1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Linker/IRMover.h" 10 #include "LinkDiagnosticInfo.h" 11 #include "llvm/ADT/ScopeExit.h" 12 #include "llvm/ADT/SetVector.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallString.h" 15 #include "llvm/IR/AutoUpgrade.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DebugInfoMetadata.h" 18 #include "llvm/IR/DiagnosticPrinter.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/IR/GVMaterializer.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Intrinsics.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/PseudoProbe.h" 27 #include "llvm/IR/TypeFinder.h" 28 #include "llvm/Object/ModuleSymbolTable.h" 29 #include "llvm/Support/Error.h" 30 #include "llvm/Support/Path.h" 31 #include "llvm/TargetParser/Triple.h" 32 #include "llvm/Transforms/Utils/ValueMapper.h" 33 #include <optional> 34 #include <utility> 35 using namespace llvm; 36 37 //===----------------------------------------------------------------------===// 38 // TypeMap implementation. 39 //===----------------------------------------------------------------------===// 40 41 namespace { 42 class TypeMapTy : public ValueMapTypeRemapper { 43 /// This is a mapping from a source type to a destination type to use. 44 DenseMap<Type *, Type *> MappedTypes; 45 46 /// When checking to see if two subgraphs are isomorphic, we speculatively 47 /// add types to MappedTypes, but keep track of them here in case we need to 48 /// roll back. 49 SmallVector<Type *, 16> SpeculativeTypes; 50 51 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes; 52 53 /// This is a list of non-opaque structs in the source module that are mapped 54 /// to an opaque struct in the destination module. 55 SmallVector<StructType *, 16> SrcDefinitionsToResolve; 56 57 /// This is the set of opaque types in the destination modules who are 58 /// getting a body from the source module. 59 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes; 60 61 public: 62 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet) 63 : DstStructTypesSet(DstStructTypesSet) {} 64 65 IRMover::IdentifiedStructTypeSet &DstStructTypesSet; 66 /// Indicate that the specified type in the destination module is conceptually 67 /// equivalent to the specified type in the source module. 68 void addTypeMapping(Type *DstTy, Type *SrcTy); 69 70 /// Produce a body for an opaque type in the dest module from a type 71 /// definition in the source module. 72 void linkDefinedTypeBodies(); 73 74 /// Return the mapped type to use for the specified input type from the 75 /// source module. 76 Type *get(Type *SrcTy); 77 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited); 78 79 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes); 80 81 FunctionType *get(FunctionType *T) { 82 return cast<FunctionType>(get((Type *)T)); 83 } 84 85 private: 86 Type *remapType(Type *SrcTy) override { return get(SrcTy); } 87 88 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy); 89 }; 90 } 91 92 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) { 93 assert(SpeculativeTypes.empty()); 94 assert(SpeculativeDstOpaqueTypes.empty()); 95 96 // Check to see if these types are recursively isomorphic and establish a 97 // mapping between them if so. 98 if (!areTypesIsomorphic(DstTy, SrcTy)) { 99 // Oops, they aren't isomorphic. Just discard this request by rolling out 100 // any speculative mappings we've established. 101 for (Type *Ty : SpeculativeTypes) 102 MappedTypes.erase(Ty); 103 104 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() - 105 SpeculativeDstOpaqueTypes.size()); 106 for (StructType *Ty : SpeculativeDstOpaqueTypes) 107 DstResolvedOpaqueTypes.erase(Ty); 108 } else { 109 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy 110 // and all its descendants to lower amount of renaming in LLVM context 111 // Renaming occurs because we load all source modules to the same context 112 // and declaration with existing name gets renamed (i.e Foo -> Foo.42). 113 // As a result we may get several different types in the destination 114 // module, which are in fact the same. 115 for (Type *Ty : SpeculativeTypes) 116 if (auto *STy = dyn_cast<StructType>(Ty)) 117 if (STy->hasName()) 118 STy->setName(""); 119 } 120 SpeculativeTypes.clear(); 121 SpeculativeDstOpaqueTypes.clear(); 122 } 123 124 /// Recursively walk this pair of types, returning true if they are isomorphic, 125 /// false if they are not. 126 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { 127 // Two types with differing kinds are clearly not isomorphic. 128 if (DstTy->getTypeID() != SrcTy->getTypeID()) 129 return false; 130 131 // If we have an entry in the MappedTypes table, then we have our answer. 132 Type *&Entry = MappedTypes[SrcTy]; 133 if (Entry) 134 return Entry == DstTy; 135 136 // Two identical types are clearly isomorphic. Remember this 137 // non-speculatively. 138 if (DstTy == SrcTy) { 139 Entry = DstTy; 140 return true; 141 } 142 143 // Okay, we have two types with identical kinds that we haven't seen before. 144 145 // If this is an opaque struct type, special case it. 146 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) { 147 // Mapping an opaque type to any struct, just keep the dest struct. 148 if (SSTy->isOpaque()) { 149 Entry = DstTy; 150 SpeculativeTypes.push_back(SrcTy); 151 return true; 152 } 153 154 // Mapping a non-opaque source type to an opaque dest. If this is the first 155 // type that we're mapping onto this destination type then we succeed. Keep 156 // the dest, but fill it in later. If this is the second (different) type 157 // that we're trying to map onto the same opaque type then we fail. 158 if (cast<StructType>(DstTy)->isOpaque()) { 159 // We can only map one source type onto the opaque destination type. 160 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second) 161 return false; 162 SrcDefinitionsToResolve.push_back(SSTy); 163 SpeculativeTypes.push_back(SrcTy); 164 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy)); 165 Entry = DstTy; 166 return true; 167 } 168 } 169 170 // If the number of subtypes disagree between the two types, then we fail. 171 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes()) 172 return false; 173 174 // Fail if any of the extra properties (e.g. array size) of the type disagree. 175 if (isa<IntegerType>(DstTy)) 176 return false; // bitwidth disagrees. 