1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Linker/IRMover.h" 10 #include "LinkDiagnosticInfo.h" 11 #include "llvm/ADT/SetVector.h" 12 #include "llvm/ADT/SmallPtrSet.h" 13 #include "llvm/ADT/SmallString.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/IR/AutoUpgrade.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DebugInfoMetadata.h" 18 #include "llvm/IR/DiagnosticPrinter.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/IR/GVMaterializer.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Intrinsics.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/PseudoProbe.h" 25 #include "llvm/IR/TypeFinder.h" 26 #include "llvm/Object/ModuleSymbolTable.h" 27 #include "llvm/Support/Error.h" 28 #include "llvm/Support/Path.h" 29 #include "llvm/Transforms/Utils/ValueMapper.h" 30 #include <utility> 31 using namespace llvm; 32 33 //===----------------------------------------------------------------------===// 34 // TypeMap implementation. 35 //===----------------------------------------------------------------------===// 36 37 namespace { 38 class TypeMapTy : public ValueMapTypeRemapper { 39 /// This is a mapping from a source type to a destination type to use. 40 DenseMap<Type *, Type *> MappedTypes; 41 42 /// When checking to see if two subgraphs are isomorphic, we speculatively 43 /// add types to MappedTypes, but keep track of them here in case we need to 44 /// roll back. 45 SmallVector<Type *, 16> SpeculativeTypes; 46 47 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes; 48 49 /// This is a list of non-opaque structs in the source module that are mapped 50 /// to an opaque struct in the destination module. 51 SmallVector<StructType *, 16> SrcDefinitionsToResolve; 52 53 /// This is the set of opaque types in the destination modules who are 54 /// getting a body from the source module. 55 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes; 56 57 public: 58 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet) 59 : DstStructTypesSet(DstStructTypesSet) {} 60 61 IRMover::IdentifiedStructTypeSet &DstStructTypesSet; 62 /// Indicate that the specified type in the destination module is conceptually 63 /// equivalent to the specified type in the source module. 64 void addTypeMapping(Type *DstTy, Type *SrcTy); 65 66 /// Produce a body for an opaque type in the dest module from a type 67 /// definition in the source module. 68 void linkDefinedTypeBodies(); 69 70 /// Return the mapped type to use for the specified input type from the 71 /// source module. 72 Type *get(Type *SrcTy); 73 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited); 74 75 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes); 76 77 FunctionType *get(FunctionType *T) { 78 return cast<FunctionType>(get((Type *)T)); 79 } 80 81 private: 82 Type *remapType(Type *SrcTy) override { return get(SrcTy); } 83 84 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy); 85 }; 86 } 87 88 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) { 89 assert(SpeculativeTypes.empty()); 90 assert(SpeculativeDstOpaqueTypes.empty()); 91 92 // Check to see if these types are recursively isomorphic and establish a 93 // mapping between them if so. 94 if (!areTypesIsomorphic(DstTy, SrcTy)) { 95 // Oops, they aren't isomorphic. Just discard this request by rolling out 96 // any speculative mappings we've established. 97 for (Type *Ty : SpeculativeTypes) 98 MappedTypes.erase(Ty); 99 100 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() - 101 SpeculativeDstOpaqueTypes.size()); 102 for (StructType *Ty : SpeculativeDstOpaqueTypes) 103 DstResolvedOpaqueTypes.erase(Ty); 104 } else { 105 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy 106 // and all its descendants to lower amount of renaming in LLVM context 107 // Renaming occurs because we load all source modules to the same context 108 // and declaration with existing name gets renamed (i.e Foo -> Foo.42). 109 // As a result we may get several different types in the destination 110 // module, which are in fact the same. 111 for (Type *Ty : SpeculativeTypes) 112 if (auto *STy = dyn_cast<StructType>(Ty)) 113 if (STy->hasName()) 114 STy->setName(""); 115 } 116 SpeculativeTypes.clear(); 117 SpeculativeDstOpaqueTypes.clear(); 118 } 119 120 /// Recursively walk this pair of types, returning true if they are isomorphic, 121 /// false if they are not. 122 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { 123 // Two types with differing kinds are clearly not isomorphic. 124 if (DstTy->getTypeID() != SrcTy->getTypeID()) 125 return false; 126 127 // If we have an entry in the MappedTypes table, then we have our answer. 128 Type *&Entry = MappedTypes[SrcTy]; 129 if (Entry) 130 return Entry == DstTy; 131 132 // Two identical types are clearly isomorphic. Remember this 133 // non-speculatively. 134 if (DstTy == SrcTy) { 135 Entry = DstTy; 136 return true; 137 } 138 139 // Okay, we have two types with identical kinds that we haven't seen before. 140 141 // If this is an opaque struct type, special case it. 142 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) { 143 // Mapping an opaque type to any struct, just keep the dest struct. 144 if (SSTy->isOpaque()) { 145 Entry = DstTy; 146 SpeculativeTypes.push_back(SrcTy); 147 return true; 148 } 149 150 // Mapping a non-opaque source type to an opaque dest. If this is the first 151 // type that we're mapping onto this destination type then we succeed. Keep 152 // the dest, but fill it in later. If this is the second (different) type 153 // that we're trying to map onto the same opaque type then we fail. 154 if (cast<StructType>(DstTy)->isOpaque()) { 155 // We can only map one source type onto the opaque destination type. 156 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second) 157 return false; 158 SrcDefinitionsToResolve.push_back(SSTy); 159 SpeculativeTypes.push_back(SrcTy); 160 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy)); 161 Entry = DstTy; 162 return true; 163 } 164 } 165 166 // If the number of subtypes disagree between the two types, then we fail. 167 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes()) 168 return false; 169 170 // Fail if any of the extra properties (e.g. array size) of the type disagree. 171 if (isa<IntegerType>(DstTy)) 172 return false; // bitwidth disagrees. 173 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) { 174 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace()) 175 return false; 176 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) { 177 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg()) 178 return false; 179 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) { 180 StructType *SSTy = cast<StructType>(SrcTy); 181 if (DSTy->isLiteral() != SSTy->isLiteral() || 182 DSTy->isPacked() != SSTy->isPacked()) 183 return false; 184 } else if (auto *DArrTy = dyn_cast<ArrayType>(DstTy)) { 185 if (DArrTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements()) 186 return false; 187 } else if (auto *DVecTy = dyn_cast<VectorType>(DstTy)) { 188 if (DVecTy->getElementCount() != cast<VectorType>(SrcTy)->getElementCount()) 189 return false; 190 } 191 192 // Otherwise, we speculate that these two types will line up and recursively 193 // check the subelements. 194 Entry = DstTy; 195 SpeculativeTypes.push_back(SrcTy); 196 197 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I) 198 if (!areTypesIsomorphic(DstTy->getContainedType(I), 199 SrcTy->getContainedType(I))) 200 return false; 201 202 // If everything seems to have lined up, then everything is great. 203 return true; 204 } 205 206 void TypeMapTy::linkDefinedTypeBodies() { 207 SmallVector<Type *, 16> Elements; 208 for (StructType *SrcSTy : SrcDefinitionsToResolve) { 209 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]); 210 assert(DstSTy->isOpaque()); 211 212 // Map the body of the source type over to a new body for the dest type. 213 Elements.resize(SrcSTy->getNumElements()); 214 for (unsigned I = 0, E = Elements.size(); I != E; ++I) 215 Elements[I] = get(SrcSTy->getElementType(I)); 216 217 DstSTy->setBody(Elements, SrcSTy->isPacked()); 218 DstStructTypesSet.switchToNonOpaque(DstSTy); 219 } 220 SrcDefinitionsToResolve.clear(); 221 DstResolvedOpaqueTypes.clear(); 222 } 223 224 void TypeMapTy::finishType(StructType *DTy, StructType *STy, 225 ArrayRef<Type *> ETypes) { 226 DTy->setBody(ETypes, STy->isPacked()); 227 228 // Steal STy's name. 229 if (STy->hasName()) { 230 SmallString<16> TmpName = STy->getName(); 231 STy->setName(""); 232 DTy->setName(TmpName); 233 } 234 235 DstStructTypesSet.addNonOpaque(DTy); 236 } 237 238 Type *TypeMapTy::get(Type *Ty) { 239 SmallPtrSet<StructType *, 8> Visited; 240 return get(Ty, Visited); 241 } 242 243 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) { 244 // If we already have an entry for this type, return it. 245 Type **Entry = &MappedTypes[Ty]; 246 if (*Entry) 247 return *Entry; 248 249 // These are types that LLVM itself will unique. 