1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Linker/IRMover.h" 10 #include "LinkDiagnosticInfo.h" 11 #include "llvm/ADT/SetVector.h" 12 #include "llvm/ADT/SmallPtrSet.h" 13 #include "llvm/ADT/SmallString.h" 14 #include "llvm/IR/AutoUpgrade.h" 15 #include "llvm/IR/Constants.h" 16 #include "llvm/IR/DebugInfoMetadata.h" 17 #include "llvm/IR/DiagnosticPrinter.h" 18 #include "llvm/IR/Function.h" 19 #include "llvm/IR/GVMaterializer.h" 20 #include "llvm/IR/GlobalValue.h" 21 #include "llvm/IR/Instruction.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/PseudoProbe.h" 26 #include "llvm/IR/TypeFinder.h" 27 #include "llvm/Object/ModuleSymbolTable.h" 28 #include "llvm/Support/Error.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/TargetParser/Triple.h" 31 #include "llvm/Transforms/Utils/ValueMapper.h" 32 #include <optional> 33 #include <utility> 34 using namespace llvm; 35 36 //===----------------------------------------------------------------------===// 37 // TypeMap implementation. 38 //===----------------------------------------------------------------------===// 39 40 namespace { 41 class TypeMapTy : public ValueMapTypeRemapper { 42 /// This is a mapping from a source type to a destination type to use. 43 DenseMap<Type *, Type *> MappedTypes; 44 45 /// When checking to see if two subgraphs are isomorphic, we speculatively 46 /// add types to MappedTypes, but keep track of them here in case we need to 47 /// roll back. 48 SmallVector<Type *, 16> SpeculativeTypes; 49 50 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes; 51 52 /// This is a list of non-opaque structs in the source module that are mapped 53 /// to an opaque struct in the destination module. 54 SmallVector<StructType *, 16> SrcDefinitionsToResolve; 55 56 /// This is the set of opaque types in the destination modules who are 57 /// getting a body from the source module. 58 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes; 59 60 public: 61 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet) 62 : DstStructTypesSet(DstStructTypesSet) {} 63 64 IRMover::IdentifiedStructTypeSet &DstStructTypesSet; 65 /// Indicate that the specified type in the destination module is conceptually 66 /// equivalent to the specified type in the source module. 67 void addTypeMapping(Type *DstTy, Type *SrcTy); 68 69 /// Produce a body for an opaque type in the dest module from a type 70 /// definition in the source module. 71 void linkDefinedTypeBodies(); 72 73 /// Return the mapped type to use for the specified input type from the 74 /// source module. 75 Type *get(Type *SrcTy); 76 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited); 77 78 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes); 79 80 FunctionType *get(FunctionType *T) { 81 return cast<FunctionType>(get((Type *)T)); 82 } 83 84 private: 85 Type *remapType(Type *SrcTy) override { return get(SrcTy); } 86 87 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy); 88 }; 89 } 90 91 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) { 92 assert(SpeculativeTypes.empty()); 93 assert(SpeculativeDstOpaqueTypes.empty()); 94 95 // Check to see if these types are recursively isomorphic and establish a 96 // mapping between them if so. 97 if (!areTypesIsomorphic(DstTy, SrcTy)) { 98 // Oops, they aren't isomorphic. Just discard this request by rolling out 99 // any speculative mappings we've established. 100 for (Type *Ty : SpeculativeTypes) 101 MappedTypes.erase(Ty); 102 103 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() - 104 SpeculativeDstOpaqueTypes.size()); 105 for (StructType *Ty : SpeculativeDstOpaqueTypes) 106 DstResolvedOpaqueTypes.erase(Ty); 107 } else { 108 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy 109 // and all its descendants to lower amount of renaming in LLVM context 110 // Renaming occurs because we load all source modules to the same context 111 // and declaration with existing name gets renamed (i.e Foo -> Foo.42). 112 // As a result we may get several different types in the destination 113 // module, which are in fact the same. 114 for (Type *Ty : SpeculativeTypes) 115 if (auto *STy = dyn_cast<StructType>(Ty)) 116 if (STy->hasName()) 117 STy->setName(""); 118 } 119 SpeculativeTypes.clear(); 120 SpeculativeDstOpaqueTypes.clear(); 121 } 122 123 /// Recursively walk this pair of types, returning true if they are isomorphic, 124 /// false if they are not. 125 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { 126 // Two types with differing kinds are clearly not isomorphic. 127 if (DstTy->getTypeID() != SrcTy->getTypeID()) 128 return false; 129 130 // If we have an entry in the MappedTypes table, then we have our answer. 131 Type *&Entry = MappedTypes[SrcTy]; 132 if (Entry) 133 return Entry == DstTy; 134 135 // Two identical types are clearly isomorphic. Remember this 136 // non-speculatively. 137 if (DstTy == SrcTy) { 138 Entry = DstTy; 139 return true; 140 } 141 142 // Okay, we have two types with identical kinds that we haven't seen before. 143 144 // If this is an opaque struct type, special case it. 145 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) { 146 // Mapping an opaque type to any struct, just keep the dest struct. 147 if (SSTy->isOpaque()) { 148 Entry = DstTy; 149 SpeculativeTypes.push_back(SrcTy); 150 return true; 151 } 152 153 // Mapping a non-opaque source type to an opaque dest. If this is the first 154 // type that we're mapping onto this destination type then we succeed. Keep 155 // the dest, but fill it in later. If this is the second (different) type 156 // that we're trying to map onto the same opaque type then we fail. 157 if (cast<StructType>(DstTy)->isOpaque()) { 158 // We can only map one source type onto the opaque destination type. 159 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second) 160 return false; 161 SrcDefinitionsToResolve.push_back(SSTy); 162 SpeculativeTypes.push_back(SrcTy); 163 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy)); 164 Entry = DstTy; 165 return true; 166 } 167 } 168 169 // If the number of subtypes disagree between the two types, then we fail. 170 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes()) 171 return false; 172 173 // Fail if any of the extra properties (e.g. array size) of the type disagree. 174 if (isa<IntegerType>(DstTy)) 175 return false; // bitwidth disagrees. 176 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) { 177 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace()) 178 return false; 179 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) { 180 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg()) 181 return false; 182 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) { 183 StructType *SSTy = cast<StructType>(SrcTy); 184 if (DSTy->isLiteral() != SSTy->isLiteral() || 185 DSTy->isPacked() != SSTy->isPacked()) 186 return false; 187 } else if (auto *DArrTy = dyn_cast<ArrayType>(DstTy)) { 188 if (DArrTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements()) 189 return false; 190 } else if (auto *DVecTy = dyn_cast<VectorType>(DstTy)) { 191 if (DVecTy->getElementCount() != cast<VectorType>(SrcTy)->getElementCount()) 192 return false; 193 } 194 195 // Otherwise, we speculate that these two types will line up and recursively 196 // check the subelements. 197 Entry = DstTy; 198 SpeculativeTypes.push_back(SrcTy); 199 200 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I) 201 if (!areTypesIsomorphic(DstTy->getContainedType(I), 202 SrcTy->getContainedType(I))) 203 return false; 204 205 // If everything seems to have lined up, then everything is great. 206 return true; 207 } 208 209 void TypeMapTy::linkDefinedTypeBodies() { 210 SmallVector<Type *, 16> Elements; 211 for (StructType *SrcSTy : SrcDefinitionsToResolve) { 212 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]); 213 assert(DstSTy->isOpaque()); 214 215 // Map the body of the source type over to a new body for the dest type. 216 Elements.resize(SrcSTy->getNumElements()); 217 for (unsigned I = 0, E = Elements.size(); I != E; ++I) 218 Elements[I] = get(SrcSTy->getElementType(I)); 219 220 DstSTy->setBody(Elements, SrcSTy->isPacked()); 221 DstStructTypesSet.switchToNonOpaque(DstSTy); 222 } 223 SrcDefinitionsToResolve.clear(); 224 DstResolvedOpaqueTypes.clear(); 225 } 226 227 void TypeMapTy::finishType(StructType *DTy, StructType *STy, 228 ArrayRef<Type *> ETypes) { 229 DTy->setBody(ETypes, STy->isPacked()); 230 231 // Steal STy's name. 232 if (STy->hasName()) { 233 SmallString<16> TmpName = STy->getName(); 234 STy->setName(""); 235 DTy->setName(TmpName); 236 } 237 238 DstStructTypesSet.addNonOpaque(DTy); 239 } 240 241 Type *TypeMapTy::get(Type *Ty) { 242 SmallPtrSet<StructType *, 8> Visited; 243 return get(Ty, Visited); 244 } 245 246 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) { 247 // If we already have an entry for this type, return it. 248 Type **Entry = &MappedTypes[Ty]; 249 if (*Entry) 250 return *Entry; 251 252 // These are types that LLVM itself will unique. 