1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements ELF object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/BinaryFormat/ELF.h" 21 #include "llvm/MC/MCAsmBackend.h" 22 #include "llvm/MC/MCAsmInfo.h" 23 #include "llvm/MC/MCAsmLayout.h" 24 #include "llvm/MC/MCAssembler.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCELFObjectWriter.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/MC/MCFixup.h" 29 #include "llvm/MC/MCFixupKindInfo.h" 30 #include "llvm/MC/MCFragment.h" 31 #include "llvm/MC/MCObjectFileInfo.h" 32 #include "llvm/MC/MCObjectWriter.h" 33 #include "llvm/MC/MCSection.h" 34 #include "llvm/MC/MCSectionELF.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/MC/MCSymbolELF.h" 37 #include "llvm/MC/MCValue.h" 38 #include "llvm/MC/StringTableBuilder.h" 39 #include "llvm/Support/Alignment.h" 40 #include "llvm/Support/Allocator.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/Compression.h" 43 #include "llvm/Support/EndianStream.h" 44 #include "llvm/Support/Error.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/Host.h" 47 #include "llvm/Support/LEB128.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/SMLoc.h" 50 #include "llvm/Support/StringSaver.h" 51 #include "llvm/Support/SwapByteOrder.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <cstddef> 56 #include <cstdint> 57 #include <map> 58 #include <memory> 59 #include <string> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #undef DEBUG_TYPE 66 #define DEBUG_TYPE "reloc-info" 67 68 namespace { 69 70 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>; 71 72 class ELFObjectWriter; 73 struct ELFWriter; 74 75 bool isDwoSection(const MCSectionELF &Sec) { 76 return Sec.getName().endswith(".dwo"); 77 } 78 79 class SymbolTableWriter { 80 ELFWriter &EWriter; 81 bool Is64Bit; 82 83 // indexes we are going to write to .symtab_shndx. 84 std::vector<uint32_t> ShndxIndexes; 85 86 // The numbel of symbols written so far. 87 unsigned NumWritten; 88 89 void createSymtabShndx(); 90 91 template <typename T> void write(T Value); 92 93 public: 94 SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit); 95 96 void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size, 97 uint8_t other, uint32_t shndx, bool Reserved); 98 99 ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; } 100 }; 101 102 struct ELFWriter { 103 ELFObjectWriter &OWriter; 104 support::endian::Writer W; 105 106 enum DwoMode { 107 AllSections, 108 NonDwoOnly, 109 DwoOnly, 110 } Mode; 111 112 static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout); 113 static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 114 bool Used, bool Renamed); 115 116 /// Helper struct for containing some precomputed information on symbols. 117 struct ELFSymbolData { 118 const MCSymbolELF *Symbol; 119 StringRef Name; 120 uint32_t SectionIndex; 121 uint32_t Order; 122 }; 123 124 /// @} 125 /// @name Symbol Table Data 126 /// @{ 127 128 StringTableBuilder StrTabBuilder{StringTableBuilder::ELF}; 129 130 /// @} 131 132 // This holds the symbol table index of the last local symbol. 133 unsigned LastLocalSymbolIndex; 134 // This holds the .strtab section index. 135 unsigned StringTableIndex; 136 // This holds the .symtab section index. 137 unsigned SymbolTableIndex; 138 139 // Sections in the order they are to be output in the section table. 140 std::vector<const MCSectionELF *> SectionTable; 141 unsigned addToSectionTable(const MCSectionELF *Sec); 142 143 // TargetObjectWriter wrappers. 144 bool is64Bit() const; 145 bool usesRela(const MCSectionELF &Sec) const; 146 147 uint64_t align(unsigned Alignment); 148 149 bool maybeWriteCompression(uint64_t Size, 150 SmallVectorImpl<char> &CompressedContents, 151 bool ZLibStyle, unsigned Alignment); 152 153 public: 154 ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS, 155 bool IsLittleEndian, DwoMode Mode) 156 : OWriter(OWriter), 157 W(OS, IsLittleEndian ? support::little : support::big), Mode(Mode) {} 158 159 void WriteWord(uint64_t Word) { 160 if (is64Bit()) 161 W.write<uint64_t>(Word); 162 else 163 W.write<uint32_t>(Word); 164 } 165 166 template <typename T> void write(T Val) { 167 W.write(Val); 168 } 169 170 void writeHeader(const MCAssembler &Asm); 171 172 void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 173 ELFSymbolData &MSD, const MCAsmLayout &Layout); 174 175 // Start and end offset of each section 176 using SectionOffsetsTy = 177 std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>; 178 179 // Map from a signature symbol to the group section index 180 using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>; 181 182 /// Compute the symbol table data 183 /// 184 /// \param Asm - The assembler. 185 /// \param SectionIndexMap - Maps a section to its index. 186 /// \param RevGroupMap - Maps a signature symbol to the group section. 187 void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout, 188 const SectionIndexMapTy &SectionIndexMap, 189 const RevGroupMapTy &RevGroupMap, 190 SectionOffsetsTy &SectionOffsets); 191 192 void writeAddrsigSection(); 193 194 MCSectionELF *createRelocationSection(MCContext &Ctx, 195 const MCSectionELF &Sec); 196 197 void writeSectionHeader(const MCAsmLayout &Layout, 198 const SectionIndexMapTy &SectionIndexMap, 199 const SectionOffsetsTy &SectionOffsets); 200 201 void writeSectionData(const MCAssembler &Asm, MCSection &Sec, 202 const MCAsmLayout &Layout); 203 204 void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 205 uint64_t Address, uint64_t Offset, uint64_t Size, 206 uint32_t Link, uint32_t Info, uint64_t Alignment, 207 uint64_t EntrySize); 208 209 void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec); 210 211 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout); 212 void writeSection(const SectionIndexMapTy &SectionIndexMap, 213 uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size, 214 const MCSectionELF &Section); 215 }; 216 217 class ELFObjectWriter : public MCObjectWriter { 218 /// The target specific ELF writer instance. 