xref: /freebsd/contrib/llvm-project/llvm/lib/MC/ELFObjectWriter.cpp (revision 28f6c2f292806bf31230a959bc4b19d7081669a7)
1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements ELF object file writer information.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/ADT/iterator.h"
20 #include "llvm/BinaryFormat/ELF.h"
21 #include "llvm/MC/MCAsmBackend.h"
22 #include "llvm/MC/MCAsmInfo.h"
23 #include "llvm/MC/MCAsmLayout.h"
24 #include "llvm/MC/MCAssembler.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCELFObjectWriter.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/MC/MCFixup.h"
29 #include "llvm/MC/MCFixupKindInfo.h"
30 #include "llvm/MC/MCFragment.h"
31 #include "llvm/MC/MCObjectWriter.h"
32 #include "llvm/MC/MCSection.h"
33 #include "llvm/MC/MCSectionELF.h"
34 #include "llvm/MC/MCSymbol.h"
35 #include "llvm/MC/MCSymbolELF.h"
36 #include "llvm/MC/MCTargetOptions.h"
37 #include "llvm/MC/MCValue.h"
38 #include "llvm/MC/StringTableBuilder.h"
39 #include "llvm/Support/Alignment.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compression.h"
42 #include "llvm/Support/Endian.h"
43 #include "llvm/Support/EndianStream.h"
44 #include "llvm/Support/Error.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/Host.h"
47 #include "llvm/Support/LEB128.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/SMLoc.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstddef>
54 #include <cstdint>
55 #include <map>
56 #include <memory>
57 #include <string>
58 #include <utility>
59 #include <vector>
60 
61 using namespace llvm;
62 
63 #undef  DEBUG_TYPE
64 #define DEBUG_TYPE "reloc-info"
65 
66 namespace {
67 
68 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>;
69 
70 class ELFObjectWriter;
71 struct ELFWriter;
72 
73 bool isDwoSection(const MCSectionELF &Sec) {
74   return Sec.getName().endswith(".dwo");
75 }
76 
77 class SymbolTableWriter {
78   ELFWriter &EWriter;
79   bool Is64Bit;
80 
81   // indexes we are going to write to .symtab_shndx.
82   std::vector<uint32_t> ShndxIndexes;
83 
84   // The numbel of symbols written so far.
85   unsigned NumWritten;
86 
87   void createSymtabShndx();
88 
89   template <typename T> void write(T Value);
90 
91 public:
92   SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit);
93 
94   void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
95                    uint8_t other, uint32_t shndx, bool Reserved);
96 
97   ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
98 };
99 
100 struct ELFWriter {
101   ELFObjectWriter &OWriter;
102   support::endian::Writer W;
103 
104   enum DwoMode {
105     AllSections,
106     NonDwoOnly,
107     DwoOnly,
108   } Mode;
109 
110   static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
111   static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
112                          bool Used, bool Renamed);
113 
114   /// Helper struct for containing some precomputed information on symbols.
115   struct ELFSymbolData {
116     const MCSymbolELF *Symbol;
117     StringRef Name;
118     uint32_t SectionIndex;
119     uint32_t Order;
120   };
121 
122   /// @}
123   /// @name Symbol Table Data
124   /// @{
125 
126   StringTableBuilder StrTabBuilder{StringTableBuilder::ELF};
127 
128   /// @}
129 
130   // This holds the symbol table index of the last local symbol.
131   unsigned LastLocalSymbolIndex;
132   // This holds the .strtab section index.
133   unsigned StringTableIndex;
134   // This holds the .symtab section index.
135   unsigned SymbolTableIndex;
136 
137   // Sections in the order they are to be output in the section table.
138   std::vector<const MCSectionELF *> SectionTable;
139   unsigned addToSectionTable(const MCSectionELF *Sec);
140 
141   // TargetObjectWriter wrappers.
142   bool is64Bit() const;
143   bool usesRela(const MCSectionELF &Sec) const;
144 
145   uint64_t align(Align Alignment);
146 
147   bool maybeWriteCompression(uint32_t ChType, uint64_t Size,
148                              SmallVectorImpl<uint8_t> &CompressedContents,
149                              Align Alignment);
150 
151 public:
152   ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS,
153             bool IsLittleEndian, DwoMode Mode)
154       : OWriter(OWriter),
155         W(OS, IsLittleEndian ? support::little : support::big), Mode(Mode) {}
156 
157   void WriteWord(uint64_t Word) {
158     if (is64Bit())
159       W.write<uint64_t>(Word);
160     else
161       W.write<uint32_t>(Word);
162   }
163 
164   template <typename T> void write(T Val) {
165     W.write(Val);
166   }
167 
168   void writeHeader(const MCAssembler &Asm);
169 
170   void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
171                    ELFSymbolData &MSD, const MCAsmLayout &Layout);
172 
173   // Start and end offset of each section
174   using SectionOffsetsTy =
175       std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>;
176 
177   // Map from a signature symbol to the group section index
178   using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>;
179 
180   /// Compute the symbol table data
181   ///
182   /// \param Asm - The assembler.
183   /// \param SectionIndexMap - Maps a section to its index.
184   /// \param RevGroupMap - Maps a signature symbol to the group section.
185   void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
186                           const SectionIndexMapTy &SectionIndexMap,
187                           const RevGroupMapTy &RevGroupMap,
188                           SectionOffsetsTy &SectionOffsets);
189 
190   void writeAddrsigSection();
191 
192   MCSectionELF *createRelocationSection(MCContext &Ctx,
193                                         const MCSectionELF &Sec);
194 
195   void createMemtagRelocs(MCAssembler &Asm);
196 
197   void writeSectionHeader(const MCAsmLayout &Layout,
198                           const SectionIndexMapTy &SectionIndexMap,
199                           const SectionOffsetsTy &SectionOffsets);
200 
201   void writeSectionData(const MCAssembler &Asm, MCSection &Sec,
202                         const MCAsmLayout &Layout);
203 
204   void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
205                         uint64_t Address, uint64_t Offset, uint64_t Size,
206                         uint32_t Link, uint32_t Info, MaybeAlign Alignment,
207                         uint64_t EntrySize);
208 
209   void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
210 
211   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout);
212   void writeSection(const SectionIndexMapTy &SectionIndexMap,
213                     uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
214                     const MCSectionELF &Section);
215 };
216 
217 class ELFObjectWriter : public MCObjectWriter {
218   /// The target specific ELF writer instance.