177 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) { 178 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace()) 179 return false; 180 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) { 181 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg()) 182 return false; 183 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) { 184 StructType *SSTy = cast<StructType>(SrcTy); 185 if (DSTy->isLiteral() != SSTy->isLiteral() || 186 DSTy->isPacked() != SSTy->isPacked()) 187 return false; 188 } else if (auto *DArrTy = dyn_cast<ArrayType>(DstTy)) { 189 if (DArrTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements()) 190 return false; 191 } else if (auto *DVecTy = dyn_cast<VectorType>(DstTy)) { 192 if (DVecTy->getElementCount() != cast<VectorType>(SrcTy)->getElementCount()) 193 return false; 194 } 195 196 // Otherwise, we speculate that these two types will line up and recursively 197 // check the subelements. 198 Entry = DstTy; 199 SpeculativeTypes.push_back(SrcTy); 200 201 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I) 202 if (!areTypesIsomorphic(DstTy->getContainedType(I), 203 SrcTy->getContainedType(I))) 204 return false; 205 206 // If everything seems to have lined up, then everything is great. 207 return true; 208 } 209 210 void TypeMapTy::linkDefinedTypeBodies() { 211 SmallVector<Type *, 16> Elements; 212 for (StructType *SrcSTy : SrcDefinitionsToResolve) { 213 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]); 214 assert(DstSTy->isOpaque()); 215 216 // Map the body of the source type over to a new body for the dest type. 217 Elements.resize(SrcSTy->getNumElements()); 218 for (unsigned I = 0, E = Elements.size(); I != E; ++I) 219 Elements[I] = get(SrcSTy->getElementType(I)); 220 221 DstSTy->setBody(Elements, SrcSTy->isPacked()); 222 DstStructTypesSet.switchToNonOpaque(DstSTy); 223 } 224 SrcDefinitionsToResolve.clear(); 225 DstResolvedOpaqueTypes.clear(); 226 } 227 228 void TypeMapTy::finishType(StructType *DTy, StructType *STy, 229 ArrayRef<Type *> ETypes) { 230 DTy->setBody(ETypes, STy->isPacked()); 231 232 // Steal STy's name. 233 if (STy->hasName()) { 234 SmallString<16> TmpName = STy->getName(); 235 STy->setName(""); 236 DTy->setName(TmpName); 237 } 238 239 DstStructTypesSet.addNonOpaque(DTy); 240 } 241 242 Type *TypeMapTy::get(Type *Ty) { 243 SmallPtrSet<StructType *, 8> Visited; 244 return get(Ty, Visited); 245 } 246 247 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) { 248 // If we already have an entry for this type, return it. 249 Type **Entry = &MappedTypes[Ty]; 250 if (*Entry) 251 return *Entry; 252 253 // These are types that LLVM itself will unique. 254 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral(); 255 256 if (!IsUniqued) { 257 #ifndef NDEBUG 258 for (auto &Pair : MappedTypes) { 259 assert(!(Pair.first != Ty && Pair.second == Ty) && 260 "mapping to a source type"); 261 } 262 #endif 263 264 if (!Visited.insert(cast<StructType>(Ty)).second) { 265 StructType *DTy = StructType::create(Ty->getContext()); 266 return *Entry = DTy; 267 } 268 } 269 270 // If this is not a recursive type, then just map all of the elements and 271 // then rebuild the type from inside out. 272 SmallVector<Type *, 4> ElementTypes; 273 274 // If there are no element types to map, then the type is itself. This is 275 // true for the anonymous {} struct, things like 'float', integers, etc. 276 if (Ty->getNumContainedTypes() == 0 && IsUniqued) 277 return *Entry = Ty; 278 279 // Remap all of the elements, keeping track of whether any of them change. 280 bool AnyChange = false; 281 ElementTypes.resize(Ty->getNumContainedTypes()); 282 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) { 283 ElementTypes[I] = get(Ty->getContainedType(I), Visited); 284 AnyChange |= ElementTypes[I] != Ty->getContainedType(I); 285 } 286 287 // If we found our type while recursively processing stuff, just use it. 288 Entry = &MappedTypes[Ty]; 289 if (*Entry) { 290 if (auto *DTy = dyn_cast<StructType>(*Entry)) { 291 if (DTy->isOpaque()) { 292 auto *STy = cast<StructType>(Ty); 293 finishType(DTy, STy, ElementTypes); 294 } 295 } 296 return *Entry; 297 } 298 299 // If all of the element types mapped directly over and the type is not 300 // a named struct, then the type is usable as-is. 301 if (!AnyChange && IsUniqued) 302 return *Entry = Ty; 303 304 // Otherwise, rebuild a modified type. 305 switch (Ty->getTypeID()) { 306 default: 307 llvm_unreachable("unknown derived type to remap"); 308 case Type::ArrayTyID: 309 return *Entry = ArrayType::get(ElementTypes[0], 310 cast<ArrayType>(Ty)->getNumElements()); 311 case Type::ScalableVectorTyID: 312 case Type::FixedVectorTyID: 313 return *Entry = VectorType::get(ElementTypes[0], 314 cast<VectorType>(Ty)->getElementCount()); 315 case Type::PointerTyID: 316 return *Entry = PointerType::get(ElementTypes[0], 317 cast<PointerType>(Ty)->getAddressSpace()); 318 case Type::FunctionTyID: 319 return *Entry = FunctionType::get(ElementTypes[0], 320 ArrayRef(ElementTypes).slice(1), 321 cast<FunctionType>(Ty)->isVarArg()); 322 case Type::StructTyID: { 323 auto *STy = cast<StructType>(Ty); 324 bool IsPacked = STy->isPacked(); 325 if (IsUniqued) 326 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked); 327 328 // If the type is opaque, we can just use it directly. 329 if (STy->isOpaque()) { 330 DstStructTypesSet.addOpaque(STy); 331 return *Entry = Ty; 332 } 333 334 if (StructType *OldT = 335 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) { 336 STy->setName(""); 337 return *Entry = OldT; 338 } 339 340 if (!AnyChange) { 341 DstStructTypesSet.addNonOpaque(STy); 342 return *Entry = Ty; 343 } 344 345 StructType *DTy = StructType::create(Ty->getContext()); 346 finishType(DTy, STy, ElementTypes); 347 return *Entry = DTy; 348 } 349 } 350 } 351 352 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity, 353 const Twine &Msg) 354 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {} 355 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 356 357 //===----------------------------------------------------------------------===// 358 // IRLinker implementation. 