250 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral(); 251 252 if (!IsUniqued) { 253 #ifndef NDEBUG 254 for (auto &Pair : MappedTypes) { 255 assert(!(Pair.first != Ty && Pair.second == Ty) && 256 "mapping to a source type"); 257 } 258 #endif 259 260 if (!Visited.insert(cast<StructType>(Ty)).second) { 261 StructType *DTy = StructType::create(Ty->getContext()); 262 return *Entry = DTy; 263 } 264 } 265 266 // If this is not a recursive type, then just map all of the elements and 267 // then rebuild the type from inside out. 268 SmallVector<Type *, 4> ElementTypes; 269 270 // If there are no element types to map, then the type is itself. This is 271 // true for the anonymous {} struct, things like 'float', integers, etc. 272 if (Ty->getNumContainedTypes() == 0 && IsUniqued) 273 return *Entry = Ty; 274 275 // Remap all of the elements, keeping track of whether any of them change. 276 bool AnyChange = false; 277 ElementTypes.resize(Ty->getNumContainedTypes()); 278 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) { 279 ElementTypes[I] = get(Ty->getContainedType(I), Visited); 280 AnyChange |= ElementTypes[I] != Ty->getContainedType(I); 281 } 282 283 // If we found our type while recursively processing stuff, just use it. 284 Entry = &MappedTypes[Ty]; 285 if (*Entry) { 286 if (auto *DTy = dyn_cast<StructType>(*Entry)) { 287 if (DTy->isOpaque()) { 288 auto *STy = cast<StructType>(Ty); 289 finishType(DTy, STy, ElementTypes); 290 } 291 } 292 return *Entry; 293 } 294 295 // If all of the element types mapped directly over and the type is not 296 // a named struct, then the type is usable as-is. 297 if (!AnyChange && IsUniqued) 298 return *Entry = Ty; 299 300 // Otherwise, rebuild a modified type. 301 switch (Ty->getTypeID()) { 302 default: 303 llvm_unreachable("unknown derived type to remap"); 304 case Type::ArrayTyID: 305 return *Entry = ArrayType::get(ElementTypes[0], 306 cast<ArrayType>(Ty)->getNumElements()); 307 case Type::ScalableVectorTyID: 308 case Type::FixedVectorTyID: 309 return *Entry = VectorType::get(ElementTypes[0], 310 cast<VectorType>(Ty)->getElementCount()); 311 case Type::PointerTyID: 312 return *Entry = PointerType::get(ElementTypes[0], 313 cast<PointerType>(Ty)->getAddressSpace()); 314 case Type::FunctionTyID: 315 return *Entry = FunctionType::get(ElementTypes[0], 316 makeArrayRef(ElementTypes).slice(1), 317 cast<FunctionType>(Ty)->isVarArg()); 318 case Type::StructTyID: { 319 auto *STy = cast<StructType>(Ty); 320 bool IsPacked = STy->isPacked(); 321 if (IsUniqued) 322 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked); 323 324 // If the type is opaque, we can just use it directly. 325 if (STy->isOpaque()) { 326 DstStructTypesSet.addOpaque(STy); 327 return *Entry = Ty; 328 } 329 330 if (StructType *OldT = 331 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) { 332 STy->setName(""); 333 return *Entry = OldT; 334 } 335 336 if (!AnyChange) { 337 DstStructTypesSet.addNonOpaque(STy); 338 return *Entry = Ty; 339 } 340 341 StructType *DTy = StructType::create(Ty->getContext()); 342 finishType(DTy, STy, ElementTypes); 343 return *Entry = DTy; 344 } 345 } 346 } 347 348 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity, 349 const Twine &Msg) 350 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {} 351 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 352 353 //===----------------------------------------------------------------------===// 354 // IRLinker implementation. 355 //===----------------------------------------------------------------------===// 356 357 namespace { 358 class IRLinker; 359 360 /// Creates prototypes for functions that are lazily linked on the fly. This 361 /// speeds up linking for modules with many/ lazily linked functions of which 362 /// few get used. 363 class GlobalValueMaterializer final : public ValueMaterializer { 364 IRLinker &TheIRLinker; 365 366 public: 367 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 368 Value *materialize(Value *V) override; 369 }; 370 371 class LocalValueMaterializer final : public ValueMaterializer { 372 IRLinker &TheIRLinker; 373 374 public: 375 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 376 Value *materialize(Value *V) override; 377 }; 378 379 /// Type of the Metadata map in \a ValueToValueMapTy. 380 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT; 381 382 /// This is responsible for keeping track of the state used for moving data 383 /// from SrcM to DstM. 384 class IRLinker { 385 Module &DstM; 386 std::unique_ptr<Module> SrcM; 387 388 /// See IRMover::move(). 389 IRMover::LazyCallback AddLazyFor; 390 391 TypeMapTy TypeMap; 392 GlobalValueMaterializer GValMaterializer; 393 LocalValueMaterializer LValMaterializer; 394 395 /// A metadata map that's shared between IRLinker instances. 396 MDMapT &SharedMDs; 397 398 /// Mapping of values from what they used to be in Src, to what they are now 399 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead 400 /// due to the use of Value handles which the Linker doesn't actually need, 401 /// but this allows us to reuse the ValueMapper code. 402 ValueToValueMapTy ValueMap; 403 ValueToValueMapTy IndirectSymbolValueMap; 404 405 DenseSet<GlobalValue *> ValuesToLink; 406 std::vector<GlobalValue *> Worklist; 407 std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist; 408 409 void maybeAdd(GlobalValue *GV) { 410 if (ValuesToLink.insert(GV).second) 411 Worklist.push_back(GV); 412 } 413 414 /// Whether we are importing globals for ThinLTO, as opposed to linking the 415 /// source module. If this flag is set, it means that we can rely on some 416 /// other object file to define any non-GlobalValue entities defined by the 417 /// source module. This currently causes us to not link retained types in 418 /// debug info metadata and module inline asm. 419 bool IsPerformingImport; 420 421 /// Set to true when all global value body linking is complete (including 422 /// lazy linking). Used to prevent metadata linking from creating new 423 /// references. 424 bool DoneLinkingBodies = false; 425 426 /// The Error encountered during materialization. We use an Optional here to 427 /// avoid needing to manage an unconsumed success value. 428 Optional<Error> FoundError; 429 void setError(Error E) { 430 if (E) 431 FoundError = std::move(E); 432 } 433 434 /// Most of the errors produced by this module are inconvertible StringErrors. 435 /// This convenience function lets us return one of those more easily. 436 Error stringErr(const Twine &T) { 437 return make_error<StringError>(T, inconvertibleErrorCode()); 438 } 439 440 /// Entry point for mapping values and alternate context for mapping aliases. 441 ValueMapper Mapper; 442 unsigned IndirectSymbolMCID; 443 444 /// Handles cloning of a global values from the source module into 445 /// the destination module, including setting the attributes and visibility. 446 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition); 447 448 void emitWarning(const Twine &Message) { 449 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message)); 450 } 451 452 /// Given a global in the source module, return the global in the 453 /// destination module that is being linked to, if any. 454 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) { 455 // If the source has no name it can't link. If it has local linkage, 456 // there is no name match-up going on. 457 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage()) 458 return nullptr; 459 460 // Otherwise see if we have a match in the destination module's symtab. 