219   std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
220 
221   DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations;
222 
223   DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
224 
225   bool SeenGnuAbi = false;
226 
227   bool hasRelocationAddend() const;
228 
229   bool shouldRelocateWithSymbol(const MCAssembler &Asm,
230                                 const MCSymbolRefExpr *RefA,
231                                 const MCSymbolELF *Sym, uint64_t C,
232                                 unsigned Type) const;
233 
234 public:
235   ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW)
236       : TargetObjectWriter(std::move(MOTW)) {}
237 
238   void reset() override {
239     SeenGnuAbi = false;
240     Relocations.clear();
241     Renames.clear();
242     MCObjectWriter::reset();
243   }
244 
245   bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
246                                               const MCSymbol &SymA,
247                                               const MCFragment &FB, bool InSet,
248                                               bool IsPCRel) const override;
249 
250   virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc,
251                                const MCSectionELF *From,
252                                const MCSectionELF *To) {
253     return true;
254   }
255 
256   void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
257                         const MCFragment *Fragment, const MCFixup &Fixup,
258                         MCValue Target, uint64_t &FixedValue) override;
259 
260   void executePostLayoutBinding(MCAssembler &Asm,
261                                 const MCAsmLayout &Layout) override;
262 
263   void markGnuAbi() override { SeenGnuAbi = true; }
264   bool seenGnuAbi() const { return SeenGnuAbi; }
265 
266   friend struct ELFWriter;
267 };
268 
269 class ELFSingleObjectWriter : public ELFObjectWriter {
270   raw_pwrite_stream &OS;
271   bool IsLittleEndian;
272 
273 public:
274   ELFSingleObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
275                         raw_pwrite_stream &OS, bool IsLittleEndian)
276       : ELFObjectWriter(std::move(MOTW)), OS(OS),
277         IsLittleEndian(IsLittleEndian) {}
278 
279   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override {
280     return ELFWriter(*this, OS, IsLittleEndian, ELFWriter::AllSections)
281         .writeObject(Asm, Layout);
282   }
283 
284   friend struct ELFWriter;
285 };
286 
287 class ELFDwoObjectWriter : public ELFObjectWriter {
288   raw_pwrite_stream &OS, &DwoOS;
289   bool IsLittleEndian;
290 
291 public:
292   ELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
293                      raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS,
294                      bool IsLittleEndian)
295       : ELFObjectWriter(std::move(MOTW)), OS(OS), DwoOS(DwoOS),
296         IsLittleEndian(IsLittleEndian) {}
297 
298   bool checkRelocation(MCContext &Ctx, SMLoc Loc, const MCSectionELF *From,
299                        const MCSectionELF *To) override {
300     if (isDwoSection(*From)) {
301       Ctx.reportError(Loc, "A dwo section may not contain relocations");
302       return false;
303     }
304     if (To && isDwoSection(*To)) {
305       Ctx.reportError(Loc, "A relocation may not refer to a dwo section");
306       return false;
307     }
308     return true;
309   }
310 
311   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override {
312     uint64_t Size = ELFWriter(*this, OS, IsLittleEndian, ELFWriter::NonDwoOnly)
313                         .writeObject(Asm, Layout);
314     Size += ELFWriter(*this, DwoOS, IsLittleEndian, ELFWriter::DwoOnly)
315                 .writeObject(Asm, Layout);
316     return Size;
317   }
318 };
319 
320 } // end anonymous namespace
321 
322 uint64_t ELFWriter::align(Align Alignment) {
323   uint64_t Offset = W.OS.tell();
324   uint64_t NewOffset = alignTo(Offset, Alignment);
325   W.OS.write_zeros(NewOffset - Offset);
326   return NewOffset;
327 }
328 
329 unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) {
330   SectionTable.push_back(Sec);
331   StrTabBuilder.add(Sec->getName());
332   return SectionTable.size();
333 }
334 
335 void SymbolTableWriter::createSymtabShndx() {
336   if (!ShndxIndexes.empty())
337     return;
338 
339   ShndxIndexes.resize(NumWritten);
340 }
341 
342 template <typename T> void SymbolTableWriter::write(T Value) {
343   EWriter.write(Value);
344 }
345 
346 SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit)
347     : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
348 
349 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
350                                     uint64_t size, uint8_t other,
351                                     uint32_t shndx, bool Reserved) {
352   bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
353 
354   if (LargeIndex)
355     createSymtabShndx();
356 
357   if (!ShndxIndexes.empty()) {
358     if (LargeIndex)
359       ShndxIndexes.push_back(shndx);
360     else
361       ShndxIndexes.push_back(0);
362   }
363 
364   uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
365 
366   if (Is64Bit) {
367     write(name);  // st_name
368     write(info);  // st_info
369     write(other); // st_other
370     write(Index); // st_shndx
371     write(value); // st_value
372     write(size);  // st_size
373   } else {
374     write(name);            // st_name
375     write(uint32_t(value)); // st_value
376     write(uint32_t(size));  // st_size
377     write(info);            // st_info
378     write(other);           // st_other
379     write(Index);           // st_shndx
380   }
381 
382   ++NumWritten;
383 }
384 
385 bool ELFWriter::is64Bit() const {
386   return OWriter.TargetObjectWriter->is64Bit();
387 }
388 
389 bool ELFWriter::usesRela(const MCSectionELF &Sec) const {
390   return OWriter.hasRelocationAddend() &&
391          Sec.getType() != ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
392 }
393 
394 // Emit the ELF header.
395 void ELFWriter::writeHeader(const MCAssembler &Asm) {
396   // ELF Header
397   // ----------
398   //
399   // Note
400   // ----
401   // emitWord method behaves differently for ELF32 and ELF64, writing
402   // 4 bytes in the former and 8 in the latter.