359 //===----------------------------------------------------------------------===// 360 361 namespace { 362 class IRLinker; 363 364 /// Creates prototypes for functions that are lazily linked on the fly. This 365 /// speeds up linking for modules with many/ lazily linked functions of which 366 /// few get used. 367 class GlobalValueMaterializer final : public ValueMaterializer { 368 IRLinker &TheIRLinker; 369 370 public: 371 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 372 Value *materialize(Value *V) override; 373 }; 374 375 class LocalValueMaterializer final : public ValueMaterializer { 376 IRLinker &TheIRLinker; 377 378 public: 379 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 380 Value *materialize(Value *V) override; 381 }; 382 383 /// Type of the Metadata map in \a ValueToValueMapTy. 384 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT; 385 386 /// This is responsible for keeping track of the state used for moving data 387 /// from SrcM to DstM. 388 class IRLinker { 389 Module &DstM; 390 std::unique_ptr<Module> SrcM; 391 392 /// See IRMover::move(). 393 IRMover::LazyCallback AddLazyFor; 394 395 TypeMapTy TypeMap; 396 GlobalValueMaterializer GValMaterializer; 397 LocalValueMaterializer LValMaterializer; 398 399 /// A metadata map that's shared between IRLinker instances. 400 MDMapT &SharedMDs; 401 402 /// Mapping of values from what they used to be in Src, to what they are now 403 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead 404 /// due to the use of Value handles which the Linker doesn't actually need, 405 /// but this allows us to reuse the ValueMapper code. 406 ValueToValueMapTy ValueMap; 407 ValueToValueMapTy IndirectSymbolValueMap; 408 409 DenseSet<GlobalValue *> ValuesToLink; 410 std::vector<GlobalValue *> Worklist; 411 std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist; 412 413 /// Set of globals with eagerly copied metadata that may require remapping. 414 /// This remapping is performed after metadata linking. 415 DenseSet<GlobalObject *> UnmappedMetadata; 416 417 void maybeAdd(GlobalValue *GV) { 418 if (ValuesToLink.insert(GV).second) 419 Worklist.push_back(GV); 420 } 421 422 /// Whether we are importing globals for ThinLTO, as opposed to linking the 423 /// source module. If this flag is set, it means that we can rely on some 424 /// other object file to define any non-GlobalValue entities defined by the 425 /// source module. This currently causes us to not link retained types in 426 /// debug info metadata and module inline asm. 427 bool IsPerformingImport; 428 429 /// Set to true when all global value body linking is complete (including 430 /// lazy linking). Used to prevent metadata linking from creating new 431 /// references. 432 bool DoneLinkingBodies = false; 433 434 /// The Error encountered during materialization. We use an Optional here to 435 /// avoid needing to manage an unconsumed success value. 436 std::optional<Error> FoundError; 437 void setError(Error E) { 438 if (E) 439 FoundError = std::move(E); 440 } 441 442 /// Most of the errors produced by this module are inconvertible StringErrors. 443 /// This convenience function lets us return one of those more easily. 444 Error stringErr(const Twine &T) { 445 return make_error<StringError>(T, inconvertibleErrorCode()); 446 } 447 448 /// Entry point for mapping values and alternate context for mapping aliases. 449 ValueMapper Mapper; 450 unsigned IndirectSymbolMCID; 451 452 /// Handles cloning of a global values from the source module into 453 /// the destination module, including setting the attributes and visibility. 454 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition); 455 456 void emitWarning(const Twine &Message) { 457 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message)); 458 } 459 460 /// Given a global in the source module, return the global in the 461 /// destination module that is being linked to, if any. 462 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) { 463 // If the source has no name it can't link. If it has local linkage, 464 // there is no name match-up going on. 465 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage()) 466 return nullptr; 467 468 // Otherwise see if we have a match in the destination module's symtab. 469 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName()); 470 if (!DGV) 471 return nullptr; 472 473 // If we found a global with the same name in the dest module, but it has 474 // internal linkage, we are really not doing any linkage here. 475 if (DGV->hasLocalLinkage()) 476 return nullptr; 477 478 // If we found an intrinsic declaration with mismatching prototypes, we 479 // probably had a nameclash. Don't use that version. 480 if (auto *FDGV = dyn_cast<Function>(DGV)) 481 if (FDGV->isIntrinsic()) 482 if (const auto *FSrcGV = dyn_cast<Function>(SrcGV)) 483 if (FDGV->getFunctionType() != TypeMap.get(FSrcGV->getFunctionType())) 484 return nullptr; 485 486 // Otherwise, we do in fact link to the destination global. 487 return DGV; 488 } 489 490 void computeTypeMapping(); 491 492 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV, 493 const GlobalVariable *SrcGV); 494 495 /// Given the GlobaValue \p SGV in the source module, and the matching 496 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV 497 /// into the destination module. 498 /// 499 /// Note this code may call the client-provided \p AddLazyFor. 500 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV); 501 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, 502 bool ForIndirectSymbol); 503 504 Error linkModuleFlagsMetadata(); 505 506 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src); 507 Error linkFunctionBody(Function &Dst, Function &Src); 508 void linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src); 509 void linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src); 510 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src); 511 512 /// Replace all types in the source AttributeList with the 513 /// corresponding destination type. 514 AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs); 515 516 /// Functions that take care of cloning a specific global value type 517 /// into the destination module. 518 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar); 519 Function *copyFunctionProto(const Function *SF); 520 GlobalValue *copyIndirectSymbolProto(const GlobalValue *SGV); 521 522 /// Perform "replace all uses with" operations. These work items need to be 523 /// performed as part of materialization, but we postpone them to happen after 524 /// materialization is done. The materializer called by ValueMapper is not 525 /// expected to delete constants, as ValueMapper is holding pointers to some 526 /// of them, but constant destruction may be indirectly triggered by RAUW. 527 /// Hence, the need to move this out of the materialization call chain. 