253 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral(); 254 255 if (!IsUniqued) { 256 #ifndef NDEBUG 257 for (auto &Pair : MappedTypes) { 258 assert(!(Pair.first != Ty && Pair.second == Ty) && 259 "mapping to a source type"); 260 } 261 #endif 262 263 if (!Visited.insert(cast<StructType>(Ty)).second) { 264 StructType *DTy = StructType::create(Ty->getContext()); 265 return *Entry = DTy; 266 } 267 } 268 269 // If this is not a recursive type, then just map all of the elements and 270 // then rebuild the type from inside out. 271 SmallVector<Type *, 4> ElementTypes; 272 273 // If there are no element types to map, then the type is itself. This is 274 // true for the anonymous {} struct, things like 'float', integers, etc. 275 if (Ty->getNumContainedTypes() == 0 && IsUniqued) 276 return *Entry = Ty; 277 278 // Remap all of the elements, keeping track of whether any of them change. 279 bool AnyChange = false; 280 ElementTypes.resize(Ty->getNumContainedTypes()); 281 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) { 282 ElementTypes[I] = get(Ty->getContainedType(I), Visited); 283 AnyChange |= ElementTypes[I] != Ty->getContainedType(I); 284 } 285 286 // If we found our type while recursively processing stuff, just use it. 287 Entry = &MappedTypes[Ty]; 288 if (*Entry) { 289 if (auto *DTy = dyn_cast<StructType>(*Entry)) { 290 if (DTy->isOpaque()) { 291 auto *STy = cast<StructType>(Ty); 292 finishType(DTy, STy, ElementTypes); 293 } 294 } 295 return *Entry; 296 } 297 298 // If all of the element types mapped directly over and the type is not 299 // a named struct, then the type is usable as-is. 300 if (!AnyChange && IsUniqued) 301 return *Entry = Ty; 302 303 // Otherwise, rebuild a modified type. 304 switch (Ty->getTypeID()) { 305 default: 306 llvm_unreachable("unknown derived type to remap"); 307 case Type::ArrayTyID: 308 return *Entry = ArrayType::get(ElementTypes[0], 309 cast<ArrayType>(Ty)->getNumElements()); 310 case Type::ScalableVectorTyID: 311 case Type::FixedVectorTyID: 312 return *Entry = VectorType::get(ElementTypes[0], 313 cast<VectorType>(Ty)->getElementCount()); 314 case Type::PointerTyID: 315 return *Entry = PointerType::get(ElementTypes[0], 316 cast<PointerType>(Ty)->getAddressSpace()); 317 case Type::FunctionTyID: 318 return *Entry = FunctionType::get(ElementTypes[0], 319 ArrayRef(ElementTypes).slice(1), 320 cast<FunctionType>(Ty)->isVarArg()); 321 case Type::StructTyID: { 322 auto *STy = cast<StructType>(Ty); 323 bool IsPacked = STy->isPacked(); 324 if (IsUniqued) 325 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked); 326 327 // If the type is opaque, we can just use it directly. 328 if (STy->isOpaque()) { 329 DstStructTypesSet.addOpaque(STy); 330 return *Entry = Ty; 331 } 332 333 if (StructType *OldT = 334 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) { 335 STy->setName(""); 336 return *Entry = OldT; 337 } 338 339 if (!AnyChange) { 340 DstStructTypesSet.addNonOpaque(STy); 341 return *Entry = Ty; 342 } 343 344 StructType *DTy = StructType::create(Ty->getContext()); 345 finishType(DTy, STy, ElementTypes); 346 return *Entry = DTy; 347 } 348 } 349 } 350 351 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity, 352 const Twine &Msg) 353 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {} 354 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 355 356 //===----------------------------------------------------------------------===// 357 // IRLinker implementation. 358 //===----------------------------------------------------------------------===// 359 360 namespace { 361 class IRLinker; 362 363 /// Creates prototypes for functions that are lazily linked on the fly. This 364 /// speeds up linking for modules with many/ lazily linked functions of which 365 /// few get used. 366 class GlobalValueMaterializer final : public ValueMaterializer { 367 IRLinker &TheIRLinker; 368 369 public: 370 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 371 Value *materialize(Value *V) override; 372 }; 373 374 class LocalValueMaterializer final : public ValueMaterializer { 375 IRLinker &TheIRLinker; 376 377 public: 378 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 379 Value *materialize(Value *V) override; 380 }; 381 382 /// Type of the Metadata map in \a ValueToValueMapTy. 383 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT; 384 385 /// This is responsible for keeping track of the state used for moving data 386 /// from SrcM to DstM. 387 class IRLinker { 388 Module &DstM; 389 std::unique_ptr<Module> SrcM; 390 391 /// See IRMover::move(). 392 IRMover::LazyCallback AddLazyFor; 393 394 TypeMapTy TypeMap; 395 GlobalValueMaterializer GValMaterializer; 396 LocalValueMaterializer LValMaterializer; 397 398 /// A metadata map that's shared between IRLinker instances. 399 MDMapT &SharedMDs; 400 401 /// Mapping of values from what they used to be in Src, to what they are now 402 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead 403 /// due to the use of Value handles which the Linker doesn't actually need, 404 /// but this allows us to reuse the ValueMapper code. 405 ValueToValueMapTy ValueMap; 406 ValueToValueMapTy IndirectSymbolValueMap; 407 408 DenseSet<GlobalValue *> ValuesToLink; 409 std::vector<GlobalValue *> Worklist; 410 std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist; 411 412 /// Set of globals with eagerly copied metadata that may require remapping. 413 /// This remapping is performed after metadata linking. 414 DenseSet<GlobalObject *> UnmappedMetadata; 415 416 void maybeAdd(GlobalValue *GV) { 417 if (ValuesToLink.insert(GV).second) 418 Worklist.push_back(GV); 419 } 420 421 /// Whether we are importing globals for ThinLTO, as opposed to linking the 422 /// source module. If this flag is set, it means that we can rely on some 423 /// other object file to define any non-GlobalValue entities defined by the 424 /// source module. This currently causes us to not link retained types in 425 /// debug info metadata and module inline asm. 426 bool IsPerformingImport; 427 428 /// Set to true when all global value body linking is complete (including 429 /// lazy linking). Used to prevent metadata linking from creating new 430 /// references. 431 bool DoneLinkingBodies = false; 432 433 /// The Error encountered during materialization. We use an Optional here to 434 /// avoid needing to manage an unconsumed success value. 435 std::optional<Error> FoundError; 436 void setError(Error E) { 437 if (E) 438 FoundError = std::move(E); 439 } 440 441 /// Most of the errors produced by this module are inconvertible StringErrors. 442 /// This convenience function lets us return one of those more easily. 443 Error stringErr(const Twine &T) { 444 return make_error<StringError>(T, inconvertibleErrorCode()); 445 } 446 447 /// Entry point for mapping values and alternate context for mapping aliases. 448 ValueMapper Mapper; 449 unsigned IndirectSymbolMCID; 450 451 /// Handles cloning of a global values from the source module into 452 /// the destination module, including setting the attributes and visibility. 453 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition); 454 455 void emitWarning(const Twine &Message) { 456 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message)); 457 } 458 459 /// Given a global in the source module, return the global in the 460 /// destination module that is being linked to, if any. 461 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) { 462 // If the source has no name it can't link. If it has local linkage, 463 // there is no name match-up going on. 464 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage()) 465 return nullptr; 466 467 // Otherwise see if we have a match in the destination module's symtab. 