403 
404   W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3]
405 
406   W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
407 
408   // e_ident[EI_DATA]
409   W.OS << char(W.Endian == support::little ? ELF::ELFDATA2LSB
410                                            : ELF::ELFDATA2MSB);
411 
412   W.OS << char(ELF::EV_CURRENT);        // e_ident[EI_VERSION]
413   // e_ident[EI_OSABI]
414   uint8_t OSABI = OWriter.TargetObjectWriter->getOSABI();
415   W.OS << char(OSABI == ELF::ELFOSABI_NONE && OWriter.seenGnuAbi()
416                    ? int(ELF::ELFOSABI_GNU)
417                    : OSABI);
418   // e_ident[EI_ABIVERSION]
419   W.OS << char(OWriter.TargetObjectWriter->getABIVersion());
420 
421   W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD);
422 
423   W.write<uint16_t>(ELF::ET_REL);             // e_type
424 
425   W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target
426 
427   W.write<uint32_t>(ELF::EV_CURRENT);         // e_version
428   WriteWord(0);                    // e_entry, no entry point in .o file
429   WriteWord(0);                    // e_phoff, no program header for .o
430   WriteWord(0);                     // e_shoff = sec hdr table off in bytes
431 
432   // e_flags = whatever the target wants
433   W.write<uint32_t>(Asm.getELFHeaderEFlags());
434 
435   // e_ehsize = ELF header size
436   W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr)
437                               : sizeof(ELF::Elf32_Ehdr));
438 
439   W.write<uint16_t>(0);                  // e_phentsize = prog header entry size
440   W.write<uint16_t>(0);                  // e_phnum = # prog header entries = 0
441 
442   // e_shentsize = Section header entry size
443   W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr)
444                               : sizeof(ELF::Elf32_Shdr));
445 
446   // e_shnum     = # of section header ents
447   W.write<uint16_t>(0);
448 
449   // e_shstrndx  = Section # of '.strtab'
450   assert(StringTableIndex < ELF::SHN_LORESERVE);
451   W.write<uint16_t>(StringTableIndex);
452 }
453 
454 uint64_t ELFWriter::SymbolValue(const MCSymbol &Sym,
455                                 const MCAsmLayout &Layout) {
456   if (Sym.isCommon())
457     return Sym.getCommonAlignment()->value();
458 
459   uint64_t Res;
460   if (!Layout.getSymbolOffset(Sym, Res))
461     return 0;
462 
463   if (Layout.getAssembler().isThumbFunc(&Sym))
464     Res |= 1;
465 
466   return Res;
467 }
468 
469 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
470   uint8_t Type = newType;
471 
472   // Propagation rules:
473   // IFUNC > FUNC > OBJECT > NOTYPE
474   // TLS_OBJECT > OBJECT > NOTYPE
475   //
476   // dont let the new type degrade the old type
477   switch (origType) {
478   default:
479     break;
480   case ELF::STT_GNU_IFUNC:
481     if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
482         Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
483       Type = ELF::STT_GNU_IFUNC;
484     break;
485   case ELF::STT_FUNC:
486     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
487         Type == ELF::STT_TLS)
488       Type = ELF::STT_FUNC;
489     break;
490   case ELF::STT_OBJECT:
491     if (Type == ELF::STT_NOTYPE)
492       Type = ELF::STT_OBJECT;
493     break;
494   case ELF::STT_TLS:
495     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
496         Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
497       Type = ELF::STT_TLS;
498     break;
499   }
500 
501   return Type;
502 }
503 
504 static bool isIFunc(const MCSymbolELF *Symbol) {
505   while (Symbol->getType() != ELF::STT_GNU_IFUNC) {
506     const MCSymbolRefExpr *Value;
507     if (!Symbol->isVariable() ||
508         !(Value = dyn_cast<MCSymbolRefExpr>(Symbol->getVariableValue())) ||
509         Value->getKind() != MCSymbolRefExpr::VK_None ||
510         mergeTypeForSet(Symbol->getType(), ELF::STT_GNU_IFUNC) != ELF::STT_GNU_IFUNC)
511       return false;
512     Symbol = &cast<MCSymbolELF>(Value->getSymbol());
513   }
514   return true;
515 }
516 
517 void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
518                             ELFSymbolData &MSD, const MCAsmLayout &Layout) {
519   const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
520   const MCSymbolELF *Base =
521       cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
522 
523   // This has to be in sync with when computeSymbolTable uses SHN_ABS or
524   // SHN_COMMON.
525   bool IsReserved = !Base || Symbol.isCommon();
526 
527   // Binding and Type share the same byte as upper and lower nibbles
528   uint8_t Binding = Symbol.getBinding();
529   uint8_t Type = Symbol.getType();
530   if (isIFunc(&Symbol))
531     Type = ELF::STT_GNU_IFUNC;
532   if (Base) {
533     Type = mergeTypeForSet(Type, Base->getType());
534   }
535   uint8_t Info = (Binding << 4) | Type;
536 
537   // Other and Visibility share the same byte with Visibility using the lower
538   // 2 bits
539   uint8_t Visibility = Symbol.getVisibility();
540   uint8_t Other = Symbol.getOther() | Visibility;
541 
542   uint64_t Value = SymbolValue(*MSD.Symbol, Layout);
543   uint64_t Size = 0;
544 
545   const MCExpr *ESize = MSD.Symbol->getSize();
546   if (!ESize && Base) {
547     // For expressions like .set y, x+1, if y's size is unset, inherit from x.
548     ESize = Base->getSize();
549 
550     // For `.size x, 2; y = x; .size y, 1; z = y; z1 = z; .symver y, y@v1`, z,
551     // z1, and y@v1's st_size equals y's. However, `Base` is `x` which will give
552     // us 2. Follow the MCSymbolRefExpr assignment chain, which covers most
553     // needs. MCBinaryExpr is not handled.
554     const MCSymbolELF *Sym = &Symbol;
555     while (Sym->isVariable()) {
556       if (auto *Expr =
557               dyn_cast<MCSymbolRefExpr>(Sym->getVariableValue(false))) {
558         Sym = cast<MCSymbolELF>(&Expr->getSymbol());
559         if (!Sym->getSize())
560           continue;
561         ESize = Sym->getSize();
562       }
563       break;
564     }
565   }
566 
567   if (ESize) {
568     int64_t Res;
569     if (!ESize->evaluateKnownAbsolute(Res, Layout))
570       report_fatal_error("Size expression must be absolute.");
571     Size = Res;
572   }
573 
574   // Write out the symbol table entry
575   Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex,
576                      IsReserved);
577 }
578 
579 bool ELFWriter::isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
580                            bool Used, bool Renamed) {
581   if (Symbol.isVariable()) {
582     const MCExpr *Expr = Symbol.getVariableValue();
583     // Target Expressions that are always inlined do not appear in the symtab
584     if (const auto *T = dyn_cast<MCTargetExpr>(Expr))
585       if (T->inlineAssignedExpr())
586         return false;
587     if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
588       if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
589         return false;
590     }
591   }
592 
593   if (Used)
594     return true;
595 
596   if (Renamed)
597     return false;
598 
599   if (Symbol.isVariable() && Symbol.isUndefined()) {
600     // FIXME: this is here just to diagnose the case of a var = commmon_sym.
601     Layout.getBaseSymbol(Symbol);
602     return false;
603   }
604 
605   if (Symbol.isTemporary())
606     return false;
607 
608   if (Symbol.getType() == ELF::STT_SECTION)
609     return false;
610 
611   return true;
612 }
613 
614 void ELFWriter::createMemtagRelocs(MCAssembler &Asm) {
615   MCSectionELF *MemtagRelocs = nullptr;
616   for (const MCSymbol &Sym : Asm.symbols()) {
617     const auto &SymE = cast<MCSymbolELF>(Sym);
618     if (!SymE.isMemtag())
619       continue;
620     if (MemtagRelocs == nullptr) {
621       MemtagRelocs = OWriter.TargetObjectWriter->getMemtagRelocsSection(Asm.getContext());
622       if (MemtagRelocs == nullptr)
623         report_fatal_error("Tagged globals are not available on this architecture.");
624       Asm.registerSection(*MemtagRelocs);
625     }
626     ELFRelocationEntry Rec(0, &SymE, ELF::R_AARCH64_NONE, 0, nullptr, 0);
627     OWriter.Relocations[MemtagRelocs].push_back(Rec);
628   }
629 }
630 
631 void ELFWriter::computeSymbolTable(
632     MCAssembler &Asm, const MCAsmLayout &Layout,
633     const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
634     SectionOffsetsTy &SectionOffsets) {
635   MCContext &Ctx = Asm.getContext();
636   SymbolTableWriter Writer(*this, is64Bit());
637 
638   // Symbol table
639   unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
640   MCSectionELF *SymtabSection =
641       Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize);
642   SymtabSection->setAlignment(is64Bit() ? Align(8) : Align(4));
643   SymbolTableIndex = addToSectionTable(SymtabSection);
644 
645   uint64_t SecStart = align(SymtabSection->getAlign());
646 
647   // The first entry is the undefined symbol entry.