219 std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter; 220 221 DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations; 222 223 DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames; 224 225 bool SeenGnuAbi = false; 226 bool EmitAddrsigSection = false; 227 std::vector<const MCSymbol *> AddrsigSyms; 228 229 bool hasRelocationAddend() const; 230 231 bool shouldRelocateWithSymbol(const MCAssembler &Asm, 232 const MCSymbolRefExpr *RefA, 233 const MCSymbolELF *Sym, uint64_t C, 234 unsigned Type) const; 235 236 public: 237 ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW) 238 : TargetObjectWriter(std::move(MOTW)) {} 239 240 void reset() override { 241 SeenGnuAbi = false; 242 Relocations.clear(); 243 Renames.clear(); 244 MCObjectWriter::reset(); 245 } 246 247 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, 248 const MCSymbol &SymA, 249 const MCFragment &FB, bool InSet, 250 bool IsPCRel) const override; 251 252 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc, 253 const MCSectionELF *From, 254 const MCSectionELF *To) { 255 return true; 256 } 257 258 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, 259 const MCFragment *Fragment, const MCFixup &Fixup, 260 MCValue Target, uint64_t &FixedValue) override; 261 262 void executePostLayoutBinding(MCAssembler &Asm, 263 const MCAsmLayout &Layout) override; 264 265 void markGnuAbi() override { SeenGnuAbi = true; } 266 bool seenGnuAbi() const { return SeenGnuAbi; } 267 void emitAddrsigSection() override { EmitAddrsigSection = true; } 268 void addAddrsigSymbol(const MCSymbol *Sym) override { 269 AddrsigSyms.push_back(Sym); 270 } 271 272 friend struct ELFWriter; 273 }; 274 275 class ELFSingleObjectWriter : public ELFObjectWriter { 276 raw_pwrite_stream &OS; 277 bool IsLittleEndian; 278 279 public: 280 ELFSingleObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 281 raw_pwrite_stream &OS, bool IsLittleEndian) 282 : ELFObjectWriter(std::move(MOTW)), OS(OS), 283 IsLittleEndian(IsLittleEndian) {} 284 285 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override { 286 return ELFWriter(*this, OS, IsLittleEndian, ELFWriter::AllSections) 287 .writeObject(Asm, Layout); 288 } 289 290 friend struct ELFWriter; 291 }; 292 293 class ELFDwoObjectWriter : public ELFObjectWriter { 294 raw_pwrite_stream &OS, &DwoOS; 295 bool IsLittleEndian; 296 297 public: 298 ELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 299 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, 300 bool IsLittleEndian) 301 : ELFObjectWriter(std::move(MOTW)), OS(OS), DwoOS(DwoOS), 302 IsLittleEndian(IsLittleEndian) {} 303 304 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc, 305 const MCSectionELF *From, 306 const MCSectionELF *To) override { 307 if (isDwoSection(*From)) { 308 Ctx.reportError(Loc, "A dwo section may not contain relocations"); 309 return false; 310 } 311 if (To && isDwoSection(*To)) { 312 Ctx.reportError(Loc, "A relocation may not refer to a dwo section"); 313 return false; 314 } 315 return true; 316 } 317 318 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override { 319 uint64_t Size = ELFWriter(*this, OS, IsLittleEndian, ELFWriter::NonDwoOnly) 320 .writeObject(Asm, Layout); 321 Size += ELFWriter(*this, DwoOS, IsLittleEndian, ELFWriter::DwoOnly) 322 .writeObject(Asm, Layout); 323 return Size; 324 } 325 }; 326 327 } // end anonymous namespace 328 329 uint64_t ELFWriter::align(unsigned Alignment) { 330 uint64_t Offset = W.OS.tell(), NewOffset = alignTo(Offset, Alignment); 331 W.OS.write_zeros(NewOffset - Offset); 332 return NewOffset; 333 } 334 335 unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) { 336 SectionTable.push_back(Sec); 337 StrTabBuilder.add(Sec->getName()); 338 return SectionTable.size(); 339 } 340 341 void SymbolTableWriter::createSymtabShndx() { 342 if (!ShndxIndexes.empty()) 343 return; 344 345 ShndxIndexes.resize(NumWritten); 346 } 347 348 template <typename T> void SymbolTableWriter::write(T Value) { 349 EWriter.write(Value); 350 } 351 352 SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit) 353 : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {} 354 355 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value, 356 uint64_t size, uint8_t other, 357 uint32_t shndx, bool Reserved) { 358 bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved; 359 360 if (LargeIndex) 361 createSymtabShndx(); 362 363 if (!ShndxIndexes.empty()) { 364 if (LargeIndex) 365 ShndxIndexes.push_back(shndx); 366 else 367 ShndxIndexes.push_back(0); 368 } 369 370 uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx; 371 372 if (Is64Bit) { 373 write(name); // st_name 374 write(info); // st_info 375 write(other); // st_other 376 write(Index); // st_shndx 377 write(value); // st_value 378 write(size); // st_size 379 } else { 380 write(name); // st_name 381 write(uint32_t(value)); // st_value 382 write(uint32_t(size)); // st_size 383 write(info); // st_info 384 write(other); // st_other 385 write(Index); // st_shndx 386 } 387 388 ++NumWritten; 389 } 390 391 bool ELFWriter::is64Bit() const { 392 return OWriter.TargetObjectWriter->is64Bit(); 393 } 394 395 bool ELFWriter::usesRela(const MCSectionELF &Sec) const { 396 return OWriter.hasRelocationAddend() && 397 Sec.getType() != ELF::SHT_LLVM_CALL_GRAPH_PROFILE; 398 } 399 400 // Emit the ELF header. 401 void ELFWriter::writeHeader(const MCAssembler &Asm) { 402 // ELF Header 403 // ---------- 404 // 405 // Note 406 // ---- 407 // emitWord method behaves differently for ELF32 and ELF64, writing 408 // 4 bytes in the former and 8 in the latter. 409 410 W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3] 411 412 W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS] 413 414 // e_ident[EI_DATA] 415 W.OS << char(W.Endian == support::little ? ELF::ELFDATA2LSB 416 : ELF::ELFDATA2MSB); 417 418 W.OS << char(ELF::EV_CURRENT); // e_ident[EI_VERSION] 419 // e_ident[EI_OSABI] 420 uint8_t OSABI = OWriter.TargetObjectWriter->getOSABI(); 421 W.OS << char(OSABI == ELF::ELFOSABI_NONE && OWriter.seenGnuAbi() 422 ? int(ELF::ELFOSABI_GNU) 423 : OSABI); 424 // e_ident[EI_ABIVERSION] 425 W.OS << char(OWriter.TargetObjectWriter->getABIVersion()); 426 427 W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD); 428 429 W.write<uint16_t>(ELF::ET_REL); // e_type 430 431 W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target 432 433 W.write<uint32_t>(ELF::EV_CURRENT); // e_version 434 WriteWord(0); // e_entry, no entry point in .o file 435 WriteWord(0); // e_phoff, no program header for .o 436 WriteWord(0); // e_shoff = sec hdr table off in bytes 437 438 // e_flags = whatever the target wants 439 W.write<uint32_t>(Asm.getELFHeaderEFlags()); 440 441 // e_ehsize = ELF header size 442 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr) 443 : sizeof(ELF::Elf32_Ehdr)); 444 445 W.write<uint16_t>(0); // e_phentsize = prog header entry size 446 W.write<uint16_t>(0); // e_phnum = # prog header entries = 0 447 448 // e_shentsize = Section header entry size 449 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr) 450 : sizeof(ELF::Elf32_Shdr)); 451 452 // e_shnum = # of section header ents 453 W.write<uint16_t>(0); 454 455 // e_shstrndx = Section # of '.strtab' 456 assert(StringTableIndex < ELF::SHN_LORESERVE); 457 W.write<uint16_t>(StringTableIndex); 458 } 459 460 uint64_t ELFWriter::SymbolValue(const MCSymbol &Sym, 461 const MCAsmLayout &Layout) { 462 if (Sym.isCommon()) 463 return Sym.getCommonAlignment(); 464 465 uint64_t Res; 466 if (!Layout.getSymbolOffset(Sym, Res)) 467 return 0; 468 469 if (Layout.getAssembler().isThumbFunc(&Sym)) 470 Res |= 1; 471 472 return Res; 473 } 474 475 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) { 476 uint8_t Type = newType; 477 478 // Propagation rules: 479 // IFUNC > FUNC > OBJECT > NOTYPE 480 // TLS_OBJECT > OBJECT > NOTYPE 481 // 482 // dont let the new type degrade the old type 483 switch (origType) { 484 default: 485 break; 486 case ELF::STT_GNU_IFUNC: 487 if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT || 488 Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS) 489 Type = ELF::STT_GNU_IFUNC; 490 break; 491 case ELF::STT_FUNC: 492 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 493 Type == ELF::STT_TLS) 494 Type = ELF::STT_FUNC; 495 break; 496 case ELF::STT_OBJECT: 497 if (Type == ELF::STT_NOTYPE) 498 Type = ELF::STT_OBJECT; 499 break; 500 case ELF::STT_TLS: 501 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 502 Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC) 503 Type = ELF::STT_TLS; 504 break; 505 } 506 507 return Type; 508 } 509 510 static bool isIFunc(const MCSymbolELF *Symbol) { 511 while (Symbol->getType() != ELF::STT_GNU_IFUNC) { 512 const MCSymbolRefExpr *Value; 513 if (!Symbol->isVariable() || 514 !(Value = dyn_cast<MCSymbolRefExpr>(Symbol->getVariableValue())) || 515 Value->getKind() != MCSymbolRefExpr::VK_None || 516 mergeTypeForSet(Symbol->getType(), ELF::STT_GNU_IFUNC) != ELF::STT_GNU_IFUNC) 517 return false; 518 Symbol = &cast<MCSymbolELF>(Value->getSymbol()); 519 } 520 return true; 521 } 522 523 void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 524 ELFSymbolData &MSD, const MCAsmLayout &Layout) { 525 const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol); 526 const MCSymbolELF *Base = 527 cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol)); 528 529 // This has to be in sync with when computeSymbolTable uses SHN_ABS or 530 // SHN_COMMON. 531 bool IsReserved = !Base || Symbol.isCommon(); 532 533 // Binding and Type share the same byte as upper and lower nibbles 534 uint8_t Binding = Symbol.getBinding(); 535 uint8_t Type = Symbol.getType(); 536 if (isIFunc(&Symbol)) 537 Type = ELF::STT_GNU_IFUNC; 538 if (Base) { 539 Type = mergeTypeForSet(Type, Base->getType()); 540 } 541 uint8_t Info = (Binding << 4) | Type; 542 543 // Other and Visibility share the same byte with Visibility using the lower 544 // 2 bits 545 uint8_t Visibility = Symbol.getVisibility(); 546 uint8_t Other = Symbol.getOther() | Visibility; 547 548 uint64_t Value = SymbolValue(*MSD.Symbol, Layout); 549 uint64_t Size = 0; 550 551 const MCExpr *ESize = MSD.Symbol->getSize(); 552 if (!ESize && Base) 553 ESize = Base->getSize(); 554 555 if (ESize) { 556 int64_t Res; 557 if (!ESize->evaluateKnownAbsolute(Res, Layout)) 558 report_fatal_error("Size expression must be absolute."); 559 Size = Res; 560 } 561 562 // Write out the symbol table entry 563 Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex, 564 IsReserved); 565 } 566 567 bool ELFWriter::isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 568 bool Used, bool Renamed) { 569 if (Symbol.isVariable()) { 570 const MCExpr *Expr = Symbol.getVariableValue(); 571 // Target Expressions that are always inlined do not appear in the symtab 572 if (const auto *T = dyn_cast<MCTargetExpr>(Expr)) 573 if (T->inlineAssignedExpr()) 574 return false; 575 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) { 576 if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF) 577 return false; 578 } 579 } 580 581 if (Used) 582 return true; 583 584 if (Renamed) 585 return false; 586 587 if (Symbol.isVariable() && Symbol.isUndefined()) { 588 // FIXME: this is here just to diagnose the case of a var = commmon_sym. 589 Layout.getBaseSymbol(Symbol); 590 return false; 591 } 592 593 if (Symbol.isTemporary()) 594 return false; 595 596 if (Symbol.getType() == ELF::STT_SECTION) 597 return false; 598 599 return true; 600 } 601 602 void ELFWriter::computeSymbolTable( 603 MCAssembler &Asm, const MCAsmLayout &Layout, 604 const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap, 605 SectionOffsetsTy &SectionOffsets) { 606 MCContext &Ctx = Asm.getContext(); 607 SymbolTableWriter Writer(*this, is64Bit()); 608 609 // Symbol table 610 unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32; 611 MCSectionELF *SymtabSection = 612 Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize); 613 SymtabSection->setAlignment(is64Bit() ? Align(8) : Align(4)); 614 SymbolTableIndex = addToSectionTable(SymtabSection); 615 616 uint64_t SecStart = align(SymtabSection->getAlignment()); 617 618 // The first entry is the undefined symbol entry. 619 Writer.writeSymbol(0, 0, 0, 0, 0, 0, false); 620 621 std::vector<ELFSymbolData> LocalSymbolData; 622 std::vector<ELFSymbolData> ExternalSymbolData; 623 MutableArrayRef<std::pair<std::string, size_t>> FileNames = 624 Asm.getFileNames(); 625 for (const std::pair<std::string, size_t> &F : FileNames) 626 StrTabBuilder.add(F.first); 627 628 // Add the data for the symbols. 