468 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName()); 469 if (!DGV) 470 return nullptr; 471 472 // If we found a global with the same name in the dest module, but it has 473 // internal linkage, we are really not doing any linkage here. 474 if (DGV->hasLocalLinkage()) 475 return nullptr; 476 477 // If we found an intrinsic declaration with mismatching prototypes, we 478 // probably had a nameclash. Don't use that version. 479 if (auto *FDGV = dyn_cast<Function>(DGV)) 480 if (FDGV->isIntrinsic()) 481 if (const auto *FSrcGV = dyn_cast<Function>(SrcGV)) 482 if (FDGV->getFunctionType() != TypeMap.get(FSrcGV->getFunctionType())) 483 return nullptr; 484 485 // Otherwise, we do in fact link to the destination global. 486 return DGV; 487 } 488 489 void computeTypeMapping(); 490 491 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV, 492 const GlobalVariable *SrcGV); 493 494 /// Given the GlobaValue \p SGV in the source module, and the matching 495 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV 496 /// into the destination module. 497 /// 498 /// Note this code may call the client-provided \p AddLazyFor. 499 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV); 500 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, 501 bool ForIndirectSymbol); 502 503 Error linkModuleFlagsMetadata(); 504 505 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src); 506 Error linkFunctionBody(Function &Dst, Function &Src); 507 void linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src); 508 void linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src); 509 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src); 510 511 /// Replace all types in the source AttributeList with the 512 /// corresponding destination type. 513 AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs); 514 515 /// Functions that take care of cloning a specific global value type 516 /// into the destination module. 517 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar); 518 Function *copyFunctionProto(const Function *SF); 519 GlobalValue *copyIndirectSymbolProto(const GlobalValue *SGV); 520 521 /// Perform "replace all uses with" operations. These work items need to be 522 /// performed as part of materialization, but we postpone them to happen after 523 /// materialization is done. The materializer called by ValueMapper is not 524 /// expected to delete constants, as ValueMapper is holding pointers to some 525 /// of them, but constant destruction may be indirectly triggered by RAUW. 526 /// Hence, the need to move this out of the materialization call chain. 527 void flushRAUWWorklist(); 528 529 /// When importing for ThinLTO, prevent importing of types listed on 530 /// the DICompileUnit that we don't need a copy of in the importing 531 /// module. 532 void prepareCompileUnitsForImport(); 533 void linkNamedMDNodes(); 534 535 /// Update attributes while linking. 536 void updateAttributes(GlobalValue &GV); 537 538 public: 539 IRLinker(Module &DstM, MDMapT &SharedMDs, 540 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM, 541 ArrayRef<GlobalValue *> ValuesToLink, 542 IRMover::LazyCallback AddLazyFor, bool IsPerformingImport) 543 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)), 544 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this), 545 SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport), 546 Mapper(ValueMap, RF_ReuseAndMutateDistinctMDs | RF_IgnoreMissingLocals, 547 &TypeMap, &GValMaterializer), 548 IndirectSymbolMCID(Mapper.registerAlternateMappingContext( 549 IndirectSymbolValueMap, &LValMaterializer)) { 550 ValueMap.getMDMap() = std::move(SharedMDs); 551 for (GlobalValue *GV : ValuesToLink) 552 maybeAdd(GV); 553 if (IsPerformingImport) 554 prepareCompileUnitsForImport(); 555 } 556 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); } 557 558 Error run(); 559 Value *materialize(Value *V, bool ForIndirectSymbol); 560 }; 561 } 562 563 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol 564 /// table. This is good for all clients except for us. Go through the trouble 565 /// to force this back. 566 static void forceRenaming(GlobalValue *GV, StringRef Name) { 567 // If the global doesn't force its name or if it already has the right name, 568 // there is nothing for us to do. 569 if (GV->hasLocalLinkage() || GV->getName() == Name) 570 return; 571 572 Module *M = GV->getParent(); 573 574 // If there is a conflict, rename the conflict. 575 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) { 576 GV->takeName(ConflictGV); 577 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed 578 assert(ConflictGV->getName() != Name && "forceRenaming didn't work"); 579 } else { 580 GV->setName(Name); // Force the name back 581 } 582 } 583 584 Value *GlobalValueMaterializer::materialize(Value *SGV) { 585 return TheIRLinker.materialize(SGV, false); 586 } 587 588 Value *LocalValueMaterializer::materialize(Value *SGV) { 589 return TheIRLinker.materialize(SGV, true); 590 } 591 592 Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) { 593 auto *SGV = dyn_cast<GlobalValue>(V); 594 if (!SGV) 595 return nullptr; 596 597 // When linking a global from other modules than source & dest, skip 598 // materializing it because it would be mapped later when its containing 599 // module is linked. Linking it now would potentially pull in many types that 600 // may not be mapped properly. 601 if (SGV->getParent() != &DstM && SGV->getParent() != SrcM.get()) 602 return nullptr; 603 604 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol); 605 if (!NewProto) { 606 setError(NewProto.takeError()); 607 return nullptr; 608 } 609 if (!*NewProto) 610 return nullptr; 611 612 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto); 613 if (!New) 614 return *NewProto; 615 616 // If we already created the body, just return. 617 if (auto *F = dyn_cast<Function>(New)) { 618 if (!F->isDeclaration()) 619 return New; 620 } else if (auto *V = dyn_cast<GlobalVariable>(New)) { 621 if (V->hasInitializer() || V->hasAppendingLinkage()) 622 return New; 623 } else if (auto *GA = dyn_cast<GlobalAlias>(New)) { 624 if (GA->getAliasee()) 625 return New; 626 } else if (auto *GI = dyn_cast<GlobalIFunc>(New)) { 627 if (GI->getResolver()) 628 return New; 629 } else { 630 llvm_unreachable("Invalid GlobalValue type"); 631 } 632 633 // If the global is being linked for an indirect symbol, it may have already 634 // been scheduled to satisfy a regular symbol. Similarly, a global being linked 635 // for a regular symbol may have already been scheduled for an indirect 636 // symbol. Check for these cases by looking in the other value map and 637 // confirming the same value has been scheduled. If there is an entry in the 638 // ValueMap but the value is different, it means that the value already had a 639 // definition in the destination module (linkonce for instance), but we need a 640 // new definition for the indirect symbol ("New" will be different). 641 if ((ForIndirectSymbol && ValueMap.lookup(SGV) == New) || 642 (!ForIndirectSymbol && IndirectSymbolValueMap.lookup(SGV) == New)) 643 return New; 644 645 if (ForIndirectSymbol || shouldLink(New, *SGV)) 646 setError(linkGlobalValueBody(*New, *SGV)); 647 648 updateAttributes(*New); 649 return New; 650 } 651 652 /// Loop through the global variables in the src module and merge them into the 653 /// dest module. 654 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) { 655 // No linking to be performed or linking from the source: simply create an 656 // identical version of the symbol over in the dest module... the 657 // initializer will be filled in later by LinkGlobalInits. 658 GlobalVariable *NewDGV = 659 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()), 660 SGVar->isConstant(), GlobalValue::ExternalLinkage, 661 /*init*/ nullptr, SGVar->getName(), 662 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(), 663 SGVar->getAddressSpace()); 664 NewDGV->setAlignment(SGVar->getAlign()); 665 NewDGV->copyAttributesFrom(SGVar); 666 return NewDGV; 667 } 668 669 AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) { 670 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 671 for (int AttrIdx = Attribute::FirstTypeAttr; 672 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) { 673 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx; 674 if (Attrs.hasAttributeAtIndex(i, TypedAttr)) { 675 if (Type *Ty = 676 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) { 677 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr, 678 TypeMap.get(Ty)); 679 break; 680 } 681 } 682 } 683 } 684 return Attrs; 685 } 686 687 /// Link the function in the source module into the destination module if 688 /// needed, setting up mapping information. 