648   Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
649 
650   std::vector<ELFSymbolData> LocalSymbolData;
651   std::vector<ELFSymbolData> ExternalSymbolData;
652   MutableArrayRef<std::pair<std::string, size_t>> FileNames =
653       Asm.getFileNames();
654   for (const std::pair<std::string, size_t> &F : FileNames)
655     StrTabBuilder.add(F.first);
656 
657   // Add the data for the symbols.
658   bool HasLargeSectionIndex = false;
659   for (auto It : llvm::enumerate(Asm.symbols())) {
660     const auto &Symbol = cast<MCSymbolELF>(It.value());
661     bool Used = Symbol.isUsedInReloc();
662     bool WeakrefUsed = Symbol.isWeakrefUsedInReloc();
663     bool isSignature = Symbol.isSignature();
664 
665     if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
666                     OWriter.Renames.count(&Symbol)))
667       continue;
668 
669     if (Symbol.isTemporary() && Symbol.isUndefined()) {
670       Ctx.reportError(SMLoc(), "Undefined temporary symbol " + Symbol.getName());
671       continue;
672     }
673 
674     ELFSymbolData MSD;
675     MSD.Symbol = cast<MCSymbolELF>(&Symbol);
676     MSD.Order = It.index();
677 
678     bool Local = Symbol.getBinding() == ELF::STB_LOCAL;
679     assert(Local || !Symbol.isTemporary());
680 
681     if (Symbol.isAbsolute()) {
682       MSD.SectionIndex = ELF::SHN_ABS;
683     } else if (Symbol.isCommon()) {
684       if (Symbol.isTargetCommon()) {
685         MSD.SectionIndex = Symbol.getIndex();
686       } else {
687         assert(!Local);
688         MSD.SectionIndex = ELF::SHN_COMMON;
689       }
690     } else if (Symbol.isUndefined()) {
691       if (isSignature && !Used) {
692         MSD.SectionIndex = RevGroupMap.lookup(&Symbol);
693         if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
694           HasLargeSectionIndex = true;
695       } else {
696         MSD.SectionIndex = ELF::SHN_UNDEF;
697       }
698     } else {
699       const MCSectionELF &Section =
700           static_cast<const MCSectionELF &>(Symbol.getSection());
701 
702       // We may end up with a situation when section symbol is technically
703       // defined, but should not be. That happens because we explicitly
704       // pre-create few .debug_* sections to have accessors.
705       // And if these sections were not really defined in the code, but were
706       // referenced, we simply error out.
707       if (!Section.isRegistered()) {
708         assert(static_cast<const MCSymbolELF &>(Symbol).getType() ==
709                ELF::STT_SECTION);
710         Ctx.reportError(SMLoc(),
711                         "Undefined section reference: " + Symbol.getName());
712         continue;
713       }
714 
715       if (Mode == NonDwoOnly && isDwoSection(Section))
716         continue;
717       MSD.SectionIndex = SectionIndexMap.lookup(&Section);
718       assert(MSD.SectionIndex && "Invalid section index!");
719       if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
720         HasLargeSectionIndex = true;
721     }
722 
723     StringRef Name = Symbol.getName();
724 
725     // Sections have their own string table
726     if (Symbol.getType() != ELF::STT_SECTION) {
727       MSD.Name = Name;
728       StrTabBuilder.add(Name);
729     }
730 
731     if (Local)
732       LocalSymbolData.push_back(MSD);
733     else
734       ExternalSymbolData.push_back(MSD);
735   }
736 
737   // This holds the .symtab_shndx section index.
738   unsigned SymtabShndxSectionIndex = 0;
739 
740   if (HasLargeSectionIndex) {
741     MCSectionELF *SymtabShndxSection =
742         Ctx.getELFSection(".symtab_shndx", ELF::SHT_SYMTAB_SHNDX, 0, 4);
743     SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection);
744     SymtabShndxSection->setAlignment(Align(4));
745   }
746 
747   StrTabBuilder.finalize();
748 
749   // Make the first STT_FILE precede previous local symbols.
750   unsigned Index = 1;
751   auto FileNameIt = FileNames.begin();
752   if (!FileNames.empty())
753     FileNames[0].second = 0;
754 
755   for (ELFSymbolData &MSD : LocalSymbolData) {
756     // Emit STT_FILE symbols before their associated local symbols.
757     for (; FileNameIt != FileNames.end() && FileNameIt->second <= MSD.Order;
758          ++FileNameIt) {
759       Writer.writeSymbol(StrTabBuilder.getOffset(FileNameIt->first),
760                          ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
761                          ELF::SHN_ABS, true);
762       ++Index;
763     }
764 
765     unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION
766                                ? 0
767                                : StrTabBuilder.getOffset(MSD.Name);
768     MSD.Symbol->setIndex(Index++);
769     writeSymbol(Writer, StringIndex, MSD, Layout);
770   }
771   for (; FileNameIt != FileNames.end(); ++FileNameIt) {
772     Writer.writeSymbol(StrTabBuilder.getOffset(FileNameIt->first),
773                        ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
774                        ELF::SHN_ABS, true);
775     ++Index;
776   }
777 
778   // Write the symbol table entries.
779   LastLocalSymbolIndex = Index;
780 
781   for (ELFSymbolData &MSD : ExternalSymbolData) {
782     unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name);
783     MSD.Symbol->setIndex(Index++);
784     writeSymbol(Writer, StringIndex, MSD, Layout);
785     assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL);
786   }
787 
788   uint64_t SecEnd = W.OS.tell();
789   SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd);
790 
791   ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes();
792   if (ShndxIndexes.empty()) {
793     assert(SymtabShndxSectionIndex == 0);
794     return;
795   }
796   assert(SymtabShndxSectionIndex != 0);
797 
798   SecStart = W.OS.tell();
799   const MCSectionELF *SymtabShndxSection =
800       SectionTable[SymtabShndxSectionIndex - 1];
801   for (uint32_t Index : ShndxIndexes)
802     write(Index);
803   SecEnd = W.OS.tell();
804   SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
805 }
806 
807 void ELFWriter::writeAddrsigSection() {
808   for (const MCSymbol *Sym : OWriter.AddrsigSyms)
809     if (Sym->getIndex() != 0)
810       encodeULEB128(Sym->getIndex(), W.OS);
811 }
812 
813 MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx,
814                                                  const MCSectionELF &Sec) {
815   if (OWriter.Relocations[&Sec].empty())
816     return nullptr;
817 
818   const StringRef SectionName = Sec.getName();
819   bool Rela = usesRela(Sec);
820   std::string RelaSectionName = Rela ? ".rela" : ".rel";
821   RelaSectionName += SectionName;
822 
823   unsigned EntrySize;
824   if (Rela)
825     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
826   else
827     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
828 
829   unsigned Flags = ELF::SHF_INFO_LINK;
830   if (Sec.getFlags() & ELF::SHF_GROUP)
831     Flags = ELF::SHF_GROUP;
832 
833   MCSectionELF *RelaSection = Ctx.createELFRelSection(
834       RelaSectionName, Rela ? ELF::SHT_RELA : ELF::SHT_REL, Flags, EntrySize,
835       Sec.getGroup(), &Sec);
836   RelaSection->setAlignment(is64Bit() ? Align(8) : Align(4));
837   return RelaSection;
838 }
839 
840 // Include the debug info compression header.