629 bool HasLargeSectionIndex = false; 630 for (auto It : llvm::enumerate(Asm.symbols())) { 631 const auto &Symbol = cast<MCSymbolELF>(It.value()); 632 bool Used = Symbol.isUsedInReloc(); 633 bool WeakrefUsed = Symbol.isWeakrefUsedInReloc(); 634 bool isSignature = Symbol.isSignature(); 635 636 if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature, 637 OWriter.Renames.count(&Symbol))) 638 continue; 639 640 if (Symbol.isTemporary() && Symbol.isUndefined()) { 641 Ctx.reportError(SMLoc(), "Undefined temporary symbol " + Symbol.getName()); 642 continue; 643 } 644 645 ELFSymbolData MSD; 646 MSD.Symbol = cast<MCSymbolELF>(&Symbol); 647 MSD.Order = It.index(); 648 649 bool Local = Symbol.getBinding() == ELF::STB_LOCAL; 650 assert(Local || !Symbol.isTemporary()); 651 652 if (Symbol.isAbsolute()) { 653 MSD.SectionIndex = ELF::SHN_ABS; 654 } else if (Symbol.isCommon()) { 655 if (Symbol.isTargetCommon()) { 656 MSD.SectionIndex = Symbol.getIndex(); 657 } else { 658 assert(!Local); 659 MSD.SectionIndex = ELF::SHN_COMMON; 660 } 661 } else if (Symbol.isUndefined()) { 662 if (isSignature && !Used) { 663 MSD.SectionIndex = RevGroupMap.lookup(&Symbol); 664 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 665 HasLargeSectionIndex = true; 666 } else { 667 MSD.SectionIndex = ELF::SHN_UNDEF; 668 } 669 } else { 670 const MCSectionELF &Section = 671 static_cast<const MCSectionELF &>(Symbol.getSection()); 672 673 // We may end up with a situation when section symbol is technically 674 // defined, but should not be. That happens because we explicitly 675 // pre-create few .debug_* sections to have accessors. 676 // And if these sections were not really defined in the code, but were 677 // referenced, we simply error out. 678 if (!Section.isRegistered()) { 679 assert(static_cast<const MCSymbolELF &>(Symbol).getType() == 680 ELF::STT_SECTION); 681 Ctx.reportError(SMLoc(), 682 "Undefined section reference: " + Symbol.getName()); 683 continue; 684 } 685 686 if (Mode == NonDwoOnly && isDwoSection(Section)) 687 continue; 688 MSD.SectionIndex = SectionIndexMap.lookup(&Section); 689 assert(MSD.SectionIndex && "Invalid section index!"); 690 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 691 HasLargeSectionIndex = true; 692 } 693 694 StringRef Name = Symbol.getName(); 695 696 // Sections have their own string table 697 if (Symbol.getType() != ELF::STT_SECTION) { 698 MSD.Name = Name; 699 StrTabBuilder.add(Name); 700 } 701 702 if (Local) 703 LocalSymbolData.push_back(MSD); 704 else 705 ExternalSymbolData.push_back(MSD); 706 } 707 708 // This holds the .symtab_shndx section index. 709 unsigned SymtabShndxSectionIndex = 0; 710 711 if (HasLargeSectionIndex) { 712 MCSectionELF *SymtabShndxSection = 713 Ctx.getELFSection(".symtab_shndx", ELF::SHT_SYMTAB_SHNDX, 0, 4); 714 SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection); 715 SymtabShndxSection->setAlignment(Align(4)); 716 } 717 718 StrTabBuilder.finalize(); 719 720 // Make the first STT_FILE precede previous local symbols. 721 unsigned Index = 1; 722 auto FileNameIt = FileNames.begin(); 723 if (!FileNames.empty()) 724 FileNames[0].second = 0; 725 726 for (ELFSymbolData &MSD : LocalSymbolData) { 727 // Emit STT_FILE symbols before their associated local symbols. 728 for (; FileNameIt != FileNames.end() && FileNameIt->second <= MSD.Order; 729 ++FileNameIt) { 730 Writer.writeSymbol(StrTabBuilder.getOffset(FileNameIt->first), 731 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, 732 ELF::SHN_ABS, true); 733 ++Index; 734 } 735 736 unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION 737 ? 0 738 : StrTabBuilder.getOffset(MSD.Name); 739 MSD.Symbol->setIndex(Index++); 740 writeSymbol(Writer, StringIndex, MSD, Layout); 741 } 742 for (; FileNameIt != FileNames.end(); ++FileNameIt) { 743 Writer.writeSymbol(StrTabBuilder.getOffset(FileNameIt->first), 744 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, 745 ELF::SHN_ABS, true); 746 ++Index; 747 } 748 749 // Write the symbol table entries. 750 LastLocalSymbolIndex = Index; 751 752 for (ELFSymbolData &MSD : ExternalSymbolData) { 753 unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name); 754 MSD.Symbol->setIndex(Index++); 755 writeSymbol(Writer, StringIndex, MSD, Layout); 756 assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL); 757 } 758 759 uint64_t SecEnd = W.OS.tell(); 760 SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd); 761 762 ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes(); 763 if (ShndxIndexes.empty()) { 764 assert(SymtabShndxSectionIndex == 0); 765 return; 766 } 767 assert(SymtabShndxSectionIndex != 0); 768 769 SecStart = W.OS.tell(); 770 const MCSectionELF *SymtabShndxSection = 771 SectionTable[SymtabShndxSectionIndex - 1]; 772 for (uint32_t Index : ShndxIndexes) 773 write(Index); 774 SecEnd = W.OS.tell(); 775 SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd); 776 } 777 778 void ELFWriter::writeAddrsigSection() { 779 for (const MCSymbol *Sym : OWriter.AddrsigSyms) 780 encodeULEB128(Sym->getIndex(), W.OS); 781 } 782 783 MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx, 784 const MCSectionELF &Sec) { 785 if (OWriter.Relocations[&Sec].empty()) 786 return nullptr; 787 788 const StringRef SectionName = Sec.getName(); 789 bool Rela = usesRela(Sec); 790 std::string RelaSectionName = Rela ? ".rela" : ".rel"; 791 RelaSectionName += SectionName; 792 793 unsigned EntrySize; 794 if (Rela) 795 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela); 796 else 797 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel); 798 799 unsigned Flags = ELF::SHF_INFO_LINK; 800 if (Sec.getFlags() & ELF::SHF_GROUP) 801 Flags = ELF::SHF_GROUP; 802 803 MCSectionELF *RelaSection = Ctx.createELFRelSection( 804 RelaSectionName, Rela ? ELF::SHT_RELA : ELF::SHT_REL, Flags, EntrySize, 805 Sec.getGroup(), &Sec); 806 RelaSection->setAlignment(is64Bit() ? Align(8) : Align(4)); 807 return RelaSection; 808 } 809 810 // Include the debug info compression header. 811 bool ELFWriter::maybeWriteCompression( 812 uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle, 813 unsigned Alignment) { 814 if (ZLibStyle) { 815 uint64_t HdrSize = 816 is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr); 817 if (Size <= HdrSize + CompressedContents.size()) 818 return false; 819 // Platform specific header is followed by compressed data. 820 if (is64Bit()) { 821 // Write Elf64_Chdr header. 822 write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB)); 823 write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field. 824 write(static_cast<ELF::Elf64_Xword>(Size)); 825 write(static_cast<ELF::Elf64_Xword>(Alignment)); 826 } else { 827 // Write Elf32_Chdr header otherwise. 