1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Linker/IRMover.h" 10 #include "LinkDiagnosticInfo.h" 11 #include "llvm/ADT/SetVector.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/IR/Constants.h" 15 #include "llvm/IR/DebugInfo.h" 16 #include "llvm/IR/DiagnosticPrinter.h" 17 #include "llvm/IR/GVMaterializer.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/TypeFinder.h" 20 #include "llvm/Support/Error.h" 21 #include "llvm/Transforms/Utils/Cloning.h" 22 #include <utility> 23 using namespace llvm; 24 25 //===----------------------------------------------------------------------===// 26 // TypeMap implementation. 27 //===----------------------------------------------------------------------===// 28 29 namespace { 30 class TypeMapTy : public ValueMapTypeRemapper { 31 /// This is a mapping from a source type to a destination type to use. 32 DenseMap<Type *, Type *> MappedTypes; 33 34 /// When checking to see if two subgraphs are isomorphic, we speculatively 35 /// add types to MappedTypes, but keep track of them here in case we need to 36 /// roll back. 37 SmallVector<Type *, 16> SpeculativeTypes; 38 39 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes; 40 41 /// This is a list of non-opaque structs in the source module that are mapped 42 /// to an opaque struct in the destination module. 43 SmallVector<StructType *, 16> SrcDefinitionsToResolve; 44 45 /// This is the set of opaque types in the destination modules who are 46 /// getting a body from the source module. 47 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes; 48 49 public: 50 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet) 51 : DstStructTypesSet(DstStructTypesSet) {} 52 53 IRMover::IdentifiedStructTypeSet &DstStructTypesSet; 54 /// Indicate that the specified type in the destination module is conceptually 55 /// equivalent to the specified type in the source module. 56 void addTypeMapping(Type *DstTy, Type *SrcTy); 57 58 /// Produce a body for an opaque type in the dest module from a type 59 /// definition in the source module. 60 void linkDefinedTypeBodies(); 61 62 /// Return the mapped type to use for the specified input type from the 63 /// source module. 64 Type *get(Type *SrcTy); 65 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited); 66 67 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes); 68 69 FunctionType *get(FunctionType *T) { 70 return cast<FunctionType>(get((Type *)T)); 71 } 72 73 private: 74 Type *remapType(Type *SrcTy) override { return get(SrcTy); } 75 76 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy); 77 }; 78 } 79 80 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) { 81 assert(SpeculativeTypes.empty()); 82 assert(SpeculativeDstOpaqueTypes.empty()); 83 84 // Check to see if these types are recursively isomorphic and establish a 85 // mapping between them if so. 86 if (!areTypesIsomorphic(DstTy, SrcTy)) { 87 // Oops, they aren't isomorphic. Just discard this request by rolling out 88 // any speculative mappings we've established. 89 for (Type *Ty : SpeculativeTypes) 90 MappedTypes.erase(Ty); 91 92 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() - 93 SpeculativeDstOpaqueTypes.size()); 94 for (StructType *Ty : SpeculativeDstOpaqueTypes) 95 DstResolvedOpaqueTypes.erase(Ty); 96 } else { 97 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy 98 // and all its descendants to lower amount of renaming in LLVM context 99 // Renaming occurs because we load all source modules to the same context 100 // and declaration with existing name gets renamed (i.e Foo -> Foo.42). 101 // As a result we may get several different types in the destination 102 // module, which are in fact the same. 103 for (Type *Ty : SpeculativeTypes) 104 if (auto *STy = dyn_cast<StructType>(Ty)) 105 if (STy->hasName()) 106 STy->setName(""); 107 } 108 SpeculativeTypes.clear(); 109 SpeculativeDstOpaqueTypes.clear(); 110 } 111 112 /// Recursively walk this pair of types, returning true if they are isomorphic, 113 /// false if they are not. 114 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { 115 // Two types with differing kinds are clearly not isomorphic. 116 if (DstTy->getTypeID() != SrcTy->getTypeID()) 117 return false; 118 119 // If we have an entry in the MappedTypes table, then we have our answer. 120 Type *&Entry = MappedTypes[SrcTy]; 121 if (Entry) 122 return Entry == DstTy; 123 124 // Two identical types are clearly isomorphic. Remember this 125 // non-speculatively. 126 if (DstTy == SrcTy) { 127 Entry = DstTy; 128 return true; 129 } 130 131 // Okay, we have two types with identical kinds that we haven't seen before. 132 133 // If this is an opaque struct type, special case it. 134 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) { 135 // Mapping an opaque type to any struct, just keep the dest struct. 136 if (SSTy->isOpaque()) { 137 Entry = DstTy; 138 SpeculativeTypes.push_back(SrcTy); 139 return true; 140 } 141 142 // Mapping a non-opaque source type to an opaque dest. If this is the first 143 // type that we're mapping onto this destination type then we succeed. Keep 144 // the dest, but fill it in later. If this is the second (different) type 145 // that we're trying to map onto the same opaque type then we fail. 146 if (cast<StructType>(DstTy)->isOpaque()) { 147 // We can only map one source type onto the opaque destination type. 148 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second) 149 return false; 150 SrcDefinitionsToResolve.push_back(SSTy); 151 SpeculativeTypes.push_back(SrcTy); 152 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy)); 153 Entry = DstTy; 154 return true; 155 } 156 } 157 158 // If the number of subtypes disagree between the two types, then we fail. 159 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes()) 160 return false; 161 162 // Fail if any of the extra properties (e.g. array size) of the type disagree. 163 if (isa<IntegerType>(DstTy)) 164 return false; // bitwidth disagrees. 165 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) { 166 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace()) 167 return false; 168 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) { 169 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg()) 170 return false; 171 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) { 172 StructType *SSTy = cast<StructType>(SrcTy); 173 if (DSTy->isLiteral() != SSTy->isLiteral() || 174 DSTy->isPacked() != SSTy->isPacked()) 175 return false; 176 } else if (auto *DArrTy = dyn_cast<ArrayType>(DstTy)) { 177 if (DArrTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements()) 178 return false; 179 } else if (auto *DVecTy = dyn_cast<VectorType>(DstTy)) { 180 if (DVecTy->getElementCount() != cast<VectorType>(SrcTy)->getElementCount()) 181 return false; 182 } 183 184 // Otherwise, we speculate that these two types will line up and recursively 185 // check the subelements. 186 Entry = DstTy; 187 SpeculativeTypes.push_back(SrcTy); 188 189 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I) 190 if (!areTypesIsomorphic(DstTy->getContainedType(I), 191 SrcTy->getContainedType(I))) 192 return false; 193 194 // If everything seems to have lined up, then everything is great. 