1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Linker/IRMover.h" 10 #include "LinkDiagnosticInfo.h" 11 #include "llvm/ADT/SetVector.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/IR/Constants.h" 15 #include "llvm/IR/DebugInfo.h" 16 #include "llvm/IR/DiagnosticPrinter.h" 17 #include "llvm/IR/GVMaterializer.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/PseudoProbe.h" 20 #include "llvm/IR/TypeFinder.h" 21 #include "llvm/Object/ModuleSymbolTable.h" 22 #include "llvm/Support/Error.h" 23 #include "llvm/Support/Path.h" 24 #include "llvm/Transforms/Utils/Cloning.h" 25 #include <utility> 26 using namespace llvm; 27 28 //===----------------------------------------------------------------------===// 29 // TypeMap implementation. 30 //===----------------------------------------------------------------------===// 31 32 namespace { 33 class TypeMapTy : public ValueMapTypeRemapper { 34 /// This is a mapping from a source type to a destination type to use. 35 DenseMap<Type *, Type *> MappedTypes; 36 37 /// When checking to see if two subgraphs are isomorphic, we speculatively 38 /// add types to MappedTypes, but keep track of them here in case we need to 39 /// roll back. 40 SmallVector<Type *, 16> SpeculativeTypes; 41 42 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes; 43 44 /// This is a list of non-opaque structs in the source module that are mapped 45 /// to an opaque struct in the destination module. 46 SmallVector<StructType *, 16> SrcDefinitionsToResolve; 47 48 /// This is the set of opaque types in the destination modules who are 49 /// getting a body from the source module. 50 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes; 51 52 public: 53 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet) 54 : DstStructTypesSet(DstStructTypesSet) {} 55 56 IRMover::IdentifiedStructTypeSet &DstStructTypesSet; 57 /// Indicate that the specified type in the destination module is conceptually 58 /// equivalent to the specified type in the source module. 59 void addTypeMapping(Type *DstTy, Type *SrcTy); 60 61 /// Produce a body for an opaque type in the dest module from a type 62 /// definition in the source module. 63 void linkDefinedTypeBodies(); 64 65 /// Return the mapped type to use for the specified input type from the 66 /// source module. 67 Type *get(Type *SrcTy); 68 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited); 69 70 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes); 71 72 FunctionType *get(FunctionType *T) { 73 return cast<FunctionType>(get((Type *)T)); 74 } 75 76 private: 77 Type *remapType(Type *SrcTy) override { return get(SrcTy); } 78 79 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy); 80 }; 81 } 82 83 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) { 84 assert(SpeculativeTypes.empty()); 85 assert(SpeculativeDstOpaqueTypes.empty()); 86 87 // Check to see if these types are recursively isomorphic and establish a 88 // mapping between them if so. 89 if (!areTypesIsomorphic(DstTy, SrcTy)) { 90 // Oops, they aren't isomorphic. Just discard this request by rolling out 91 // any speculative mappings we've established. 92 for (Type *Ty : SpeculativeTypes) 93 MappedTypes.erase(Ty); 94 95 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() - 96 SpeculativeDstOpaqueTypes.size()); 97 for (StructType *Ty : SpeculativeDstOpaqueTypes) 98 DstResolvedOpaqueTypes.erase(Ty); 99 } else { 100 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy 101 // and all its descendants to lower amount of renaming in LLVM context 102 // Renaming occurs because we load all source modules to the same context 103 // and declaration with existing name gets renamed (i.e Foo -> Foo.42). 104 // As a result we may get several different types in the destination 105 // module, which are in fact the same. 106 for (Type *Ty : SpeculativeTypes) 107 if (auto *STy = dyn_cast<StructType>(Ty)) 108 if (STy->hasName()) 109 STy->setName(""); 110 } 111 SpeculativeTypes.clear(); 112 SpeculativeDstOpaqueTypes.clear(); 113 } 114 115 /// Recursively walk this pair of types, returning true if they are isomorphic, 116 /// false if they are not. 117 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { 118 // Two types with differing kinds are clearly not isomorphic. 119 if (DstTy->getTypeID() != SrcTy->getTypeID()) 120 return false; 121 122 // If we have an entry in the MappedTypes table, then we have our answer. 123 Type *&Entry = MappedTypes[SrcTy]; 124 if (Entry) 125 return Entry == DstTy; 126 127 // Two identical types are clearly isomorphic. Remember this 128 // non-speculatively. 129 if (DstTy == SrcTy) { 130 Entry = DstTy; 131 return true; 132 } 133 134 // Okay, we have two types with identical kinds that we haven't seen before. 135 136 // If this is an opaque struct type, special case it. 137 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) { 138 // Mapping an opaque type to any struct, just keep the dest struct. 139 if (SSTy->isOpaque()) { 140 Entry = DstTy; 141 SpeculativeTypes.push_back(SrcTy); 142 return true; 143 } 144 145 // Mapping a non-opaque source type to an opaque dest. If this is the first 146 // type that we're mapping onto this destination type then we succeed. Keep 147 // the dest, but fill it in later. If this is the second (different) type 148 // that we're trying to map onto the same opaque type then we fail. 149 if (cast<StructType>(DstTy)->isOpaque()) { 150 // We can only map one source type onto the opaque destination type. 151 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second) 152 return false; 153 SrcDefinitionsToResolve.push_back(SSTy); 154 SpeculativeTypes.push_back(SrcTy); 155 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy)); 156 Entry = DstTy; 157 return true; 158 } 159 } 160 161 // If the number of subtypes disagree between the two types, then we fail. 162 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes()) 163 return false; 164 165 // Fail if any of the extra properties (e.g. array size) of the type disagree. 166 if (isa<IntegerType>(DstTy)) 167 return false; // bitwidth disagrees. 168 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) { 169 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace()) 170 return false; 171 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) { 172 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg()) 173 return false; 174 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) { 175 StructType *SSTy = cast<StructType>(SrcTy); 176 if (DSTy->isLiteral() != SSTy->isLiteral() || 177 DSTy->isPacked() != SSTy->isPacked()) 178 return false; 179 } else if (auto *DArrTy = dyn_cast<ArrayType>(DstTy)) { 180 if (DArrTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements()) 181 return false; 182 } else if (auto *DVecTy = dyn_cast<VectorType>(DstTy)) { 183 if (DVecTy->getElementCount() != cast<VectorType>(SrcTy)->getElementCount()) 184 return false; 185 } 186 187 // Otherwise, we speculate that these two types will line up and recursively 188 // check the subelements. 189 Entry = DstTy; 190 SpeculativeTypes.push_back(SrcTy); 191 192 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I) 193 if (!areTypesIsomorphic(DstTy->getContainedType(I), 194 SrcTy->getContainedType(I))) 195 return false; 196 197 // If everything seems to have lined up, then everything is great. 