841 bool ELFWriter::maybeWriteCompression(
842     uint32_t ChType, uint64_t Size,
843     SmallVectorImpl<uint8_t> &CompressedContents, Align Alignment) {
844   uint64_t HdrSize =
845       is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr);
846   if (Size <= HdrSize + CompressedContents.size())
847     return false;
848   // Platform specific header is followed by compressed data.
849   if (is64Bit()) {
850     // Write Elf64_Chdr header.
851     write(static_cast<ELF::Elf64_Word>(ChType));
852     write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field.
853     write(static_cast<ELF::Elf64_Xword>(Size));
854     write(static_cast<ELF::Elf64_Xword>(Alignment.value()));
855   } else {
856     // Write Elf32_Chdr header otherwise.
857     write(static_cast<ELF::Elf32_Word>(ChType));
858     write(static_cast<ELF::Elf32_Word>(Size));
859     write(static_cast<ELF::Elf32_Word>(Alignment.value()));
860   }
861   return true;
862 }
863 
864 void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
865                                  const MCAsmLayout &Layout) {
866   MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
867   StringRef SectionName = Section.getName();
868 
869   auto &MC = Asm.getContext();
870   const auto &MAI = MC.getAsmInfo();
871 
872   const DebugCompressionType CompressionType = MAI->compressDebugSections();
873   if (CompressionType == DebugCompressionType::None ||
874       !SectionName.startswith(".debug_")) {
875     Asm.writeSectionData(W.OS, &Section, Layout);
876     return;
877   }
878 
879   SmallVector<char, 128> UncompressedData;
880   raw_svector_ostream VecOS(UncompressedData);
881   Asm.writeSectionData(VecOS, &Section, Layout);
882   ArrayRef<uint8_t> Uncompressed =
883       ArrayRef(reinterpret_cast<uint8_t *>(UncompressedData.data()),
884                UncompressedData.size());
885 
886   SmallVector<uint8_t, 128> Compressed;
887   uint32_t ChType;
888   switch (CompressionType) {
889   case DebugCompressionType::None:
890     llvm_unreachable("has been handled");
891   case DebugCompressionType::Zlib:
892     ChType = ELF::ELFCOMPRESS_ZLIB;
893     break;
894   case DebugCompressionType::Zstd:
895     ChType = ELF::ELFCOMPRESS_ZSTD;
896     break;
897   }
898   compression::compress(compression::Params(CompressionType), Uncompressed,
899                         Compressed);
900   if (!maybeWriteCompression(ChType, UncompressedData.size(), Compressed,
901                              Sec.getAlign())) {
902     W.OS << UncompressedData;
903     return;
904   }
905 
906   Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED);
907   // Alignment field should reflect the requirements of
908   // the compressed section header.
909   Section.setAlignment(is64Bit() ? Align(8) : Align(4));
910   W.OS << toStringRef(Compressed);
911 }
912 
913 void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
914                                  uint64_t Address, uint64_t Offset,
915                                  uint64_t Size, uint32_t Link, uint32_t Info,
916                                  MaybeAlign Alignment, uint64_t EntrySize) {
917   W.write<uint32_t>(Name);        // sh_name: index into string table
918   W.write<uint32_t>(Type);        // sh_type
919   WriteWord(Flags);     // sh_flags
920   WriteWord(Address);   // sh_addr
921   WriteWord(Offset);    // sh_offset
922   WriteWord(Size);      // sh_size
923   W.write<uint32_t>(Link);        // sh_link
924   W.write<uint32_t>(Info);        // sh_info
925   WriteWord(Alignment ? Alignment->value() : 0); // sh_addralign
926   WriteWord(EntrySize); // sh_entsize
927 }
928 
929 void ELFWriter::writeRelocations(const MCAssembler &Asm,
930                                        const MCSectionELF &Sec) {
931   std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec];
932 
933   // We record relocations by pushing to the end of a vector. Reverse the vector
934   // to get the relocations in the order they were created.
935   // In most cases that is not important, but it can be for special sections
936   // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
937   std::reverse(Relocs.begin(), Relocs.end());
938 
939   // Sort the relocation entries. MIPS needs this.
940   OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs);
941 
942   const bool Rela = usesRela(Sec);
943   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
944     const ELFRelocationEntry &Entry = Relocs[e - i - 1];
945     unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0;
946 
947     if (is64Bit()) {
948       write(Entry.Offset);
949       if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
950         write(uint32_t(Index));
951 
952         write(OWriter.TargetObjectWriter->getRSsym(Entry.Type));
953         write(OWriter.TargetObjectWriter->getRType3(Entry.Type));
954         write(OWriter.TargetObjectWriter->getRType2(Entry.Type));
955         write(OWriter.TargetObjectWriter->getRType(Entry.Type));
956       } else {
957         struct ELF::Elf64_Rela ERE64;
958         ERE64.setSymbolAndType(Index, Entry.Type);
959         write(ERE64.r_info);
960       }
961       if (Rela)
962         write(Entry.Addend);
963     } else {
964       write(uint32_t(Entry.Offset));
965 
966       struct ELF::Elf32_Rela ERE32;
967       ERE32.setSymbolAndType(Index, Entry.Type);
968       write(ERE32.r_info);
969 
970       if (Rela)
971         write(uint32_t(Entry.Addend));
972 
973       if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
974         if (uint32_t RType =
975                 OWriter.TargetObjectWriter->getRType2(Entry.Type)) {
976           write(uint32_t(Entry.Offset));
977 
978           ERE32.setSymbolAndType(0, RType);
979           write(ERE32.r_info);
980           write(uint32_t(0));
981         }
982         if (uint32_t RType =
983                 OWriter.TargetObjectWriter->getRType3(Entry.Type)) {
984           write(uint32_t(Entry.Offset));
985 
986           ERE32.setSymbolAndType(0, RType);
987           write(ERE32.r_info);
988           write(uint32_t(0));
989         }
990       }
991     }
992   }
993 }
994 
995 void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
996                              uint32_t GroupSymbolIndex, uint64_t Offset,
997                              uint64_t Size, const MCSectionELF &Section) {
998   uint64_t sh_link = 0;
999   uint64_t sh_info = 0;
1000 
1001   switch(Section.getType()) {
1002   default:
1003     // Nothing to do.
1004     break;
1005 
1006   case ELF::SHT_DYNAMIC:
1007     llvm_unreachable("SHT_DYNAMIC in a relocatable object");
1008 
1009   case ELF::SHT_REL:
1010   case ELF::SHT_RELA: {
1011     sh_link = SymbolTableIndex;
1012     assert(sh_link && ".symtab not found");
1013     const MCSection *InfoSection = Section.getLinkedToSection();
1014     sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection));
1015     break;
1016   }
1017 
1018   case ELF::SHT_SYMTAB:
1019     sh_link = StringTableIndex;
1020     sh_info = LastLocalSymbolIndex;
1021     break;
1022 
1023   case ELF::SHT_SYMTAB_SHNDX:
1024   case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
1025   case ELF::SHT_LLVM_ADDRSIG:
1026     sh_link = SymbolTableIndex;
1027     break;
1028 
1029   case ELF::SHT_GROUP:
1030     sh_link = SymbolTableIndex;
1031     sh_info = GroupSymbolIndex;
1032     break;
1033   }
1034 
1035   if (Section.getFlags() & ELF::SHF_LINK_ORDER) {
1036     // If the value in the associated metadata is not a definition, Sym will be
1037     // undefined. Represent this with sh_link=0.