828 write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB)); 829 write(static_cast<ELF::Elf32_Word>(Size)); 830 write(static_cast<ELF::Elf32_Word>(Alignment)); 831 } 832 return true; 833 } 834 835 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section, 836 // useful for consumers to preallocate a buffer to decompress into. 837 const StringRef Magic = "ZLIB"; 838 if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size()) 839 return false; 840 W.OS << Magic; 841 support::endian::write(W.OS, Size, support::big); 842 return true; 843 } 844 845 void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec, 846 const MCAsmLayout &Layout) { 847 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 848 StringRef SectionName = Section.getName(); 849 850 auto &MC = Asm.getContext(); 851 const auto &MAI = MC.getAsmInfo(); 852 853 // Compressing debug_frame requires handling alignment fragments which is 854 // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow 855 // for writing to arbitrary buffers) for little benefit. 856 bool CompressionEnabled = 857 MAI->compressDebugSections() != DebugCompressionType::None; 858 if (!CompressionEnabled || !SectionName.startswith(".debug_") || 859 SectionName == ".debug_frame") { 860 Asm.writeSectionData(W.OS, &Section, Layout); 861 return; 862 } 863 864 assert((MAI->compressDebugSections() == DebugCompressionType::Z || 865 MAI->compressDebugSections() == DebugCompressionType::GNU) && 866 "expected zlib or zlib-gnu style compression"); 867 868 SmallVector<char, 128> UncompressedData; 869 raw_svector_ostream VecOS(UncompressedData); 870 Asm.writeSectionData(VecOS, &Section, Layout); 871 872 SmallVector<char, 128> CompressedContents; 873 if (Error E = zlib::compress( 874 StringRef(UncompressedData.data(), UncompressedData.size()), 875 CompressedContents)) { 876 consumeError(std::move(E)); 877 W.OS << UncompressedData; 878 return; 879 } 880 881 bool ZlibStyle = MAI->compressDebugSections() == DebugCompressionType::Z; 882 if (!maybeWriteCompression(UncompressedData.size(), CompressedContents, 883 ZlibStyle, Sec.getAlignment())) { 884 W.OS << UncompressedData; 885 return; 886 } 887 888 if (ZlibStyle) { 889 // Set the compressed flag. That is zlib style. 890 Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED); 891 // Alignment field should reflect the requirements of 892 // the compressed section header. 893 Section.setAlignment(is64Bit() ? Align(8) : Align(4)); 894 } else { 895 // Add "z" prefix to section name. This is zlib-gnu style. 896 MC.renameELFSection(&Section, (".z" + SectionName.drop_front(1)).str()); 897 } 898 W.OS << CompressedContents; 899 } 900 901 void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 902 uint64_t Address, uint64_t Offset, 903 uint64_t Size, uint32_t Link, uint32_t Info, 904 uint64_t Alignment, uint64_t EntrySize) { 905 W.write<uint32_t>(Name); // sh_name: index into string table 906 W.write<uint32_t>(Type); // sh_type 907 WriteWord(Flags); // sh_flags 908 WriteWord(Address); // sh_addr 909 WriteWord(Offset); // sh_offset 910 WriteWord(Size); // sh_size 911 W.write<uint32_t>(Link); // sh_link 912 W.write<uint32_t>(Info); // sh_info 913 WriteWord(Alignment); // sh_addralign 914 WriteWord(EntrySize); // sh_entsize 915 } 916 917 void ELFWriter::writeRelocations(const MCAssembler &Asm, 918 const MCSectionELF &Sec) { 919 std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec]; 920 921 // We record relocations by pushing to the end of a vector. Reverse the vector 922 // to get the relocations in the order they were created. 923 // In most cases that is not important, but it can be for special sections 924 // (.eh_frame) or specific relocations (TLS optimizations on SystemZ). 925 std::reverse(Relocs.begin(), Relocs.end()); 926 927 // Sort the relocation entries. MIPS needs this. 928 OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs); 929 930 const bool Rela = usesRela(Sec); 931 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 932 const ELFRelocationEntry &Entry = Relocs[e - i - 1]; 933 unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0; 934 935 if (is64Bit()) { 936 write(Entry.Offset); 937 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 938 write(uint32_t(Index)); 939 940 write(OWriter.TargetObjectWriter->getRSsym(Entry.Type)); 941 write(OWriter.TargetObjectWriter->getRType3(Entry.Type)); 942 write(OWriter.TargetObjectWriter->getRType2(Entry.Type)); 943 write(OWriter.TargetObjectWriter->getRType(Entry.Type)); 944 } else { 945 struct ELF::Elf64_Rela ERE64; 946 ERE64.setSymbolAndType(Index, Entry.Type); 947 write(ERE64.r_info); 948 } 949 if (Rela) 950 write(Entry.Addend); 951 } else { 952 write(uint32_t(Entry.Offset)); 953 954 struct ELF::Elf32_Rela ERE32; 955 ERE32.setSymbolAndType(Index, Entry.Type); 956 write(ERE32.r_info); 957 958 if (Rela) 959 write(uint32_t(Entry.Addend)); 960 961 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 962 if (uint32_t RType = 963 OWriter.TargetObjectWriter->getRType2(Entry.Type)) { 964 write(uint32_t(Entry.Offset)); 965 966 ERE32.setSymbolAndType(0, RType); 967 write(ERE32.r_info); 968 write(uint32_t(0)); 969 } 970 if (uint32_t RType = 971 OWriter.TargetObjectWriter->getRType3(Entry.Type)) { 972 write(uint32_t(Entry.Offset)); 973 974 ERE32.setSymbolAndType(0, RType); 975 write(ERE32.r_info); 976 write(uint32_t(0)); 977 } 978 } 979 } 980 } 981 } 982 983 void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap, 984 uint32_t GroupSymbolIndex, uint64_t Offset, 985 uint64_t Size, const MCSectionELF &Section) { 986 uint64_t sh_link = 0; 987 uint64_t sh_info = 0; 988 989 switch(Section.getType()) { 990 default: 991 // Nothing to do. 992 break; 993 994 case ELF::SHT_DYNAMIC: 995 llvm_unreachable("SHT_DYNAMIC in a relocatable object"); 996 997 case ELF::SHT_REL: 998 case ELF::SHT_RELA: { 999 sh_link = SymbolTableIndex; 1000 assert(sh_link && ".symtab not found"); 1001 const MCSection *InfoSection = Section.getLinkedToSection(); 1002 sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection)); 1003 break; 1004 } 1005 1006 case ELF::SHT_SYMTAB: 1007 sh_link = StringTableIndex; 1008 sh_info = LastLocalSymbolIndex; 1009 break; 1010 1011 case ELF::SHT_SYMTAB_SHNDX: 1012 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: 1013 case ELF::SHT_LLVM_ADDRSIG: 1014 sh_link = SymbolTableIndex; 1015 break; 1016 1017 case ELF::SHT_GROUP: 1018 sh_link = SymbolTableIndex; 1019 sh_info = GroupSymbolIndex; 1020 break; 1021 } 1022 1023 if (Section.getFlags() & ELF::SHF_LINK_ORDER) { 1024 // If the value in the associated metadata is not a definition, Sym will be 1025 // undefined. Represent this with sh_link=0. 