461 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName()); 462 if (!DGV) 463 return nullptr; 464 465 // If we found a global with the same name in the dest module, but it has 466 // internal linkage, we are really not doing any linkage here. 467 if (DGV->hasLocalLinkage()) 468 return nullptr; 469 470 // If we found an intrinsic declaration with mismatching prototypes, we 471 // probably had a nameclash. Don't use that version. 472 if (auto *FDGV = dyn_cast<Function>(DGV)) 473 if (FDGV->isIntrinsic()) 474 if (const auto *FSrcGV = dyn_cast<Function>(SrcGV)) 475 if (FDGV->getFunctionType() != TypeMap.get(FSrcGV->getFunctionType())) 476 return nullptr; 477 478 // Otherwise, we do in fact link to the destination global. 479 return DGV; 480 } 481 482 void computeTypeMapping(); 483 484 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV, 485 const GlobalVariable *SrcGV); 486 487 /// Given the GlobaValue \p SGV in the source module, and the matching 488 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV 489 /// into the destination module. 490 /// 491 /// Note this code may call the client-provided \p AddLazyFor. 492 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV); 493 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, 494 bool ForIndirectSymbol); 495 496 Error linkModuleFlagsMetadata(); 497 498 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src); 499 Error linkFunctionBody(Function &Dst, Function &Src); 500 void linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src); 501 void linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src); 502 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src); 503 504 /// Replace all types in the source AttributeList with the 505 /// corresponding destination type. 506 AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs); 507 508 /// Functions that take care of cloning a specific global value type 509 /// into the destination module. 510 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar); 511 Function *copyFunctionProto(const Function *SF); 512 GlobalValue *copyIndirectSymbolProto(const GlobalValue *SGV); 513 514 /// Perform "replace all uses with" operations. These work items need to be 515 /// performed as part of materialization, but we postpone them to happen after 516 /// materialization is done. The materializer called by ValueMapper is not 517 /// expected to delete constants, as ValueMapper is holding pointers to some 518 /// of them, but constant destruction may be indirectly triggered by RAUW. 519 /// Hence, the need to move this out of the materialization call chain. 520 void flushRAUWWorklist(); 521 522 /// When importing for ThinLTO, prevent importing of types listed on 523 /// the DICompileUnit that we don't need a copy of in the importing 524 /// module. 525 void prepareCompileUnitsForImport(); 526 void linkNamedMDNodes(); 527 528 public: 529 IRLinker(Module &DstM, MDMapT &SharedMDs, 530 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM, 531 ArrayRef<GlobalValue *> ValuesToLink, 532 IRMover::LazyCallback AddLazyFor, bool IsPerformingImport) 533 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)), 534 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this), 535 SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport), 536 Mapper(ValueMap, RF_ReuseAndMutateDistinctMDs | RF_IgnoreMissingLocals, 537 &TypeMap, &GValMaterializer), 538 IndirectSymbolMCID(Mapper.registerAlternateMappingContext( 539 IndirectSymbolValueMap, &LValMaterializer)) { 540 ValueMap.getMDMap() = std::move(SharedMDs); 541 for (GlobalValue *GV : ValuesToLink) 542 maybeAdd(GV); 543 if (IsPerformingImport) 544 prepareCompileUnitsForImport(); 545 } 546 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); } 547 548 Error run(); 549 Value *materialize(Value *V, bool ForIndirectSymbol); 550 }; 551 } 552 553 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol 554 /// table. This is good for all clients except for us. Go through the trouble 555 /// to force this back. 556 static void forceRenaming(GlobalValue *GV, StringRef Name) { 557 // If the global doesn't force its name or if it already has the right name, 558 // there is nothing for us to do. 559 if (GV->hasLocalLinkage() || GV->getName() == Name) 560 return; 561 562 Module *M = GV->getParent(); 563 564 // If there is a conflict, rename the conflict. 565 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) { 566 GV->takeName(ConflictGV); 567 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed 568 assert(ConflictGV->getName() != Name && "forceRenaming didn't work"); 569 } else { 570 GV->setName(Name); // Force the name back 571 } 572 } 573 574 Value *GlobalValueMaterializer::materialize(Value *SGV) { 575 return TheIRLinker.materialize(SGV, false); 576 } 577 578 Value *LocalValueMaterializer::materialize(Value *SGV) { 579 return TheIRLinker.materialize(SGV, true); 580 } 581 582 Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) { 583 auto *SGV = dyn_cast<GlobalValue>(V); 584 if (!SGV) 585 return nullptr; 586 587 // When linking a global from other modules than source & dest, skip 588 // materializing it because it would be mapped later when its containing 589 // module is linked. Linking it now would potentially pull in many types that 590 // may not be mapped properly. 591 if (SGV->getParent() != &DstM && SGV->getParent() != SrcM.get()) 592 return nullptr; 593 594 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol); 595 if (!NewProto) { 596 setError(NewProto.takeError()); 597 return nullptr; 598 } 599 if (!*NewProto) 600 return nullptr; 601 602 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto); 603 if (!New) 604 return *NewProto; 605 606 // If we already created the body, just return. 607 if (auto *F = dyn_cast<Function>(New)) { 608 if (!F->isDeclaration()) 609 return New; 610 } else if (auto *V = dyn_cast<GlobalVariable>(New)) { 611 if (V->hasInitializer() || V->hasAppendingLinkage()) 612 return New; 613 } else if (auto *GA = dyn_cast<GlobalAlias>(New)) { 614 if (GA->getAliasee()) 615 return New; 616 } else if (auto *GI = dyn_cast<GlobalIFunc>(New)) { 617 if (GI->getResolver()) 618 return New; 619 } else { 620 llvm_unreachable("Invalid GlobalValue type"); 621 } 622 623 // If the global is being linked for an indirect symbol, it may have already 624 // been scheduled to satisfy a regular symbol. Similarly, a global being linked 625 // for a regular symbol may have already been scheduled for an indirect 626 // symbol. Check for these cases by looking in the other value map and 627 // confirming the same value has been scheduled. If there is an entry in the 628 // ValueMap but the value is different, it means that the value already had a 629 // definition in the destination module (linkonce for instance), but we need a 630 // new definition for the indirect symbol ("New" will be different). 631 if ((ForIndirectSymbol && ValueMap.lookup(SGV) == New) || 632 (!ForIndirectSymbol && IndirectSymbolValueMap.lookup(SGV) == New)) 633 return New; 634 635 if (ForIndirectSymbol || shouldLink(New, *SGV)) 636 setError(linkGlobalValueBody(*New, *SGV)); 637 638 return New; 639 } 640 641 /// Loop through the global variables in the src module and merge them into the 642 /// dest module. 643 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) { 644 // No linking to be performed or linking from the source: simply create an 645 // identical version of the symbol over in the dest module... the 646 // initializer will be filled in later by LinkGlobalInits. 647 GlobalVariable *NewDGV = 648 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()), 649 SGVar->isConstant(), GlobalValue::ExternalLinkage, 650 /*init*/ nullptr, SGVar->getName(), 651 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(), 652 SGVar->getAddressSpace()); 653 NewDGV->setAlignment(SGVar->getAlign()); 654 NewDGV->copyAttributesFrom(SGVar); 655 return NewDGV; 656 } 657 658 AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) { 659 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 660 for (int AttrIdx = Attribute::FirstTypeAttr; 661 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) { 662 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx; 663 if (Attrs.hasAttributeAtIndex(i, TypedAttr)) { 664 if (Type *Ty = 665 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) { 666 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr, 667 TypeMap.get(Ty)); 668 break; 669 } 670 } 671 } 672 } 673 return Attrs; 674 } 675 676 /// Link the function in the source module into the destination module if 677 /// needed, setting up mapping information. 