198 return true; 199 } 200 201 void TypeMapTy::linkDefinedTypeBodies() { 202 SmallVector<Type *, 16> Elements; 203 for (StructType *SrcSTy : SrcDefinitionsToResolve) { 204 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]); 205 assert(DstSTy->isOpaque()); 206 207 // Map the body of the source type over to a new body for the dest type. 208 Elements.resize(SrcSTy->getNumElements()); 209 for (unsigned I = 0, E = Elements.size(); I != E; ++I) 210 Elements[I] = get(SrcSTy->getElementType(I)); 211 212 DstSTy->setBody(Elements, SrcSTy->isPacked()); 213 DstStructTypesSet.switchToNonOpaque(DstSTy); 214 } 215 SrcDefinitionsToResolve.clear(); 216 DstResolvedOpaqueTypes.clear(); 217 } 218 219 void TypeMapTy::finishType(StructType *DTy, StructType *STy, 220 ArrayRef<Type *> ETypes) { 221 DTy->setBody(ETypes, STy->isPacked()); 222 223 // Steal STy's name. 224 if (STy->hasName()) { 225 SmallString<16> TmpName = STy->getName(); 226 STy->setName(""); 227 DTy->setName(TmpName); 228 } 229 230 DstStructTypesSet.addNonOpaque(DTy); 231 } 232 233 Type *TypeMapTy::get(Type *Ty) { 234 SmallPtrSet<StructType *, 8> Visited; 235 return get(Ty, Visited); 236 } 237 238 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) { 239 // If we already have an entry for this type, return it. 240 Type **Entry = &MappedTypes[Ty]; 241 if (*Entry) 242 return *Entry; 243 244 // These are types that LLVM itself will unique. 245 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral(); 246 247 if (!IsUniqued) { 248 #ifndef NDEBUG 249 for (auto &Pair : MappedTypes) { 250 assert(!(Pair.first != Ty && Pair.second == Ty) && 251 "mapping to a source type"); 252 } 253 #endif 254 255 if (!Visited.insert(cast<StructType>(Ty)).second) { 256 StructType *DTy = StructType::create(Ty->getContext()); 257 return *Entry = DTy; 258 } 259 } 260 261 // If this is not a recursive type, then just map all of the elements and 262 // then rebuild the type from inside out. 263 SmallVector<Type *, 4> ElementTypes; 264 265 // If there are no element types to map, then the type is itself. This is 266 // true for the anonymous {} struct, things like 'float', integers, etc. 267 if (Ty->getNumContainedTypes() == 0 && IsUniqued) 268 return *Entry = Ty; 269 270 // Remap all of the elements, keeping track of whether any of them change. 271 bool AnyChange = false; 272 ElementTypes.resize(Ty->getNumContainedTypes()); 273 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) { 274 ElementTypes[I] = get(Ty->getContainedType(I), Visited); 275 AnyChange |= ElementTypes[I] != Ty->getContainedType(I); 276 } 277 278 // If we found our type while recursively processing stuff, just use it. 279 Entry = &MappedTypes[Ty]; 280 if (*Entry) { 281 if (auto *DTy = dyn_cast<StructType>(*Entry)) { 282 if (DTy->isOpaque()) { 283 auto *STy = cast<StructType>(Ty); 284 finishType(DTy, STy, ElementTypes); 285 } 286 } 287 return *Entry; 288 } 289 290 // If all of the element types mapped directly over and the type is not 291 // a named struct, then the type is usable as-is. 292 if (!AnyChange && IsUniqued) 293 return *Entry = Ty; 294 295 // Otherwise, rebuild a modified type. 296 switch (Ty->getTypeID()) { 297 default: 298 llvm_unreachable("unknown derived type to remap"); 299 case Type::ArrayTyID: 300 return *Entry = ArrayType::get(ElementTypes[0], 301 cast<ArrayType>(Ty)->getNumElements()); 302 case Type::ScalableVectorTyID: 303 case Type::FixedVectorTyID: 304 return *Entry = VectorType::get(ElementTypes[0], 305 cast<VectorType>(Ty)->getElementCount()); 306 case Type::PointerTyID: 307 return *Entry = PointerType::get(ElementTypes[0], 308 cast<PointerType>(Ty)->getAddressSpace()); 309 case Type::FunctionTyID: 310 return *Entry = FunctionType::get(ElementTypes[0], 311 makeArrayRef(ElementTypes).slice(1), 312 cast<FunctionType>(Ty)->isVarArg()); 313 case Type::StructTyID: { 314 auto *STy = cast<StructType>(Ty); 315 bool IsPacked = STy->isPacked(); 316 if (IsUniqued) 317 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked); 318 319 // If the type is opaque, we can just use it directly. 320 if (STy->isOpaque()) { 321 DstStructTypesSet.addOpaque(STy); 322 return *Entry = Ty; 323 } 324 325 if (StructType *OldT = 326 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) { 327 STy->setName(""); 328 return *Entry = OldT; 329 } 330 331 if (!AnyChange) { 332 DstStructTypesSet.addNonOpaque(STy); 333 return *Entry = Ty; 334 } 335 336 StructType *DTy = StructType::create(Ty->getContext()); 337 finishType(DTy, STy, ElementTypes); 338 return *Entry = DTy; 339 } 340 } 341 } 342 343 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity, 344 const Twine &Msg) 345 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {} 346 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 347 348 //===----------------------------------------------------------------------===// 349 // IRLinker implementation. 350 //===----------------------------------------------------------------------===// 351 352 namespace { 353 class IRLinker; 354 355 /// Creates prototypes for functions that are lazily linked on the fly. This 356 /// speeds up linking for modules with many/ lazily linked functions of which 357 /// few get used. 358 class GlobalValueMaterializer final : public ValueMaterializer { 359 IRLinker &TheIRLinker; 360 361 public: 362 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 363 Value *materialize(Value *V) override; 364 }; 365 366 class LocalValueMaterializer final : public ValueMaterializer { 367 IRLinker &TheIRLinker; 368 369 public: 370 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 371 Value *materialize(Value *V) override; 372 }; 373 374 /// Type of the Metadata map in \a ValueToValueMapTy. 375 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT; 376 377 /// This is responsible for keeping track of the state used for moving data 378 /// from SrcM to DstM. 379 class IRLinker { 380 Module &DstM; 381 std::unique_ptr<Module> SrcM; 382 383 /// See IRMover::move(). 384 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor; 385 386 TypeMapTy TypeMap; 387 GlobalValueMaterializer GValMaterializer; 388 LocalValueMaterializer LValMaterializer; 389 390 /// A metadata map that's shared between IRLinker instances. 391 MDMapT &SharedMDs; 392 393 /// Mapping of values from what they used to be in Src, to what they are now 394 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead 395 /// due to the use of Value handles which the Linker doesn't actually need, 396 /// but this allows us to reuse the ValueMapper code. 397 ValueToValueMapTy ValueMap; 398 ValueToValueMapTy IndirectSymbolValueMap; 399 400 DenseSet<GlobalValue *> ValuesToLink; 401 std::vector<GlobalValue *> Worklist; 402 std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist; 403 404 void maybeAdd(GlobalValue *GV) { 405 if (ValuesToLink.insert(GV).second) 406 Worklist.push_back(GV); 407 } 408 409 /// Whether we are importing globals for ThinLTO, as opposed to linking the 410 /// source module. If this flag is set, it means that we can rely on some 411 /// other object file to define any non-GlobalValue entities defined by the 412 /// source module. This currently causes us to not link retained types in 413 /// debug info metadata and module inline asm. 414 bool IsPerformingImport; 415 416 /// Set to true when all global value body linking is complete (including 417 /// lazy linking). Used to prevent metadata linking from creating new 418 /// references. 419 bool DoneLinkingBodies = false; 420 421 /// The Error encountered during materialization. We use an Optional here to 422 /// avoid needing to manage an unconsumed success value. 423 Optional<Error> FoundError; 424 void setError(Error E) { 425 if (E) 426 FoundError = std::move(E); 427 } 428 429 /// Most of the errors produced by this module are inconvertible StringErrors. 430 /// This convenience function lets us return one of those more easily. 431 Error stringErr(const Twine &T) { 432 return make_error<StringError>(T, inconvertibleErrorCode()); 433 } 434 435 /// Entry point for mapping values and alternate context for mapping aliases. 436 ValueMapper Mapper; 437 unsigned IndirectSymbolMCID; 438 439 /// Handles cloning of a global values from the source module into 440 /// the destination module, including setting the attributes and visibility. 