1026 const MCSymbol *Sym = Section.getLinkedToSymbol(); 1027 if (Sym && Sym->isInSection()) { 1028 const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection()); 1029 sh_link = SectionIndexMap.lookup(Sec); 1030 } 1031 } 1032 1033 WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getName()), 1034 Section.getType(), Section.getFlags(), 0, Offset, Size, 1035 sh_link, sh_info, Section.getAlignment(), 1036 Section.getEntrySize()); 1037 } 1038 1039 void ELFWriter::writeSectionHeader( 1040 const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap, 1041 const SectionOffsetsTy &SectionOffsets) { 1042 const unsigned NumSections = SectionTable.size(); 1043 1044 // Null section first. 1045 uint64_t FirstSectionSize = 1046 (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0; 1047 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0); 1048 1049 for (const MCSectionELF *Section : SectionTable) { 1050 uint32_t GroupSymbolIndex; 1051 unsigned Type = Section->getType(); 1052 if (Type != ELF::SHT_GROUP) 1053 GroupSymbolIndex = 0; 1054 else 1055 GroupSymbolIndex = Section->getGroup()->getIndex(); 1056 1057 const std::pair<uint64_t, uint64_t> &Offsets = 1058 SectionOffsets.find(Section)->second; 1059 uint64_t Size; 1060 if (Type == ELF::SHT_NOBITS) 1061 Size = Layout.getSectionAddressSize(Section); 1062 else 1063 Size = Offsets.second - Offsets.first; 1064 1065 writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size, 1066 *Section); 1067 } 1068 } 1069 1070 uint64_t ELFWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) { 1071 uint64_t StartOffset = W.OS.tell(); 1072 1073 MCContext &Ctx = Asm.getContext(); 1074 MCSectionELF *StrtabSection = 1075 Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0); 1076 StringTableIndex = addToSectionTable(StrtabSection); 1077 1078 RevGroupMapTy RevGroupMap; 1079 SectionIndexMapTy SectionIndexMap; 1080 1081 std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers; 1082 1083 // Write out the ELF header ... 1084 writeHeader(Asm); 1085 1086 // ... then the sections ... 1087 SectionOffsetsTy SectionOffsets; 1088 std::vector<MCSectionELF *> Groups; 1089 std::vector<MCSectionELF *> Relocations; 1090 for (MCSection &Sec : Asm) { 1091 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 1092 if (Mode == NonDwoOnly && isDwoSection(Section)) 1093 continue; 1094 if (Mode == DwoOnly && !isDwoSection(Section)) 1095 continue; 1096 1097 // Remember the offset into the file for this section. 1098 const uint64_t SecStart = align(Section.getAlignment()); 1099 1100 const MCSymbolELF *SignatureSymbol = Section.getGroup(); 1101 writeSectionData(Asm, Section, Layout); 1102 1103 uint64_t SecEnd = W.OS.tell(); 1104 SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd); 1105 1106 MCSectionELF *RelSection = createRelocationSection(Ctx, Section); 1107 1108 if (SignatureSymbol) { 1109 unsigned &GroupIdx = RevGroupMap[SignatureSymbol]; 1110 if (!GroupIdx) { 1111 MCSectionELF *Group = 1112 Ctx.createELFGroupSection(SignatureSymbol, Section.isComdat()); 1113 GroupIdx = addToSectionTable(Group); 1114 Group->setAlignment(Align(4)); 1115 Groups.push_back(Group); 1116 } 1117 std::vector<const MCSectionELF *> &Members = 1118 GroupMembers[SignatureSymbol]; 1119 Members.push_back(&Section); 1120 if (RelSection) 1121 Members.push_back(RelSection); 1122 } 1123 1124 SectionIndexMap[&Section] = addToSectionTable(&Section); 1125 if (RelSection) { 1126 SectionIndexMap[RelSection] = addToSectionTable(RelSection); 1127 Relocations.push_back(RelSection); 1128 } 1129 1130 OWriter.TargetObjectWriter->addTargetSectionFlags(Ctx, Section); 1131 } 1132 1133 for (MCSectionELF *Group : Groups) { 1134 // Remember the offset into the file for this section. 1135 const uint64_t SecStart = align(Group->getAlignment()); 1136 1137 const MCSymbol *SignatureSymbol = Group->getGroup(); 1138 assert(SignatureSymbol); 1139 write(uint32_t(Group->isComdat() ? unsigned(ELF::GRP_COMDAT) : 0)); 1140 for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) { 1141 uint32_t SecIndex = SectionIndexMap.lookup(Member); 1142 write(SecIndex); 1143 } 1144 1145 uint64_t SecEnd = W.OS.tell(); 1146 SectionOffsets[Group] = std::make_pair(SecStart, SecEnd); 1147 } 1148 1149 if (Mode == DwoOnly) { 1150 // dwo files don't have symbol tables or relocations, but they do have 1151 // string tables. 1152 StrTabBuilder.finalize(); 1153 } else { 1154 MCSectionELF *AddrsigSection; 1155 if (OWriter.EmitAddrsigSection) { 1156 AddrsigSection = Ctx.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG, 1157 ELF::SHF_EXCLUDE); 1158 addToSectionTable(AddrsigSection); 1159 } 1160 1161 // Compute symbol table information. 1162 computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, 1163 SectionOffsets); 1164 1165 for (MCSectionELF *RelSection : Relocations) { 1166 // Remember the offset into the file for this section. 1167 const uint64_t SecStart = align(RelSection->getAlignment()); 1168 1169 writeRelocations(Asm, 1170 cast<MCSectionELF>(*RelSection->getLinkedToSection())); 1171 1172 uint64_t SecEnd = W.OS.tell(); 1173 SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd); 1174 } 1175 1176 if (OWriter.EmitAddrsigSection) { 1177 uint64_t SecStart = W.OS.tell(); 1178 writeAddrsigSection(); 1179 uint64_t SecEnd = W.OS.tell(); 1180 SectionOffsets[AddrsigSection] = std::make_pair(SecStart, SecEnd); 1181 } 1182 } 1183 1184 { 1185 uint64_t SecStart = W.OS.tell(); 1186 StrTabBuilder.write(W.OS); 1187 SectionOffsets[StrtabSection] = std::make_pair(SecStart, W.OS.tell()); 1188 } 1189 1190 const uint64_t SectionHeaderOffset = align(is64Bit() ? 8 : 4); 1191 1192 // ... then the section header table ... 