678 Function *IRLinker::copyFunctionProto(const Function *SF) { 679 // If there is no linkage to be performed or we are linking from the source, 680 // bring SF over. 681 auto *F = Function::Create(TypeMap.get(SF->getFunctionType()), 682 GlobalValue::ExternalLinkage, 683 SF->getAddressSpace(), SF->getName(), &DstM); 684 F->copyAttributesFrom(SF); 685 F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes())); 686 return F; 687 } 688 689 /// Set up prototypes for any indirect symbols that come over from the source 690 /// module. 691 GlobalValue *IRLinker::copyIndirectSymbolProto(const GlobalValue *SGV) { 692 // If there is no linkage to be performed or we're linking from the source, 693 // bring over SGA. 694 auto *Ty = TypeMap.get(SGV->getValueType()); 695 696 if (auto *GA = dyn_cast<GlobalAlias>(SGV)) { 697 auto *DGA = GlobalAlias::create(Ty, SGV->getAddressSpace(), 698 GlobalValue::ExternalLinkage, 699 SGV->getName(), &DstM); 700 DGA->copyAttributesFrom(GA); 701 return DGA; 702 } 703 704 if (auto *GI = dyn_cast<GlobalIFunc>(SGV)) { 705 auto *DGI = GlobalIFunc::create(Ty, SGV->getAddressSpace(), 706 GlobalValue::ExternalLinkage, 707 SGV->getName(), nullptr, &DstM); 708 DGI->copyAttributesFrom(GI); 709 return DGI; 710 } 711 712 llvm_unreachable("Invalid source global value type"); 713 } 714 715 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV, 716 bool ForDefinition) { 717 GlobalValue *NewGV; 718 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) { 719 NewGV = copyGlobalVariableProto(SGVar); 720 } else if (auto *SF = dyn_cast<Function>(SGV)) { 721 NewGV = copyFunctionProto(SF); 722 } else { 723 if (ForDefinition) 724 NewGV = copyIndirectSymbolProto(SGV); 725 else if (SGV->getValueType()->isFunctionTy()) 726 NewGV = 727 Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())), 728 GlobalValue::ExternalLinkage, SGV->getAddressSpace(), 729 SGV->getName(), &DstM); 730 else 731 NewGV = 732 new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()), 733 /*isConstant*/ false, GlobalValue::ExternalLinkage, 734 /*init*/ nullptr, SGV->getName(), 735 /*insertbefore*/ nullptr, 736 SGV->getThreadLocalMode(), SGV->getAddressSpace()); 737 } 738 739 if (ForDefinition) 740 NewGV->setLinkage(SGV->getLinkage()); 741 else if (SGV->hasExternalWeakLinkage()) 742 NewGV->setLinkage(GlobalValue::ExternalWeakLinkage); 743 744 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) { 745 // Metadata for global variables and function declarations is copied eagerly. 746 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration()) 747 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0); 748 } 749 750 // Remove these copied constants in case this stays a declaration, since 751 // they point to the source module. If the def is linked the values will 752 // be mapped in during linkFunctionBody. 753 if (auto *NewF = dyn_cast<Function>(NewGV)) { 754 NewF->setPersonalityFn(nullptr); 755 NewF->setPrefixData(nullptr); 756 NewF->setPrologueData(nullptr); 757 } 758 759 return NewGV; 760 } 761 762 static StringRef getTypeNamePrefix(StringRef Name) { 763 size_t DotPos = Name.rfind('.'); 764 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' || 765 !isdigit(static_cast<unsigned char>(Name[DotPos + 1]))) 766 ? Name 767 : Name.substr(0, DotPos); 768 } 769 770 /// Loop over all of the linked values to compute type mappings. For example, 771 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct 772 /// types 'Foo' but one got renamed when the module was loaded into the same 773 /// LLVMContext. 774 void IRLinker::computeTypeMapping() { 775 for (GlobalValue &SGV : SrcM->globals()) { 776 GlobalValue *DGV = getLinkedToGlobal(&SGV); 777 if (!DGV) 778 continue; 779 780 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) { 781 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 782 continue; 783 } 784 785 // Unify the element type of appending arrays. 786 ArrayType *DAT = cast<ArrayType>(DGV->getValueType()); 787 ArrayType *SAT = cast<ArrayType>(SGV.getValueType()); 788 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType()); 789 } 790 791 for (GlobalValue &SGV : *SrcM) 792 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) { 793 if (DGV->getType() == SGV.getType()) { 794 // If the types of DGV and SGV are the same, it means that DGV is from 795 // the source module and got added to DstM from a shared metadata. We 796 // shouldn't map this type to itself in case the type's components get 797 // remapped to a new type from DstM (for instance, during the loop over 798 // SrcM->getIdentifiedStructTypes() below). 799 continue; 800 } 801 802 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 803 } 804 805 for (GlobalValue &SGV : SrcM->aliases()) 806 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) 807 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 808 809 // Incorporate types by name, scanning all the types in the source module. 810 // At this point, the destination module may have a type "%foo = { i32 }" for 811 // example. When the source module got loaded into the same LLVMContext, if 812 // it had the same type, it would have been renamed to "%foo.42 = { i32 }". 813 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes(); 814 for (StructType *ST : Types) { 815 if (!ST->hasName()) 816 continue; 817 818 if (TypeMap.DstStructTypesSet.hasType(ST)) { 819 // This is actually a type from the destination module. 820 // getIdentifiedStructTypes() can have found it by walking debug info 821 // metadata nodes, some of which get linked by name when ODR Type Uniquing 822 // is enabled on the Context, from the source to the destination module. 823 continue; 824 } 825 826 auto STTypePrefix = getTypeNamePrefix(ST->getName()); 827 if (STTypePrefix.size() == ST->getName().size()) 828 continue; 829 830 // Check to see if the destination module has a struct with the prefix name. 831 StructType *DST = StructType::getTypeByName(ST->getContext(), STTypePrefix); 832 if (!DST) 833 continue; 834 835 // Don't use it if this actually came from the source module. They're in 836 // the same LLVMContext after all. Also don't use it unless the type is 837 // actually used in the destination module. This can happen in situations 838 // like this: 839 // 840 // Module A Module B 841 // -------- -------- 842 // %Z = type { %A } %B = type { %C.1 } 843 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* } 844 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] } 845 // %C = type { i8* } %B.3 = type { %C.1 } 846 // 847 // When we link Module B with Module A, the '%B' in Module B is 848 // used. However, that would then use '%C.1'. But when we process '%C.1', 849 // we prefer to take the '%C' version. So we are then left with both 850 // '%C.1' and '%C' being used for the same types. This leads to some 851 // variables using one type and some using the other. 852 if (TypeMap.DstStructTypesSet.hasType(DST)) 853 TypeMap.addTypeMapping(DST, ST); 854 } 855 856 // Now that we have discovered all of the type equivalences, get a body for 857 // any 'opaque' types in the dest module that are now resolved. 858 TypeMap.linkDefinedTypeBodies(); 859 } 860 861 static void getArrayElements(const Constant *C, 862 SmallVectorImpl<Constant *> &Dest) { 863 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements(); 864 865 for (unsigned i = 0; i != NumElements; ++i) 866 Dest.push_back(C->getAggregateElement(i)); 867 } 868 869 /// If there were any appending global variables, link them together now. 870 Expected<Constant *> 871 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV, 872 const GlobalVariable *SrcGV) { 873 // Check that both variables have compatible properties. 