528 void flushRAUWWorklist(); 529 530 /// When importing for ThinLTO, prevent importing of types listed on 531 /// the DICompileUnit that we don't need a copy of in the importing 532 /// module. 533 void prepareCompileUnitsForImport(); 534 void linkNamedMDNodes(); 535 536 /// Update attributes while linking. 537 void updateAttributes(GlobalValue &GV); 538 539 public: 540 IRLinker(Module &DstM, MDMapT &SharedMDs, 541 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM, 542 ArrayRef<GlobalValue *> ValuesToLink, 543 IRMover::LazyCallback AddLazyFor, bool IsPerformingImport) 544 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)), 545 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this), 546 SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport), 547 Mapper(ValueMap, RF_ReuseAndMutateDistinctMDs | RF_IgnoreMissingLocals, 548 &TypeMap, &GValMaterializer), 549 IndirectSymbolMCID(Mapper.registerAlternateMappingContext( 550 IndirectSymbolValueMap, &LValMaterializer)) { 551 ValueMap.getMDMap() = std::move(SharedMDs); 552 for (GlobalValue *GV : ValuesToLink) 553 maybeAdd(GV); 554 if (IsPerformingImport) 555 prepareCompileUnitsForImport(); 556 } 557 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); } 558 559 Error run(); 560 Value *materialize(Value *V, bool ForIndirectSymbol); 561 }; 562 } 563 564 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol 565 /// table. This is good for all clients except for us. Go through the trouble 566 /// to force this back. 567 static void forceRenaming(GlobalValue *GV, StringRef Name) { 568 // If the global doesn't force its name or if it already has the right name, 569 // there is nothing for us to do. 570 if (GV->hasLocalLinkage() || GV->getName() == Name) 571 return; 572 573 Module *M = GV->getParent(); 574 575 // If there is a conflict, rename the conflict. 576 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) { 577 GV->takeName(ConflictGV); 578 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed 579 assert(ConflictGV->getName() != Name && "forceRenaming didn't work"); 580 } else { 581 GV->setName(Name); // Force the name back 582 } 583 } 584 585 Value *GlobalValueMaterializer::materialize(Value *SGV) { 586 return TheIRLinker.materialize(SGV, false); 587 } 588 589 Value *LocalValueMaterializer::materialize(Value *SGV) { 590 return TheIRLinker.materialize(SGV, true); 591 } 592 593 Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) { 594 auto *SGV = dyn_cast<GlobalValue>(V); 595 if (!SGV) 596 return nullptr; 597 598 // When linking a global from other modules than source & dest, skip 599 // materializing it because it would be mapped later when its containing 600 // module is linked. Linking it now would potentially pull in many types that 601 // may not be mapped properly. 602 if (SGV->getParent() != &DstM && SGV->getParent() != SrcM.get()) 603 return nullptr; 604 605 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol); 606 if (!NewProto) { 607 setError(NewProto.takeError()); 608 return nullptr; 609 } 610 if (!*NewProto) 611 return nullptr; 612 613 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto); 614 if (!New) 615 return *NewProto; 616 617 // If we already created the body, just return. 618 if (auto *F = dyn_cast<Function>(New)) { 619 if (!F->isDeclaration()) 620 return New; 621 } else if (auto *V = dyn_cast<GlobalVariable>(New)) { 622 if (V->hasInitializer() || V->hasAppendingLinkage()) 623 return New; 624 } else if (auto *GA = dyn_cast<GlobalAlias>(New)) { 625 if (GA->getAliasee()) 626 return New; 627 } else if (auto *GI = dyn_cast<GlobalIFunc>(New)) { 628 if (GI->getResolver()) 629 return New; 630 } else { 631 llvm_unreachable("Invalid GlobalValue type"); 632 } 633 634 // If the global is being linked for an indirect symbol, it may have already 635 // been scheduled to satisfy a regular symbol. Similarly, a global being linked 636 // for a regular symbol may have already been scheduled for an indirect 637 // symbol. Check for these cases by looking in the other value map and 638 // confirming the same value has been scheduled. If there is an entry in the 639 // ValueMap but the value is different, it means that the value already had a 640 // definition in the destination module (linkonce for instance), but we need a 641 // new definition for the indirect symbol ("New" will be different). 642 if ((ForIndirectSymbol && ValueMap.lookup(SGV) == New) || 643 (!ForIndirectSymbol && IndirectSymbolValueMap.lookup(SGV) == New)) 644 return New; 645 646 if (ForIndirectSymbol || shouldLink(New, *SGV)) 647 setError(linkGlobalValueBody(*New, *SGV)); 648 649 updateAttributes(*New); 650 return New; 651 } 652 653 /// Loop through the global variables in the src module and merge them into the 654 /// dest module. 655 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) { 656 // No linking to be performed or linking from the source: simply create an 657 // identical version of the symbol over in the dest module... the 658 // initializer will be filled in later by LinkGlobalInits. 659 GlobalVariable *NewDGV = 660 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()), 661 SGVar->isConstant(), GlobalValue::ExternalLinkage, 662 /*init*/ nullptr, SGVar->getName(), 663 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(), 664 SGVar->getAddressSpace()); 665 NewDGV->setAlignment(SGVar->getAlign()); 666 NewDGV->copyAttributesFrom(SGVar); 667 return NewDGV; 668 } 669 670 AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) { 671 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 672 for (int AttrIdx = Attribute::FirstTypeAttr; 673 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) { 674 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx; 675 if (Attrs.hasAttributeAtIndex(i, TypedAttr)) { 676 if (Type *Ty = 677 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) { 678 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr, 679 TypeMap.get(Ty)); 680 break; 681 } 682 } 683 } 684 } 685 return Attrs; 686 } 687 688 /// Link the function in the source module into the destination module if 689 /// needed, setting up mapping information. 