1193 writeSectionHeader(Layout, SectionIndexMap, SectionOffsets); 1194 1195 uint16_t NumSections = support::endian::byte_swap<uint16_t>( 1196 (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF 1197 : SectionTable.size() + 1, 1198 W.Endian); 1199 unsigned NumSectionsOffset; 1200 1201 auto &Stream = static_cast<raw_pwrite_stream &>(W.OS); 1202 if (is64Bit()) { 1203 uint64_t Val = 1204 support::endian::byte_swap<uint64_t>(SectionHeaderOffset, W.Endian); 1205 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1206 offsetof(ELF::Elf64_Ehdr, e_shoff)); 1207 NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum); 1208 } else { 1209 uint32_t Val = 1210 support::endian::byte_swap<uint32_t>(SectionHeaderOffset, W.Endian); 1211 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1212 offsetof(ELF::Elf32_Ehdr, e_shoff)); 1213 NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum); 1214 } 1215 Stream.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections), 1216 NumSectionsOffset); 1217 1218 return W.OS.tell() - StartOffset; 1219 } 1220 1221 bool ELFObjectWriter::hasRelocationAddend() const { 1222 return TargetObjectWriter->hasRelocationAddend(); 1223 } 1224 1225 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 1226 const MCAsmLayout &Layout) { 1227 // The presence of symbol versions causes undefined symbols and 1228 // versions declared with @@@ to be renamed. 1229 for (const MCAssembler::Symver &S : Asm.Symvers) { 1230 StringRef AliasName = S.Name; 1231 const auto &Symbol = cast<MCSymbolELF>(*S.Sym); 1232 size_t Pos = AliasName.find('@'); 1233 assert(Pos != StringRef::npos); 1234 1235 StringRef Prefix = AliasName.substr(0, Pos); 1236 StringRef Rest = AliasName.substr(Pos); 1237 StringRef Tail = Rest; 1238 if (Rest.startswith("@@@")) 1239 Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1); 1240 1241 auto *Alias = 1242 cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail)); 1243 Asm.registerSymbol(*Alias); 1244 const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext()); 1245 Alias->setVariableValue(Value); 1246 1247 // Aliases defined with .symvar copy the binding from the symbol they alias. 1248 // This is the first place we are able to copy this information. 1249 Alias->setBinding(Symbol.getBinding()); 1250 Alias->setVisibility(Symbol.getVisibility()); 1251 Alias->setOther(Symbol.getOther()); 1252 1253 if (!Symbol.isUndefined() && S.KeepOriginalSym) 1254 continue; 1255 1256 if (Symbol.isUndefined() && Rest.startswith("@@") && 1257 !Rest.startswith("@@@")) { 1258 Asm.getContext().reportError(S.Loc, "default version symbol " + 1259 AliasName + " must be defined"); 1260 continue; 1261 } 1262 1263 if (Renames.count(&Symbol) && Renames[&Symbol] != Alias) { 1264 Asm.getContext().reportError(S.Loc, Twine("multiple versions for ") + 1265 Symbol.getName()); 1266 continue; 1267 } 1268 1269 Renames.insert(std::make_pair(&Symbol, Alias)); 1270 } 1271 1272 for (const MCSymbol *&Sym : AddrsigSyms) { 1273 if (const MCSymbol *R = Renames.lookup(cast<MCSymbolELF>(Sym))) 1274 Sym = R; 1275 if (Sym->isInSection() && Sym->getName().startswith(".L")) 1276 Sym = Sym->getSection().getBeginSymbol(); 1277 Sym->setUsedInReloc(); 1278 } 1279 } 1280 1281 // It is always valid to create a relocation with a symbol. It is preferable 1282 // to use a relocation with a section if that is possible. Using the section 1283 // allows us to omit some local symbols from the symbol table. 1284 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm, 1285 const MCSymbolRefExpr *RefA, 1286 const MCSymbolELF *Sym, 1287 uint64_t C, 1288 unsigned Type) const { 1289 // A PCRel relocation to an absolute value has no symbol (or section). We 1290 // represent that with a relocation to a null section. 1291 if (!RefA) 1292 return false; 1293 1294 MCSymbolRefExpr::VariantKind Kind = RefA->getKind(); 1295 switch (Kind) { 1296 default: 1297 break; 1298 // The .odp creation emits a relocation against the symbol ".TOC." which 1299 // create a R_PPC64_TOC relocation. However the relocation symbol name 1300 // in final object creation should be NULL, since the symbol does not 1301 // really exist, it is just the reference to TOC base for the current 1302 // object file. Since the symbol is undefined, returning false results 1303 // in a relocation with a null section which is the desired result. 1304 case MCSymbolRefExpr::VK_PPC_TOCBASE: 1305 return false; 1306 1307 // These VariantKind cause the relocation to refer to something other than 1308 // the symbol itself, like a linker generated table. Since the address of 1309 // symbol is not relevant, we cannot replace the symbol with the 1310 // section and patch the difference in the addend. 1311 case MCSymbolRefExpr::VK_GOT: 1312 case MCSymbolRefExpr::VK_PLT: 1313 case MCSymbolRefExpr::VK_GOTPCREL: 1314 case MCSymbolRefExpr::VK_GOTPCREL_NORELAX: 1315 case MCSymbolRefExpr::VK_PPC_GOT_LO: 1316 case MCSymbolRefExpr::VK_PPC_GOT_HI: 1317 case MCSymbolRefExpr::VK_PPC_GOT_HA: 1318 return true; 1319 } 1320 1321 // An undefined symbol is not in any section, so the relocation has to point 1322 // to the symbol itself. 1323 assert(Sym && "Expected a symbol"); 1324 if (Sym->isUndefined()) 1325 return true; 1326 1327 unsigned Binding = Sym->getBinding(); 1328 switch(Binding) { 1329 default: 1330 llvm_unreachable("Invalid Binding"); 1331 case ELF::STB_LOCAL: 1332 break; 1333 case ELF::STB_WEAK: 1334 // If the symbol is weak, it might be overridden by a symbol in another 1335 // file. The relocation has to point to the symbol so that the linker 1336 // can update it. 1337 return true; 1338 case ELF::STB_GLOBAL: 1339 case ELF::STB_GNU_UNIQUE: 1340 // Global ELF symbols can be preempted by the dynamic linker. The relocation 1341 // has to point to the symbol for a reason analogous to the STB_WEAK case. 1342 return true; 1343 } 1344 1345 // Keep symbol type for a local ifunc because it may result in an IRELATIVE 1346 // reloc that the dynamic loader will use to resolve the address at startup 1347 // time. 1348 if (Sym->getType() == ELF::STT_GNU_IFUNC) 1349 return true; 1350 1351 // If a relocation points to a mergeable section, we have to be careful. 1352 // If the offset is zero, a relocation with the section will encode the 1353 // same information. With a non-zero offset, the situation is different. 1354 // For example, a relocation can point 42 bytes past the end of a string. 1355 // If we change such a relocation to use the section, the linker would think 1356 // that it pointed to another string and subtracting 42 at runtime will 1357 // produce the wrong value. 