441 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition); 442 443 void emitWarning(const Twine &Message) { 444 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message)); 445 } 446 447 /// Given a global in the source module, return the global in the 448 /// destination module that is being linked to, if any. 449 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) { 450 // If the source has no name it can't link. If it has local linkage, 451 // there is no name match-up going on. 452 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage()) 453 return nullptr; 454 455 // Otherwise see if we have a match in the destination module's symtab. 456 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName()); 457 if (!DGV) 458 return nullptr; 459 460 // If we found a global with the same name in the dest module, but it has 461 // internal linkage, we are really not doing any linkage here. 462 if (DGV->hasLocalLinkage()) 463 return nullptr; 464 465 // If we found an intrinsic declaration with mismatching prototypes, we 466 // probably had a nameclash. Don't use that version. 467 if (auto *FDGV = dyn_cast<Function>(DGV)) 468 if (FDGV->isIntrinsic()) 469 if (const auto *FSrcGV = dyn_cast<Function>(SrcGV)) 470 if (FDGV->getFunctionType() != TypeMap.get(FSrcGV->getFunctionType())) 471 return nullptr; 472 473 // Otherwise, we do in fact link to the destination global. 474 return DGV; 475 } 476 477 void computeTypeMapping(); 478 479 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV, 480 const GlobalVariable *SrcGV); 481 482 /// Given the GlobaValue \p SGV in the source module, and the matching 483 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV 484 /// into the destination module. 485 /// 486 /// Note this code may call the client-provided \p AddLazyFor. 487 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV); 488 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, 489 bool ForIndirectSymbol); 490 491 Error linkModuleFlagsMetadata(); 492 493 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src); 494 Error linkFunctionBody(Function &Dst, Function &Src); 495 void linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src); 496 void linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src); 497 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src); 498 499 /// Replace all types in the source AttributeList with the 500 /// corresponding destination type. 501 AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs); 502 503 /// Functions that take care of cloning a specific global value type 504 /// into the destination module. 505 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar); 506 Function *copyFunctionProto(const Function *SF); 507 GlobalValue *copyIndirectSymbolProto(const GlobalValue *SGV); 508 509 /// Perform "replace all uses with" operations. These work items need to be 510 /// performed as part of materialization, but we postpone them to happen after 511 /// materialization is done. The materializer called by ValueMapper is not 512 /// expected to delete constants, as ValueMapper is holding pointers to some 513 /// of them, but constant destruction may be indirectly triggered by RAUW. 514 /// Hence, the need to move this out of the materialization call chain. 515 void flushRAUWWorklist(); 516 517 /// When importing for ThinLTO, prevent importing of types listed on 518 /// the DICompileUnit that we don't need a copy of in the importing 519 /// module. 520 void prepareCompileUnitsForImport(); 521 void linkNamedMDNodes(); 522 523 public: 524 IRLinker(Module &DstM, MDMapT &SharedMDs, 525 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM, 526 ArrayRef<GlobalValue *> ValuesToLink, 527 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor, 528 bool IsPerformingImport) 529 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)), 530 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this), 531 SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport), 532 Mapper(ValueMap, RF_ReuseAndMutateDistinctMDs | RF_IgnoreMissingLocals, 533 &TypeMap, &GValMaterializer), 534 IndirectSymbolMCID(Mapper.registerAlternateMappingContext( 535 IndirectSymbolValueMap, &LValMaterializer)) { 536 ValueMap.getMDMap() = std::move(SharedMDs); 537 for (GlobalValue *GV : ValuesToLink) 538 maybeAdd(GV); 539 if (IsPerformingImport) 540 prepareCompileUnitsForImport(); 541 } 542 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); } 543 544 Error run(); 545 Value *materialize(Value *V, bool ForIndirectSymbol); 546 }; 547 } 548 549 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol 550 /// table. This is good for all clients except for us. Go through the trouble 551 /// to force this back. 552 static void forceRenaming(GlobalValue *GV, StringRef Name) { 553 // If the global doesn't force its name or if it already has the right name, 554 // there is nothing for us to do. 555 if (GV->hasLocalLinkage() || GV->getName() == Name) 556 return; 557 558 Module *M = GV->getParent(); 559 560 // If there is a conflict, rename the conflict. 561 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) { 562 GV->takeName(ConflictGV); 563 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed 564 assert(ConflictGV->getName() != Name && "forceRenaming didn't work"); 565 } else { 566 GV->setName(Name); // Force the name back 567 } 568 } 569 570 Value *GlobalValueMaterializer::materialize(Value *SGV) { 571 return TheIRLinker.materialize(SGV, false); 572 } 573 574 Value *LocalValueMaterializer::materialize(Value *SGV) { 575 return TheIRLinker.materialize(SGV, true); 576 } 577 578 Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) { 579 auto *SGV = dyn_cast<GlobalValue>(V); 580 if (!SGV) 581 return nullptr; 582 583 // When linking a global from other modules than source & dest, skip 584 // materializing it because it would be mapped later when its containing 585 // module is linked. Linking it now would potentially pull in many types that 586 // may not be mapped properly. 587 if (SGV->getParent() != &DstM && SGV->getParent() != SrcM.get()) 588 return nullptr; 589 590 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol); 591 if (!NewProto) { 592 setError(NewProto.takeError()); 593 return nullptr; 594 } 595 if (!*NewProto) 596 return nullptr; 597 598 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto); 599 if (!New) 600 return *NewProto; 601 602 // If we already created the body, just return. 603 if (auto *F = dyn_cast<Function>(New)) { 604 if (!F->isDeclaration()) 605 return New; 606 } else if (auto *V = dyn_cast<GlobalVariable>(New)) { 607 if (V->hasInitializer() || V->hasAppendingLinkage()) 608 return New; 609 } else if (auto *GA = dyn_cast<GlobalAlias>(New)) { 610 if (GA->getAliasee()) 611 return New; 612 } else if (auto *GI = dyn_cast<GlobalIFunc>(New)) { 613 if (GI->getResolver()) 614 return New; 615 } else { 616 llvm_unreachable("Invalid GlobalValue type"); 617 } 618 619 // If the global is being linked for an indirect symbol, it may have already 620 // been scheduled to satisfy a regular symbol. Similarly, a global being linked 621 // for a regular symbol may have already been scheduled for an indirect 622 // symbol. Check for these cases by looking in the other value map and 623 // confirming the same value has been scheduled. If there is an entry in the 624 // ValueMap but the value is different, it means that the value already had a 625 // definition in the destination module (linkonce for instance), but we need a 626 // new definition for the indirect symbol ("New" will be different). 627 if ((ForIndirectSymbol && ValueMap.lookup(SGV) == New) || 628 (!ForIndirectSymbol && IndirectSymbolValueMap.lookup(SGV) == New)) 629 return New; 630 631 if (ForIndirectSymbol || shouldLink(New, *SGV)) 632 setError(linkGlobalValueBody(*New, *SGV)); 633 634 return New; 635 } 636 637 /// Loop through the global variables in the src module and merge them into the 638 /// dest module. 639 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) { 640 // No linking to be performed or linking from the source: simply create an 641 // identical version of the symbol over in the dest module... the 642 // initializer will be filled in later by LinkGlobalInits. 