1038     const MCSymbol *Sym = Section.getLinkedToSymbol();
1039     if (Sym && Sym->isInSection()) {
1040       const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection());
1041       sh_link = SectionIndexMap.lookup(Sec);
1042     }
1043   }
1044 
1045   WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getName()),
1046                    Section.getType(), Section.getFlags(), 0, Offset, Size,
1047                    sh_link, sh_info, Section.getAlign(),
1048                    Section.getEntrySize());
1049 }
1050 
1051 void ELFWriter::writeSectionHeader(
1052     const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
1053     const SectionOffsetsTy &SectionOffsets) {
1054   const unsigned NumSections = SectionTable.size();
1055 
1056   // Null section first.
1057   uint64_t FirstSectionSize =
1058       (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
1059   WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, std::nullopt, 0);
1060 
1061   for (const MCSectionELF *Section : SectionTable) {
1062     uint32_t GroupSymbolIndex;
1063     unsigned Type = Section->getType();
1064     if (Type != ELF::SHT_GROUP)
1065       GroupSymbolIndex = 0;
1066     else
1067       GroupSymbolIndex = Section->getGroup()->getIndex();
1068 
1069     const std::pair<uint64_t, uint64_t> &Offsets =
1070         SectionOffsets.find(Section)->second;
1071     uint64_t Size;
1072     if (Type == ELF::SHT_NOBITS)
1073       Size = Layout.getSectionAddressSize(Section);
1074     else
1075       Size = Offsets.second - Offsets.first;
1076 
1077     writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size,
1078                  *Section);
1079   }
1080 }
1081 
1082 uint64_t ELFWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) {
1083   uint64_t StartOffset = W.OS.tell();
1084 
1085   MCContext &Ctx = Asm.getContext();
1086   MCSectionELF *StrtabSection =
1087       Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
1088   StringTableIndex = addToSectionTable(StrtabSection);
1089 
1090   createMemtagRelocs(Asm);
1091 
1092   RevGroupMapTy RevGroupMap;
1093   SectionIndexMapTy SectionIndexMap;
1094 
1095   std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers;
1096 
1097   // Write out the ELF header ...
1098   writeHeader(Asm);
1099 
1100   // ... then the sections ...
1101   SectionOffsetsTy SectionOffsets;
1102   std::vector<MCSectionELF *> Groups;
1103   std::vector<MCSectionELF *> Relocations;
1104   for (MCSection &Sec : Asm) {
1105     MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1106     if (Mode == NonDwoOnly && isDwoSection(Section))
1107       continue;
1108     if (Mode == DwoOnly && !isDwoSection(Section))
1109       continue;
1110 
1111     // Remember the offset into the file for this section.
1112     const uint64_t SecStart = align(Section.getAlign());
1113 
1114     const MCSymbolELF *SignatureSymbol = Section.getGroup();
1115     writeSectionData(Asm, Section, Layout);
1116 
1117     uint64_t SecEnd = W.OS.tell();
1118     SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd);
1119 
1120     MCSectionELF *RelSection = createRelocationSection(Ctx, Section);
1121 
1122     if (SignatureSymbol) {
1123       unsigned &GroupIdx = RevGroupMap[SignatureSymbol];
1124       if (!GroupIdx) {
1125         MCSectionELF *Group =
1126             Ctx.createELFGroupSection(SignatureSymbol, Section.isComdat());
1127         GroupIdx = addToSectionTable(Group);
1128         Group->setAlignment(Align(4));
1129         Groups.push_back(Group);
1130       }
1131       std::vector<const MCSectionELF *> &Members =
1132           GroupMembers[SignatureSymbol];
1133       Members.push_back(&Section);
1134       if (RelSection)
1135         Members.push_back(RelSection);
1136     }
1137 
1138     SectionIndexMap[&Section] = addToSectionTable(&Section);
1139     if (RelSection) {
1140       SectionIndexMap[RelSection] = addToSectionTable(RelSection);
1141       Relocations.push_back(RelSection);
1142     }
1143 
1144     OWriter.TargetObjectWriter->addTargetSectionFlags(Ctx, Section);
1145   }
1146 
1147   for (MCSectionELF *Group : Groups) {
1148     // Remember the offset into the file for this section.
1149     const uint64_t SecStart = align(Group->getAlign());
1150 
1151     const MCSymbol *SignatureSymbol = Group->getGroup();
1152     assert(SignatureSymbol);
1153     write(uint32_t(Group->isComdat() ? unsigned(ELF::GRP_COMDAT) : 0));
1154     for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) {
1155       uint32_t SecIndex = SectionIndexMap.lookup(Member);
1156       write(SecIndex);
1157     }
1158 
1159     uint64_t SecEnd = W.OS.tell();
1160     SectionOffsets[Group] = std::make_pair(SecStart, SecEnd);
1161   }
1162 
1163   if (Mode == DwoOnly) {
1164     // dwo files don't have symbol tables or relocations, but they do have
1165     // string tables.
1166     StrTabBuilder.finalize();
1167   } else {
1168     MCSectionELF *AddrsigSection;
1169     if (OWriter.EmitAddrsigSection) {
1170       AddrsigSection = Ctx.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG,
1171                                          ELF::SHF_EXCLUDE);
1172       addToSectionTable(AddrsigSection);
1173     }
1174 
1175     // Compute symbol table information.
1176     computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap,
1177                        SectionOffsets);
1178 
1179     for (MCSectionELF *RelSection : Relocations) {
1180       // Remember the offset into the file for this section.
1181       const uint64_t SecStart = align(RelSection->getAlign());
1182 
1183       writeRelocations(Asm,
1184                        cast<MCSectionELF>(*RelSection->getLinkedToSection()));
1185 
1186       uint64_t SecEnd = W.OS.tell();
1187       SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd);
1188     }
1189 
1190     if (OWriter.EmitAddrsigSection) {
1191       uint64_t SecStart = W.OS.tell();
1192       writeAddrsigSection();
1193       uint64_t SecEnd = W.OS.tell();
1194       SectionOffsets[AddrsigSection] = std::make_pair(SecStart, SecEnd);
1195     }
1196   }
1197 
1198   {
1199     uint64_t SecStart = W.OS.tell();
1200     StrTabBuilder.write(W.OS);
1201     SectionOffsets[StrtabSection] = std::make_pair(SecStart, W.OS.tell());
1202   }
1203 
1204   const uint64_t SectionHeaderOffset = align(is64Bit() ? Align(8) : Align(4));
1205 
1206   // ... then the section header table ...