874 if (DstGV && !DstGV->isDeclaration() && !SrcGV->isDeclaration()) { 875 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) 876 return stringErr( 877 "Linking globals named '" + SrcGV->getName() + 878 "': can only link appending global with another appending " 879 "global!"); 880 881 if (DstGV->isConstant() != SrcGV->isConstant()) 882 return stringErr("Appending variables linked with different const'ness!"); 883 884 if (DstGV->getAlign() != SrcGV->getAlign()) 885 return stringErr( 886 "Appending variables with different alignment need to be linked!"); 887 888 if (DstGV->getVisibility() != SrcGV->getVisibility()) 889 return stringErr( 890 "Appending variables with different visibility need to be linked!"); 891 892 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr()) 893 return stringErr( 894 "Appending variables with different unnamed_addr need to be linked!"); 895 896 if (DstGV->getSection() != SrcGV->getSection()) 897 return stringErr( 898 "Appending variables with different section name need to be linked!"); 899 } 900 901 // Do not need to do anything if source is a declaration. 902 if (SrcGV->isDeclaration()) 903 return DstGV; 904 905 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType())) 906 ->getElementType(); 907 908 // FIXME: This upgrade is done during linking to support the C API. Once the 909 // old form is deprecated, we should move this upgrade to 910 // llvm::UpgradeGlobalVariable() and simplify the logic here and in 911 // Mapper::mapAppendingVariable() in ValueMapper.cpp. 912 StringRef Name = SrcGV->getName(); 913 bool IsNewStructor = false; 914 bool IsOldStructor = false; 915 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") { 916 if (cast<StructType>(EltTy)->getNumElements() == 3) 917 IsNewStructor = true; 918 else 919 IsOldStructor = true; 920 } 921 922 PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo(); 923 if (IsOldStructor) { 924 auto &ST = *cast<StructType>(EltTy); 925 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 926 EltTy = StructType::get(SrcGV->getContext(), Tys, false); 927 } 928 929 uint64_t DstNumElements = 0; 930 if (DstGV && !DstGV->isDeclaration()) { 931 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType()); 932 DstNumElements = DstTy->getNumElements(); 933 934 // Check to see that they two arrays agree on type. 935 if (EltTy != DstTy->getElementType()) 936 return stringErr("Appending variables with different element types!"); 937 } 938 939 SmallVector<Constant *, 16> SrcElements; 940 getArrayElements(SrcGV->getInitializer(), SrcElements); 941 942 if (IsNewStructor) { 943 erase_if(SrcElements, [this](Constant *E) { 944 auto *Key = 945 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts()); 946 if (!Key) 947 return false; 948 GlobalValue *DGV = getLinkedToGlobal(Key); 949 return !shouldLink(DGV, *Key); 950 }); 951 } 952 uint64_t NewSize = DstNumElements + SrcElements.size(); 953 ArrayType *NewType = ArrayType::get(EltTy, NewSize); 954 955 // Create the new global variable. 956 GlobalVariable *NG = new GlobalVariable( 957 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(), 958 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(), 959 SrcGV->getAddressSpace()); 960 961 NG->copyAttributesFrom(SrcGV); 962 forceRenaming(NG, SrcGV->getName()); 963 964 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType())); 965 966 Mapper.scheduleMapAppendingVariable( 967 *NG, 968 (DstGV && !DstGV->isDeclaration()) ? DstGV->getInitializer() : nullptr, 969 IsOldStructor, SrcElements); 970 971 // Replace any uses of the two global variables with uses of the new 972 // global. 973 if (DstGV) { 974 RAUWWorklist.push_back( 975 std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType()))); 976 } 977 978 return Ret; 979 } 980 981 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) { 982 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage()) 983 return true; 984 985 if (DGV && !DGV->isDeclarationForLinker()) 986 return false; 987 988 if (SGV.isDeclaration() || DoneLinkingBodies) 989 return false; 990 991 // Callback to the client to give a chance to lazily add the Global to the 992 // list of value to link. 993 bool LazilyAdded = false; 994 if (AddLazyFor) 995 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) { 996 maybeAdd(&GV); 997 LazilyAdded = true; 998 }); 999 return LazilyAdded; 1000 } 1001 1002 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV, 1003 bool ForIndirectSymbol) { 1004 GlobalValue *DGV = getLinkedToGlobal(SGV); 1005 1006 bool ShouldLink = shouldLink(DGV, *SGV); 1007 1008 // just missing from map 1009 if (ShouldLink) { 1010 auto I = ValueMap.find(SGV); 1011 if (I != ValueMap.end()) 1012 return cast<Constant>(I->second); 1013 1014 I = IndirectSymbolValueMap.find(SGV); 1015 if (I != IndirectSymbolValueMap.end()) 1016 return cast<Constant>(I->second); 1017 } 1018 1019 if (!ShouldLink && ForIndirectSymbol) 1020 DGV = nullptr; 1021 1022 // Handle the ultra special appending linkage case first. 1023 if (SGV->hasAppendingLinkage() || (DGV && DGV->hasAppendingLinkage())) 1024 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV), 1025 cast<GlobalVariable>(SGV)); 1026 1027 bool NeedsRenaming = false; 1028 GlobalValue *NewGV; 1029 if (DGV && !ShouldLink) { 1030 NewGV = DGV; 1031 } else { 1032 // If we are done linking global value bodies (i.e. we are performing 1033 // metadata linking), don't link in the global value due to this 1034 // reference, simply map it to null. 1035 if (DoneLinkingBodies) 1036 return nullptr; 1037 1038 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol); 1039 if (ShouldLink || !ForIndirectSymbol) 1040 NeedsRenaming = true; 1041 } 1042 1043 // Overloaded intrinsics have overloaded types names as part of their 1044 // names. If we renamed overloaded types we should rename the intrinsic 1045 // as well. 1046 if (Function *F = dyn_cast<Function>(NewGV)) 1047 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 1048 NewGV->eraseFromParent(); 1049 NewGV = *Remangled; 1050 NeedsRenaming = false; 1051 } 1052 1053 if (NeedsRenaming) 1054 forceRenaming(NewGV, SGV->getName()); 1055 1056 if (ShouldLink || ForIndirectSymbol) { 1057 if (const Comdat *SC = SGV->getComdat()) { 1058 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) { 1059 Comdat *DC = DstM.getOrInsertComdat(SC->getName()); 1060 DC->setSelectionKind(SC->getSelectionKind()); 1061 GO->setComdat(DC); 1062 } 1063 } 1064 } 1065 1066 if (!ShouldLink && ForIndirectSymbol) 1067 NewGV->setLinkage(GlobalValue::InternalLinkage); 1068 1069 Constant *C = NewGV; 1070 // Only create a bitcast if necessary. In particular, with 1071 // DebugTypeODRUniquing we may reach metadata in the destination module 1072 // containing a GV from the source module, in which case SGV will be 1073 // the same as DGV and NewGV, and TypeMap.get() will assert since it 1074 // assumes it is being invoked on a type in the source module. 1075 if (DGV && NewGV != SGV) { 1076 C = ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1077 NewGV, TypeMap.get(SGV->getType())); 1078 } 1079 1080 if (DGV && NewGV != DGV) { 1081 // Schedule "replace all uses with" to happen after materializing is 1082 // done. It is not safe to do it now, since ValueMapper may be holding 1083 // pointers to constants that will get deleted if RAUW runs. 1084 RAUWWorklist.push_back(std::make_pair( 1085 DGV, 1086 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType()))); 1087 } 1088 1089 return C; 1090 } 1091 1092 /// Update the initializers in the Dest module now that all globals that may be 1093 /// referenced are in Dest. 1094 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) { 1095 // Figure out what the initializer looks like in the dest module. 1096 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer()); 1097 } 1098 1099 /// Copy the source function over into the dest function and fix up references 1100 /// to values. At this point we know that Dest is an external function, and 1101 /// that Src is not. 1102 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) { 1103 assert(Dst.isDeclaration() && !Src.isDeclaration()); 1104 1105 // Materialize if needed. 1106 if (Error Err = Src.materialize()) 1107 return Err; 1108 1109 // Link in the operands without remapping. 1110 if (Src.hasPrefixData()) 1111 Dst.setPrefixData(Src.getPrefixData()); 1112 if (Src.hasPrologueData()) 1113 Dst.setPrologueData(Src.getPrologueData()); 1114 if (Src.hasPersonalityFn()) 1115 Dst.setPersonalityFn(Src.getPersonalityFn()); 1116 1117 // Copy over the metadata attachments without remapping. 