643 GlobalVariable *NewDGV = 644 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()), 645 SGVar->isConstant(), GlobalValue::ExternalLinkage, 646 /*init*/ nullptr, SGVar->getName(), 647 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(), 648 SGVar->getAddressSpace()); 649 NewDGV->setAlignment(SGVar->getAlign()); 650 NewDGV->copyAttributesFrom(SGVar); 651 return NewDGV; 652 } 653 654 AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) { 655 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 656 for (int AttrIdx = Attribute::FirstTypeAttr; 657 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) { 658 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx; 659 if (Attrs.hasAttributeAtIndex(i, TypedAttr)) { 660 if (Type *Ty = 661 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) { 662 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr, 663 TypeMap.get(Ty)); 664 break; 665 } 666 } 667 } 668 } 669 return Attrs; 670 } 671 672 /// Link the function in the source module into the destination module if 673 /// needed, setting up mapping information. 674 Function *IRLinker::copyFunctionProto(const Function *SF) { 675 // If there is no linkage to be performed or we are linking from the source, 676 // bring SF over. 677 auto *F = Function::Create(TypeMap.get(SF->getFunctionType()), 678 GlobalValue::ExternalLinkage, 679 SF->getAddressSpace(), SF->getName(), &DstM); 680 F->copyAttributesFrom(SF); 681 F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes())); 682 return F; 683 } 684 685 /// Set up prototypes for any indirect symbols that come over from the source 686 /// module. 687 GlobalValue *IRLinker::copyIndirectSymbolProto(const GlobalValue *SGV) { 688 // If there is no linkage to be performed or we're linking from the source, 689 // bring over SGA. 690 auto *Ty = TypeMap.get(SGV->getValueType()); 691 692 if (auto *GA = dyn_cast<GlobalAlias>(SGV)) { 693 auto *DGA = GlobalAlias::create(Ty, SGV->getAddressSpace(), 694 GlobalValue::ExternalLinkage, 695 SGV->getName(), &DstM); 696 DGA->copyAttributesFrom(GA); 697 return DGA; 698 } 699 700 if (auto *GI = dyn_cast<GlobalIFunc>(SGV)) { 701 auto *DGI = GlobalIFunc::create(Ty, SGV->getAddressSpace(), 702 GlobalValue::ExternalLinkage, 703 SGV->getName(), nullptr, &DstM); 704 DGI->copyAttributesFrom(GI); 705 return DGI; 706 } 707 708 llvm_unreachable("Invalid source global value type"); 709 } 710 711 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV, 712 bool ForDefinition) { 713 GlobalValue *NewGV; 714 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) { 715 NewGV = copyGlobalVariableProto(SGVar); 716 } else if (auto *SF = dyn_cast<Function>(SGV)) { 717 NewGV = copyFunctionProto(SF); 718 } else { 719 if (ForDefinition) 720 NewGV = copyIndirectSymbolProto(SGV); 721 else if (SGV->getValueType()->isFunctionTy()) 722 NewGV = 723 Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())), 724 GlobalValue::ExternalLinkage, SGV->getAddressSpace(), 725 SGV->getName(), &DstM); 726 else 727 NewGV = 728 new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()), 729 /*isConstant*/ false, GlobalValue::ExternalLinkage, 730 /*init*/ nullptr, SGV->getName(), 731 /*insertbefore*/ nullptr, 732 SGV->getThreadLocalMode(), SGV->getAddressSpace()); 733 } 734 735 if (ForDefinition) 736 NewGV->setLinkage(SGV->getLinkage()); 737 else if (SGV->hasExternalWeakLinkage()) 738 NewGV->setLinkage(GlobalValue::ExternalWeakLinkage); 739 740 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) { 741 // Metadata for global variables and function declarations is copied eagerly. 742 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration()) 743 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0); 744 } 745 746 // Remove these copied constants in case this stays a declaration, since 747 // they point to the source module. If the def is linked the values will 748 // be mapped in during linkFunctionBody. 749 if (auto *NewF = dyn_cast<Function>(NewGV)) { 750 NewF->setPersonalityFn(nullptr); 751 NewF->setPrefixData(nullptr); 752 NewF->setPrologueData(nullptr); 753 } 754 755 return NewGV; 756 } 757 758 static StringRef getTypeNamePrefix(StringRef Name) { 759 size_t DotPos = Name.rfind('.'); 760 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' || 761 !isdigit(static_cast<unsigned char>(Name[DotPos + 1]))) 762 ? Name 763 : Name.substr(0, DotPos); 764 } 765 766 /// Loop over all of the linked values to compute type mappings. For example, 767 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct 768 /// types 'Foo' but one got renamed when the module was loaded into the same 769 /// LLVMContext. 770 void IRLinker::computeTypeMapping() { 771 for (GlobalValue &SGV : SrcM->globals()) { 772 GlobalValue *DGV = getLinkedToGlobal(&SGV); 773 if (!DGV) 774 continue; 775 776 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) { 777 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 778 continue; 779 } 780 781 // Unify the element type of appending arrays. 782 ArrayType *DAT = cast<ArrayType>(DGV->getValueType()); 783 ArrayType *SAT = cast<ArrayType>(SGV.getValueType()); 784 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType()); 785 } 786 787 for (GlobalValue &SGV : *SrcM) 788 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) { 789 if (DGV->getType() == SGV.getType()) { 790 // If the types of DGV and SGV are the same, it means that DGV is from 791 // the source module and got added to DstM from a shared metadata. We 792 // shouldn't map this type to itself in case the type's components get 793 // remapped to a new type from DstM (for instance, during the loop over 794 // SrcM->getIdentifiedStructTypes() below). 795 continue; 796 } 797 798 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 799 } 800 801 for (GlobalValue &SGV : SrcM->aliases()) 802 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) 803 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 804 805 // Incorporate types by name, scanning all the types in the source module. 806 // At this point, the destination module may have a type "%foo = { i32 }" for 807 // example. When the source module got loaded into the same LLVMContext, if 808 // it had the same type, it would have been renamed to "%foo.42 = { i32 }". 809 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes(); 810 for (StructType *ST : Types) { 811 if (!ST->hasName()) 812 continue; 813 814 if (TypeMap.DstStructTypesSet.hasType(ST)) { 815 // This is actually a type from the destination module. 816 // getIdentifiedStructTypes() can have found it by walking debug info 817 // metadata nodes, some of which get linked by name when ODR Type Uniquing 818 // is enabled on the Context, from the source to the destination module. 819 continue; 820 } 821 822 auto STTypePrefix = getTypeNamePrefix(ST->getName()); 823 if (STTypePrefix.size() == ST->getName().size()) 824 continue; 825 826 // Check to see if the destination module has a struct with the prefix name. 827 StructType *DST = StructType::getTypeByName(ST->getContext(), STTypePrefix); 828 if (!DST) 829 continue; 830 831 // Don't use it if this actually came from the source module. They're in 832 // the same LLVMContext after all. Also don't use it unless the type is 833 // actually used in the destination module. This can happen in situations 834 // like this: 835 // 836 // Module A Module B 837 // -------- -------- 838 // %Z = type { %A } %B = type { %C.1 } 839 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* } 840 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] } 841 // %C = type { i8* } %B.3 = type { %C.1 } 842 // 843 // When we link Module B with Module A, the '%B' in Module B is 844 // used. However, that would then use '%C.1'. But when we process '%C.1', 845 // we prefer to take the '%C' version. So we are then left with both 846 // '%C.1' and '%C' being used for the same types. This leads to some 847 // variables using one type and some using the other. 