1207   writeSectionHeader(Layout, SectionIndexMap, SectionOffsets);
1208 
1209   uint16_t NumSections = support::endian::byte_swap<uint16_t>(
1210       (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF
1211                                                       : SectionTable.size() + 1,
1212       W.Endian);
1213   unsigned NumSectionsOffset;
1214 
1215   auto &Stream = static_cast<raw_pwrite_stream &>(W.OS);
1216   if (is64Bit()) {
1217     uint64_t Val =
1218         support::endian::byte_swap<uint64_t>(SectionHeaderOffset, W.Endian);
1219     Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1220                   offsetof(ELF::Elf64_Ehdr, e_shoff));
1221     NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum);
1222   } else {
1223     uint32_t Val =
1224         support::endian::byte_swap<uint32_t>(SectionHeaderOffset, W.Endian);
1225     Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1226                   offsetof(ELF::Elf32_Ehdr, e_shoff));
1227     NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum);
1228   }
1229   Stream.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections),
1230                 NumSectionsOffset);
1231 
1232   return W.OS.tell() - StartOffset;
1233 }
1234 
1235 bool ELFObjectWriter::hasRelocationAddend() const {
1236   return TargetObjectWriter->hasRelocationAddend();
1237 }
1238 
1239 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
1240                                                const MCAsmLayout &Layout) {
1241   // The presence of symbol versions causes undefined symbols and
1242   // versions declared with @@@ to be renamed.
1243   for (const MCAssembler::Symver &S : Asm.Symvers) {
1244     StringRef AliasName = S.Name;
1245     const auto &Symbol = cast<MCSymbolELF>(*S.Sym);
1246     size_t Pos = AliasName.find('@');
1247     assert(Pos != StringRef::npos);
1248 
1249     StringRef Prefix = AliasName.substr(0, Pos);
1250     StringRef Rest = AliasName.substr(Pos);
1251     StringRef Tail = Rest;
1252     if (Rest.startswith("@@@"))
1253       Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1);
1254 
1255     auto *Alias =
1256         cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail));
1257     Asm.registerSymbol(*Alias);
1258     const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext());
1259     Alias->setVariableValue(Value);
1260 
1261     // Aliases defined with .symvar copy the binding from the symbol they alias.
1262     // This is the first place we are able to copy this information.
1263     Alias->setBinding(Symbol.getBinding());
1264     Alias->setVisibility(Symbol.getVisibility());
1265     Alias->setOther(Symbol.getOther());
1266 
1267     if (!Symbol.isUndefined() && S.KeepOriginalSym)
1268       continue;
1269 
1270     if (Symbol.isUndefined() && Rest.startswith("@@") &&
1271         !Rest.startswith("@@@")) {
1272       Asm.getContext().reportError(S.Loc, "default version symbol " +
1273                                               AliasName + " must be defined");
1274       continue;
1275     }
1276 
1277     if (Renames.count(&Symbol) && Renames[&Symbol] != Alias) {
1278       Asm.getContext().reportError(S.Loc, Twine("multiple versions for ") +
1279                                               Symbol.getName());
1280       continue;
1281     }
1282 
1283     Renames.insert(std::make_pair(&Symbol, Alias));
1284   }
1285 
1286   for (const MCSymbol *&Sym : AddrsigSyms) {
1287     if (const MCSymbol *R = Renames.lookup(cast<MCSymbolELF>(Sym)))
1288       Sym = R;
1289     if (Sym->isInSection() && Sym->getName().startswith(".L"))
1290       Sym = Sym->getSection().getBeginSymbol();
1291     Sym->setUsedInReloc();
1292   }
1293 }
1294 
1295 // It is always valid to create a relocation with a symbol. It is preferable
1296 // to use a relocation with a section if that is possible. Using the section
1297 // allows us to omit some local symbols from the symbol table.
1298 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
1299                                                const MCSymbolRefExpr *RefA,
1300                                                const MCSymbolELF *Sym,
1301                                                uint64_t C,
1302                                                unsigned Type) const {
1303   // A PCRel relocation to an absolute value has no symbol (or section). We
1304   // represent that with a relocation to a null section.
1305   if (!RefA)
1306     return false;
1307 
1308   MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
1309   switch (Kind) {
1310   default:
1311     break;
1312   // The .odp creation emits a relocation against the symbol ".TOC." which
1313   // create a R_PPC64_TOC relocation. However the relocation symbol name
1314   // in final object creation should be NULL, since the symbol does not
1315   // really exist, it is just the reference to TOC base for the current
1316   // object file. Since the symbol is undefined, returning false results
1317   // in a relocation with a null section which is the desired result.
1318   case MCSymbolRefExpr::VK_PPC_TOCBASE:
1319     return false;
1320 
1321   // These VariantKind cause the relocation to refer to something other than
1322   // the symbol itself, like a linker generated table. Since the address of
1323   // symbol is not relevant, we cannot replace the symbol with the
1324   // section and patch the difference in the addend.
1325   case MCSymbolRefExpr::VK_GOT:
1326   case MCSymbolRefExpr::VK_PLT:
1327   case MCSymbolRefExpr::VK_GOTPCREL:
1328   case MCSymbolRefExpr::VK_GOTPCREL_NORELAX:
1329   case MCSymbolRefExpr::VK_PPC_GOT_LO:
1330   case MCSymbolRefExpr::VK_PPC_GOT_HI:
1331   case MCSymbolRefExpr::VK_PPC_GOT_HA:
1332     return true;
1333   }
1334 
1335   // An undefined symbol is not in any section, so the relocation has to point
1336   // to the symbol itself.
1337   assert(Sym && "Expected a symbol");
1338   if (Sym->isUndefined())
1339     return true;
1340 
1341   // For memory-tagged symbols, ensure that the relocation uses the symbol. For
1342   // tagged symbols, we emit an empty relocation (R_AARCH64_NONE) in a special
1343   // section (SHT_AARCH64_MEMTAG_GLOBALS_STATIC) to indicate to the linker that
1344   // this global needs to be tagged. In addition, the linker needs to know
1345   // whether to emit a special addend when relocating `end` symbols, and this
1346   // can only be determined by the attributes of the symbol itself.
1347   if (Sym->isMemtag())
1348     return true;
1349 
1350   unsigned Binding = Sym->getBinding();
1351   switch(Binding) {
1352   default:
1353     llvm_unreachable("Invalid Binding");
1354   case ELF::STB_LOCAL:
1355     break;
1356   case ELF::STB_WEAK:
1357     // If the symbol is weak, it might be overridden by a symbol in another
1358     // file. The relocation has to point to the symbol so that the linker
1359     // can update it.
1360     return true;
1361   case ELF::STB_GLOBAL:
1362   case ELF::STB_GNU_UNIQUE:
1363     // Global ELF symbols can be preempted by the dynamic linker. The relocation
1364     // has to point to the symbol for a reason analogous to the STB_WEAK case.
1365     return true;
1366   }
1367 
1368   // Keep symbol type for a local ifunc because it may result in an IRELATIVE
1369   // reloc that the dynamic loader will use to resolve the address at startup
1370   // time.
1371   if (Sym->getType() == ELF::STT_GNU_IFUNC)
1372     return true;
1373 
1374   // If a relocation points to a mergeable section, we have to be careful.