689 Function *IRLinker::copyFunctionProto(const Function *SF) { 690 // If there is no linkage to be performed or we are linking from the source, 691 // bring SF over. 692 auto *F = Function::Create(TypeMap.get(SF->getFunctionType()), 693 GlobalValue::ExternalLinkage, 694 SF->getAddressSpace(), SF->getName(), &DstM); 695 F->copyAttributesFrom(SF); 696 F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes())); 697 return F; 698 } 699 700 /// Set up prototypes for any indirect symbols that come over from the source 701 /// module. 702 GlobalValue *IRLinker::copyIndirectSymbolProto(const GlobalValue *SGV) { 703 // If there is no linkage to be performed or we're linking from the source, 704 // bring over SGA. 705 auto *Ty = TypeMap.get(SGV->getValueType()); 706 707 if (auto *GA = dyn_cast<GlobalAlias>(SGV)) { 708 auto *DGA = GlobalAlias::create(Ty, SGV->getAddressSpace(), 709 GlobalValue::ExternalLinkage, 710 SGV->getName(), &DstM); 711 DGA->copyAttributesFrom(GA); 712 return DGA; 713 } 714 715 if (auto *GI = dyn_cast<GlobalIFunc>(SGV)) { 716 auto *DGI = GlobalIFunc::create(Ty, SGV->getAddressSpace(), 717 GlobalValue::ExternalLinkage, 718 SGV->getName(), nullptr, &DstM); 719 DGI->copyAttributesFrom(GI); 720 return DGI; 721 } 722 723 llvm_unreachable("Invalid source global value type"); 724 } 725 726 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV, 727 bool ForDefinition) { 728 GlobalValue *NewGV; 729 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) { 730 NewGV = copyGlobalVariableProto(SGVar); 731 } else if (auto *SF = dyn_cast<Function>(SGV)) { 732 NewGV = copyFunctionProto(SF); 733 } else { 734 if (ForDefinition) 735 NewGV = copyIndirectSymbolProto(SGV); 736 else if (SGV->getValueType()->isFunctionTy()) 737 NewGV = 738 Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())), 739 GlobalValue::ExternalLinkage, SGV->getAddressSpace(), 740 SGV->getName(), &DstM); 741 else 742 NewGV = 743 new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()), 744 /*isConstant*/ false, GlobalValue::ExternalLinkage, 745 /*init*/ nullptr, SGV->getName(), 746 /*insertbefore*/ nullptr, 747 SGV->getThreadLocalMode(), SGV->getAddressSpace()); 748 } 749 750 if (ForDefinition) 751 NewGV->setLinkage(SGV->getLinkage()); 752 else if (SGV->hasExternalWeakLinkage()) 753 NewGV->setLinkage(GlobalValue::ExternalWeakLinkage); 754 755 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) { 756 // Metadata for global variables and function declarations is copied eagerly. 757 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration()) { 758 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0); 759 if (SGV->isDeclaration() && NewGO->hasMetadata()) 760 UnmappedMetadata.insert(NewGO); 761 } 762 } 763 764 // Remove these copied constants in case this stays a declaration, since 765 // they point to the source module. If the def is linked the values will 766 // be mapped in during linkFunctionBody. 767 if (auto *NewF = dyn_cast<Function>(NewGV)) { 768 NewF->setPersonalityFn(nullptr); 769 NewF->setPrefixData(nullptr); 770 NewF->setPrologueData(nullptr); 771 } 772 773 return NewGV; 774 } 775 776 static StringRef getTypeNamePrefix(StringRef Name) { 777 size_t DotPos = Name.rfind('.'); 778 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' || 779 !isdigit(static_cast<unsigned char>(Name[DotPos + 1]))) 780 ? Name 781 : Name.substr(0, DotPos); 782 } 783 784 /// Loop over all of the linked values to compute type mappings. For example, 785 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct 786 /// types 'Foo' but one got renamed when the module was loaded into the same 787 /// LLVMContext. 788 void IRLinker::computeTypeMapping() { 789 for (GlobalValue &SGV : SrcM->globals()) { 790 GlobalValue *DGV = getLinkedToGlobal(&SGV); 791 if (!DGV) 792 continue; 793 794 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) { 795 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 796 continue; 797 } 798 799 // Unify the element type of appending arrays. 800 ArrayType *DAT = cast<ArrayType>(DGV->getValueType()); 801 ArrayType *SAT = cast<ArrayType>(SGV.getValueType()); 802 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType()); 803 } 804 805 for (GlobalValue &SGV : *SrcM) 806 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) { 807 if (DGV->getType() == SGV.getType()) { 808 // If the types of DGV and SGV are the same, it means that DGV is from 809 // the source module and got added to DstM from a shared metadata. We 810 // shouldn't map this type to itself in case the type's components get 811 // remapped to a new type from DstM (for instance, during the loop over 812 // SrcM->getIdentifiedStructTypes() below). 813 continue; 814 } 815 816 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 817 } 818 819 for (GlobalValue &SGV : SrcM->aliases()) 820 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) 821 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 822 823 // Incorporate types by name, scanning all the types in the source module. 824 // At this point, the destination module may have a type "%foo = { i32 }" for 825 // example. When the source module got loaded into the same LLVMContext, if 826 // it had the same type, it would have been renamed to "%foo.42 = { i32 }". 827 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes(); 828 for (StructType *ST : Types) { 829 if (!ST->hasName()) 830 continue; 831 832 if (TypeMap.DstStructTypesSet.hasType(ST)) { 833 // This is actually a type from the destination module. 834 // getIdentifiedStructTypes() can have found it by walking debug info 835 // metadata nodes, some of which get linked by name when ODR Type Uniquing 836 // is enabled on the Context, from the source to the destination module. 837 continue; 838 } 839 840 auto STTypePrefix = getTypeNamePrefix(ST->getName()); 841 if (STTypePrefix.size() == ST->getName().size()) 842 continue; 843 844 // Check to see if the destination module has a struct with the prefix name. 845 StructType *DST = StructType::getTypeByName(ST->getContext(), STTypePrefix); 846 if (!DST) 847 continue; 848 849 // Don't use it if this actually came from the source module. They're in 850 // the same LLVMContext after all. Also don't use it unless the type is 851 // actually used in the destination module. This can happen in situations 852 // like this: 853 // 854 // Module A Module B 855 // -------- -------- 856 // %Z = type { %A } %B = type { %C.1 } 857 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* } 858 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] } 859 // %C = type { i8* } %B.3 = type { %C.1 } 860 // 861 // When we link Module B with Module A, the '%B' in Module B is 862 // used. However, that would then use '%C.1'. But when we process '%C.1', 863 // we prefer to take the '%C' version. So we are then left with both 864 // '%C.1' and '%C' being used for the same types. This leads to some 865 // variables using one type and some using the other. 866 if (TypeMap.DstStructTypesSet.hasType(DST)) 867 TypeMap.addTypeMapping(DST, ST); 868 } 869 870 // Now that we have discovered all of the type equivalences, get a body for 871 // any 'opaque' types in the dest module that are now resolved. 872 TypeMap.linkDefinedTypeBodies(); 873 } 874 875 static void getArrayElements(const Constant *C, 876 SmallVectorImpl<Constant *> &Dest) { 877 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements(); 878 879 for (unsigned i = 0; i != NumElements; ++i) 880 Dest.push_back(C->getAggregateElement(i)); 881 } 882 883 /// If there were any appending global variables, link them together now. 884 Expected<Constant *> 885 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV, 886 const GlobalVariable *SrcGV) { 887 // Check that both variables have compatible properties. 