195 return true; 196 } 197 198 void TypeMapTy::linkDefinedTypeBodies() { 199 SmallVector<Type *, 16> Elements; 200 for (StructType *SrcSTy : SrcDefinitionsToResolve) { 201 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]); 202 assert(DstSTy->isOpaque()); 203 204 // Map the body of the source type over to a new body for the dest type. 205 Elements.resize(SrcSTy->getNumElements()); 206 for (unsigned I = 0, E = Elements.size(); I != E; ++I) 207 Elements[I] = get(SrcSTy->getElementType(I)); 208 209 DstSTy->setBody(Elements, SrcSTy->isPacked()); 210 DstStructTypesSet.switchToNonOpaque(DstSTy); 211 } 212 SrcDefinitionsToResolve.clear(); 213 DstResolvedOpaqueTypes.clear(); 214 } 215 216 void TypeMapTy::finishType(StructType *DTy, StructType *STy, 217 ArrayRef<Type *> ETypes) { 218 DTy->setBody(ETypes, STy->isPacked()); 219 220 // Steal STy's name. 221 if (STy->hasName()) { 222 SmallString<16> TmpName = STy->getName(); 223 STy->setName(""); 224 DTy->setName(TmpName); 225 } 226 227 DstStructTypesSet.addNonOpaque(DTy); 228 } 229 230 Type *TypeMapTy::get(Type *Ty) { 231 SmallPtrSet<StructType *, 8> Visited; 232 return get(Ty, Visited); 233 } 234 235 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) { 236 // If we already have an entry for this type, return it. 237 Type **Entry = &MappedTypes[Ty]; 238 if (*Entry) 239 return *Entry; 240 241 // These are types that LLVM itself will unique. 242 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral(); 243 244 if (!IsUniqued) { 245 StructType *STy = cast<StructType>(Ty); 246 // This is actually a type from the destination module, this can be reached 247 // when this type is loaded in another module, added to DstStructTypesSet, 248 // and then we reach the same type in another module where it has not been 249 // added to MappedTypes. (PR37684) 250 if (STy->getContext().isODRUniquingDebugTypes() && !STy->isOpaque() && 251 DstStructTypesSet.hasType(STy)) 252 return *Entry = STy; 253 254 #ifndef NDEBUG 255 for (auto &Pair : MappedTypes) { 256 assert(!(Pair.first != Ty && Pair.second == Ty) && 257 "mapping to a source type"); 258 } 259 #endif 260 261 if (!Visited.insert(STy).second) { 262 StructType *DTy = StructType::create(Ty->getContext()); 263 return *Entry = DTy; 264 } 265 } 266 267 // If this is not a recursive type, then just map all of the elements and 268 // then rebuild the type from inside out. 269 SmallVector<Type *, 4> ElementTypes; 270 271 // If there are no element types to map, then the type is itself. This is 272 // true for the anonymous {} struct, things like 'float', integers, etc. 273 if (Ty->getNumContainedTypes() == 0 && IsUniqued) 274 return *Entry = Ty; 275 276 // Remap all of the elements, keeping track of whether any of them change. 277 bool AnyChange = false; 278 ElementTypes.resize(Ty->getNumContainedTypes()); 279 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) { 280 ElementTypes[I] = get(Ty->getContainedType(I), Visited); 281 AnyChange |= ElementTypes[I] != Ty->getContainedType(I); 282 } 283 284 // If we found our type while recursively processing stuff, just use it. 285 Entry = &MappedTypes[Ty]; 286 if (*Entry) { 287 if (auto *DTy = dyn_cast<StructType>(*Entry)) { 288 if (DTy->isOpaque()) { 289 auto *STy = cast<StructType>(Ty); 290 finishType(DTy, STy, ElementTypes); 291 } 292 } 293 return *Entry; 294 } 295 296 // If all of the element types mapped directly over and the type is not 297 // a named struct, then the type is usable as-is. 298 if (!AnyChange && IsUniqued) 299 return *Entry = Ty; 300 301 // Otherwise, rebuild a modified type. 302 switch (Ty->getTypeID()) { 303 default: 304 llvm_unreachable("unknown derived type to remap"); 305 case Type::ArrayTyID: 306 return *Entry = ArrayType::get(ElementTypes[0], 307 cast<ArrayType>(Ty)->getNumElements()); 308 case Type::ScalableVectorTyID: 309 // FIXME: handle scalable vectors 310 case Type::FixedVectorTyID: 311 return *Entry = FixedVectorType::get( 312 ElementTypes[0], cast<FixedVectorType>(Ty)->getNumElements()); 313 case Type::PointerTyID: 314 return *Entry = PointerType::get(ElementTypes[0], 315 cast<PointerType>(Ty)->getAddressSpace()); 316 case Type::FunctionTyID: 317 return *Entry = FunctionType::get(ElementTypes[0], 318 makeArrayRef(ElementTypes).slice(1), 319 cast<FunctionType>(Ty)->isVarArg()); 320 case Type::StructTyID: { 321 auto *STy = cast<StructType>(Ty); 322 bool IsPacked = STy->isPacked(); 323 if (IsUniqued) 324 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked); 325 326 // If the type is opaque, we can just use it directly. 327 if (STy->isOpaque()) { 328 DstStructTypesSet.addOpaque(STy); 329 return *Entry = Ty; 330 } 331 332 if (StructType *OldT = 333 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) { 334 STy->setName(""); 335 return *Entry = OldT; 336 } 337 338 if (!AnyChange) { 339 DstStructTypesSet.addNonOpaque(STy); 340 return *Entry = Ty; 341 } 342 343 StructType *DTy = StructType::create(Ty->getContext()); 344 finishType(DTy, STy, ElementTypes); 345 return *Entry = DTy; 346 } 347 } 348 } 349 350 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity, 351 const Twine &Msg) 352 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {} 353 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 354 355 //===----------------------------------------------------------------------===// 356 // IRLinker implementation. 357 //===----------------------------------------------------------------------===// 358 359 namespace { 360 class IRLinker; 361 362 /// Creates prototypes for functions that are lazily linked on the fly. This 363 /// speeds up linking for modules with many/ lazily linked functions of which 364 /// few get used. 365 class GlobalValueMaterializer final : public ValueMaterializer { 366 IRLinker &TheIRLinker; 367 368 public: 369 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 370 Value *materialize(Value *V) override; 371 }; 372 373 class LocalValueMaterializer final : public ValueMaterializer { 374 IRLinker &TheIRLinker; 375 376 public: 377 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 378 Value *materialize(Value *V) override; 379 }; 380 381 /// Type of the Metadata map in \a ValueToValueMapTy. 382 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT; 383 384 /// This is responsible for keeping track of the state used for moving data 385 /// from SrcM to DstM. 386 class IRLinker { 387 Module &DstM; 388 std::unique_ptr<Module> SrcM; 389 390 /// See IRMover::move(). 391 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor; 392 393 TypeMapTy TypeMap; 394 GlobalValueMaterializer GValMaterializer; 395 LocalValueMaterializer LValMaterializer; 396 397 /// A metadata map that's shared between IRLinker instances. 398 MDMapT &SharedMDs; 399 400 /// Mapping of values from what they used to be in Src, to what they are now 401 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead 402 /// due to the use of Value handles which the Linker doesn't actually need, 403 /// but this allows us to reuse the ValueMapper code. 404 ValueToValueMapTy ValueMap; 405 ValueToValueMapTy IndirectSymbolValueMap; 406 407 DenseSet<GlobalValue *> ValuesToLink; 408 std::vector<GlobalValue *> Worklist; 409 std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist; 410 411 void maybeAdd(GlobalValue *GV) { 412 if (ValuesToLink.insert(GV).second) 413 Worklist.push_back(GV); 414 } 415 416 /// Whether we are importing globals for ThinLTO, as opposed to linking the 417 /// source module. If this flag is set, it means that we can rely on some 418 /// other object file to define any non-GlobalValue entities defined by the 419 /// source module. This currently causes us to not link retained types in 420 /// debug info metadata and module inline asm. 421 bool IsPerformingImport; 422 423 /// Set to true when all global value body linking is complete (including 424 /// lazy linking). Used to prevent metadata linking from creating new 425 /// references. 