690 Function *IRLinker::copyFunctionProto(const Function *SF) { 691 // If there is no linkage to be performed or we are linking from the source, 692 // bring SF over. 693 auto *F = Function::Create(TypeMap.get(SF->getFunctionType()), 694 GlobalValue::ExternalLinkage, 695 SF->getAddressSpace(), SF->getName(), &DstM); 696 F->copyAttributesFrom(SF); 697 F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes())); 698 F->IsNewDbgInfoFormat = SF->IsNewDbgInfoFormat; 699 return F; 700 } 701 702 /// Set up prototypes for any indirect symbols that come over from the source 703 /// module. 704 GlobalValue *IRLinker::copyIndirectSymbolProto(const GlobalValue *SGV) { 705 // If there is no linkage to be performed or we're linking from the source, 706 // bring over SGA. 707 auto *Ty = TypeMap.get(SGV->getValueType()); 708 709 if (auto *GA = dyn_cast<GlobalAlias>(SGV)) { 710 auto *DGA = GlobalAlias::create(Ty, SGV->getAddressSpace(), 711 GlobalValue::ExternalLinkage, 712 SGV->getName(), &DstM); 713 DGA->copyAttributesFrom(GA); 714 return DGA; 715 } 716 717 if (auto *GI = dyn_cast<GlobalIFunc>(SGV)) { 718 auto *DGI = GlobalIFunc::create(Ty, SGV->getAddressSpace(), 719 GlobalValue::ExternalLinkage, 720 SGV->getName(), nullptr, &DstM); 721 DGI->copyAttributesFrom(GI); 722 return DGI; 723 } 724 725 llvm_unreachable("Invalid source global value type"); 726 } 727 728 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV, 729 bool ForDefinition) { 730 GlobalValue *NewGV; 731 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) { 732 NewGV = copyGlobalVariableProto(SGVar); 733 } else if (auto *SF = dyn_cast<Function>(SGV)) { 734 NewGV = copyFunctionProto(SF); 735 } else { 736 if (ForDefinition) 737 NewGV = copyIndirectSymbolProto(SGV); 738 else if (SGV->getValueType()->isFunctionTy()) 739 NewGV = 740 Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())), 741 GlobalValue::ExternalLinkage, SGV->getAddressSpace(), 742 SGV->getName(), &DstM); 743 else 744 NewGV = 745 new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()), 746 /*isConstant*/ false, GlobalValue::ExternalLinkage, 747 /*init*/ nullptr, SGV->getName(), 748 /*insertbefore*/ nullptr, 749 SGV->getThreadLocalMode(), SGV->getAddressSpace()); 750 } 751 752 if (ForDefinition) 753 NewGV->setLinkage(SGV->getLinkage()); 754 else if (SGV->hasExternalWeakLinkage()) 755 NewGV->setLinkage(GlobalValue::ExternalWeakLinkage); 756 757 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) { 758 // Metadata for global variables and function declarations is copied eagerly. 759 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration()) { 760 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0); 761 if (SGV->isDeclaration() && NewGO->hasMetadata()) 762 UnmappedMetadata.insert(NewGO); 763 } 764 } 765 766 // Remove these copied constants in case this stays a declaration, since 767 // they point to the source module. If the def is linked the values will 768 // be mapped in during linkFunctionBody. 769 if (auto *NewF = dyn_cast<Function>(NewGV)) { 770 NewF->setPersonalityFn(nullptr); 771 NewF->setPrefixData(nullptr); 772 NewF->setPrologueData(nullptr); 773 } 774 775 return NewGV; 776 } 777 778 static StringRef getTypeNamePrefix(StringRef Name) { 779 size_t DotPos = Name.rfind('.'); 780 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' || 781 !isdigit(static_cast<unsigned char>(Name[DotPos + 1]))) 782 ? Name 783 : Name.substr(0, DotPos); 784 } 785 786 /// Loop over all of the linked values to compute type mappings. For example, 787 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct 788 /// types 'Foo' but one got renamed when the module was loaded into the same 789 /// LLVMContext. 790 void IRLinker::computeTypeMapping() { 791 for (GlobalValue &SGV : SrcM->globals()) { 792 GlobalValue *DGV = getLinkedToGlobal(&SGV); 793 if (!DGV) 794 continue; 795 796 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) { 797 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 798 continue; 799 } 800 801 // Unify the element type of appending arrays. 802 ArrayType *DAT = cast<ArrayType>(DGV->getValueType()); 803 ArrayType *SAT = cast<ArrayType>(SGV.getValueType()); 804 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType()); 805 } 806 807 for (GlobalValue &SGV : *SrcM) 808 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) { 809 if (DGV->getType() == SGV.getType()) { 810 // If the types of DGV and SGV are the same, it means that DGV is from 811 // the source module and got added to DstM from a shared metadata. We 812 // shouldn't map this type to itself in case the type's components get 813 // remapped to a new type from DstM (for instance, during the loop over 814 // SrcM->getIdentifiedStructTypes() below). 815 continue; 816 } 817 818 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 819 } 820 821 for (GlobalValue &SGV : SrcM->aliases()) 822 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) 823 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 824 825 // Incorporate types by name, scanning all the types in the source module. 826 // At this point, the destination module may have a type "%foo = { i32 }" for 827 // example. When the source module got loaded into the same LLVMContext, if 828 // it had the same type, it would have been renamed to "%foo.42 = { i32 }". 829 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes(); 830 for (StructType *ST : Types) { 831 if (!ST->hasName()) 832 continue; 833 834 if (TypeMap.DstStructTypesSet.hasType(ST)) { 835 // This is actually a type from the destination module. 836 // getIdentifiedStructTypes() can have found it by walking debug info 837 // metadata nodes, some of which get linked by name when ODR Type Uniquing 838 // is enabled on the Context, from the source to the destination module. 839 continue; 840 } 841 842 auto STTypePrefix = getTypeNamePrefix(ST->getName()); 843 if (STTypePrefix.size() == ST->getName().size()) 844 continue; 845 846 // Check to see if the destination module has a struct with the prefix name. 847 StructType *DST = StructType::getTypeByName(ST->getContext(), STTypePrefix); 848 if (!DST) 849 continue; 850 851 // Don't use it if this actually came from the source module. They're in 852 // the same LLVMContext after all. Also don't use it unless the type is 853 // actually used in the destination module. This can happen in situations 854 // like this: 855 // 856 // Module A Module B 857 // -------- -------- 858 // %Z = type { %A } %B = type { %C.1 } 859 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* } 860 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] } 861 // %C = type { i8* } %B.3 = type { %C.1 } 862 // 863 // When we link Module B with Module A, the '%B' in Module B is 864 // used. However, that would then use '%C.1'. But when we process '%C.1', 865 // we prefer to take the '%C' version. So we are then left with both 866 // '%C.1' and '%C' being used for the same types. This leads to some 867 // variables using one type and some using the other. 