888 if (DstGV && !DstGV->isDeclaration() && !SrcGV->isDeclaration()) { 889 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) 890 return stringErr( 891 "Linking globals named '" + SrcGV->getName() + 892 "': can only link appending global with another appending " 893 "global!"); 894 895 if (DstGV->isConstant() != SrcGV->isConstant()) 896 return stringErr("Appending variables linked with different const'ness!"); 897 898 if (DstGV->getAlign() != SrcGV->getAlign()) 899 return stringErr( 900 "Appending variables with different alignment need to be linked!"); 901 902 if (DstGV->getVisibility() != SrcGV->getVisibility()) 903 return stringErr( 904 "Appending variables with different visibility need to be linked!"); 905 906 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr()) 907 return stringErr( 908 "Appending variables with different unnamed_addr need to be linked!"); 909 910 if (DstGV->getSection() != SrcGV->getSection()) 911 return stringErr( 912 "Appending variables with different section name need to be linked!"); 913 914 if (DstGV->getAddressSpace() != SrcGV->getAddressSpace()) 915 return stringErr("Appending variables with different address spaces need " 916 "to be linked!"); 917 } 918 919 // Do not need to do anything if source is a declaration. 920 if (SrcGV->isDeclaration()) 921 return DstGV; 922 923 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType())) 924 ->getElementType(); 925 926 // FIXME: This upgrade is done during linking to support the C API. Once the 927 // old form is deprecated, we should move this upgrade to 928 // llvm::UpgradeGlobalVariable() and simplify the logic here and in 929 // Mapper::mapAppendingVariable() in ValueMapper.cpp. 930 StringRef Name = SrcGV->getName(); 931 bool IsNewStructor = false; 932 bool IsOldStructor = false; 933 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") { 934 if (cast<StructType>(EltTy)->getNumElements() == 3) 935 IsNewStructor = true; 936 else 937 IsOldStructor = true; 938 } 939 940 PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo(); 941 if (IsOldStructor) { 942 auto &ST = *cast<StructType>(EltTy); 943 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 944 EltTy = StructType::get(SrcGV->getContext(), Tys, false); 945 } 946 947 uint64_t DstNumElements = 0; 948 if (DstGV && !DstGV->isDeclaration()) { 949 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType()); 950 DstNumElements = DstTy->getNumElements(); 951 952 // Check to see that they two arrays agree on type. 953 if (EltTy != DstTy->getElementType()) 954 return stringErr("Appending variables with different element types!"); 955 } 956 957 SmallVector<Constant *, 16> SrcElements; 958 getArrayElements(SrcGV->getInitializer(), SrcElements); 959 960 if (IsNewStructor) { 961 erase_if(SrcElements, [this](Constant *E) { 962 auto *Key = 963 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts()); 964 if (!Key) 965 return false; 966 GlobalValue *DGV = getLinkedToGlobal(Key); 967 return !shouldLink(DGV, *Key); 968 }); 969 } 970 uint64_t NewSize = DstNumElements + SrcElements.size(); 971 ArrayType *NewType = ArrayType::get(EltTy, NewSize); 972 973 // Create the new global variable. 974 GlobalVariable *NG = new GlobalVariable( 975 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(), 976 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(), 977 SrcGV->getAddressSpace()); 978 979 NG->copyAttributesFrom(SrcGV); 980 forceRenaming(NG, SrcGV->getName()); 981 982 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType())); 983 984 Mapper.scheduleMapAppendingVariable( 985 *NG, 986 (DstGV && !DstGV->isDeclaration()) ? DstGV->getInitializer() : nullptr, 987 IsOldStructor, SrcElements); 988 989 // Replace any uses of the two global variables with uses of the new 990 // global. 991 if (DstGV) { 992 RAUWWorklist.push_back( 993 std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType()))); 994 } 995 996 return Ret; 997 } 998 999 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) { 1000 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage()) 1001 return true; 1002 1003 if (DGV && !DGV->isDeclarationForLinker()) 1004 return false; 1005 1006 if (SGV.isDeclaration() || DoneLinkingBodies) 1007 return false; 1008 1009 // Callback to the client to give a chance to lazily add the Global to the 1010 // list of value to link. 1011 bool LazilyAdded = false; 1012 if (AddLazyFor) 1013 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) { 1014 maybeAdd(&GV); 1015 LazilyAdded = true; 1016 }); 1017 return LazilyAdded; 1018 } 1019 1020 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV, 1021 bool ForIndirectSymbol) { 1022 GlobalValue *DGV = getLinkedToGlobal(SGV); 1023 1024 bool ShouldLink = shouldLink(DGV, *SGV); 1025 1026 // just missing from map 1027 if (ShouldLink) { 1028 auto I = ValueMap.find(SGV); 1029 if (I != ValueMap.end()) 1030 return cast<Constant>(I->second); 1031 1032 I = IndirectSymbolValueMap.find(SGV); 1033 if (I != IndirectSymbolValueMap.end()) 1034 return cast<Constant>(I->second); 1035 } 1036 1037 if (!ShouldLink && ForIndirectSymbol) 1038 DGV = nullptr; 1039 1040 // Handle the ultra special appending linkage case first. 1041 if (SGV->hasAppendingLinkage() || (DGV && DGV->hasAppendingLinkage())) 1042 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV), 1043 cast<GlobalVariable>(SGV)); 1044 1045 bool NeedsRenaming = false; 1046 GlobalValue *NewGV; 1047 if (DGV && !ShouldLink) { 1048 NewGV = DGV; 1049 } else { 1050 // If we are done linking global value bodies (i.e. we are performing 1051 // metadata linking), don't link in the global value due to this 1052 // reference, simply map it to null. 1053 if (DoneLinkingBodies) 1054 return nullptr; 1055 1056 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol); 1057 if (ShouldLink || !ForIndirectSymbol) 1058 NeedsRenaming = true; 1059 } 1060 1061 // Overloaded intrinsics have overloaded types names as part of their 1062 // names. If we renamed overloaded types we should rename the intrinsic 1063 // as well. 1064 if (Function *F = dyn_cast<Function>(NewGV)) 1065 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 1066 // Note: remangleIntrinsicFunction does not copy metadata and as such 1067 // F should not occur in the set of objects with unmapped metadata. 1068 // If this assertion fails then remangleIntrinsicFunction needs updating. 1069 assert(!UnmappedMetadata.count(F) && "intrinsic has unmapped metadata"); 1070 NewGV->eraseFromParent(); 1071 NewGV = *Remangled; 1072 NeedsRenaming = false; 1073 } 1074 1075 if (NeedsRenaming) 1076 forceRenaming(NewGV, SGV->getName()); 1077 1078 if (ShouldLink || ForIndirectSymbol) { 1079 if (const Comdat *SC = SGV->getComdat()) { 1080 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) { 1081 Comdat *DC = DstM.getOrInsertComdat(SC->getName()); 1082 DC->setSelectionKind(SC->getSelectionKind()); 1083 GO->setComdat(DC); 1084 } 1085 } 1086 } 1087 1088 if (!ShouldLink && ForIndirectSymbol) 1089 NewGV->setLinkage(GlobalValue::InternalLinkage); 1090 1091 Constant *C = NewGV; 1092 // Only create a bitcast if necessary. In particular, with 1093 // DebugTypeODRUniquing we may reach metadata in the destination module 1094 // containing a GV from the source module, in which case SGV will be 1095 // the same as DGV and NewGV, and TypeMap.get() will assert since it 1096 // assumes it is being invoked on a type in the source module. 1097 if (DGV && NewGV != SGV) { 1098 C = ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1099 NewGV, TypeMap.get(SGV->getType())); 1100 } 1101 1102 if (DGV && NewGV != DGV) { 1103 // Schedule "replace all uses with" to happen after materializing is 1104 // done. It is not safe to do it now, since ValueMapper may be holding 1105 // pointers to constants that will get deleted if RAUW runs. 1106 RAUWWorklist.push_back(std::make_pair( 1107 DGV, 1108 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType()))); 1109 } 1110 1111 return C; 1112 } 1113 1114 /// Update the initializers in the Dest module now that all globals that may be 1115 /// referenced are in Dest. 1116 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) { 1117 // Figure out what the initializer looks like in the dest module. 1118 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer()); 1119 } 1120 1121 /// Copy the source function over into the dest function and fix up references 1122 /// to values. At this point we know that Dest is an external function, and 1123 /// that Src is not. 1124 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) { 1125 assert(Dst.isDeclaration() && !Src.isDeclaration()); 1126 1127 // Materialize if needed. 1128 if (Error Err = Src.materialize()) 1129 return Err; 1130 1131 // Link in the operands without remapping. 