426 bool DoneLinkingBodies = false; 427 428 /// The Error encountered during materialization. We use an Optional here to 429 /// avoid needing to manage an unconsumed success value. 430 Optional<Error> FoundError; 431 void setError(Error E) { 432 if (E) 433 FoundError = std::move(E); 434 } 435 436 /// Most of the errors produced by this module are inconvertible StringErrors. 437 /// This convenience function lets us return one of those more easily. 438 Error stringErr(const Twine &T) { 439 return make_error<StringError>(T, inconvertibleErrorCode()); 440 } 441 442 /// Entry point for mapping values and alternate context for mapping aliases. 443 ValueMapper Mapper; 444 unsigned IndirectSymbolMCID; 445 446 /// Handles cloning of a global values from the source module into 447 /// the destination module, including setting the attributes and visibility. 448 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition); 449 450 void emitWarning(const Twine &Message) { 451 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message)); 452 } 453 454 /// Given a global in the source module, return the global in the 455 /// destination module that is being linked to, if any. 456 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) { 457 // If the source has no name it can't link. If it has local linkage, 458 // there is no name match-up going on. 459 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage()) 460 return nullptr; 461 462 // Otherwise see if we have a match in the destination module's symtab. 463 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName()); 464 if (!DGV) 465 return nullptr; 466 467 // If we found a global with the same name in the dest module, but it has 468 // internal linkage, we are really not doing any linkage here. 469 if (DGV->hasLocalLinkage()) 470 return nullptr; 471 472 // Otherwise, we do in fact link to the destination global. 473 return DGV; 474 } 475 476 void computeTypeMapping(); 477 478 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV, 479 const GlobalVariable *SrcGV); 480 481 /// Given the GlobaValue \p SGV in the source module, and the matching 482 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV 483 /// into the destination module. 484 /// 485 /// Note this code may call the client-provided \p AddLazyFor. 486 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV); 487 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, 488 bool ForIndirectSymbol); 489 490 Error linkModuleFlagsMetadata(); 491 492 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src); 493 Error linkFunctionBody(Function &Dst, Function &Src); 494 void linkIndirectSymbolBody(GlobalIndirectSymbol &Dst, 495 GlobalIndirectSymbol &Src); 496 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src); 497 498 /// Replace all types in the source AttributeList with the 499 /// corresponding destination type. 500 AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs); 501 502 /// Functions that take care of cloning a specific global value type 503 /// into the destination module. 504 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar); 505 Function *copyFunctionProto(const Function *SF); 506 GlobalValue *copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol *SGIS); 507 508 /// Perform "replace all uses with" operations. These work items need to be 509 /// performed as part of materialization, but we postpone them to happen after 510 /// materialization is done. The materializer called by ValueMapper is not 511 /// expected to delete constants, as ValueMapper is holding pointers to some 512 /// of them, but constant destruction may be indirectly triggered by RAUW. 513 /// Hence, the need to move this out of the materialization call chain. 514 void flushRAUWWorklist(); 515 516 /// When importing for ThinLTO, prevent importing of types listed on 517 /// the DICompileUnit that we don't need a copy of in the importing 518 /// module. 519 void prepareCompileUnitsForImport(); 520 void linkNamedMDNodes(); 521 522 public: 523 IRLinker(Module &DstM, MDMapT &SharedMDs, 524 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM, 525 ArrayRef<GlobalValue *> ValuesToLink, 526 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor, 527 bool IsPerformingImport) 528 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)), 529 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this), 530 SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport), 531 Mapper(ValueMap, RF_MoveDistinctMDs | RF_IgnoreMissingLocals, &TypeMap, 532 &GValMaterializer), 533 IndirectSymbolMCID(Mapper.registerAlternateMappingContext( 534 IndirectSymbolValueMap, &LValMaterializer)) { 535 ValueMap.getMDMap() = std::move(SharedMDs); 536 for (GlobalValue *GV : ValuesToLink) 537 maybeAdd(GV); 538 if (IsPerformingImport) 539 prepareCompileUnitsForImport(); 540 } 541 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); } 542 543 Error run(); 544 Value *materialize(Value *V, bool ForIndirectSymbol); 545 }; 546 } 547 548 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol 549 /// table. This is good for all clients except for us. Go through the trouble 550 /// to force this back. 551 static void forceRenaming(GlobalValue *GV, StringRef Name) { 552 // If the global doesn't force its name or if it already has the right name, 553 // there is nothing for us to do. 554 if (GV->hasLocalLinkage() || GV->getName() == Name) 555 return; 556 557 Module *M = GV->getParent(); 558 559 // If there is a conflict, rename the conflict. 560 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) { 561 GV->takeName(ConflictGV); 562 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed 563 assert(ConflictGV->getName() != Name && "forceRenaming didn't work"); 564 } else { 565 GV->setName(Name); // Force the name back 566 } 567 } 568 569 Value *GlobalValueMaterializer::materialize(Value *SGV) { 570 return TheIRLinker.materialize(SGV, false); 571 } 572 573 Value *LocalValueMaterializer::materialize(Value *SGV) { 574 return TheIRLinker.materialize(SGV, true); 575 } 576 577 Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) { 578 auto *SGV = dyn_cast<GlobalValue>(V); 579 if (!SGV) 580 return nullptr; 581 582 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol); 583 if (!NewProto) { 584 setError(NewProto.takeError()); 585 return nullptr; 586 } 587 if (!*NewProto) 588 return nullptr; 589 590 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto); 591 if (!New) 592 return *NewProto; 593 594 // If we already created the body, just return. 595 if (auto *F = dyn_cast<Function>(New)) { 596 if (!F->isDeclaration()) 597 return New; 598 } else if (auto *V = dyn_cast<GlobalVariable>(New)) { 599 if (V->hasInitializer() || V->hasAppendingLinkage()) 600 return New; 601 } else { 602 auto *IS = cast<GlobalIndirectSymbol>(New); 603 if (IS->getIndirectSymbol()) 604 return New; 605 } 606 607 // When linking a global for an indirect symbol, it will always be linked. 608 // However we need to check if it was not already scheduled to satisfy a 609 // reference from a regular global value initializer. We know if it has been 610 // schedule if the "New" GlobalValue that is mapped here for the indirect 611 // symbol is the same as the one already mapped. If there is an entry in the 612 // ValueMap but the value is different, it means that the value already had a 613 // definition in the destination module (linkonce for instance), but we need a 614 // new definition for the indirect symbol ("New" will be different. 