848 if (TypeMap.DstStructTypesSet.hasType(DST)) 849 TypeMap.addTypeMapping(DST, ST); 850 } 851 852 // Now that we have discovered all of the type equivalences, get a body for 853 // any 'opaque' types in the dest module that are now resolved. 854 TypeMap.linkDefinedTypeBodies(); 855 } 856 857 static void getArrayElements(const Constant *C, 858 SmallVectorImpl<Constant *> &Dest) { 859 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements(); 860 861 for (unsigned i = 0; i != NumElements; ++i) 862 Dest.push_back(C->getAggregateElement(i)); 863 } 864 865 /// If there were any appending global variables, link them together now. 866 Expected<Constant *> 867 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV, 868 const GlobalVariable *SrcGV) { 869 // Check that both variables have compatible properties. 870 if (DstGV && !DstGV->isDeclaration() && !SrcGV->isDeclaration()) { 871 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) 872 return stringErr( 873 "Linking globals named '" + SrcGV->getName() + 874 "': can only link appending global with another appending " 875 "global!"); 876 877 if (DstGV->isConstant() != SrcGV->isConstant()) 878 return stringErr("Appending variables linked with different const'ness!"); 879 880 if (DstGV->getAlign() != SrcGV->getAlign()) 881 return stringErr( 882 "Appending variables with different alignment need to be linked!"); 883 884 if (DstGV->getVisibility() != SrcGV->getVisibility()) 885 return stringErr( 886 "Appending variables with different visibility need to be linked!"); 887 888 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr()) 889 return stringErr( 890 "Appending variables with different unnamed_addr need to be linked!"); 891 892 if (DstGV->getSection() != SrcGV->getSection()) 893 return stringErr( 894 "Appending variables with different section name need to be linked!"); 895 } 896 897 // Do not need to do anything if source is a declaration. 898 if (SrcGV->isDeclaration()) 899 return DstGV; 900 901 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType())) 902 ->getElementType(); 903 904 // FIXME: This upgrade is done during linking to support the C API. Once the 905 // old form is deprecated, we should move this upgrade to 906 // llvm::UpgradeGlobalVariable() and simplify the logic here and in 907 // Mapper::mapAppendingVariable() in ValueMapper.cpp. 908 StringRef Name = SrcGV->getName(); 909 bool IsNewStructor = false; 910 bool IsOldStructor = false; 911 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") { 912 if (cast<StructType>(EltTy)->getNumElements() == 3) 913 IsNewStructor = true; 914 else 915 IsOldStructor = true; 916 } 917 918 PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo(); 919 if (IsOldStructor) { 920 auto &ST = *cast<StructType>(EltTy); 921 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 922 EltTy = StructType::get(SrcGV->getContext(), Tys, false); 923 } 924 925 uint64_t DstNumElements = 0; 926 if (DstGV && !DstGV->isDeclaration()) { 927 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType()); 928 DstNumElements = DstTy->getNumElements(); 929 930 // Check to see that they two arrays agree on type. 931 if (EltTy != DstTy->getElementType()) 932 return stringErr("Appending variables with different element types!"); 933 } 934 935 SmallVector<Constant *, 16> SrcElements; 936 getArrayElements(SrcGV->getInitializer(), SrcElements); 937 938 if (IsNewStructor) { 939 erase_if(SrcElements, [this](Constant *E) { 940 auto *Key = 941 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts()); 942 if (!Key) 943 return false; 944 GlobalValue *DGV = getLinkedToGlobal(Key); 945 return !shouldLink(DGV, *Key); 946 }); 947 } 948 uint64_t NewSize = DstNumElements + SrcElements.size(); 949 ArrayType *NewType = ArrayType::get(EltTy, NewSize); 950 951 // Create the new global variable. 952 GlobalVariable *NG = new GlobalVariable( 953 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(), 954 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(), 955 SrcGV->getAddressSpace()); 956 957 NG->copyAttributesFrom(SrcGV); 958 forceRenaming(NG, SrcGV->getName()); 959 960 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType())); 961 962 Mapper.scheduleMapAppendingVariable( 963 *NG, 964 (DstGV && !DstGV->isDeclaration()) ? DstGV->getInitializer() : nullptr, 965 IsOldStructor, SrcElements); 966 967 // Replace any uses of the two global variables with uses of the new 968 // global. 969 if (DstGV) { 970 RAUWWorklist.push_back( 971 std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType()))); 972 } 973 974 return Ret; 975 } 976 977 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) { 978 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage()) 979 return true; 980 981 if (DGV && !DGV->isDeclarationForLinker()) 982 return false; 983 984 if (SGV.isDeclaration() || DoneLinkingBodies) 985 return false; 986 987 // Callback to the client to give a chance to lazily add the Global to the 988 // list of value to link. 989 bool LazilyAdded = false; 990 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) { 991 maybeAdd(&GV); 992 LazilyAdded = true; 993 }); 994 return LazilyAdded; 995 } 996 997 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV, 998 bool ForIndirectSymbol) { 999 GlobalValue *DGV = getLinkedToGlobal(SGV); 1000 1001 bool ShouldLink = shouldLink(DGV, *SGV); 1002 1003 // just missing from map 1004 if (ShouldLink) { 1005 auto I = ValueMap.find(SGV); 1006 if (I != ValueMap.end()) 1007 return cast<Constant>(I->second); 1008 1009 I = IndirectSymbolValueMap.find(SGV); 1010 if (I != IndirectSymbolValueMap.end()) 1011 return cast<Constant>(I->second); 1012 } 1013 1014 if (!ShouldLink && ForIndirectSymbol) 1015 DGV = nullptr; 1016 1017 // Handle the ultra special appending linkage case first. 1018 if (SGV->hasAppendingLinkage() || (DGV && DGV->hasAppendingLinkage())) 1019 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV), 1020 cast<GlobalVariable>(SGV)); 1021 1022 bool NeedsRenaming = false; 1023 GlobalValue *NewGV; 1024 if (DGV && !ShouldLink) { 1025 NewGV = DGV; 1026 } else { 1027 // If we are done linking global value bodies (i.e. we are performing 1028 // metadata linking), don't link in the global value due to this 1029 // reference, simply map it to null. 1030 if (DoneLinkingBodies) 1031 return nullptr; 1032 1033 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol); 1034 if (ShouldLink || !ForIndirectSymbol) 1035 NeedsRenaming = true; 1036 } 1037 1038 // Overloaded intrinsics have overloaded types names as part of their 1039 // names. If we renamed overloaded types we should rename the intrinsic 1040 // as well. 1041 if (Function *F = dyn_cast<Function>(NewGV)) 1042 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 1043 NewGV->eraseFromParent(); 1044 NewGV = Remangled.getValue(); 1045 NeedsRenaming = false; 1046 } 1047 1048 if (NeedsRenaming) 1049 forceRenaming(NewGV, SGV->getName()); 1050 1051 if (ShouldLink || ForIndirectSymbol) { 1052 if (const Comdat *SC = SGV->getComdat()) { 1053 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) { 1054 Comdat *DC = DstM.getOrInsertComdat(SC->getName()); 1055 DC->setSelectionKind(SC->getSelectionKind()); 1056 GO->setComdat(DC); 1057 } 1058 } 1059 } 1060 1061 if (!ShouldLink && ForIndirectSymbol) 1062 NewGV->setLinkage(GlobalValue::InternalLinkage); 1063 1064 Constant *C = NewGV; 1065 // Only create a bitcast if necessary. In particular, with 1066 // DebugTypeODRUniquing we may reach metadata in the destination module 1067 // containing a GV from the source module, in which case SGV will be 1068 // the same as DGV and NewGV, and TypeMap.get() will assert since it 1069 // assumes it is being invoked on a type in the source module. 