1118 Dst.copyMetadata(&Src, 0); 1119 1120 // Steal arguments and splice the body of Src into Dst. 1121 Dst.stealArgumentListFrom(Src); 1122 Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList()); 1123 1124 // Everything has been moved over. Remap it. 1125 Mapper.scheduleRemapFunction(Dst); 1126 return Error::success(); 1127 } 1128 1129 void IRLinker::linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src) { 1130 Mapper.scheduleMapGlobalAlias(Dst, *Src.getAliasee(), IndirectSymbolMCID); 1131 } 1132 1133 void IRLinker::linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src) { 1134 Mapper.scheduleMapGlobalIFunc(Dst, *Src.getResolver(), IndirectSymbolMCID); 1135 } 1136 1137 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) { 1138 if (auto *F = dyn_cast<Function>(&Src)) 1139 return linkFunctionBody(cast<Function>(Dst), *F); 1140 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) { 1141 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar); 1142 return Error::success(); 1143 } 1144 if (auto *GA = dyn_cast<GlobalAlias>(&Src)) { 1145 linkAliasAliasee(cast<GlobalAlias>(Dst), *GA); 1146 return Error::success(); 1147 } 1148 linkIFuncResolver(cast<GlobalIFunc>(Dst), cast<GlobalIFunc>(Src)); 1149 return Error::success(); 1150 } 1151 1152 void IRLinker::flushRAUWWorklist() { 1153 for (const auto &Elem : RAUWWorklist) { 1154 GlobalValue *Old; 1155 Value *New; 1156 std::tie(Old, New) = Elem; 1157 1158 Old->replaceAllUsesWith(New); 1159 Old->eraseFromParent(); 1160 } 1161 RAUWWorklist.clear(); 1162 } 1163 1164 void IRLinker::prepareCompileUnitsForImport() { 1165 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu"); 1166 if (!SrcCompileUnits) 1167 return; 1168 // When importing for ThinLTO, prevent importing of types listed on 1169 // the DICompileUnit that we don't need a copy of in the importing 1170 // module. They will be emitted by the originating module. 1171 for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) { 1172 auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I)); 1173 assert(CU && "Expected valid compile unit"); 1174 // Enums, macros, and retained types don't need to be listed on the 1175 // imported DICompileUnit. This means they will only be imported 1176 // if reached from the mapped IR. 1177 CU->replaceEnumTypes(nullptr); 1178 CU->replaceMacros(nullptr); 1179 CU->replaceRetainedTypes(nullptr); 1180 1181 // The original definition (or at least its debug info - if the variable is 1182 // internalized and optimized away) will remain in the source module, so 1183 // there's no need to import them. 1184 // If LLVM ever does more advanced optimizations on global variables 1185 // (removing/localizing write operations, for instance) that can track 1186 // through debug info, this decision may need to be revisited - but do so 1187 // with care when it comes to debug info size. Emitting small CUs containing 1188 // only a few imported entities into every destination module may be very 1189 // size inefficient. 1190 CU->replaceGlobalVariables(nullptr); 1191 1192 // Imported entities only need to be mapped in if they have local 1193 // scope, as those might correspond to an imported entity inside a 1194 // function being imported (any locally scoped imported entities that 1195 // don't end up referenced by an imported function will not be emitted 1196 // into the object). Imported entities not in a local scope 1197 // (e.g. on the namespace) only need to be emitted by the originating 1198 // module. Create a list of the locally scoped imported entities, and 1199 // replace the source CUs imported entity list with the new list, so 1200 // only those are mapped in. 1201 // FIXME: Locally-scoped imported entities could be moved to the 1202 // functions they are local to instead of listing them on the CU, and 1203 // we would naturally only link in those needed by function importing. 1204 SmallVector<TrackingMDNodeRef, 4> AllImportedModules; 1205 bool ReplaceImportedEntities = false; 1206 for (auto *IE : CU->getImportedEntities()) { 1207 DIScope *Scope = IE->getScope(); 1208 assert(Scope && "Invalid Scope encoding!"); 1209 if (isa<DILocalScope>(Scope)) 1210 AllImportedModules.emplace_back(IE); 1211 else 1212 ReplaceImportedEntities = true; 1213 } 1214 if (ReplaceImportedEntities) { 1215 if (!AllImportedModules.empty()) 1216 CU->replaceImportedEntities(MDTuple::get( 1217 CU->getContext(), 1218 SmallVector<Metadata *, 16>(AllImportedModules.begin(), 1219 AllImportedModules.end()))); 1220 else 1221 // If there were no local scope imported entities, we can map 1222 // the whole list to nullptr. 1223 CU->replaceImportedEntities(nullptr); 1224 } 1225 } 1226 } 1227 1228 /// Insert all of the named MDNodes in Src into the Dest module. 1229 void IRLinker::linkNamedMDNodes() { 1230 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1231 for (const NamedMDNode &NMD : SrcM->named_metadata()) { 1232 // Don't link module flags here. Do them separately. 1233 if (&NMD == SrcModFlags) 1234 continue; 1235 // Don't import pseudo probe descriptors here for thinLTO. They will be 1236 // emitted by the originating module. 1237 if (IsPerformingImport && NMD.getName() == PseudoProbeDescMetadataName) { 1238 if (!DstM.getNamedMetadata(NMD.getName())) 1239 emitWarning("Pseudo-probe ignored: source module '" + 1240 SrcM->getModuleIdentifier() + 1241 "' is compiled with -fpseudo-probe-for-profiling while " 1242 "destination module '" + 1243 DstM.getModuleIdentifier() + "' is not\n"); 1244 continue; 1245 } 1246 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName()); 1247 // Add Src elements into Dest node. 1248 for (const MDNode *Op : NMD.operands()) 1249 DestNMD->addOperand(Mapper.mapMDNode(*Op)); 1250 } 1251 } 1252 1253 /// Merge the linker flags in Src into the Dest module. 1254 Error IRLinker::linkModuleFlagsMetadata() { 1255 // If the source module has no module flags, we are done. 1256 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1257 if (!SrcModFlags) 1258 return Error::success(); 1259 1260 // Check for module flag for updates before do anything. 1261 UpgradeModuleFlags(*SrcM); 1262 1263 // If the destination module doesn't have module flags yet, then just copy 1264 // over the source module's flags. 1265 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata(); 1266 if (DstModFlags->getNumOperands() == 0) { 1267 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) 1268 DstModFlags->addOperand(SrcModFlags->getOperand(I)); 1269 1270 return Error::success(); 1271 } 1272 1273 // First build a map of the existing module flags and requirements. 1274 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags; 1275 SmallSetVector<MDNode *, 16> Requirements; 1276 SmallVector<unsigned, 0> Mins; 1277 DenseSet<MDString *> SeenMin; 1278 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) { 1279 MDNode *Op = DstModFlags->getOperand(I); 1280 uint64_t Behavior = 1281 mdconst::extract<ConstantInt>(Op->getOperand(0))->getZExtValue(); 1282 MDString *ID = cast<MDString>(Op->getOperand(1)); 1283 1284 if (Behavior == Module::Require) { 1285 Requirements.insert(cast<MDNode>(Op->getOperand(2))); 1286 } else { 1287 if (Behavior == Module::Min) 1288 Mins.push_back(I); 1289 Flags[ID] = std::make_pair(Op, I); 1290 } 1291 } 1292 1293 // Merge in the flags from the source module, and also collect its set of 1294 // requirements. 1295 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) { 1296 MDNode *SrcOp = SrcModFlags->getOperand(I); 1297 ConstantInt *SrcBehavior = 1298 mdconst::extract<ConstantInt>(SrcOp->getOperand(0)); 1299 MDString *ID = cast<MDString>(SrcOp->getOperand(1)); 1300 MDNode *DstOp; 1301 unsigned DstIndex; 1302 std::tie(DstOp, DstIndex) = Flags.lookup(ID); 1303 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue(); 1304 SeenMin.insert(ID); 1305 1306 // If this is a requirement, add it and continue. 