615 if (ForIndirectSymbol && ValueMap.lookup(SGV) == New) 616 return New; 617 618 if (ForIndirectSymbol || shouldLink(New, *SGV)) 619 setError(linkGlobalValueBody(*New, *SGV)); 620 621 return New; 622 } 623 624 /// Loop through the global variables in the src module and merge them into the 625 /// dest module. 626 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) { 627 // No linking to be performed or linking from the source: simply create an 628 // identical version of the symbol over in the dest module... the 629 // initializer will be filled in later by LinkGlobalInits. 630 GlobalVariable *NewDGV = 631 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()), 632 SGVar->isConstant(), GlobalValue::ExternalLinkage, 633 /*init*/ nullptr, SGVar->getName(), 634 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(), 635 SGVar->getAddressSpace()); 636 NewDGV->setAlignment(MaybeAlign(SGVar->getAlignment())); 637 NewDGV->copyAttributesFrom(SGVar); 638 return NewDGV; 639 } 640 641 AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) { 642 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 643 if (Attrs.hasAttribute(i, Attribute::ByVal)) { 644 Type *Ty = Attrs.getAttribute(i, Attribute::ByVal).getValueAsType(); 645 if (!Ty) 646 continue; 647 648 Attrs = Attrs.removeAttribute(C, i, Attribute::ByVal); 649 Attrs = Attrs.addAttribute( 650 C, i, Attribute::getWithByValType(C, TypeMap.get(Ty))); 651 } 652 } 653 return Attrs; 654 } 655 656 /// Link the function in the source module into the destination module if 657 /// needed, setting up mapping information. 658 Function *IRLinker::copyFunctionProto(const Function *SF) { 659 // If there is no linkage to be performed or we are linking from the source, 660 // bring SF over. 661 auto *F = Function::Create(TypeMap.get(SF->getFunctionType()), 662 GlobalValue::ExternalLinkage, 663 SF->getAddressSpace(), SF->getName(), &DstM); 664 F->copyAttributesFrom(SF); 665 F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes())); 666 return F; 667 } 668 669 /// Set up prototypes for any indirect symbols that come over from the source 670 /// module. 671 GlobalValue * 672 IRLinker::copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol *SGIS) { 673 // If there is no linkage to be performed or we're linking from the source, 674 // bring over SGA. 675 auto *Ty = TypeMap.get(SGIS->getValueType()); 676 GlobalIndirectSymbol *GIS; 677 if (isa<GlobalAlias>(SGIS)) 678 GIS = GlobalAlias::create(Ty, SGIS->getAddressSpace(), 679 GlobalValue::ExternalLinkage, SGIS->getName(), 680 &DstM); 681 else 682 GIS = GlobalIFunc::create(Ty, SGIS->getAddressSpace(), 683 GlobalValue::ExternalLinkage, SGIS->getName(), 684 nullptr, &DstM); 685 GIS->copyAttributesFrom(SGIS); 686 return GIS; 687 } 688 689 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV, 690 bool ForDefinition) { 691 GlobalValue *NewGV; 692 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) { 693 NewGV = copyGlobalVariableProto(SGVar); 694 } else if (auto *SF = dyn_cast<Function>(SGV)) { 695 NewGV = copyFunctionProto(SF); 696 } else { 697 if (ForDefinition) 698 NewGV = copyGlobalIndirectSymbolProto(cast<GlobalIndirectSymbol>(SGV)); 699 else if (SGV->getValueType()->isFunctionTy()) 700 NewGV = 701 Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())), 702 GlobalValue::ExternalLinkage, SGV->getAddressSpace(), 703 SGV->getName(), &DstM); 704 else 705 NewGV = 706 new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()), 707 /*isConstant*/ false, GlobalValue::ExternalLinkage, 708 /*init*/ nullptr, SGV->getName(), 709 /*insertbefore*/ nullptr, 710 SGV->getThreadLocalMode(), SGV->getAddressSpace()); 711 } 712 713 if (ForDefinition) 714 NewGV->setLinkage(SGV->getLinkage()); 715 else if (SGV->hasExternalWeakLinkage()) 716 NewGV->setLinkage(GlobalValue::ExternalWeakLinkage); 717 718 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) { 719 // Metadata for global variables and function declarations is copied eagerly. 720 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration()) 721 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0); 722 } 723 724 // Remove these copied constants in case this stays a declaration, since 725 // they point to the source module. If the def is linked the values will 726 // be mapped in during linkFunctionBody. 727 if (auto *NewF = dyn_cast<Function>(NewGV)) { 728 NewF->setPersonalityFn(nullptr); 729 NewF->setPrefixData(nullptr); 730 NewF->setPrologueData(nullptr); 731 } 732 733 return NewGV; 734 } 735 736 static StringRef getTypeNamePrefix(StringRef Name) { 737 size_t DotPos = Name.rfind('.'); 738 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' || 739 !isdigit(static_cast<unsigned char>(Name[DotPos + 1]))) 740 ? Name 741 : Name.substr(0, DotPos); 742 } 743 744 /// Loop over all of the linked values to compute type mappings. For example, 745 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct 746 /// types 'Foo' but one got renamed when the module was loaded into the same 747 /// LLVMContext. 748 void IRLinker::computeTypeMapping() { 749 for (GlobalValue &SGV : SrcM->globals()) { 750 GlobalValue *DGV = getLinkedToGlobal(&SGV); 751 if (!DGV) 752 continue; 753 754 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) { 755 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 756 continue; 757 } 758 759 // Unify the element type of appending arrays. 760 ArrayType *DAT = cast<ArrayType>(DGV->getValueType()); 761 ArrayType *SAT = cast<ArrayType>(SGV.getValueType()); 762 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType()); 763 } 764 765 for (GlobalValue &SGV : *SrcM) 766 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) { 767 if (DGV->getType() == SGV.getType()) { 768 // If the types of DGV and SGV are the same, it means that DGV is from 769 // the source module and got added to DstM from a shared metadata. We 770 // shouldn't map this type to itself in case the type's components get 771 // remapped to a new type from DstM (for instance, during the loop over 772 // SrcM->getIdentifiedStructTypes() below). 773 continue; 774 } 775 776 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 777 } 778 779 for (GlobalValue &SGV : SrcM->aliases()) 780 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) 781 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 782 783 // Incorporate types by name, scanning all the types in the source module. 784 // At this point, the destination module may have a type "%foo = { i32 }" for 785 // example. When the source module got loaded into the same LLVMContext, if 786 // it had the same type, it would have been renamed to "%foo.42 = { i32 }". 787 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes(); 788 for (StructType *ST : Types) { 789 if (!ST->hasName()) 790 continue; 791 792 if (TypeMap.DstStructTypesSet.hasType(ST)) { 793 // This is actually a type from the destination module. 794 // getIdentifiedStructTypes() can have found it by walking debug info 795 // metadata nodes, some of which get linked by name when ODR Type Uniquing 796 // is enabled on the Context, from the source to the destination module. 