1070 if (DGV && NewGV != SGV) { 1071 C = ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1072 NewGV, TypeMap.get(SGV->getType())); 1073 } 1074 1075 if (DGV && NewGV != DGV) { 1076 // Schedule "replace all uses with" to happen after materializing is 1077 // done. It is not safe to do it now, since ValueMapper may be holding 1078 // pointers to constants that will get deleted if RAUW runs. 1079 RAUWWorklist.push_back(std::make_pair( 1080 DGV, 1081 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType()))); 1082 } 1083 1084 return C; 1085 } 1086 1087 /// Update the initializers in the Dest module now that all globals that may be 1088 /// referenced are in Dest. 1089 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) { 1090 // Figure out what the initializer looks like in the dest module. 1091 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer()); 1092 } 1093 1094 /// Copy the source function over into the dest function and fix up references 1095 /// to values. At this point we know that Dest is an external function, and 1096 /// that Src is not. 1097 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) { 1098 assert(Dst.isDeclaration() && !Src.isDeclaration()); 1099 1100 // Materialize if needed. 1101 if (Error Err = Src.materialize()) 1102 return Err; 1103 1104 // Link in the operands without remapping. 1105 if (Src.hasPrefixData()) 1106 Dst.setPrefixData(Src.getPrefixData()); 1107 if (Src.hasPrologueData()) 1108 Dst.setPrologueData(Src.getPrologueData()); 1109 if (Src.hasPersonalityFn()) 1110 Dst.setPersonalityFn(Src.getPersonalityFn()); 1111 1112 // Copy over the metadata attachments without remapping. 1113 Dst.copyMetadata(&Src, 0); 1114 1115 // Steal arguments and splice the body of Src into Dst. 1116 Dst.stealArgumentListFrom(Src); 1117 Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList()); 1118 1119 // Everything has been moved over. Remap it. 1120 Mapper.scheduleRemapFunction(Dst); 1121 return Error::success(); 1122 } 1123 1124 void IRLinker::linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src) { 1125 Mapper.scheduleMapGlobalAlias(Dst, *Src.getAliasee(), IndirectSymbolMCID); 1126 } 1127 1128 void IRLinker::linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src) { 1129 Mapper.scheduleMapGlobalIFunc(Dst, *Src.getResolver(), IndirectSymbolMCID); 1130 } 1131 1132 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) { 1133 if (auto *F = dyn_cast<Function>(&Src)) 1134 return linkFunctionBody(cast<Function>(Dst), *F); 1135 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) { 1136 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar); 1137 return Error::success(); 1138 } 1139 if (auto *GA = dyn_cast<GlobalAlias>(&Src)) { 1140 linkAliasAliasee(cast<GlobalAlias>(Dst), *GA); 1141 return Error::success(); 1142 } 1143 linkIFuncResolver(cast<GlobalIFunc>(Dst), cast<GlobalIFunc>(Src)); 1144 return Error::success(); 1145 } 1146 1147 void IRLinker::flushRAUWWorklist() { 1148 for (const auto &Elem : RAUWWorklist) { 1149 GlobalValue *Old; 1150 Value *New; 1151 std::tie(Old, New) = Elem; 1152 1153 Old->replaceAllUsesWith(New); 1154 Old->eraseFromParent(); 1155 } 1156 RAUWWorklist.clear(); 1157 } 1158 1159 void IRLinker::prepareCompileUnitsForImport() { 1160 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu"); 1161 if (!SrcCompileUnits) 1162 return; 1163 // When importing for ThinLTO, prevent importing of types listed on 1164 // the DICompileUnit that we don't need a copy of in the importing 1165 // module. They will be emitted by the originating module. 1166 for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) { 1167 auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I)); 1168 assert(CU && "Expected valid compile unit"); 1169 // Enums, macros, and retained types don't need to be listed on the 1170 // imported DICompileUnit. This means they will only be imported 1171 // if reached from the mapped IR. 1172 CU->replaceEnumTypes(nullptr); 1173 CU->replaceMacros(nullptr); 1174 CU->replaceRetainedTypes(nullptr); 1175 1176 // The original definition (or at least its debug info - if the variable is 1177 // internalized and optimized away) will remain in the source module, so 1178 // there's no need to import them. 1179 // If LLVM ever does more advanced optimizations on global variables 1180 // (removing/localizing write operations, for instance) that can track 1181 // through debug info, this decision may need to be revisited - but do so 1182 // with care when it comes to debug info size. Emitting small CUs containing 1183 // only a few imported entities into every destination module may be very 1184 // size inefficient. 1185 CU->replaceGlobalVariables(nullptr); 1186 1187 // Imported entities only need to be mapped in if they have local 1188 // scope, as those might correspond to an imported entity inside a 1189 // function being imported (any locally scoped imported entities that 1190 // don't end up referenced by an imported function will not be emitted 1191 // into the object). Imported entities not in a local scope 1192 // (e.g. on the namespace) only need to be emitted by the originating 1193 // module. Create a list of the locally scoped imported entities, and 1194 // replace the source CUs imported entity list with the new list, so 1195 // only those are mapped in. 1196 // FIXME: Locally-scoped imported entities could be moved to the 1197 // functions they are local to instead of listing them on the CU, and 1198 // we would naturally only link in those needed by function importing. 1199 SmallVector<TrackingMDNodeRef, 4> AllImportedModules; 1200 bool ReplaceImportedEntities = false; 1201 for (auto *IE : CU->getImportedEntities()) { 1202 DIScope *Scope = IE->getScope(); 1203 assert(Scope && "Invalid Scope encoding!"); 1204 if (isa<DILocalScope>(Scope)) 1205 AllImportedModules.emplace_back(IE); 1206 else 1207 ReplaceImportedEntities = true; 1208 } 1209 if (ReplaceImportedEntities) { 1210 if (!AllImportedModules.empty()) 1211 CU->replaceImportedEntities(MDTuple::get( 1212 CU->getContext(), 1213 SmallVector<Metadata *, 16>(AllImportedModules.begin(), 1214 AllImportedModules.end()))); 1215 else 1216 // If there were no local scope imported entities, we can map 1217 // the whole list to nullptr. 1218 CU->replaceImportedEntities(nullptr); 1219 } 1220 } 1221 } 1222 1223 /// Insert all of the named MDNodes in Src into the Dest module. 1224 void IRLinker::linkNamedMDNodes() { 1225 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1226 for (const NamedMDNode &NMD : SrcM->named_metadata()) { 1227 // Don't link module flags here. Do them separately. 1228 if (&NMD == SrcModFlags) 1229 continue; 1230 // Don't import pseudo probe descriptors here for thinLTO. They will be 1231 // emitted by the originating module. 1232 if (IsPerformingImport && NMD.getName() == PseudoProbeDescMetadataName) 1233 continue; 1234 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName()); 1235 // Add Src elements into Dest node. 1236 for (const MDNode *Op : NMD.operands()) 1237 DestNMD->addOperand(Mapper.mapMDNode(*Op)); 1238 } 1239 } 1240 1241 /// Merge the linker flags in Src into the Dest module. 1242 Error IRLinker::linkModuleFlagsMetadata() { 1243 // If the source module has no module flags, we are done. 1244 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1245 if (!SrcModFlags) 1246 return Error::success(); 1247 1248 // If the destination module doesn't have module flags yet, then just copy 1249 // over the source module's flags. 1250 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata(); 1251 if (DstModFlags->getNumOperands() == 0) { 1252 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) 1253 DstModFlags->addOperand(SrcModFlags->getOperand(I)); 1254 1255 return Error::success(); 1256 } 1257 1258 // First build a map of the existing module flags and requirements. 