1358 if (Sym->isInSection()) { 1359 auto &Sec = cast<MCSectionELF>(Sym->getSection()); 1360 unsigned Flags = Sec.getFlags(); 1361 if (Flags & ELF::SHF_MERGE) { 1362 if (C != 0) 1363 return true; 1364 1365 // gold<2.34 incorrectly ignored the addend for R_386_GOTOFF (9) 1366 // (http://sourceware.org/PR16794). 1367 if (TargetObjectWriter->getEMachine() == ELF::EM_386 && 1368 Type == ELF::R_386_GOTOFF) 1369 return true; 1370 1371 // ld.lld handles R_MIPS_HI16/R_MIPS_LO16 separately, not as a whole, so 1372 // it doesn't know that an R_MIPS_HI16 with implicit addend 1 and an 1373 // R_MIPS_LO16 with implicit addend -32768 represents 32768, which is in 1374 // range of a MergeInputSection. We could introduce a new RelExpr member 1375 // (like R_RISCV_PC_INDIRECT for R_RISCV_PCREL_HI20 / R_RISCV_PCREL_LO12) 1376 // but the complexity is unnecessary given that GNU as keeps the original 1377 // symbol for this case as well. 1378 if (TargetObjectWriter->getEMachine() == ELF::EM_MIPS && 1379 !hasRelocationAddend()) 1380 return true; 1381 } 1382 1383 // Most TLS relocations use a got, so they need the symbol. Even those that 1384 // are just an offset (@tpoff), require a symbol in gold versions before 1385 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed 1386 // http://sourceware.org/PR16773. 1387 if (Flags & ELF::SHF_TLS) 1388 return true; 1389 } 1390 1391 // If the symbol is a thumb function the final relocation must set the lowest 1392 // bit. With a symbol that is done by just having the symbol have that bit 1393 // set, so we would lose the bit if we relocated with the section. 1394 // FIXME: We could use the section but add the bit to the relocation value. 1395 if (Asm.isThumbFunc(Sym)) 1396 return true; 1397 1398 if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type)) 1399 return true; 1400 return false; 1401 } 1402 1403 void ELFObjectWriter::recordRelocation(MCAssembler &Asm, 1404 const MCAsmLayout &Layout, 1405 const MCFragment *Fragment, 1406 const MCFixup &Fixup, MCValue Target, 1407 uint64_t &FixedValue) { 1408 MCAsmBackend &Backend = Asm.getBackend(); 1409 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags & 1410 MCFixupKindInfo::FKF_IsPCRel; 1411 const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent()); 1412 uint64_t C = Target.getConstant(); 1413 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 1414 MCContext &Ctx = Asm.getContext(); 1415 1416 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 1417 const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol()); 1418 if (SymB.isUndefined()) { 1419 Ctx.reportError(Fixup.getLoc(), 1420 Twine("symbol '") + SymB.getName() + 1421 "' can not be undefined in a subtraction expression"); 1422 return; 1423 } 1424 1425 assert(!SymB.isAbsolute() && "Should have been folded"); 1426 const MCSection &SecB = SymB.getSection(); 1427 if (&SecB != &FixupSection) { 1428 Ctx.reportError(Fixup.getLoc(), 1429 "Cannot represent a difference across sections"); 1430 return; 1431 } 1432 1433 assert(!IsPCRel && "should have been folded"); 1434 IsPCRel = true; 1435 C += FixupOffset - Layout.getSymbolOffset(SymB); 1436 } 1437 1438 // We either rejected the fixup or folded B into C at this point. 1439 const MCSymbolRefExpr *RefA = Target.getSymA(); 1440 const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr; 1441 1442 bool ViaWeakRef = false; 1443 if (SymA && SymA->isVariable()) { 1444 const MCExpr *Expr = SymA->getVariableValue(); 1445 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) { 1446 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) { 1447 SymA = cast<MCSymbolELF>(&Inner->getSymbol()); 1448 ViaWeakRef = true; 1449 } 1450 } 1451 } 1452 1453 const MCSectionELF *SecA = (SymA && SymA->isInSection()) 1454 ? cast<MCSectionELF>(&SymA->getSection()) 1455 : nullptr; 1456 if (!checkRelocation(Ctx, Fixup.getLoc(), &FixupSection, SecA)) 1457 return; 1458 1459 unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel); 1460 const auto *Parent = cast<MCSectionELF>(Fragment->getParent()); 1461 // Emiting relocation with sybmol for CG Profile to help with --cg-profile. 1462 bool RelocateWithSymbol = 1463 shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type) || 1464 (Parent->getType() == ELF::SHT_LLVM_CALL_GRAPH_PROFILE); 1465 uint64_t Addend = 0; 1466 1467 FixedValue = !RelocateWithSymbol && SymA && !SymA->isUndefined() 1468 ? C + Layout.getSymbolOffset(*SymA) 1469 : C; 1470 if (hasRelocationAddend()) { 1471 Addend = FixedValue; 1472 FixedValue = 0; 1473 } 1474 1475 if (!RelocateWithSymbol) { 1476 const auto *SectionSymbol = 1477 SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr; 1478 if (SectionSymbol) 1479 SectionSymbol->setUsedInReloc(); 1480 ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA, C); 1481 Relocations[&FixupSection].push_back(Rec); 1482 return; 1483 } 1484 1485 const MCSymbolELF *RenamedSymA = SymA; 1486 if (SymA) { 1487 if (const MCSymbolELF *R = Renames.lookup(SymA)) 1488 RenamedSymA = R; 1489 1490 if (ViaWeakRef) 1491 RenamedSymA->setIsWeakrefUsedInReloc(); 1492 else 1493 RenamedSymA->setUsedInReloc(); 1494 } 1495 ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA, C); 1496 Relocations[&FixupSection].push_back(Rec); 1497 } 1498 1499 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( 1500 const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB, 1501 bool InSet, bool IsPCRel) const { 1502 const auto &SymA = cast<MCSymbolELF>(SA); 1503 if (IsPCRel) { 1504 assert(!InSet); 1505 if (SymA.getBinding() != ELF::STB_LOCAL || 1506 SymA.getType() == ELF::STT_GNU_IFUNC) 1507 return false; 1508 } 1509 return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB, 1510 InSet, IsPCRel); 1511 } 1512 1513 std::unique_ptr<MCObjectWriter> 1514 llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1515 raw_pwrite_stream &OS, bool IsLittleEndian) { 1516 return std::make_unique<ELFSingleObjectWriter>(std::move(MOTW), OS, 1517 IsLittleEndian); 1518 } 1519 1520 std::unique_ptr<MCObjectWriter> 1521 llvm::createELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1522 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, 1523 bool IsLittleEndian) { 1524 return std::make_unique<ELFDwoObjectWriter>(std::move(MOTW), OS, DwoOS, 1525 IsLittleEndian); 1526 } 1527