797 continue; 798 } 799 800 auto STTypePrefix = getTypeNamePrefix(ST->getName()); 801 if (STTypePrefix.size()== ST->getName().size()) 802 continue; 803 804 // Check to see if the destination module has a struct with the prefix name. 805 StructType *DST = DstM.getTypeByName(STTypePrefix); 806 if (!DST) 807 continue; 808 809 // Don't use it if this actually came from the source module. They're in 810 // the same LLVMContext after all. Also don't use it unless the type is 811 // actually used in the destination module. This can happen in situations 812 // like this: 813 // 814 // Module A Module B 815 // -------- -------- 816 // %Z = type { %A } %B = type { %C.1 } 817 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* } 818 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] } 819 // %C = type { i8* } %B.3 = type { %C.1 } 820 // 821 // When we link Module B with Module A, the '%B' in Module B is 822 // used. However, that would then use '%C.1'. But when we process '%C.1', 823 // we prefer to take the '%C' version. So we are then left with both 824 // '%C.1' and '%C' being used for the same types. This leads to some 825 // variables using one type and some using the other. 826 if (TypeMap.DstStructTypesSet.hasType(DST)) 827 TypeMap.addTypeMapping(DST, ST); 828 } 829 830 // Now that we have discovered all of the type equivalences, get a body for 831 // any 'opaque' types in the dest module that are now resolved. 832 TypeMap.linkDefinedTypeBodies(); 833 } 834 835 static void getArrayElements(const Constant *C, 836 SmallVectorImpl<Constant *> &Dest) { 837 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements(); 838 839 for (unsigned i = 0; i != NumElements; ++i) 840 Dest.push_back(C->getAggregateElement(i)); 841 } 842 843 /// If there were any appending global variables, link them together now. 844 Expected<Constant *> 845 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV, 846 const GlobalVariable *SrcGV) { 847 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType())) 848 ->getElementType(); 849 850 // FIXME: This upgrade is done during linking to support the C API. Once the 851 // old form is deprecated, we should move this upgrade to 852 // llvm::UpgradeGlobalVariable() and simplify the logic here and in 853 // Mapper::mapAppendingVariable() in ValueMapper.cpp. 854 StringRef Name = SrcGV->getName(); 855 bool IsNewStructor = false; 856 bool IsOldStructor = false; 857 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") { 858 if (cast<StructType>(EltTy)->getNumElements() == 3) 859 IsNewStructor = true; 860 else 861 IsOldStructor = true; 862 } 863 864 PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo(); 865 if (IsOldStructor) { 866 auto &ST = *cast<StructType>(EltTy); 867 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 868 EltTy = StructType::get(SrcGV->getContext(), Tys, false); 869 } 870 871 uint64_t DstNumElements = 0; 872 if (DstGV) { 873 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType()); 874 DstNumElements = DstTy->getNumElements(); 875 876 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) 877 return stringErr( 878 "Linking globals named '" + SrcGV->getName() + 879 "': can only link appending global with another appending " 880 "global!"); 881 882 // Check to see that they two arrays agree on type. 883 if (EltTy != DstTy->getElementType()) 884 return stringErr("Appending variables with different element types!"); 885 if (DstGV->isConstant() != SrcGV->isConstant()) 886 return stringErr("Appending variables linked with different const'ness!"); 887 888 if (DstGV->getAlignment() != SrcGV->getAlignment()) 889 return stringErr( 890 "Appending variables with different alignment need to be linked!"); 891 892 if (DstGV->getVisibility() != SrcGV->getVisibility()) 893 return stringErr( 894 "Appending variables with different visibility need to be linked!"); 895 896 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr()) 897 return stringErr( 898 "Appending variables with different unnamed_addr need to be linked!"); 899 900 if (DstGV->getSection() != SrcGV->getSection()) 901 return stringErr( 902 "Appending variables with different section name need to be linked!"); 903 } 904 905 SmallVector<Constant *, 16> SrcElements; 906 getArrayElements(SrcGV->getInitializer(), SrcElements); 907 908 if (IsNewStructor) { 909 auto It = remove_if(SrcElements, [this](Constant *E) { 910 auto *Key = 911 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts()); 912 if (!Key) 913 return false; 914 GlobalValue *DGV = getLinkedToGlobal(Key); 915 return !shouldLink(DGV, *Key); 916 }); 917 SrcElements.erase(It, SrcElements.end()); 918 } 919 uint64_t NewSize = DstNumElements + SrcElements.size(); 920 ArrayType *NewType = ArrayType::get(EltTy, NewSize); 921 922 // Create the new global variable. 923 GlobalVariable *NG = new GlobalVariable( 924 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(), 925 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(), 926 SrcGV->getAddressSpace()); 927 928 NG->copyAttributesFrom(SrcGV); 929 forceRenaming(NG, SrcGV->getName()); 930 931 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType())); 932 933 Mapper.scheduleMapAppendingVariable(*NG, 934 DstGV ? DstGV->getInitializer() : nullptr, 935 IsOldStructor, SrcElements); 936 937 // Replace any uses of the two global variables with uses of the new 938 // global. 939 if (DstGV) { 940 RAUWWorklist.push_back( 941 std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType()))); 942 } 943 944 return Ret; 945 } 946 947 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) { 948 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage()) 949 return true; 950 951 if (DGV && !DGV->isDeclarationForLinker()) 952 return false; 953 954 if (SGV.isDeclaration() || DoneLinkingBodies) 955 return false; 956 957 // Callback to the client to give a chance to lazily add the Global to the 958 // list of value to link. 959 bool LazilyAdded = false; 960 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) { 961 maybeAdd(&GV); 962 LazilyAdded = true; 963 }); 964 return LazilyAdded; 965 } 966 967 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV, 968 bool ForIndirectSymbol) { 969 GlobalValue *DGV = getLinkedToGlobal(SGV); 970 971 bool ShouldLink = shouldLink(DGV, *SGV); 972 973 // just missing from map 974 if (ShouldLink) { 975 auto I = ValueMap.find(SGV); 976 if (I != ValueMap.end()) 977 return cast<Constant>(I->second); 978 979 I = IndirectSymbolValueMap.find(SGV); 980 if (I != IndirectSymbolValueMap.end()) 981 return cast<Constant>(I->second); 982 } 983 984 if (!ShouldLink && ForIndirectSymbol) 985 DGV = nullptr; 986 987 // Handle the ultra special appending linkage case first. 988 assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage()); 989 if (SGV->hasAppendingLinkage()) 990 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV), 991 cast<GlobalVariable>(SGV)); 992 993 GlobalValue *NewGV; 994 if (DGV && !ShouldLink) { 995 NewGV = DGV; 996 } else { 997 // If we are done linking global value bodies (i.e. we are performing 998 // metadata linking), don't link in the global value due to this 999 // reference, simply map it to null. 1000 if (DoneLinkingBodies) 1001 return nullptr; 1002 1003 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol); 1004 if (ShouldLink || !ForIndirectSymbol) 1005 forceRenaming(NewGV, SGV->getName()); 1006 } 1007 1008 // Overloaded intrinsics have overloaded types names as part of their 1009 // names. If we renamed overloaded types we should rename the intrinsic 1010 // as well. 1011 if (Function *F = dyn_cast<Function>(NewGV)) 1012 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) 1013 NewGV = Remangled.getValue(); 1014 1015 if (ShouldLink || ForIndirectSymbol) { 1016 if (const Comdat *SC = SGV->getComdat()) { 1017 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) { 1018 Comdat *DC = DstM.getOrInsertComdat(SC->getName()); 1019 DC->setSelectionKind(SC->getSelectionKind()); 1020 GO->setComdat(DC); 1021 } 1022 } 1023 } 1024 1025 if (!ShouldLink && ForIndirectSymbol) 1026 NewGV->setLinkage(GlobalValue::InternalLinkage); 1027 1028 Constant *C = NewGV; 1029 // Only create a bitcast if necessary. In particular, with 1030 // DebugTypeODRUniquing we may reach metadata in the destination module 1031 // containing a GV from the source module, in which case SGV will be 1032 // the same as DGV and NewGV, and TypeMap.get() will assert since it 1033 // assumes it is being invoked on a type in the source module. 