1259 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags; 1260 SmallSetVector<MDNode *, 16> Requirements; 1261 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) { 1262 MDNode *Op = DstModFlags->getOperand(I); 1263 ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0)); 1264 MDString *ID = cast<MDString>(Op->getOperand(1)); 1265 1266 if (Behavior->getZExtValue() == Module::Require) { 1267 Requirements.insert(cast<MDNode>(Op->getOperand(2))); 1268 } else { 1269 Flags[ID] = std::make_pair(Op, I); 1270 } 1271 } 1272 1273 // Merge in the flags from the source module, and also collect its set of 1274 // requirements. 1275 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) { 1276 MDNode *SrcOp = SrcModFlags->getOperand(I); 1277 ConstantInt *SrcBehavior = 1278 mdconst::extract<ConstantInt>(SrcOp->getOperand(0)); 1279 MDString *ID = cast<MDString>(SrcOp->getOperand(1)); 1280 MDNode *DstOp; 1281 unsigned DstIndex; 1282 std::tie(DstOp, DstIndex) = Flags.lookup(ID); 1283 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue(); 1284 1285 // If this is a requirement, add it and continue. 1286 if (SrcBehaviorValue == Module::Require) { 1287 // If the destination module does not already have this requirement, add 1288 // it. 1289 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) { 1290 DstModFlags->addOperand(SrcOp); 1291 } 1292 continue; 1293 } 1294 1295 // If there is no existing flag with this ID, just add it. 1296 if (!DstOp) { 1297 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands()); 1298 DstModFlags->addOperand(SrcOp); 1299 continue; 1300 } 1301 1302 // Otherwise, perform a merge. 1303 ConstantInt *DstBehavior = 1304 mdconst::extract<ConstantInt>(DstOp->getOperand(0)); 1305 unsigned DstBehaviorValue = DstBehavior->getZExtValue(); 1306 1307 auto overrideDstValue = [&]() { 1308 DstModFlags->setOperand(DstIndex, SrcOp); 1309 Flags[ID].first = SrcOp; 1310 }; 1311 1312 // If either flag has override behavior, handle it first. 1313 if (DstBehaviorValue == Module::Override) { 1314 // Diagnose inconsistent flags which both have override behavior. 1315 if (SrcBehaviorValue == Module::Override && 1316 SrcOp->getOperand(2) != DstOp->getOperand(2)) 1317 return stringErr("linking module flags '" + ID->getString() + 1318 "': IDs have conflicting override values in '" + 1319 SrcM->getModuleIdentifier() + "' and '" + 1320 DstM.getModuleIdentifier() + "'"); 1321 continue; 1322 } else if (SrcBehaviorValue == Module::Override) { 1323 // Update the destination flag to that of the source. 1324 overrideDstValue(); 1325 continue; 1326 } 1327 1328 // Diagnose inconsistent merge behavior types. 1329 if (SrcBehaviorValue != DstBehaviorValue) { 1330 bool MaxAndWarn = (SrcBehaviorValue == Module::Max && 1331 DstBehaviorValue == Module::Warning) || 1332 (DstBehaviorValue == Module::Max && 1333 SrcBehaviorValue == Module::Warning); 1334 if (!MaxAndWarn) 1335 return stringErr("linking module flags '" + ID->getString() + 1336 "': IDs have conflicting behaviors in '" + 1337 SrcM->getModuleIdentifier() + "' and '" + 1338 DstM.getModuleIdentifier() + "'"); 1339 } 1340 1341 auto replaceDstValue = [&](MDNode *New) { 1342 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New}; 1343 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1344 DstModFlags->setOperand(DstIndex, Flag); 1345 Flags[ID].first = Flag; 1346 }; 1347 1348 // Emit a warning if the values differ and either source or destination 1349 // request Warning behavior. 1350 if ((DstBehaviorValue == Module::Warning || 1351 SrcBehaviorValue == Module::Warning) && 1352 SrcOp->getOperand(2) != DstOp->getOperand(2)) { 1353 std::string Str; 1354 raw_string_ostream(Str) 1355 << "linking module flags '" << ID->getString() 1356 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2) 1357 << "' from " << SrcM->getModuleIdentifier() << " with '" 1358 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier() 1359 << ')'; 1360 emitWarning(Str); 1361 } 1362 1363 // Choose the maximum if either source or destination request Max behavior. 1364 if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) { 1365 ConstantInt *DstValue = 1366 mdconst::extract<ConstantInt>(DstOp->getOperand(2)); 1367 ConstantInt *SrcValue = 1368 mdconst::extract<ConstantInt>(SrcOp->getOperand(2)); 1369 1370 // The resulting flag should have a Max behavior, and contain the maximum 1371 // value from between the source and destination values. 1372 Metadata *FlagOps[] = { 1373 (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID, 1374 (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp) 1375 ->getOperand(2)}; 1376 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1377 DstModFlags->setOperand(DstIndex, Flag); 1378 Flags[ID].first = Flag; 1379 continue; 1380 } 1381 1382 // Perform the merge for standard behavior types. 1383 switch (SrcBehaviorValue) { 1384 case Module::Require: 1385 case Module::Override: 1386 llvm_unreachable("not possible"); 1387 case Module::Error: { 1388 // Emit an error if the values differ. 1389 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) 1390 return stringErr("linking module flags '" + ID->getString() + 1391 "': IDs have conflicting values in '" + 1392 SrcM->getModuleIdentifier() + "' and '" + 1393 DstM.getModuleIdentifier() + "'"); 1394 continue; 1395 } 1396 case Module::Warning: { 1397 break; 1398 } 1399 case Module::Max: { 1400 break; 1401 } 1402 case Module::Append: { 1403 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2)); 1404 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1405 SmallVector<Metadata *, 8> MDs; 1406 MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands()); 1407 MDs.append(DstValue->op_begin(), DstValue->op_end()); 1408 MDs.append(SrcValue->op_begin(), SrcValue->op_end()); 1409 1410 replaceDstValue(MDNode::get(DstM.getContext(), MDs)); 1411 break; 1412 } 1413 case Module::AppendUnique: { 1414 SmallSetVector<Metadata *, 16> Elts; 1415 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2)); 1416 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1417 Elts.insert(DstValue->op_begin(), DstValue->op_end()); 1418 Elts.insert(SrcValue->op_begin(), SrcValue->op_end()); 1419 1420 replaceDstValue(MDNode::get(DstM.getContext(), 1421 makeArrayRef(Elts.begin(), Elts.end()))); 1422 break; 1423 } 1424 } 1425 1426 } 1427 1428 // Check all of the requirements. 1429 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) { 1430 MDNode *Requirement = Requirements[I]; 1431 MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1432 Metadata *ReqValue = Requirement->getOperand(1); 1433 1434 MDNode *Op = Flags[Flag].first; 1435 if (!Op || Op->getOperand(2) != ReqValue) 1436 return stringErr("linking module flags '" + Flag->getString() + 1437 "': does not have the required value"); 1438 } 1439 return Error::success(); 1440 } 1441 1442 /// Return InlineAsm adjusted with target-specific directives if required. 1443 /// For ARM and Thumb, we have to add directives to select the appropriate ISA 1444 /// to support mixing module-level inline assembly from ARM and Thumb modules. 1445 static std::string adjustInlineAsm(const std::string &InlineAsm, 1446 const Triple &Triple) { 1447 if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb) 1448 return ".text\n.balign 2\n.thumb\n" + InlineAsm; 1449 if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb) 1450 return ".text\n.balign 4\n.arm\n" + InlineAsm; 1451 return InlineAsm; 1452 } 1453 1454 Error IRLinker::run() { 1455 // Ensure metadata materialized before value mapping. 1456 if (SrcM->getMaterializer()) 1457 if (Error Err = SrcM->getMaterializer()->materializeMetadata()) 1458 return Err; 1459 1460 // Inherit the target data from the source module if the destination module 1461 // doesn't have one already. 1462 if (DstM.getDataLayout().isDefault()) 1463 DstM.setDataLayout(SrcM->getDataLayout()); 1464 1465 // Copy the target triple from the source to dest if the dest's is empty. 