868 if (TypeMap.DstStructTypesSet.hasType(DST)) 869 TypeMap.addTypeMapping(DST, ST); 870 } 871 872 // Now that we have discovered all of the type equivalences, get a body for 873 // any 'opaque' types in the dest module that are now resolved. 874 TypeMap.linkDefinedTypeBodies(); 875 } 876 877 static void getArrayElements(const Constant *C, 878 SmallVectorImpl<Constant *> &Dest) { 879 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements(); 880 881 for (unsigned i = 0; i != NumElements; ++i) 882 Dest.push_back(C->getAggregateElement(i)); 883 } 884 885 /// If there were any appending global variables, link them together now. 886 Expected<Constant *> 887 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV, 888 const GlobalVariable *SrcGV) { 889 // Check that both variables have compatible properties. 890 if (DstGV && !DstGV->isDeclaration() && !SrcGV->isDeclaration()) { 891 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) 892 return stringErr( 893 "Linking globals named '" + SrcGV->getName() + 894 "': can only link appending global with another appending " 895 "global!"); 896 897 if (DstGV->isConstant() != SrcGV->isConstant()) 898 return stringErr("Appending variables linked with different const'ness!"); 899 900 if (DstGV->getAlign() != SrcGV->getAlign()) 901 return stringErr( 902 "Appending variables with different alignment need to be linked!"); 903 904 if (DstGV->getVisibility() != SrcGV->getVisibility()) 905 return stringErr( 906 "Appending variables with different visibility need to be linked!"); 907 908 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr()) 909 return stringErr( 910 "Appending variables with different unnamed_addr need to be linked!"); 911 912 if (DstGV->getSection() != SrcGV->getSection()) 913 return stringErr( 914 "Appending variables with different section name need to be linked!"); 915 916 if (DstGV->getAddressSpace() != SrcGV->getAddressSpace()) 917 return stringErr("Appending variables with different address spaces need " 918 "to be linked!"); 919 } 920 921 // Do not need to do anything if source is a declaration. 922 if (SrcGV->isDeclaration()) 923 return DstGV; 924 925 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType())) 926 ->getElementType(); 927 928 // FIXME: This upgrade is done during linking to support the C API. Once the 929 // old form is deprecated, we should move this upgrade to 930 // llvm::UpgradeGlobalVariable() and simplify the logic here and in 931 // Mapper::mapAppendingVariable() in ValueMapper.cpp. 932 StringRef Name = SrcGV->getName(); 933 bool IsNewStructor = false; 934 bool IsOldStructor = false; 935 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") { 936 if (cast<StructType>(EltTy)->getNumElements() == 3) 937 IsNewStructor = true; 938 else 939 IsOldStructor = true; 940 } 941 942 PointerType *VoidPtrTy = PointerType::get(SrcGV->getContext(), 0); 943 if (IsOldStructor) { 944 auto &ST = *cast<StructType>(EltTy); 945 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 946 EltTy = StructType::get(SrcGV->getContext(), Tys, false); 947 } 948 949 uint64_t DstNumElements = 0; 950 if (DstGV && !DstGV->isDeclaration()) { 951 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType()); 952 DstNumElements = DstTy->getNumElements(); 953 954 // Check to see that they two arrays agree on type. 955 if (EltTy != DstTy->getElementType()) 956 return stringErr("Appending variables with different element types!"); 957 } 958 959 SmallVector<Constant *, 16> SrcElements; 960 getArrayElements(SrcGV->getInitializer(), SrcElements); 961 962 if (IsNewStructor) { 963 erase_if(SrcElements, [this](Constant *E) { 964 auto *Key = 965 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts()); 966 if (!Key) 967 return false; 968 GlobalValue *DGV = getLinkedToGlobal(Key); 969 return !shouldLink(DGV, *Key); 970 }); 971 } 972 uint64_t NewSize = DstNumElements + SrcElements.size(); 973 ArrayType *NewType = ArrayType::get(EltTy, NewSize); 974 975 // Create the new global variable. 976 GlobalVariable *NG = new GlobalVariable( 977 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(), 978 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(), 979 SrcGV->getAddressSpace()); 980 981 NG->copyAttributesFrom(SrcGV); 982 forceRenaming(NG, SrcGV->getName()); 983 984 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType())); 985 986 Mapper.scheduleMapAppendingVariable( 987 *NG, 988 (DstGV && !DstGV->isDeclaration()) ? DstGV->getInitializer() : nullptr, 989 IsOldStructor, SrcElements); 990 991 // Replace any uses of the two global variables with uses of the new 992 // global. 993 if (DstGV) { 994 RAUWWorklist.push_back(std::make_pair(DstGV, NG)); 995 } 996 997 return Ret; 998 } 999 1000 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) { 1001 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage()) 1002 return true; 1003 1004 if (DGV && !DGV->isDeclarationForLinker()) 1005 return false; 1006 1007 if (SGV.isDeclaration() || DoneLinkingBodies) 1008 return false; 1009 1010 // Callback to the client to give a chance to lazily add the Global to the 1011 // list of value to link. 1012 bool LazilyAdded = false; 1013 if (AddLazyFor) 1014 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) { 1015 maybeAdd(&GV); 1016 LazilyAdded = true; 1017 }); 1018 return LazilyAdded; 1019 } 1020 1021 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV, 1022 bool ForIndirectSymbol) { 1023 GlobalValue *DGV = getLinkedToGlobal(SGV); 1024 1025 bool ShouldLink = shouldLink(DGV, *SGV); 1026 1027 // just missing from map 1028 if (ShouldLink) { 1029 auto I = ValueMap.find(SGV); 1030 if (I != ValueMap.end()) 1031 return cast<Constant>(I->second); 1032 1033 I = IndirectSymbolValueMap.find(SGV); 1034 if (I != IndirectSymbolValueMap.end()) 1035 return cast<Constant>(I->second); 1036 } 1037 1038 if (!ShouldLink && ForIndirectSymbol) 1039 DGV = nullptr; 1040 1041 // Handle the ultra special appending linkage case first. 