1307 if (SrcBehaviorValue == Module::Require) { 1308 // If the destination module does not already have this requirement, add 1309 // it. 1310 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) { 1311 DstModFlags->addOperand(SrcOp); 1312 } 1313 continue; 1314 } 1315 1316 // If there is no existing flag with this ID, just add it. 1317 if (!DstOp) { 1318 if (SrcBehaviorValue == Module::Min) { 1319 Mins.push_back(DstModFlags->getNumOperands()); 1320 SeenMin.erase(ID); 1321 } 1322 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands()); 1323 DstModFlags->addOperand(SrcOp); 1324 continue; 1325 } 1326 1327 // Otherwise, perform a merge. 1328 ConstantInt *DstBehavior = 1329 mdconst::extract<ConstantInt>(DstOp->getOperand(0)); 1330 unsigned DstBehaviorValue = DstBehavior->getZExtValue(); 1331 1332 auto overrideDstValue = [&]() { 1333 DstModFlags->setOperand(DstIndex, SrcOp); 1334 Flags[ID].first = SrcOp; 1335 }; 1336 1337 // If either flag has override behavior, handle it first. 1338 if (DstBehaviorValue == Module::Override) { 1339 // Diagnose inconsistent flags which both have override behavior. 1340 if (SrcBehaviorValue == Module::Override && 1341 SrcOp->getOperand(2) != DstOp->getOperand(2)) 1342 return stringErr("linking module flags '" + ID->getString() + 1343 "': IDs have conflicting override values in '" + 1344 SrcM->getModuleIdentifier() + "' and '" + 1345 DstM.getModuleIdentifier() + "'"); 1346 continue; 1347 } else if (SrcBehaviorValue == Module::Override) { 1348 // Update the destination flag to that of the source. 1349 overrideDstValue(); 1350 continue; 1351 } 1352 1353 // Diagnose inconsistent merge behavior types. 1354 if (SrcBehaviorValue != DstBehaviorValue) { 1355 bool MinAndWarn = (SrcBehaviorValue == Module::Min && 1356 DstBehaviorValue == Module::Warning) || 1357 (DstBehaviorValue == Module::Min && 1358 SrcBehaviorValue == Module::Warning); 1359 bool MaxAndWarn = (SrcBehaviorValue == Module::Max && 1360 DstBehaviorValue == Module::Warning) || 1361 (DstBehaviorValue == Module::Max && 1362 SrcBehaviorValue == Module::Warning); 1363 if (!(MaxAndWarn || MinAndWarn)) 1364 return stringErr("linking module flags '" + ID->getString() + 1365 "': IDs have conflicting behaviors in '" + 1366 SrcM->getModuleIdentifier() + "' and '" + 1367 DstM.getModuleIdentifier() + "'"); 1368 } 1369 1370 auto ensureDistinctOp = [&](MDNode *DstValue) { 1371 assert(isa<MDTuple>(DstValue) && 1372 "Expected MDTuple when appending module flags"); 1373 if (DstValue->isDistinct()) 1374 return dyn_cast<MDTuple>(DstValue); 1375 ArrayRef<MDOperand> DstOperands = DstValue->operands(); 1376 MDTuple *New = MDTuple::getDistinct( 1377 DstM.getContext(), 1378 SmallVector<Metadata *, 4>(DstOperands.begin(), DstOperands.end())); 1379 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New}; 1380 MDNode *Flag = MDTuple::getDistinct(DstM.getContext(), FlagOps); 1381 DstModFlags->setOperand(DstIndex, Flag); 1382 Flags[ID].first = Flag; 1383 return New; 1384 }; 1385 1386 // Emit a warning if the values differ and either source or destination 1387 // request Warning behavior. 1388 if ((DstBehaviorValue == Module::Warning || 1389 SrcBehaviorValue == Module::Warning) && 1390 SrcOp->getOperand(2) != DstOp->getOperand(2)) { 1391 std::string Str; 1392 raw_string_ostream(Str) 1393 << "linking module flags '" << ID->getString() 1394 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2) 1395 << "' from " << SrcM->getModuleIdentifier() << " with '" 1396 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier() 1397 << ')'; 1398 emitWarning(Str); 1399 } 1400 1401 // Choose the minimum if either source or destination request Min behavior. 1402 if (DstBehaviorValue == Module::Min || SrcBehaviorValue == Module::Min) { 1403 ConstantInt *DstValue = 1404 mdconst::extract<ConstantInt>(DstOp->getOperand(2)); 1405 ConstantInt *SrcValue = 1406 mdconst::extract<ConstantInt>(SrcOp->getOperand(2)); 1407 1408 // The resulting flag should have a Min behavior, and contain the minimum 1409 // value from between the source and destination values. 1410 Metadata *FlagOps[] = { 1411 (DstBehaviorValue != Module::Min ? SrcOp : DstOp)->getOperand(0), ID, 1412 (SrcValue->getZExtValue() < DstValue->getZExtValue() ? SrcOp : DstOp) 1413 ->getOperand(2)}; 1414 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1415 DstModFlags->setOperand(DstIndex, Flag); 1416 Flags[ID].first = Flag; 1417 continue; 1418 } 1419 1420 // Choose the maximum if either source or destination request Max behavior. 1421 if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) { 1422 ConstantInt *DstValue = 1423 mdconst::extract<ConstantInt>(DstOp->getOperand(2)); 1424 ConstantInt *SrcValue = 1425 mdconst::extract<ConstantInt>(SrcOp->getOperand(2)); 1426 1427 // The resulting flag should have a Max behavior, and contain the maximum 1428 // value from between the source and destination values. 1429 Metadata *FlagOps[] = { 1430 (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID, 1431 (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp) 1432 ->getOperand(2)}; 1433 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1434 DstModFlags->setOperand(DstIndex, Flag); 1435 Flags[ID].first = Flag; 1436 continue; 1437 } 1438 1439 // Perform the merge for standard behavior types. 1440 switch (SrcBehaviorValue) { 1441 case Module::Require: 1442 case Module::Override: 1443 llvm_unreachable("not possible"); 1444 case Module::Error: { 1445 // Emit an error if the values differ. 1446 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) 1447 return stringErr("linking module flags '" + ID->getString() + 1448 "': IDs have conflicting values in '" + 1449 SrcM->getModuleIdentifier() + "' and '" + 1450 DstM.getModuleIdentifier() + "'"); 1451 continue; 1452 } 1453 case Module::Warning: { 1454 break; 1455 } 1456 case Module::Max: { 1457 break; 1458 } 1459 case Module::Append: { 1460 MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2))); 1461 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1462 for (const auto &O : SrcValue->operands()) 1463 DstValue->push_back(O); 1464 break; 1465 } 1466 case Module::AppendUnique: { 1467 SmallSetVector<Metadata *, 16> Elts; 1468 MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2))); 1469 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1470 Elts.insert(DstValue->op_begin(), DstValue->op_end()); 1471 Elts.insert(SrcValue->op_begin(), SrcValue->op_end()); 1472 for (auto I = DstValue->getNumOperands(); I < Elts.size(); I++) 1473 DstValue->push_back(Elts[I]); 1474 break; 1475 } 1476 } 1477 1478 } 1479 1480 // For the Min behavior, set the value to 0 if either module does not have the 1481 // flag. 1482 for (auto Idx : Mins) { 1483 MDNode *Op = DstModFlags->getOperand(Idx); 1484 MDString *ID = cast<MDString>(Op->getOperand(1)); 1485 if (!SeenMin.count(ID)) { 1486 ConstantInt *V = mdconst::extract<ConstantInt>(Op->getOperand(2)); 1487 Metadata *FlagOps[] = { 1488 Op->getOperand(0), ID, 1489 ConstantAsMetadata::get(ConstantInt::get(V->getType(), 0))}; 1490 DstModFlags->setOperand(Idx, MDNode::get(DstM.getContext(), FlagOps)); 1491 } 1492 } 1493 1494 // Check all of the requirements. 1495 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) { 1496 MDNode *Requirement = Requirements[I]; 1497 MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1498 Metadata *ReqValue = Requirement->getOperand(1); 1499 1500 MDNode *Op = Flags[Flag].first; 1501 if (!Op || Op->getOperand(2) != ReqValue) 1502 return stringErr("linking module flags '" + Flag->getString() + 1503 "': does not have the required value"); 1504 } 1505 return Error::success(); 1506 } 1507 1508 /// Return InlineAsm adjusted with target-specific directives if required. 1509 /// For ARM and Thumb, we have to add directives to select the appropriate ISA 1510 /// to support mixing module-level inline assembly from ARM and Thumb modules. 1511 static std::string adjustInlineAsm(const std::string &InlineAsm, 1512 const Triple &Triple) { 1513 if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb) 1514 return ".text\n.balign 2\n.thumb\n" + InlineAsm; 1515 if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb) 1516 return ".text\n.balign 4\n.arm\n" + InlineAsm; 1517 return InlineAsm; 1518 } 1519 1520 Error IRLinker::run() { 1521 // Ensure metadata materialized before value mapping. 1522 if (SrcM->getMaterializer()) 1523 if (Error Err = SrcM->getMaterializer()->materializeMetadata()) 1524 return Err; 1525 1526 // Inherit the target data from the source module if the destination module 1527 // doesn't have one already. 