1034 if (DGV && NewGV != SGV) { 1035 C = ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1036 NewGV, TypeMap.get(SGV->getType())); 1037 } 1038 1039 if (DGV && NewGV != DGV) { 1040 // Schedule "replace all uses with" to happen after materializing is 1041 // done. It is not safe to do it now, since ValueMapper may be holding 1042 // pointers to constants that will get deleted if RAUW runs. 1043 RAUWWorklist.push_back(std::make_pair( 1044 DGV, 1045 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType()))); 1046 } 1047 1048 return C; 1049 } 1050 1051 /// Update the initializers in the Dest module now that all globals that may be 1052 /// referenced are in Dest. 1053 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) { 1054 // Figure out what the initializer looks like in the dest module. 1055 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer()); 1056 } 1057 1058 /// Copy the source function over into the dest function and fix up references 1059 /// to values. At this point we know that Dest is an external function, and 1060 /// that Src is not. 1061 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) { 1062 assert(Dst.isDeclaration() && !Src.isDeclaration()); 1063 1064 // Materialize if needed. 1065 if (Error Err = Src.materialize()) 1066 return Err; 1067 1068 // Link in the operands without remapping. 1069 if (Src.hasPrefixData()) 1070 Dst.setPrefixData(Src.getPrefixData()); 1071 if (Src.hasPrologueData()) 1072 Dst.setPrologueData(Src.getPrologueData()); 1073 if (Src.hasPersonalityFn()) 1074 Dst.setPersonalityFn(Src.getPersonalityFn()); 1075 1076 // Copy over the metadata attachments without remapping. 1077 Dst.copyMetadata(&Src, 0); 1078 1079 // Steal arguments and splice the body of Src into Dst. 1080 Dst.stealArgumentListFrom(Src); 1081 Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList()); 1082 1083 // Everything has been moved over. Remap it. 1084 Mapper.scheduleRemapFunction(Dst); 1085 return Error::success(); 1086 } 1087 1088 void IRLinker::linkIndirectSymbolBody(GlobalIndirectSymbol &Dst, 1089 GlobalIndirectSymbol &Src) { 1090 Mapper.scheduleMapGlobalIndirectSymbol(Dst, *Src.getIndirectSymbol(), 1091 IndirectSymbolMCID); 1092 } 1093 1094 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) { 1095 if (auto *F = dyn_cast<Function>(&Src)) 1096 return linkFunctionBody(cast<Function>(Dst), *F); 1097 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) { 1098 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar); 1099 return Error::success(); 1100 } 1101 linkIndirectSymbolBody(cast<GlobalIndirectSymbol>(Dst), cast<GlobalIndirectSymbol>(Src)); 1102 return Error::success(); 1103 } 1104 1105 void IRLinker::flushRAUWWorklist() { 1106 for (const auto &Elem : RAUWWorklist) { 1107 GlobalValue *Old; 1108 Value *New; 1109 std::tie(Old, New) = Elem; 1110 1111 Old->replaceAllUsesWith(New); 1112 Old->eraseFromParent(); 1113 } 1114 RAUWWorklist.clear(); 1115 } 1116 1117 void IRLinker::prepareCompileUnitsForImport() { 1118 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu"); 1119 if (!SrcCompileUnits) 1120 return; 1121 // When importing for ThinLTO, prevent importing of types listed on 1122 // the DICompileUnit that we don't need a copy of in the importing 1123 // module. They will be emitted by the originating module. 1124 for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) { 1125 auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I)); 1126 assert(CU && "Expected valid compile unit"); 1127 // Enums, macros, and retained types don't need to be listed on the 1128 // imported DICompileUnit. This means they will only be imported 1129 // if reached from the mapped IR. Do this by setting their value map 1130 // entries to nullptr, which will automatically prevent their importing 1131 // when reached from the DICompileUnit during metadata mapping. 1132 ValueMap.MD()[CU->getRawEnumTypes()].reset(nullptr); 1133 ValueMap.MD()[CU->getRawMacros()].reset(nullptr); 1134 ValueMap.MD()[CU->getRawRetainedTypes()].reset(nullptr); 1135 // The original definition (or at least its debug info - if the variable is 1136 // internalized an optimized away) will remain in the source module, so 1137 // there's no need to import them. 1138 // If LLVM ever does more advanced optimizations on global variables 1139 // (removing/localizing write operations, for instance) that can track 1140 // through debug info, this decision may need to be revisited - but do so 1141 // with care when it comes to debug info size. Emitting small CUs containing 1142 // only a few imported entities into every destination module may be very 1143 // size inefficient. 1144 ValueMap.MD()[CU->getRawGlobalVariables()].reset(nullptr); 1145 1146 // Imported entities only need to be mapped in if they have local 1147 // scope, as those might correspond to an imported entity inside a 1148 // function being imported (any locally scoped imported entities that 1149 // don't end up referenced by an imported function will not be emitted 1150 // into the object). Imported entities not in a local scope 1151 // (e.g. on the namespace) only need to be emitted by the originating 1152 // module. Create a list of the locally scoped imported entities, and 1153 // replace the source CUs imported entity list with the new list, so 1154 // only those are mapped in. 1155 // FIXME: Locally-scoped imported entities could be moved to the 1156 // functions they are local to instead of listing them on the CU, and 1157 // we would naturally only link in those needed by function importing. 1158 SmallVector<TrackingMDNodeRef, 4> AllImportedModules; 1159 bool ReplaceImportedEntities = false; 1160 for (auto *IE : CU->getImportedEntities()) { 1161 DIScope *Scope = IE->getScope(); 1162 assert(Scope && "Invalid Scope encoding!"); 1163 if (isa<DILocalScope>(Scope)) 1164 AllImportedModules.emplace_back(IE); 1165 else 1166 ReplaceImportedEntities = true; 1167 } 1168 if (ReplaceImportedEntities) { 1169 if (!AllImportedModules.empty()) 1170 CU->replaceImportedEntities(MDTuple::get( 1171 CU->getContext(), 1172 SmallVector<Metadata *, 16>(AllImportedModules.begin(), 1173 AllImportedModules.end()))); 1174 else 1175 // If there were no local scope imported entities, we can map 1176 // the whole list to nullptr. 1177 ValueMap.MD()[CU->getRawImportedEntities()].reset(nullptr); 1178 } 1179 } 1180 } 1181 1182 /// Insert all of the named MDNodes in Src into the Dest module. 1183 void IRLinker::linkNamedMDNodes() { 1184 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1185 for (const NamedMDNode &NMD : SrcM->named_metadata()) { 1186 // Don't link module flags here. Do them separately. 