1042 if (SGV->hasAppendingLinkage() || (DGV && DGV->hasAppendingLinkage())) 1043 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV), 1044 cast<GlobalVariable>(SGV)); 1045 1046 bool NeedsRenaming = false; 1047 GlobalValue *NewGV; 1048 if (DGV && !ShouldLink) { 1049 NewGV = DGV; 1050 } else { 1051 // If we are done linking global value bodies (i.e. we are performing 1052 // metadata linking), don't link in the global value due to this 1053 // reference, simply map it to null. 1054 if (DoneLinkingBodies) 1055 return nullptr; 1056 1057 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol); 1058 if (ShouldLink || !ForIndirectSymbol) 1059 NeedsRenaming = true; 1060 } 1061 1062 // Overloaded intrinsics have overloaded types names as part of their 1063 // names. If we renamed overloaded types we should rename the intrinsic 1064 // as well. 1065 if (Function *F = dyn_cast<Function>(NewGV)) 1066 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 1067 // Note: remangleIntrinsicFunction does not copy metadata and as such 1068 // F should not occur in the set of objects with unmapped metadata. 1069 // If this assertion fails then remangleIntrinsicFunction needs updating. 1070 assert(!UnmappedMetadata.count(F) && "intrinsic has unmapped metadata"); 1071 NewGV->eraseFromParent(); 1072 NewGV = *Remangled; 1073 NeedsRenaming = false; 1074 } 1075 1076 if (NeedsRenaming) 1077 forceRenaming(NewGV, SGV->getName()); 1078 1079 if (ShouldLink || ForIndirectSymbol) { 1080 if (const Comdat *SC = SGV->getComdat()) { 1081 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) { 1082 Comdat *DC = DstM.getOrInsertComdat(SC->getName()); 1083 DC->setSelectionKind(SC->getSelectionKind()); 1084 GO->setComdat(DC); 1085 } 1086 } 1087 } 1088 1089 if (!ShouldLink && ForIndirectSymbol) 1090 NewGV->setLinkage(GlobalValue::InternalLinkage); 1091 1092 Constant *C = NewGV; 1093 // Only create a bitcast if necessary. In particular, with 1094 // DebugTypeODRUniquing we may reach metadata in the destination module 1095 // containing a GV from the source module, in which case SGV will be 1096 // the same as DGV and NewGV, and TypeMap.get() will assert since it 1097 // assumes it is being invoked on a type in the source module. 1098 if (DGV && NewGV != SGV) { 1099 C = ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1100 NewGV, TypeMap.get(SGV->getType())); 1101 } 1102 1103 if (DGV && NewGV != DGV) { 1104 // Schedule "replace all uses with" to happen after materializing is 1105 // done. It is not safe to do it now, since ValueMapper may be holding 1106 // pointers to constants that will get deleted if RAUW runs. 1107 RAUWWorklist.push_back(std::make_pair( 1108 DGV, 1109 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType()))); 1110 } 1111 1112 return C; 1113 } 1114 1115 /// Update the initializers in the Dest module now that all globals that may be 1116 /// referenced are in Dest. 1117 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) { 1118 // Figure out what the initializer looks like in the dest module. 1119 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer()); 1120 } 1121 1122 /// Copy the source function over into the dest function and fix up references 1123 /// to values. At this point we know that Dest is an external function, and 1124 /// that Src is not. 1125 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) { 1126 assert(Dst.isDeclaration() && !Src.isDeclaration()); 1127 1128 // Materialize if needed. 1129 if (Error Err = Src.materialize()) 1130 return Err; 1131 1132 // Link in the operands without remapping. 1133 if (Src.hasPrefixData()) 1134 Dst.setPrefixData(Src.getPrefixData()); 1135 if (Src.hasPrologueData()) 1136 Dst.setPrologueData(Src.getPrologueData()); 1137 if (Src.hasPersonalityFn()) 1138 Dst.setPersonalityFn(Src.getPersonalityFn()); 1139 assert(Src.IsNewDbgInfoFormat == Dst.IsNewDbgInfoFormat); 1140 1141 // Copy over the metadata attachments without remapping. 1142 Dst.copyMetadata(&Src, 0); 1143 1144 // Steal arguments and splice the body of Src into Dst. 1145 Dst.stealArgumentListFrom(Src); 1146 Dst.splice(Dst.end(), &Src); 1147 1148 // Everything has been moved over. Remap it. 1149 Mapper.scheduleRemapFunction(Dst); 1150 return Error::success(); 1151 } 1152 1153 void IRLinker::linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src) { 1154 Mapper.scheduleMapGlobalAlias(Dst, *Src.getAliasee(), IndirectSymbolMCID); 1155 } 1156 1157 void IRLinker::linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src) { 1158 Mapper.scheduleMapGlobalIFunc(Dst, *Src.getResolver(), IndirectSymbolMCID); 1159 } 1160 1161 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) { 1162 if (auto *F = dyn_cast<Function>(&Src)) 1163 return linkFunctionBody(cast<Function>(Dst), *F); 1164 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) { 1165 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar); 1166 return Error::success(); 1167 } 1168 if (auto *GA = dyn_cast<GlobalAlias>(&Src)) { 1169 linkAliasAliasee(cast<GlobalAlias>(Dst), *GA); 1170 return Error::success(); 1171 } 1172 linkIFuncResolver(cast<GlobalIFunc>(Dst), cast<GlobalIFunc>(Src)); 1173 return Error::success(); 1174 } 1175 1176 void IRLinker::flushRAUWWorklist() { 1177 for (const auto &Elem : RAUWWorklist) { 1178 GlobalValue *Old; 1179 Value *New; 1180 std::tie(Old, New) = Elem; 1181 1182 Old->replaceAllUsesWith(New); 1183 Old->eraseFromParent(); 1184 } 1185 RAUWWorklist.clear(); 1186 } 1187 1188 void IRLinker::prepareCompileUnitsForImport() { 1189 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu"); 1190 if (!SrcCompileUnits) 1191 return; 1192 // When importing for ThinLTO, prevent importing of types listed on 1193 // the DICompileUnit that we don't need a copy of in the importing 1194 // module. They will be emitted by the originating module. 1195 for (MDNode *N : SrcCompileUnits->operands()) { 1196 auto *CU = cast<DICompileUnit>(N); 1197 assert(CU && "Expected valid compile unit"); 1198 // Enums, macros, and retained types don't need to be listed on the 1199 // imported DICompileUnit. This means they will only be imported 1200 // if reached from the mapped IR. 1201 CU->replaceEnumTypes(nullptr); 1202 CU->replaceMacros(nullptr); 1203 CU->replaceRetainedTypes(nullptr); 1204 1205 // The original definition (or at least its debug info - if the variable is 1206 // internalized and optimized away) will remain in the source module, so 1207 // there's no need to import them. 1208 // If LLVM ever does more advanced optimizations on global variables 1209 // (removing/localizing write operations, for instance) that can track 1210 // through debug info, this decision may need to be revisited - but do so 1211 // with care when it comes to debug info size. Emitting small CUs containing 1212 // only a few imported entities into every destination module may be very 1213 // size inefficient. 