1375   // If the offset is zero, a relocation with the section will encode the
1376   // same information. With a non-zero offset, the situation is different.
1377   // For example, a relocation can point 42 bytes past the end of a string.
1378   // If we change such a relocation to use the section, the linker would think
1379   // that it pointed to another string and subtracting 42 at runtime will
1380   // produce the wrong value.
1381   if (Sym->isInSection()) {
1382     auto &Sec = cast<MCSectionELF>(Sym->getSection());
1383     unsigned Flags = Sec.getFlags();
1384     if (Flags & ELF::SHF_MERGE) {
1385       if (C != 0)
1386         return true;
1387 
1388       // gold<2.34 incorrectly ignored the addend for R_386_GOTOFF (9)
1389       // (http://sourceware.org/PR16794).
1390       if (TargetObjectWriter->getEMachine() == ELF::EM_386 &&
1391           Type == ELF::R_386_GOTOFF)
1392         return true;
1393 
1394       // ld.lld handles R_MIPS_HI16/R_MIPS_LO16 separately, not as a whole, so
1395       // it doesn't know that an R_MIPS_HI16 with implicit addend 1 and an
1396       // R_MIPS_LO16 with implicit addend -32768 represents 32768, which is in
1397       // range of a MergeInputSection. We could introduce a new RelExpr member
1398       // (like R_RISCV_PC_INDIRECT for R_RISCV_PCREL_HI20 / R_RISCV_PCREL_LO12)
1399       // but the complexity is unnecessary given that GNU as keeps the original
1400       // symbol for this case as well.
1401       if (TargetObjectWriter->getEMachine() == ELF::EM_MIPS &&
1402           !hasRelocationAddend())
1403         return true;
1404     }
1405 
1406     // Most TLS relocations use a got, so they need the symbol. Even those that
1407     // are just an offset (@tpoff), require a symbol in gold versions before
1408     // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
1409     // http://sourceware.org/PR16773.
1410     if (Flags & ELF::SHF_TLS)
1411       return true;
1412   }
1413 
1414   // If the symbol is a thumb function the final relocation must set the lowest
1415   // bit. With a symbol that is done by just having the symbol have that bit
1416   // set, so we would lose the bit if we relocated with the section.
1417   // FIXME: We could use the section but add the bit to the relocation value.
1418   if (Asm.isThumbFunc(Sym))
1419     return true;
1420 
1421   if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
1422     return true;
1423   return false;
1424 }
1425 
1426 void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
1427                                        const MCAsmLayout &Layout,
1428                                        const MCFragment *Fragment,
1429                                        const MCFixup &Fixup, MCValue Target,
1430                                        uint64_t &FixedValue) {
1431   MCAsmBackend &Backend = Asm.getBackend();
1432   bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
1433                  MCFixupKindInfo::FKF_IsPCRel;
1434   const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
1435   uint64_t C = Target.getConstant();
1436   uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
1437   MCContext &Ctx = Asm.getContext();
1438 
1439   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
1440     const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
1441     if (SymB.isUndefined()) {
1442       Ctx.reportError(Fixup.getLoc(),
1443                       Twine("symbol '") + SymB.getName() +
1444                           "' can not be undefined in a subtraction expression");
1445       return;
1446     }
1447 
1448     assert(!SymB.isAbsolute() && "Should have been folded");
1449     const MCSection &SecB = SymB.getSection();
1450     if (&SecB != &FixupSection) {
1451       Ctx.reportError(Fixup.getLoc(),
1452                       "Cannot represent a difference across sections");
1453       return;
1454     }
1455 
1456     assert(!IsPCRel && "should have been folded");
1457     IsPCRel = true;
1458     C += FixupOffset - Layout.getSymbolOffset(SymB);
1459   }
1460 
1461   // We either rejected the fixup or folded B into C at this point.
1462   const MCSymbolRefExpr *RefA = Target.getSymA();
1463   const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
1464 
1465   bool ViaWeakRef = false;
1466   if (SymA && SymA->isVariable()) {
1467     const MCExpr *Expr = SymA->getVariableValue();
1468     if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
1469       if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
1470         SymA = cast<MCSymbolELF>(&Inner->getSymbol());
1471         ViaWeakRef = true;
1472       }
1473     }
1474   }
1475 
1476   const MCSectionELF *SecA = (SymA && SymA->isInSection())
1477                                  ? cast<MCSectionELF>(&SymA->getSection())
1478                                  : nullptr;
1479   if (!checkRelocation(Ctx, Fixup.getLoc(), &FixupSection, SecA))
1480     return;
1481 
1482   unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel);
1483   const auto *Parent = cast<MCSectionELF>(Fragment->getParent());
1484   // Emiting relocation with sybmol for CG Profile to  help with --cg-profile.
1485   bool RelocateWithSymbol =
1486       shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type) ||
1487       (Parent->getType() == ELF::SHT_LLVM_CALL_GRAPH_PROFILE);
1488   uint64_t Addend = 0;
1489 
1490   FixedValue = !RelocateWithSymbol && SymA && !SymA->isUndefined()
1491                    ? C + Layout.getSymbolOffset(*SymA)
1492                    : C;
1493   if (hasRelocationAddend()) {
1494     Addend = FixedValue;
1495     FixedValue = 0;
1496   }
1497 
1498   if (!RelocateWithSymbol) {
1499     const auto *SectionSymbol =
1500         SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr;
1501     if (SectionSymbol)
1502       SectionSymbol->setUsedInReloc();
1503     ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA, C);
1504     Relocations[&FixupSection].push_back(Rec);
1505     return;
1506   }
1507 
1508   const MCSymbolELF *RenamedSymA = SymA;
1509   if (SymA) {
1510     if (const MCSymbolELF *R = Renames.lookup(SymA))
1511       RenamedSymA = R;
1512 
1513     if (ViaWeakRef)
1514       RenamedSymA->setIsWeakrefUsedInReloc();
1515     else
1516       RenamedSymA->setUsedInReloc();
1517   }
1518   ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA, C);
1519   Relocations[&FixupSection].push_back(Rec);
1520 }
1521 
1522 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
1523     const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
1524     bool InSet, bool IsPCRel) const {
1525   const auto &SymA = cast<MCSymbolELF>(SA);
1526   if (IsPCRel) {
1527     assert(!InSet);
1528     if (SymA.getBinding() != ELF::STB_LOCAL ||
1529         SymA.getType() == ELF::STT_GNU_IFUNC)
1530       return false;
1531   }
1532   return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB,
1533                                                                 InSet, IsPCRel);
1534 }
1535 
1536 std::unique_ptr<MCObjectWriter>
1537 llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
1538                             raw_pwrite_stream &OS, bool IsLittleEndian) {
1539   return std::make_unique<ELFSingleObjectWriter>(std::move(MOTW), OS,
1540                                                   IsLittleEndian);
1541 }
1542 
1543 std::unique_ptr<MCObjectWriter>
1544 llvm::createELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
1545                                raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS,
1546                                bool IsLittleEndian) {
1547   return std::make_unique<ELFDwoObjectWriter>(std::move(MOTW), OS, DwoOS,
1548                                                IsLittleEndian);
1549 }
1550