1187 if (&NMD == SrcModFlags) 1188 continue; 1189 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName()); 1190 // Add Src elements into Dest node. 1191 for (const MDNode *Op : NMD.operands()) 1192 DestNMD->addOperand(Mapper.mapMDNode(*Op)); 1193 } 1194 } 1195 1196 /// Merge the linker flags in Src into the Dest module. 1197 Error IRLinker::linkModuleFlagsMetadata() { 1198 // If the source module has no module flags, we are done. 1199 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1200 if (!SrcModFlags) 1201 return Error::success(); 1202 1203 // If the destination module doesn't have module flags yet, then just copy 1204 // over the source module's flags. 1205 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata(); 1206 if (DstModFlags->getNumOperands() == 0) { 1207 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) 1208 DstModFlags->addOperand(SrcModFlags->getOperand(I)); 1209 1210 return Error::success(); 1211 } 1212 1213 // First build a map of the existing module flags and requirements. 1214 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags; 1215 SmallSetVector<MDNode *, 16> Requirements; 1216 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) { 1217 MDNode *Op = DstModFlags->getOperand(I); 1218 ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0)); 1219 MDString *ID = cast<MDString>(Op->getOperand(1)); 1220 1221 if (Behavior->getZExtValue() == Module::Require) { 1222 Requirements.insert(cast<MDNode>(Op->getOperand(2))); 1223 } else { 1224 Flags[ID] = std::make_pair(Op, I); 1225 } 1226 } 1227 1228 // Merge in the flags from the source module, and also collect its set of 1229 // requirements. 1230 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) { 1231 MDNode *SrcOp = SrcModFlags->getOperand(I); 1232 ConstantInt *SrcBehavior = 1233 mdconst::extract<ConstantInt>(SrcOp->getOperand(0)); 1234 MDString *ID = cast<MDString>(SrcOp->getOperand(1)); 1235 MDNode *DstOp; 1236 unsigned DstIndex; 1237 std::tie(DstOp, DstIndex) = Flags.lookup(ID); 1238 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue(); 1239 1240 // If this is a requirement, add it and continue. 1241 if (SrcBehaviorValue == Module::Require) { 1242 // If the destination module does not already have this requirement, add 1243 // it. 1244 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) { 1245 DstModFlags->addOperand(SrcOp); 1246 } 1247 continue; 1248 } 1249 1250 // If there is no existing flag with this ID, just add it. 1251 if (!DstOp) { 1252 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands()); 1253 DstModFlags->addOperand(SrcOp); 1254 continue; 1255 } 1256 1257 // Otherwise, perform a merge. 1258 ConstantInt *DstBehavior = 1259 mdconst::extract<ConstantInt>(DstOp->getOperand(0)); 1260 unsigned DstBehaviorValue = DstBehavior->getZExtValue(); 1261 1262 auto overrideDstValue = [&]() { 1263 DstModFlags->setOperand(DstIndex, SrcOp); 1264 Flags[ID].first = SrcOp; 1265 }; 1266 1267 // If either flag has override behavior, handle it first. 1268 if (DstBehaviorValue == Module::Override) { 1269 // Diagnose inconsistent flags which both have override behavior. 1270 if (SrcBehaviorValue == Module::Override && 1271 SrcOp->getOperand(2) != DstOp->getOperand(2)) 1272 return stringErr("linking module flags '" + ID->getString() + 1273 "': IDs have conflicting override values in '" + 1274 SrcM->getModuleIdentifier() + "' and '" + 1275 DstM.getModuleIdentifier() + "'"); 1276 continue; 1277 } else if (SrcBehaviorValue == Module::Override) { 1278 // Update the destination flag to that of the source. 1279 overrideDstValue(); 1280 continue; 1281 } 1282 1283 // Diagnose inconsistent merge behavior types. 1284 if (SrcBehaviorValue != DstBehaviorValue) { 1285 bool MaxAndWarn = (SrcBehaviorValue == Module::Max && 1286 DstBehaviorValue == Module::Warning) || 1287 (DstBehaviorValue == Module::Max && 1288 SrcBehaviorValue == Module::Warning); 1289 if (!MaxAndWarn) 1290 return stringErr("linking module flags '" + ID->getString() + 1291 "': IDs have conflicting behaviors in '" + 1292 SrcM->getModuleIdentifier() + "' and '" + 1293 DstM.getModuleIdentifier() + "'"); 1294 } 1295 1296 auto replaceDstValue = [&](MDNode *New) { 1297 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New}; 1298 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1299 DstModFlags->setOperand(DstIndex, Flag); 1300 Flags[ID].first = Flag; 1301 }; 1302 1303 // Emit a warning if the values differ and either source or destination 1304 // request Warning behavior. 1305 if ((DstBehaviorValue == Module::Warning || 1306 SrcBehaviorValue == Module::Warning) && 1307 SrcOp->getOperand(2) != DstOp->getOperand(2)) { 1308 std::string Str; 1309 raw_string_ostream(Str) 1310 << "linking module flags '" << ID->getString() 1311 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2) 1312 << "' from " << SrcM->getModuleIdentifier() << " with '" 1313 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier() 1314 << ')'; 1315 emitWarning(Str); 1316 } 1317 1318 // Choose the maximum if either source or destination request Max behavior. 1319 if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) { 1320 ConstantInt *DstValue = 1321 mdconst::extract<ConstantInt>(DstOp->getOperand(2)); 1322 ConstantInt *SrcValue = 1323 mdconst::extract<ConstantInt>(SrcOp->getOperand(2)); 1324 1325 // The resulting flag should have a Max behavior, and contain the maximum 1326 // value from between the source and destination values. 1327 Metadata *FlagOps[] = { 1328 (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID, 1329 (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp) 1330 ->getOperand(2)}; 1331 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1332 DstModFlags->setOperand(DstIndex, Flag); 1333 Flags[ID].first = Flag; 1334 continue; 1335 } 1336 1337 // Perform the merge for standard behavior types. 1338 switch (SrcBehaviorValue) { 1339 case Module::Require: 1340 case Module::Override: 1341 llvm_unreachable("not possible"); 1342 case Module::Error: { 1343 // Emit an error if the values differ. 1344 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) 1345 return stringErr("linking module flags '" + ID->getString() + 1346 "': IDs have conflicting values in '" + 1347 SrcM->getModuleIdentifier() + "' and '" + 1348 DstM.getModuleIdentifier() + "'"); 1349 continue; 1350 } 1351 case Module::Warning: { 1352 break; 1353 } 1354 case Module::Max: { 1355 break; 1356 } 1357 case Module::Append: { 1358 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2)); 1359 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1360 SmallVector<Metadata *, 8> MDs; 1361 MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands()); 1362 MDs.append(DstValue->op_begin(), DstValue->op_end()); 1363 MDs.append(SrcValue->op_begin(), SrcValue->op_end()); 1364 1365 replaceDstValue(MDNode::get(DstM.getContext(), MDs)); 1366 break; 1367 } 1368 case Module::AppendUnique: { 1369 SmallSetVector<Metadata *, 16> Elts; 1370 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2)); 1371 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1372 Elts.insert(DstValue->op_begin(), DstValue->op_end()); 1373 Elts.insert(SrcValue->op_begin(), SrcValue->op_end()); 1374 1375 replaceDstValue(MDNode::get(DstM.getContext(), 1376 makeArrayRef(Elts.begin(), Elts.end()))); 1377 break; 1378 } 1379 } 1380 1381 } 1382 1383 // Check all of the requirements. 