1466 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty()) 1467 DstM.setTargetTriple(SrcM->getTargetTriple()); 1468 1469 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple()); 1470 1471 // During CUDA compilation we have to link with the bitcode supplied with 1472 // CUDA. libdevice bitcode either has no data layout set (pre-CUDA-11), or has 1473 // the layout that is different from the one used by LLVM/clang (it does not 1474 // include i128). Issuing a warning is not very helpful as there's not much 1475 // the user can do about it. 1476 bool EnableDLWarning = true; 1477 bool EnableTripleWarning = true; 1478 if (SrcTriple.isNVPTX() && DstTriple.isNVPTX()) { 1479 std::string ModuleId = SrcM->getModuleIdentifier(); 1480 StringRef FileName = llvm::sys::path::filename(ModuleId); 1481 bool SrcIsLibDevice = 1482 FileName.startswith("libdevice") && FileName.endswith(".10.bc"); 1483 bool SrcHasLibDeviceDL = 1484 (SrcM->getDataLayoutStr().empty() || 1485 SrcM->getDataLayoutStr() == "e-i64:64-v16:16-v32:32-n16:32:64"); 1486 // libdevice bitcode uses nvptx64-nvidia-gpulibs or just 1487 // 'nvptx-unknown-unknown' triple (before CUDA-10.x) and is compatible with 1488 // all NVPTX variants. 1489 bool SrcHasLibDeviceTriple = (SrcTriple.getVendor() == Triple::NVIDIA && 1490 SrcTriple.getOSName() == "gpulibs") || 1491 (SrcTriple.getVendorName() == "unknown" && 1492 SrcTriple.getOSName() == "unknown"); 1493 EnableTripleWarning = !(SrcIsLibDevice && SrcHasLibDeviceTriple); 1494 EnableDLWarning = !(SrcIsLibDevice && SrcHasLibDeviceDL); 1495 } 1496 1497 if (EnableDLWarning && (SrcM->getDataLayout() != DstM.getDataLayout())) { 1498 emitWarning("Linking two modules of different data layouts: '" + 1499 SrcM->getModuleIdentifier() + "' is '" + 1500 SrcM->getDataLayoutStr() + "' whereas '" + 1501 DstM.getModuleIdentifier() + "' is '" + 1502 DstM.getDataLayoutStr() + "'\n"); 1503 } 1504 1505 if (EnableTripleWarning && !SrcM->getTargetTriple().empty() && 1506 !SrcTriple.isCompatibleWith(DstTriple)) 1507 emitWarning("Linking two modules of different target triples: '" + 1508 SrcM->getModuleIdentifier() + "' is '" + 1509 SrcM->getTargetTriple() + "' whereas '" + 1510 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() + 1511 "'\n"); 1512 1513 DstM.setTargetTriple(SrcTriple.merge(DstTriple)); 1514 1515 // Loop over all of the linked values to compute type mappings. 1516 computeTypeMapping(); 1517 1518 std::reverse(Worklist.begin(), Worklist.end()); 1519 while (!Worklist.empty()) { 1520 GlobalValue *GV = Worklist.back(); 1521 Worklist.pop_back(); 1522 1523 // Already mapped. 1524 if (ValueMap.find(GV) != ValueMap.end() || 1525 IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end()) 1526 continue; 1527 1528 assert(!GV->isDeclaration()); 1529 Mapper.mapValue(*GV); 1530 if (FoundError) 1531 return std::move(*FoundError); 1532 flushRAUWWorklist(); 1533 } 1534 1535 // Note that we are done linking global value bodies. This prevents 1536 // metadata linking from creating new references. 1537 DoneLinkingBodies = true; 1538 Mapper.addFlags(RF_NullMapMissingGlobalValues); 1539 1540 // Remap all of the named MDNodes in Src into the DstM module. We do this 1541 // after linking GlobalValues so that MDNodes that reference GlobalValues 1542 // are properly remapped. 1543 linkNamedMDNodes(); 1544 1545 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) { 1546 // Append the module inline asm string. 1547 DstM.appendModuleInlineAsm(adjustInlineAsm(SrcM->getModuleInlineAsm(), 1548 SrcTriple)); 1549 } else if (IsPerformingImport) { 1550 // Import any symver directives for symbols in DstM. 1551 ModuleSymbolTable::CollectAsmSymvers(*SrcM, 1552 [&](StringRef Name, StringRef Alias) { 1553 if (DstM.getNamedValue(Name)) { 1554 SmallString<256> S(".symver "); 1555 S += Name; 1556 S += ", "; 1557 S += Alias; 1558 DstM.appendModuleInlineAsm(S); 1559 } 1560 }); 1561 } 1562 1563 // Reorder the globals just added to the destination module to match their 1564 // original order in the source module. 1565 Module::GlobalListType &Globals = DstM.getGlobalList(); 1566 for (GlobalVariable &GV : SrcM->globals()) { 1567 if (GV.hasAppendingLinkage()) 1568 continue; 1569 Value *NewValue = Mapper.mapValue(GV); 1570 if (NewValue) { 1571 auto *NewGV = dyn_cast<GlobalVariable>(NewValue->stripPointerCasts()); 1572 if (NewGV) 1573 Globals.splice(Globals.end(), Globals, NewGV->getIterator()); 1574 } 1575 } 1576 1577 // Merge the module flags into the DstM module. 1578 return linkModuleFlagsMetadata(); 1579 } 1580 1581 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P) 1582 : ETypes(E), IsPacked(P) {} 1583 1584 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST) 1585 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {} 1586 1587 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const { 1588 return IsPacked == That.IsPacked && ETypes == That.ETypes; 1589 } 1590 1591 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const { 1592 return !this->operator==(That); 1593 } 1594 1595 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() { 1596 return DenseMapInfo<StructType *>::getEmptyKey(); 1597 } 1598 1599 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() { 1600 return DenseMapInfo<StructType *>::getTombstoneKey(); 1601 } 1602 1603 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) { 1604 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()), 1605 Key.IsPacked); 1606 } 1607 1608 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) { 1609 return getHashValue(KeyTy(ST)); 1610 } 1611 1612 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS, 1613 const StructType *RHS) { 1614 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1615 return false; 1616 return LHS == KeyTy(RHS); 1617 } 1618 1619 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS, 1620 const StructType *RHS) { 1621 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1622 return LHS == RHS; 1623 return KeyTy(LHS) == KeyTy(RHS); 1624 } 1625 1626 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) { 1627 assert(!Ty->isOpaque()); 1628 NonOpaqueStructTypes.insert(Ty); 1629 } 1630 1631 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) { 1632 assert(!Ty->isOpaque()); 1633 NonOpaqueStructTypes.insert(Ty); 1634 bool Removed = OpaqueStructTypes.erase(Ty); 1635 (void)Removed; 1636 assert(Removed); 1637 } 1638 1639 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) { 1640 assert(Ty->isOpaque()); 1641 OpaqueStructTypes.insert(Ty); 1642 } 1643 1644 StructType * 1645 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes, 1646 bool IsPacked) { 1647 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked); 1648 auto I = NonOpaqueStructTypes.find_as(Key); 1649 return I == NonOpaqueStructTypes.end() ? nullptr : *I; 1650 } 1651 1652 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) { 1653 if (Ty->isOpaque()) 1654 return OpaqueStructTypes.count(Ty); 1655 auto I = NonOpaqueStructTypes.find(Ty); 1656 return I == NonOpaqueStructTypes.end() ? false : *I == Ty; 1657 } 1658 1659 IRMover::IRMover(Module &M) : Composite(M) { 1660 TypeFinder StructTypes; 1661 StructTypes.run(M, /* OnlyNamed */ false); 1662 for (StructType *Ty : StructTypes) { 1663 if (Ty->isOpaque()) 1664 IdentifiedStructTypes.addOpaque(Ty); 1665 else 1666 IdentifiedStructTypes.addNonOpaque(Ty); 1667 } 1668 // Self-map metadatas in the destination module. This is needed when 1669 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the 1670 // destination module may be reached from the source module. 1671 for (auto *MD : StructTypes.getVisitedMetadata()) { 1672 SharedMDs[MD].reset(const_cast<MDNode *>(MD)); 1673 } 1674 } 1675 1676 Error IRMover::move( 1677 std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink, 1678 std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor, 1679 bool IsPerformingImport) { 1680 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes, 1681 std::move(Src), ValuesToLink, std::move(AddLazyFor), 1682 IsPerformingImport); 1683 Error E = TheIRLinker.run(); 1684 Composite.dropTriviallyDeadConstantArrays(); 1685 return E; 1686 } 1687