1132 if (Src.hasPrefixData()) 1133 Dst.setPrefixData(Src.getPrefixData()); 1134 if (Src.hasPrologueData()) 1135 Dst.setPrologueData(Src.getPrologueData()); 1136 if (Src.hasPersonalityFn()) 1137 Dst.setPersonalityFn(Src.getPersonalityFn()); 1138 1139 // Copy over the metadata attachments without remapping. 1140 Dst.copyMetadata(&Src, 0); 1141 1142 // Steal arguments and splice the body of Src into Dst. 1143 Dst.stealArgumentListFrom(Src); 1144 Dst.splice(Dst.end(), &Src); 1145 1146 // Everything has been moved over. Remap it. 1147 Mapper.scheduleRemapFunction(Dst); 1148 return Error::success(); 1149 } 1150 1151 void IRLinker::linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src) { 1152 Mapper.scheduleMapGlobalAlias(Dst, *Src.getAliasee(), IndirectSymbolMCID); 1153 } 1154 1155 void IRLinker::linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src) { 1156 Mapper.scheduleMapGlobalIFunc(Dst, *Src.getResolver(), IndirectSymbolMCID); 1157 } 1158 1159 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) { 1160 if (auto *F = dyn_cast<Function>(&Src)) 1161 return linkFunctionBody(cast<Function>(Dst), *F); 1162 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) { 1163 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar); 1164 return Error::success(); 1165 } 1166 if (auto *GA = dyn_cast<GlobalAlias>(&Src)) { 1167 linkAliasAliasee(cast<GlobalAlias>(Dst), *GA); 1168 return Error::success(); 1169 } 1170 linkIFuncResolver(cast<GlobalIFunc>(Dst), cast<GlobalIFunc>(Src)); 1171 return Error::success(); 1172 } 1173 1174 void IRLinker::flushRAUWWorklist() { 1175 for (const auto &Elem : RAUWWorklist) { 1176 GlobalValue *Old; 1177 Value *New; 1178 std::tie(Old, New) = Elem; 1179 1180 Old->replaceAllUsesWith(New); 1181 Old->eraseFromParent(); 1182 } 1183 RAUWWorklist.clear(); 1184 } 1185 1186 void IRLinker::prepareCompileUnitsForImport() { 1187 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu"); 1188 if (!SrcCompileUnits) 1189 return; 1190 // When importing for ThinLTO, prevent importing of types listed on 1191 // the DICompileUnit that we don't need a copy of in the importing 1192 // module. They will be emitted by the originating module. 1193 for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) { 1194 auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I)); 1195 assert(CU && "Expected valid compile unit"); 1196 // Enums, macros, and retained types don't need to be listed on the 1197 // imported DICompileUnit. This means they will only be imported 1198 // if reached from the mapped IR. 1199 CU->replaceEnumTypes(nullptr); 1200 CU->replaceMacros(nullptr); 1201 CU->replaceRetainedTypes(nullptr); 1202 1203 // The original definition (or at least its debug info - if the variable is 1204 // internalized and optimized away) will remain in the source module, so 1205 // there's no need to import them. 1206 // If LLVM ever does more advanced optimizations on global variables 1207 // (removing/localizing write operations, for instance) that can track 1208 // through debug info, this decision may need to be revisited - but do so 1209 // with care when it comes to debug info size. Emitting small CUs containing 1210 // only a few imported entities into every destination module may be very 1211 // size inefficient. 1212 CU->replaceGlobalVariables(nullptr); 1213 1214 CU->replaceImportedEntities(nullptr); 1215 } 1216 } 1217 1218 /// Insert all of the named MDNodes in Src into the Dest module. 1219 void IRLinker::linkNamedMDNodes() { 1220 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1221 for (const NamedMDNode &NMD : SrcM->named_metadata()) { 1222 // Don't link module flags here. Do them separately. 1223 if (&NMD == SrcModFlags) 1224 continue; 1225 // Don't import pseudo probe descriptors here for thinLTO. They will be 1226 // emitted by the originating module. 1227 if (IsPerformingImport && NMD.getName() == PseudoProbeDescMetadataName) { 1228 if (!DstM.getNamedMetadata(NMD.getName())) 1229 emitWarning("Pseudo-probe ignored: source module '" + 1230 SrcM->getModuleIdentifier() + 1231 "' is compiled with -fpseudo-probe-for-profiling while " 1232 "destination module '" + 1233 DstM.getModuleIdentifier() + "' is not\n"); 1234 continue; 1235 } 1236 // The stats are computed per module and will all be merged in the binary. 1237 // Importing the metadata will cause duplication of the stats. 1238 if (IsPerformingImport && NMD.getName() == "llvm.stats") 1239 continue; 1240 1241 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName()); 1242 // Add Src elements into Dest node. 1243 for (const MDNode *Op : NMD.operands()) 1244 DestNMD->addOperand(Mapper.mapMDNode(*Op)); 1245 } 1246 } 1247 1248 /// Merge the linker flags in Src into the Dest module. 1249 Error IRLinker::linkModuleFlagsMetadata() { 1250 // If the source module has no module flags, we are done. 1251 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1252 if (!SrcModFlags) 1253 return Error::success(); 1254 1255 // Check for module flag for updates before do anything. 1256 UpgradeModuleFlags(*SrcM); 1257 1258 // If the destination module doesn't have module flags yet, then just copy 1259 // over the source module's flags. 1260 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata(); 1261 if (DstModFlags->getNumOperands() == 0) { 1262 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) 1263 DstModFlags->addOperand(SrcModFlags->getOperand(I)); 1264 1265 return Error::success(); 1266 } 1267 1268 // First build a map of the existing module flags and requirements. 1269 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags; 1270 SmallSetVector<MDNode *, 16> Requirements; 1271 SmallVector<unsigned, 0> Mins; 1272 DenseSet<MDString *> SeenMin; 1273 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) { 1274 MDNode *Op = DstModFlags->getOperand(I); 1275 uint64_t Behavior = 1276 mdconst::extract<ConstantInt>(Op->getOperand(0))->getZExtValue(); 1277 MDString *ID = cast<MDString>(Op->getOperand(1)); 1278 1279 if (Behavior == Module::Require) { 1280 Requirements.insert(cast<MDNode>(Op->getOperand(2))); 1281 } else { 1282 if (Behavior == Module::Min) 1283 Mins.push_back(I); 1284 Flags[ID] = std::make_pair(Op, I); 1285 } 1286 } 1287 1288 // Merge in the flags from the source module, and also collect its set of 1289 // requirements. 1290 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) { 1291 MDNode *SrcOp = SrcModFlags->getOperand(I); 1292 ConstantInt *SrcBehavior = 1293 mdconst::extract<ConstantInt>(SrcOp->getOperand(0)); 1294 MDString *ID = cast<MDString>(SrcOp->getOperand(1)); 1295 MDNode *DstOp; 1296 unsigned DstIndex; 1297 std::tie(DstOp, DstIndex) = Flags.lookup(ID); 1298 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue(); 1299 SeenMin.insert(ID); 1300 1301 // If this is a requirement, add it and continue. 1302 if (SrcBehaviorValue == Module::Require) { 1303 // If the destination module does not already have this requirement, add 1304 // it. 1305 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) { 1306 DstModFlags->addOperand(SrcOp); 1307 } 1308 continue; 1309 } 1310 1311 // If there is no existing flag with this ID, just add it. 1312 if (!DstOp) { 1313 if (SrcBehaviorValue == Module::Min) { 1314 Mins.push_back(DstModFlags->getNumOperands()); 1315 SeenMin.erase(ID); 1316 } 1317 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands()); 1318 DstModFlags->addOperand(SrcOp); 1319 continue; 1320 } 1321 1322 // Otherwise, perform a merge. 1323 ConstantInt *DstBehavior = 1324 mdconst::extract<ConstantInt>(DstOp->getOperand(0)); 1325 unsigned DstBehaviorValue = DstBehavior->getZExtValue(); 1326 1327 auto overrideDstValue = [&]() { 1328 DstModFlags->setOperand(DstIndex, SrcOp); 1329 Flags[ID].first = SrcOp; 1330 }; 1331 1332 // If either flag has override behavior, handle it first. 1333 if (DstBehaviorValue == Module::Override) { 1334 // Diagnose inconsistent flags which both have override behavior. 1335 if (SrcBehaviorValue == Module::Override && 1336 SrcOp->getOperand(2) != DstOp->getOperand(2)) 1337 return stringErr("linking module flags '" + ID->getString() + 1338 "': IDs have conflicting override values in '" + 1339 SrcM->getModuleIdentifier() + "' and '" + 1340 DstM.getModuleIdentifier() + "'"); 1341 continue; 1342 } else if (SrcBehaviorValue == Module::Override) { 1343 // Update the destination flag to that of the source. 1344 overrideDstValue(); 1345 continue; 1346 } 1347 1348 // Diagnose inconsistent merge behavior types. 