1528 if (DstM.getDataLayout().isDefault()) 1529 DstM.setDataLayout(SrcM->getDataLayout()); 1530 1531 // Copy the target triple from the source to dest if the dest's is empty. 1532 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty()) 1533 DstM.setTargetTriple(SrcM->getTargetTriple()); 1534 1535 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple()); 1536 1537 // During CUDA compilation we have to link with the bitcode supplied with 1538 // CUDA. libdevice bitcode either has no data layout set (pre-CUDA-11), or has 1539 // the layout that is different from the one used by LLVM/clang (it does not 1540 // include i128). Issuing a warning is not very helpful as there's not much 1541 // the user can do about it. 1542 bool EnableDLWarning = true; 1543 bool EnableTripleWarning = true; 1544 if (SrcTriple.isNVPTX() && DstTriple.isNVPTX()) { 1545 std::string ModuleId = SrcM->getModuleIdentifier(); 1546 StringRef FileName = llvm::sys::path::filename(ModuleId); 1547 bool SrcIsLibDevice = 1548 FileName.startswith("libdevice") && FileName.endswith(".10.bc"); 1549 bool SrcHasLibDeviceDL = 1550 (SrcM->getDataLayoutStr().empty() || 1551 SrcM->getDataLayoutStr() == "e-i64:64-v16:16-v32:32-n16:32:64"); 1552 // libdevice bitcode uses nvptx64-nvidia-gpulibs or just 1553 // 'nvptx-unknown-unknown' triple (before CUDA-10.x) and is compatible with 1554 // all NVPTX variants. 1555 bool SrcHasLibDeviceTriple = (SrcTriple.getVendor() == Triple::NVIDIA && 1556 SrcTriple.getOSName() == "gpulibs") || 1557 (SrcTriple.getVendorName() == "unknown" && 1558 SrcTriple.getOSName() == "unknown"); 1559 EnableTripleWarning = !(SrcIsLibDevice && SrcHasLibDeviceTriple); 1560 EnableDLWarning = !(SrcIsLibDevice && SrcHasLibDeviceDL); 1561 } 1562 1563 if (EnableDLWarning && (SrcM->getDataLayout() != DstM.getDataLayout())) { 1564 emitWarning("Linking two modules of different data layouts: '" + 1565 SrcM->getModuleIdentifier() + "' is '" + 1566 SrcM->getDataLayoutStr() + "' whereas '" + 1567 DstM.getModuleIdentifier() + "' is '" + 1568 DstM.getDataLayoutStr() + "'\n"); 1569 } 1570 1571 if (EnableTripleWarning && !SrcM->getTargetTriple().empty() && 1572 !SrcTriple.isCompatibleWith(DstTriple)) 1573 emitWarning("Linking two modules of different target triples: '" + 1574 SrcM->getModuleIdentifier() + "' is '" + 1575 SrcM->getTargetTriple() + "' whereas '" + 1576 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() + 1577 "'\n"); 1578 1579 DstM.setTargetTriple(SrcTriple.merge(DstTriple)); 1580 1581 // Loop over all of the linked values to compute type mappings. 1582 computeTypeMapping(); 1583 1584 std::reverse(Worklist.begin(), Worklist.end()); 1585 while (!Worklist.empty()) { 1586 GlobalValue *GV = Worklist.back(); 1587 Worklist.pop_back(); 1588 1589 // Already mapped. 1590 if (ValueMap.find(GV) != ValueMap.end() || 1591 IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end()) 1592 continue; 1593 1594 assert(!GV->isDeclaration()); 1595 Mapper.mapValue(*GV); 1596 if (FoundError) 1597 return std::move(*FoundError); 1598 flushRAUWWorklist(); 1599 } 1600 1601 // Note that we are done linking global value bodies. This prevents 1602 // metadata linking from creating new references. 1603 DoneLinkingBodies = true; 1604 Mapper.addFlags(RF_NullMapMissingGlobalValues); 1605 1606 // Remap all of the named MDNodes in Src into the DstM module. We do this 1607 // after linking GlobalValues so that MDNodes that reference GlobalValues 1608 // are properly remapped. 1609 linkNamedMDNodes(); 1610 1611 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) { 1612 // Append the module inline asm string. 1613 DstM.appendModuleInlineAsm(adjustInlineAsm(SrcM->getModuleInlineAsm(), 1614 SrcTriple)); 1615 } else if (IsPerformingImport) { 1616 // Import any symver directives for symbols in DstM. 1617 ModuleSymbolTable::CollectAsmSymvers(*SrcM, 1618 [&](StringRef Name, StringRef Alias) { 1619 if (DstM.getNamedValue(Name)) { 1620 SmallString<256> S(".symver "); 1621 S += Name; 1622 S += ", "; 1623 S += Alias; 1624 DstM.appendModuleInlineAsm(S); 1625 } 1626 }); 1627 } 1628 1629 // Reorder the globals just added to the destination module to match their 1630 // original order in the source module. 1631 Module::GlobalListType &Globals = DstM.getGlobalList(); 1632 for (GlobalVariable &GV : SrcM->globals()) { 1633 if (GV.hasAppendingLinkage()) 1634 continue; 1635 Value *NewValue = Mapper.mapValue(GV); 1636 if (NewValue) { 1637 auto *NewGV = dyn_cast<GlobalVariable>(NewValue->stripPointerCasts()); 1638 if (NewGV) 1639 Globals.splice(Globals.end(), Globals, NewGV->getIterator()); 1640 } 1641 } 1642 1643 // Merge the module flags into the DstM module. 1644 return linkModuleFlagsMetadata(); 1645 } 1646 1647 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P) 1648 : ETypes(E), IsPacked(P) {} 1649 1650 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST) 1651 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {} 1652 1653 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const { 1654 return IsPacked == That.IsPacked && ETypes == That.ETypes; 1655 } 1656 1657 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const { 1658 return !this->operator==(That); 1659 } 1660 1661 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() { 1662 return DenseMapInfo<StructType *>::getEmptyKey(); 1663 } 1664 1665 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() { 1666 return DenseMapInfo<StructType *>::getTombstoneKey(); 1667 } 1668 1669 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) { 1670 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()), 1671 Key.IsPacked); 1672 } 1673 1674 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) { 1675 return getHashValue(KeyTy(ST)); 1676 } 1677 1678 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS, 1679 const StructType *RHS) { 1680 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1681 return false; 1682 return LHS == KeyTy(RHS); 1683 } 1684 1685 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS, 1686 const StructType *RHS) { 1687 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1688 return LHS == RHS; 1689 return KeyTy(LHS) == KeyTy(RHS); 1690 } 1691 1692 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) { 1693 assert(!Ty->isOpaque()); 1694 NonOpaqueStructTypes.insert(Ty); 1695 } 1696 1697 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) { 1698 assert(!Ty->isOpaque()); 1699 NonOpaqueStructTypes.insert(Ty); 1700 bool Removed = OpaqueStructTypes.erase(Ty); 1701 (void)Removed; 1702 assert(Removed); 1703 } 1704 1705 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) { 1706 assert(Ty->isOpaque()); 1707 OpaqueStructTypes.insert(Ty); 1708 } 1709 1710 StructType * 1711 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes, 1712 bool IsPacked) { 1713 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked); 1714 auto I = NonOpaqueStructTypes.find_as(Key); 1715 return I == NonOpaqueStructTypes.end() ? nullptr : *I; 1716 } 1717 1718 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) { 1719 if (Ty->isOpaque()) 1720 return OpaqueStructTypes.count(Ty); 1721 auto I = NonOpaqueStructTypes.find(Ty); 1722 return I == NonOpaqueStructTypes.end() ? false : *I == Ty; 1723 } 1724 1725 IRMover::IRMover(Module &M) : Composite(M) { 1726 TypeFinder StructTypes; 1727 StructTypes.run(M, /* OnlyNamed */ false); 1728 for (StructType *Ty : StructTypes) { 1729 if (Ty->isOpaque()) 1730 IdentifiedStructTypes.addOpaque(Ty); 1731 else 1732 IdentifiedStructTypes.addNonOpaque(Ty); 1733 } 1734 // Self-map metadatas in the destination module. This is needed when 1735 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the 1736 // destination module may be reached from the source module. 1737 for (auto *MD : StructTypes.getVisitedMetadata()) { 1738 SharedMDs[MD].reset(const_cast<MDNode *>(MD)); 1739 } 1740 } 1741 1742 Error IRMover::move(std::unique_ptr<Module> Src, 1743 ArrayRef<GlobalValue *> ValuesToLink, 1744 LazyCallback AddLazyFor, bool IsPerformingImport) { 1745 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes, 1746 std::move(Src), ValuesToLink, std::move(AddLazyFor), 1747 IsPerformingImport); 1748 Error E = TheIRLinker.run(); 1749 Composite.dropTriviallyDeadConstantArrays(); 1750 return E; 1751 } 1752