1384 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) { 1385 MDNode *Requirement = Requirements[I]; 1386 MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1387 Metadata *ReqValue = Requirement->getOperand(1); 1388 1389 MDNode *Op = Flags[Flag].first; 1390 if (!Op || Op->getOperand(2) != ReqValue) 1391 return stringErr("linking module flags '" + Flag->getString() + 1392 "': does not have the required value"); 1393 } 1394 return Error::success(); 1395 } 1396 1397 /// Return InlineAsm adjusted with target-specific directives if required. 1398 /// For ARM and Thumb, we have to add directives to select the appropriate ISA 1399 /// to support mixing module-level inline assembly from ARM and Thumb modules. 1400 static std::string adjustInlineAsm(const std::string &InlineAsm, 1401 const Triple &Triple) { 1402 if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb) 1403 return ".text\n.balign 2\n.thumb\n" + InlineAsm; 1404 if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb) 1405 return ".text\n.balign 4\n.arm\n" + InlineAsm; 1406 return InlineAsm; 1407 } 1408 1409 Error IRLinker::run() { 1410 // Ensure metadata materialized before value mapping. 1411 if (SrcM->getMaterializer()) 1412 if (Error Err = SrcM->getMaterializer()->materializeMetadata()) 1413 return Err; 1414 1415 // Inherit the target data from the source module if the destination module 1416 // doesn't have one already. 1417 if (DstM.getDataLayout().isDefault()) 1418 DstM.setDataLayout(SrcM->getDataLayout()); 1419 1420 if (SrcM->getDataLayout() != DstM.getDataLayout()) { 1421 emitWarning("Linking two modules of different data layouts: '" + 1422 SrcM->getModuleIdentifier() + "' is '" + 1423 SrcM->getDataLayoutStr() + "' whereas '" + 1424 DstM.getModuleIdentifier() + "' is '" + 1425 DstM.getDataLayoutStr() + "'\n"); 1426 } 1427 1428 // Copy the target triple from the source to dest if the dest's is empty. 1429 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty()) 1430 DstM.setTargetTriple(SrcM->getTargetTriple()); 1431 1432 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple()); 1433 1434 if (!SrcM->getTargetTriple().empty()&& 1435 !SrcTriple.isCompatibleWith(DstTriple)) 1436 emitWarning("Linking two modules of different target triples: " + 1437 SrcM->getModuleIdentifier() + "' is '" + 1438 SrcM->getTargetTriple() + "' whereas '" + 1439 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() + 1440 "'\n"); 1441 1442 DstM.setTargetTriple(SrcTriple.merge(DstTriple)); 1443 1444 // Append the module inline asm string. 1445 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) { 1446 std::string SrcModuleInlineAsm = adjustInlineAsm(SrcM->getModuleInlineAsm(), 1447 SrcTriple); 1448 if (DstM.getModuleInlineAsm().empty()) 1449 DstM.setModuleInlineAsm(SrcModuleInlineAsm); 1450 else 1451 DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" + 1452 SrcModuleInlineAsm); 1453 } 1454 1455 // Loop over all of the linked values to compute type mappings. 1456 computeTypeMapping(); 1457 1458 std::reverse(Worklist.begin(), Worklist.end()); 1459 while (!Worklist.empty()) { 1460 GlobalValue *GV = Worklist.back(); 1461 Worklist.pop_back(); 1462 1463 // Already mapped. 1464 if (ValueMap.find(GV) != ValueMap.end() || 1465 IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end()) 1466 continue; 1467 1468 assert(!GV->isDeclaration()); 1469 Mapper.mapValue(*GV); 1470 if (FoundError) 1471 return std::move(*FoundError); 1472 flushRAUWWorklist(); 1473 } 1474 1475 // Note that we are done linking global value bodies. This prevents 1476 // metadata linking from creating new references. 1477 DoneLinkingBodies = true; 1478 Mapper.addFlags(RF_NullMapMissingGlobalValues); 1479 1480 // Remap all of the named MDNodes in Src into the DstM module. We do this 1481 // after linking GlobalValues so that MDNodes that reference GlobalValues 1482 // are properly remapped. 1483 linkNamedMDNodes(); 1484 1485 // Merge the module flags into the DstM module. 1486 return linkModuleFlagsMetadata(); 1487 } 1488 1489 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P) 1490 : ETypes(E), IsPacked(P) {} 1491 1492 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST) 1493 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {} 1494 1495 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const { 1496 return IsPacked == That.IsPacked && ETypes == That.ETypes; 1497 } 1498 1499 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const { 1500 return !this->operator==(That); 1501 } 1502 1503 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() { 1504 return DenseMapInfo<StructType *>::getEmptyKey(); 1505 } 1506 1507 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() { 1508 return DenseMapInfo<StructType *>::getTombstoneKey(); 1509 } 1510 1511 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) { 1512 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()), 1513 Key.IsPacked); 1514 } 1515 1516 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) { 1517 return getHashValue(KeyTy(ST)); 1518 } 1519 1520 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS, 1521 const StructType *RHS) { 1522 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1523 return false; 1524 return LHS == KeyTy(RHS); 1525 } 1526 1527 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS, 1528 const StructType *RHS) { 1529 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1530 return LHS == RHS; 1531 return KeyTy(LHS) == KeyTy(RHS); 1532 } 1533 1534 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) { 1535 assert(!Ty->isOpaque()); 1536 NonOpaqueStructTypes.insert(Ty); 1537 } 1538 1539 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) { 1540 assert(!Ty->isOpaque()); 1541 NonOpaqueStructTypes.insert(Ty); 1542 bool Removed = OpaqueStructTypes.erase(Ty); 1543 (void)Removed; 1544 assert(Removed); 1545 } 1546 1547 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) { 1548 assert(Ty->isOpaque()); 1549 OpaqueStructTypes.insert(Ty); 1550 } 1551 1552 StructType * 1553 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes, 1554 bool IsPacked) { 1555 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked); 1556 auto I = NonOpaqueStructTypes.find_as(Key); 1557 return I == NonOpaqueStructTypes.end() ? nullptr : *I; 1558 } 1559 1560 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) { 1561 if (Ty->isOpaque()) 1562 return OpaqueStructTypes.count(Ty); 1563 auto I = NonOpaqueStructTypes.find(Ty); 1564 return I == NonOpaqueStructTypes.end() ? false : *I == Ty; 1565 } 1566 1567 IRMover::IRMover(Module &M) : Composite(M) { 1568 TypeFinder StructTypes; 1569 StructTypes.run(M, /* OnlyNamed */ false); 1570 for (StructType *Ty : StructTypes) { 1571 if (Ty->isOpaque()) 1572 IdentifiedStructTypes.addOpaque(Ty); 1573 else 1574 IdentifiedStructTypes.addNonOpaque(Ty); 1575 } 1576 // Self-map metadatas in the destination module. This is needed when 1577 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the 1578 // destination module may be reached from the source module. 1579 for (auto *MD : StructTypes.getVisitedMetadata()) { 1580 SharedMDs[MD].reset(const_cast<MDNode *>(MD)); 1581 } 1582 } 1583 1584 Error IRMover::move( 1585 std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink, 1586 std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor, 1587 bool IsPerformingImport) { 1588 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes, 1589 std::move(Src), ValuesToLink, std::move(AddLazyFor), 1590 IsPerformingImport); 1591 Error E = TheIRLinker.run(); 1592 Composite.dropTriviallyDeadConstantArrays(); 1593 return E; 1594 } 1595