1349 if (SrcBehaviorValue != DstBehaviorValue) { 1350 bool MinAndWarn = (SrcBehaviorValue == Module::Min && 1351 DstBehaviorValue == Module::Warning) || 1352 (DstBehaviorValue == Module::Min && 1353 SrcBehaviorValue == Module::Warning); 1354 bool MaxAndWarn = (SrcBehaviorValue == Module::Max && 1355 DstBehaviorValue == Module::Warning) || 1356 (DstBehaviorValue == Module::Max && 1357 SrcBehaviorValue == Module::Warning); 1358 if (!(MaxAndWarn || MinAndWarn)) 1359 return stringErr("linking module flags '" + ID->getString() + 1360 "': IDs have conflicting behaviors in '" + 1361 SrcM->getModuleIdentifier() + "' and '" + 1362 DstM.getModuleIdentifier() + "'"); 1363 } 1364 1365 auto ensureDistinctOp = [&](MDNode *DstValue) { 1366 assert(isa<MDTuple>(DstValue) && 1367 "Expected MDTuple when appending module flags"); 1368 if (DstValue->isDistinct()) 1369 return dyn_cast<MDTuple>(DstValue); 1370 ArrayRef<MDOperand> DstOperands = DstValue->operands(); 1371 MDTuple *New = MDTuple::getDistinct( 1372 DstM.getContext(), 1373 SmallVector<Metadata *, 4>(DstOperands.begin(), DstOperands.end())); 1374 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New}; 1375 MDNode *Flag = MDTuple::getDistinct(DstM.getContext(), FlagOps); 1376 DstModFlags->setOperand(DstIndex, Flag); 1377 Flags[ID].first = Flag; 1378 return New; 1379 }; 1380 1381 // Emit a warning if the values differ and either source or destination 1382 // request Warning behavior. 1383 if ((DstBehaviorValue == Module::Warning || 1384 SrcBehaviorValue == Module::Warning) && 1385 SrcOp->getOperand(2) != DstOp->getOperand(2)) { 1386 std::string Str; 1387 raw_string_ostream(Str) 1388 << "linking module flags '" << ID->getString() 1389 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2) 1390 << "' from " << SrcM->getModuleIdentifier() << " with '" 1391 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier() 1392 << ')'; 1393 emitWarning(Str); 1394 } 1395 1396 // Choose the minimum if either source or destination request Min behavior. 1397 if (DstBehaviorValue == Module::Min || SrcBehaviorValue == Module::Min) { 1398 ConstantInt *DstValue = 1399 mdconst::extract<ConstantInt>(DstOp->getOperand(2)); 1400 ConstantInt *SrcValue = 1401 mdconst::extract<ConstantInt>(SrcOp->getOperand(2)); 1402 1403 // The resulting flag should have a Min behavior, and contain the minimum 1404 // value from between the source and destination values. 1405 Metadata *FlagOps[] = { 1406 (DstBehaviorValue != Module::Min ? SrcOp : DstOp)->getOperand(0), ID, 1407 (SrcValue->getZExtValue() < DstValue->getZExtValue() ? SrcOp : DstOp) 1408 ->getOperand(2)}; 1409 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1410 DstModFlags->setOperand(DstIndex, Flag); 1411 Flags[ID].first = Flag; 1412 continue; 1413 } 1414 1415 // Choose the maximum if either source or destination request Max behavior. 1416 if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) { 1417 ConstantInt *DstValue = 1418 mdconst::extract<ConstantInt>(DstOp->getOperand(2)); 1419 ConstantInt *SrcValue = 1420 mdconst::extract<ConstantInt>(SrcOp->getOperand(2)); 1421 1422 // The resulting flag should have a Max behavior, and contain the maximum 1423 // value from between the source and destination values. 1424 Metadata *FlagOps[] = { 1425 (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID, 1426 (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp) 1427 ->getOperand(2)}; 1428 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1429 DstModFlags->setOperand(DstIndex, Flag); 1430 Flags[ID].first = Flag; 1431 continue; 1432 } 1433 1434 // Perform the merge for standard behavior types. 1435 switch (SrcBehaviorValue) { 1436 case Module::Require: 1437 case Module::Override: 1438 llvm_unreachable("not possible"); 1439 case Module::Error: { 1440 // Emit an error if the values differ. 1441 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) 1442 return stringErr("linking module flags '" + ID->getString() + 1443 "': IDs have conflicting values in '" + 1444 SrcM->getModuleIdentifier() + "' and '" + 1445 DstM.getModuleIdentifier() + "'"); 1446 continue; 1447 } 1448 case Module::Warning: { 1449 break; 1450 } 1451 case Module::Max: { 1452 break; 1453 } 1454 case Module::Append: { 1455 MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2))); 1456 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1457 for (const auto &O : SrcValue->operands()) 1458 DstValue->push_back(O); 1459 break; 1460 } 1461 case Module::AppendUnique: { 1462 SmallSetVector<Metadata *, 16> Elts; 1463 MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2))); 1464 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1465 Elts.insert(DstValue->op_begin(), DstValue->op_end()); 1466 Elts.insert(SrcValue->op_begin(), SrcValue->op_end()); 1467 for (auto I = DstValue->getNumOperands(); I < Elts.size(); I++) 1468 DstValue->push_back(Elts[I]); 1469 break; 1470 } 1471 } 1472 1473 } 1474 1475 // For the Min behavior, set the value to 0 if either module does not have the 1476 // flag. 1477 for (auto Idx : Mins) { 1478 MDNode *Op = DstModFlags->getOperand(Idx); 1479 MDString *ID = cast<MDString>(Op->getOperand(1)); 1480 if (!SeenMin.count(ID)) { 1481 ConstantInt *V = mdconst::extract<ConstantInt>(Op->getOperand(2)); 1482 Metadata *FlagOps[] = { 1483 Op->getOperand(0), ID, 1484 ConstantAsMetadata::get(ConstantInt::get(V->getType(), 0))}; 1485 DstModFlags->setOperand(Idx, MDNode::get(DstM.getContext(), FlagOps)); 1486 } 1487 } 1488 1489 // Check all of the requirements. 1490 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) { 1491 MDNode *Requirement = Requirements[I]; 1492 MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1493 Metadata *ReqValue = Requirement->getOperand(1); 1494 1495 MDNode *Op = Flags[Flag].first; 1496 if (!Op || Op->getOperand(2) != ReqValue) 1497 return stringErr("linking module flags '" + Flag->getString() + 1498 "': does not have the required value"); 1499 } 1500 return Error::success(); 1501 } 1502 1503 /// Return InlineAsm adjusted with target-specific directives if required. 1504 /// For ARM and Thumb, we have to add directives to select the appropriate ISA 1505 /// to support mixing module-level inline assembly from ARM and Thumb modules. 1506 static std::string adjustInlineAsm(const std::string &InlineAsm, 1507 const Triple &Triple) { 1508 if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb) 1509 return ".text\n.balign 2\n.thumb\n" + InlineAsm; 1510 if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb) 1511 return ".text\n.balign 4\n.arm\n" + InlineAsm; 1512 return InlineAsm; 1513 } 1514 1515 void IRLinker::updateAttributes(GlobalValue &GV) { 1516 /// Remove nocallback attribute while linking, because nocallback attribute 1517 /// indicates that the function is only allowed to jump back into caller's 1518 /// module only by a return or an exception. When modules are linked, this 1519 /// property cannot be guaranteed anymore. For example, the nocallback 1520 /// function may contain a call to another module. But if we merge its caller 1521 /// and callee module here, and not the module containing the nocallback 1522 /// function definition itself, the nocallback property will be violated 1523 /// (since the nocallback function will call back into the newly merged module 1524 /// containing both its caller and callee). This could happen if the module 1525 /// containing the nocallback function definition is native code, so it does 1526 /// not participate in the LTO link. Note if the nocallback function does 1527 /// participate in the LTO link, and thus ends up in the merged module 1528 /// containing its caller and callee, removing the attribute doesn't hurt as 1529 /// it has no effect on definitions in the same module. 1530 if (auto *F = dyn_cast<Function>(&GV)) { 1531 if (!F->isIntrinsic()) 1532 F->removeFnAttr(llvm::Attribute::NoCallback); 1533 1534 // Remove nocallback attribute when it is on a call-site. 1535 for (BasicBlock &BB : *F) 1536 for (Instruction &I : BB) 1537 if (CallBase *CI = dyn_cast<CallBase>(&I)) 1538 CI->removeFnAttr(Attribute::NoCallback); 1539 } 1540 } 1541 1542 Error IRLinker::run() { 1543 // Ensure metadata materialized before value mapping. 1544 if (SrcM->getMaterializer()) 1545 if (Error Err = SrcM->getMaterializer()->materializeMetadata()) 1546 return Err; 1547 1548 // Inherit the target data from the source module if the destination module 1549 // doesn't have one already. 