1444   const auto *Parent = cast<MCSectionELF>(Fragment->getParent());
1445   // Emiting relocation with sybmol for CG Profile to  help with --cg-profile.
1446   bool RelocateWithSymbol =
1447       shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type) ||
1448       (Parent->getType() == ELF::SHT_LLVM_CALL_GRAPH_PROFILE);
1449   uint64_t Addend = 0;
1450 
1451   FixedValue = !RelocateWithSymbol && SymA && !SymA->isUndefined()
1452                    ? C + Layout.getSymbolOffset(*SymA)
1453                    : C;
1454   if (hasRelocationAddend()) {
1455     Addend = FixedValue;
1456     FixedValue = 0;
1457   }
1458 
1459   if (!RelocateWithSymbol) {
1460     const auto *SectionSymbol =
1461         SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr;
1462     if (SectionSymbol)
1463       SectionSymbol->setUsedInReloc();
1464     ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA, C);
1465     Relocations[&FixupSection].push_back(Rec);
1466     return;
1467   }
1468 
1469   const MCSymbolELF *RenamedSymA = SymA;
1470   if (SymA) {
1471     if (const MCSymbolELF *R = Renames.lookup(SymA))
1472       RenamedSymA = R;
1473 
1474     if (ViaWeakRef)
1475       RenamedSymA->setIsWeakrefUsedInReloc();
1476     else
1477       RenamedSymA->setUsedInReloc();
1478   }
1479   ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA, C);
1480   Relocations[&FixupSection].push_back(Rec);
1481 }
1482 
1483 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
1484     const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
1485     bool InSet, bool IsPCRel) const {
1486   const auto &SymA = cast<MCSymbolELF>(SA);
1487   if (IsPCRel) {
1488     assert(!InSet);
1489     if (SymA.getBinding() != ELF::STB_LOCAL ||
1490         SymA.getType() == ELF::STT_GNU_IFUNC)
1491       return false;
1492   }
1493   return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB,
1494                                                                 InSet, IsPCRel);
1495 }
1496 
1497 std::unique_ptr<MCObjectWriter>
1498 llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
1499                             raw_pwrite_stream &OS, bool IsLittleEndian) {
1500   return std::make_unique<ELFSingleObjectWriter>(std::move(MOTW), OS,
1501                                                   IsLittleEndian);
1502 }
1503 
1504 std::unique_ptr<MCObjectWriter>
1505 llvm::createELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
1506                                raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS,
1507                                bool IsLittleEndian) {
1508   return std::make_unique<ELFDwoObjectWriter>(std::move(MOTW), OS, DwoOS,
1509                                                IsLittleEndian);
1510 }
1511