1550 if (DstM.getDataLayout().isDefault()) 1551 DstM.setDataLayout(SrcM->getDataLayout()); 1552 1553 // Copy the target triple from the source to dest if the dest's is empty. 1554 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty()) 1555 DstM.setTargetTriple(SrcM->getTargetTriple()); 1556 1557 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple()); 1558 1559 // During CUDA compilation we have to link with the bitcode supplied with 1560 // CUDA. libdevice bitcode either has no data layout set (pre-CUDA-11), or has 1561 // the layout that is different from the one used by LLVM/clang (it does not 1562 // include i128). Issuing a warning is not very helpful as there's not much 1563 // the user can do about it. 1564 bool EnableDLWarning = true; 1565 bool EnableTripleWarning = true; 1566 if (SrcTriple.isNVPTX() && DstTriple.isNVPTX()) { 1567 std::string ModuleId = SrcM->getModuleIdentifier(); 1568 StringRef FileName = llvm::sys::path::filename(ModuleId); 1569 bool SrcIsLibDevice = 1570 FileName.startswith("libdevice") && FileName.endswith(".10.bc"); 1571 bool SrcHasLibDeviceDL = 1572 (SrcM->getDataLayoutStr().empty() || 1573 SrcM->getDataLayoutStr() == "e-i64:64-v16:16-v32:32-n16:32:64"); 1574 // libdevice bitcode uses nvptx64-nvidia-gpulibs or just 1575 // 'nvptx-unknown-unknown' triple (before CUDA-10.x) and is compatible with 1576 // all NVPTX variants. 1577 bool SrcHasLibDeviceTriple = (SrcTriple.getVendor() == Triple::NVIDIA && 1578 SrcTriple.getOSName() == "gpulibs") || 1579 (SrcTriple.getVendorName() == "unknown" && 1580 SrcTriple.getOSName() == "unknown"); 1581 EnableTripleWarning = !(SrcIsLibDevice && SrcHasLibDeviceTriple); 1582 EnableDLWarning = !(SrcIsLibDevice && SrcHasLibDeviceDL); 1583 } 1584 1585 if (EnableDLWarning && (SrcM->getDataLayout() != DstM.getDataLayout())) { 1586 emitWarning("Linking two modules of different data layouts: '" + 1587 SrcM->getModuleIdentifier() + "' is '" + 1588 SrcM->getDataLayoutStr() + "' whereas '" + 1589 DstM.getModuleIdentifier() + "' is '" + 1590 DstM.getDataLayoutStr() + "'\n"); 1591 } 1592 1593 if (EnableTripleWarning && !SrcM->getTargetTriple().empty() && 1594 !SrcTriple.isCompatibleWith(DstTriple)) 1595 emitWarning("Linking two modules of different target triples: '" + 1596 SrcM->getModuleIdentifier() + "' is '" + 1597 SrcM->getTargetTriple() + "' whereas '" + 1598 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() + 1599 "'\n"); 1600 1601 DstM.setTargetTriple(SrcTriple.merge(DstTriple)); 1602 1603 // Loop over all of the linked values to compute type mappings. 1604 computeTypeMapping(); 1605 1606 std::reverse(Worklist.begin(), Worklist.end()); 1607 while (!Worklist.empty()) { 1608 GlobalValue *GV = Worklist.back(); 1609 Worklist.pop_back(); 1610 1611 // Already mapped. 1612 if (ValueMap.find(GV) != ValueMap.end() || 1613 IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end()) 1614 continue; 1615 1616 assert(!GV->isDeclaration()); 1617 Mapper.mapValue(*GV); 1618 if (FoundError) 1619 return std::move(*FoundError); 1620 flushRAUWWorklist(); 1621 } 1622 1623 // Note that we are done linking global value bodies. This prevents 1624 // metadata linking from creating new references. 1625 DoneLinkingBodies = true; 1626 Mapper.addFlags(RF_NullMapMissingGlobalValues); 1627 1628 // Remap all of the named MDNodes in Src into the DstM module. We do this 1629 // after linking GlobalValues so that MDNodes that reference GlobalValues 1630 // are properly remapped. 1631 linkNamedMDNodes(); 1632 1633 // Clean up any global objects with potentially unmapped metadata. 1634 // Specifically declarations which did not become definitions. 1635 for (GlobalObject *NGO : UnmappedMetadata) { 1636 if (NGO->isDeclaration()) 1637 Mapper.remapGlobalObjectMetadata(*NGO); 1638 } 1639 1640 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) { 1641 // Append the module inline asm string. 1642 DstM.appendModuleInlineAsm(adjustInlineAsm(SrcM->getModuleInlineAsm(), 1643 SrcTriple)); 1644 } else if (IsPerformingImport) { 1645 // Import any symver directives for symbols in DstM. 1646 ModuleSymbolTable::CollectAsmSymvers(*SrcM, 1647 [&](StringRef Name, StringRef Alias) { 1648 if (DstM.getNamedValue(Name)) { 1649 SmallString<256> S(".symver "); 1650 S += Name; 1651 S += ", "; 1652 S += Alias; 1653 DstM.appendModuleInlineAsm(S); 1654 } 1655 }); 1656 } 1657 1658 // Reorder the globals just added to the destination module to match their 1659 // original order in the source module. 1660 for (GlobalVariable &GV : SrcM->globals()) { 1661 if (GV.hasAppendingLinkage()) 1662 continue; 1663 Value *NewValue = Mapper.mapValue(GV); 1664 if (NewValue) { 1665 auto *NewGV = dyn_cast<GlobalVariable>(NewValue->stripPointerCasts()); 1666 if (NewGV) { 1667 NewGV->removeFromParent(); 1668 DstM.insertGlobalVariable(NewGV); 1669 } 1670 } 1671 } 1672 1673 // Merge the module flags into the DstM module. 1674 return linkModuleFlagsMetadata(); 1675 } 1676 1677 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P) 1678 : ETypes(E), IsPacked(P) {} 1679 1680 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST) 1681 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {} 1682 1683 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const { 1684 return IsPacked == That.IsPacked && ETypes == That.ETypes; 1685 } 1686 1687 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const { 1688 return !this->operator==(That); 1689 } 1690 1691 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() { 1692 return DenseMapInfo<StructType *>::getEmptyKey(); 1693 } 1694 1695 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() { 1696 return DenseMapInfo<StructType *>::getTombstoneKey(); 1697 } 1698 1699 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) { 1700 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()), 1701 Key.IsPacked); 1702 } 1703 1704 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) { 1705 return getHashValue(KeyTy(ST)); 1706 } 1707 1708 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS, 1709 const StructType *RHS) { 1710 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1711 return false; 1712 return LHS == KeyTy(RHS); 1713 } 1714 1715 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS, 1716 const StructType *RHS) { 1717 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1718 return LHS == RHS; 1719 return KeyTy(LHS) == KeyTy(RHS); 1720 } 1721 1722 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) { 1723 assert(!Ty->isOpaque()); 1724 NonOpaqueStructTypes.insert(Ty); 1725 } 1726 1727 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) { 1728 assert(!Ty->isOpaque()); 1729 NonOpaqueStructTypes.insert(Ty); 1730 bool Removed = OpaqueStructTypes.erase(Ty); 1731 (void)Removed; 1732 assert(Removed); 1733 } 1734 1735 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) { 1736 assert(Ty->isOpaque()); 1737 OpaqueStructTypes.insert(Ty); 1738 } 1739 1740 StructType * 1741 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes, 1742 bool IsPacked) { 1743 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked); 1744 auto I = NonOpaqueStructTypes.find_as(Key); 1745 return I == NonOpaqueStructTypes.end() ? nullptr : *I; 1746 } 1747 1748 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) { 1749 if (Ty->isOpaque()) 1750 return OpaqueStructTypes.count(Ty); 1751 auto I = NonOpaqueStructTypes.find(Ty); 1752 return I == NonOpaqueStructTypes.end() ? false : *I == Ty; 1753 } 1754 1755 IRMover::IRMover(Module &M) : Composite(M) { 1756 TypeFinder StructTypes; 1757 StructTypes.run(M, /* OnlyNamed */ false); 1758 for (StructType *Ty : StructTypes) { 1759 if (Ty->isOpaque()) 1760 IdentifiedStructTypes.addOpaque(Ty); 1761 else 1762 IdentifiedStructTypes.addNonOpaque(Ty); 1763 } 1764 // Self-map metadatas in the destination module. This is needed when 1765 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the 1766 // destination module may be reached from the source module. 1767 for (const auto *MD : StructTypes.getVisitedMetadata()) { 1768 SharedMDs[MD].reset(const_cast<MDNode *>(MD)); 1769 } 1770 } 1771 1772 Error IRMover::move(std::unique_ptr<Module> Src, 1773 ArrayRef<GlobalValue *> ValuesToLink, 1774 LazyCallback AddLazyFor, bool IsPerformingImport) { 1775 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes, 1776 std::move(Src), ValuesToLink, std::move(AddLazyFor), 1777 IsPerformingImport); 1778 Error E = TheIRLinker.run(); 1779 Composite.dropTriviallyDeadConstantArrays(); 1780 return E; 1781 } 1782