1214 CU->replaceGlobalVariables(nullptr); 1215 1216 CU->replaceImportedEntities(nullptr); 1217 } 1218 } 1219 1220 /// Insert all of the named MDNodes in Src into the Dest module. 1221 void IRLinker::linkNamedMDNodes() { 1222 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1223 for (const NamedMDNode &NMD : SrcM->named_metadata()) { 1224 // Don't link module flags here. Do them separately. 1225 if (&NMD == SrcModFlags) 1226 continue; 1227 // Don't import pseudo probe descriptors here for thinLTO. They will be 1228 // emitted by the originating module. 1229 if (IsPerformingImport && NMD.getName() == PseudoProbeDescMetadataName) { 1230 if (!DstM.getNamedMetadata(NMD.getName())) 1231 emitWarning("Pseudo-probe ignored: source module '" + 1232 SrcM->getModuleIdentifier() + 1233 "' is compiled with -fpseudo-probe-for-profiling while " 1234 "destination module '" + 1235 DstM.getModuleIdentifier() + "' is not\n"); 1236 continue; 1237 } 1238 // The stats are computed per module and will all be merged in the binary. 1239 // Importing the metadata will cause duplication of the stats. 1240 if (IsPerformingImport && NMD.getName() == "llvm.stats") 1241 continue; 1242 1243 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName()); 1244 // Add Src elements into Dest node. 1245 for (const MDNode *Op : NMD.operands()) 1246 DestNMD->addOperand(Mapper.mapMDNode(*Op)); 1247 } 1248 } 1249 1250 /// Merge the linker flags in Src into the Dest module. 1251 Error IRLinker::linkModuleFlagsMetadata() { 1252 // If the source module has no module flags, we are done. 1253 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1254 if (!SrcModFlags) 1255 return Error::success(); 1256 1257 // Check for module flag for updates before do anything. 1258 UpgradeModuleFlags(*SrcM); 1259 1260 // If the destination module doesn't have module flags yet, then just copy 1261 // over the source module's flags. 1262 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata(); 1263 if (DstModFlags->getNumOperands() == 0) { 1264 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) 1265 DstModFlags->addOperand(SrcModFlags->getOperand(I)); 1266 1267 return Error::success(); 1268 } 1269 1270 // First build a map of the existing module flags and requirements. 1271 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags; 1272 SmallSetVector<MDNode *, 16> Requirements; 1273 SmallVector<unsigned, 0> Mins; 1274 DenseSet<MDString *> SeenMin; 1275 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) { 1276 MDNode *Op = DstModFlags->getOperand(I); 1277 uint64_t Behavior = 1278 mdconst::extract<ConstantInt>(Op->getOperand(0))->getZExtValue(); 1279 MDString *ID = cast<MDString>(Op->getOperand(1)); 1280 1281 if (Behavior == Module::Require) { 1282 Requirements.insert(cast<MDNode>(Op->getOperand(2))); 1283 } else { 1284 if (Behavior == Module::Min) 1285 Mins.push_back(I); 1286 Flags[ID] = std::make_pair(Op, I); 1287 } 1288 } 1289 1290 // Merge in the flags from the source module, and also collect its set of 1291 // requirements. 1292 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) { 1293 MDNode *SrcOp = SrcModFlags->getOperand(I); 1294 ConstantInt *SrcBehavior = 1295 mdconst::extract<ConstantInt>(SrcOp->getOperand(0)); 1296 MDString *ID = cast<MDString>(SrcOp->getOperand(1)); 1297 MDNode *DstOp; 1298 unsigned DstIndex; 1299 std::tie(DstOp, DstIndex) = Flags.lookup(ID); 1300 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue(); 1301 SeenMin.insert(ID); 1302 1303 // If this is a requirement, add it and continue. 1304 if (SrcBehaviorValue == Module::Require) { 1305 // If the destination module does not already have this requirement, add 1306 // it. 1307 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) { 1308 DstModFlags->addOperand(SrcOp); 1309 } 1310 continue; 1311 } 1312 1313 // If there is no existing flag with this ID, just add it. 1314 if (!DstOp) { 1315 if (SrcBehaviorValue == Module::Min) { 1316 Mins.push_back(DstModFlags->getNumOperands()); 1317 SeenMin.erase(ID); 1318 } 1319 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands()); 1320 DstModFlags->addOperand(SrcOp); 1321 continue; 1322 } 1323 1324 // Otherwise, perform a merge. 1325 ConstantInt *DstBehavior = 1326 mdconst::extract<ConstantInt>(DstOp->getOperand(0)); 1327 unsigned DstBehaviorValue = DstBehavior->getZExtValue(); 1328 1329 auto overrideDstValue = [&]() { 1330 DstModFlags->setOperand(DstIndex, SrcOp); 1331 Flags[ID].first = SrcOp; 1332 }; 1333 1334 // If either flag has override behavior, handle it first. 1335 if (DstBehaviorValue == Module::Override) { 1336 // Diagnose inconsistent flags which both have override behavior. 1337 if (SrcBehaviorValue == Module::Override && 1338 SrcOp->getOperand(2) != DstOp->getOperand(2)) 1339 return stringErr("linking module flags '" + ID->getString() + 1340 "': IDs have conflicting override values in '" + 1341 SrcM->getModuleIdentifier() + "' and '" + 1342 DstM.getModuleIdentifier() + "'"); 1343 continue; 1344 } else if (SrcBehaviorValue == Module::Override) { 1345 // Update the destination flag to that of the source. 1346 overrideDstValue(); 1347 continue; 1348 } 1349 1350 // Diagnose inconsistent merge behavior types. 1351 if (SrcBehaviorValue != DstBehaviorValue) { 1352 bool MinAndWarn = (SrcBehaviorValue == Module::Min && 1353 DstBehaviorValue == Module::Warning) || 1354 (DstBehaviorValue == Module::Min && 1355 SrcBehaviorValue == Module::Warning); 1356 bool MaxAndWarn = (SrcBehaviorValue == Module::Max && 1357 DstBehaviorValue == Module::Warning) || 1358 (DstBehaviorValue == Module::Max && 1359 SrcBehaviorValue == Module::Warning); 1360 if (!(MaxAndWarn || MinAndWarn)) 1361 return stringErr("linking module flags '" + ID->getString() + 1362 "': IDs have conflicting behaviors in '" + 1363 SrcM->getModuleIdentifier() + "' and '" + 1364 DstM.getModuleIdentifier() + "'"); 1365 } 1366 1367 auto ensureDistinctOp = [&](MDNode *DstValue) { 1368 assert(isa<MDTuple>(DstValue) && 1369 "Expected MDTuple when appending module flags"); 1370 if (DstValue->isDistinct()) 1371 return dyn_cast<MDTuple>(DstValue); 1372 ArrayRef<MDOperand> DstOperands = DstValue->operands(); 1373 MDTuple *New = MDTuple::getDistinct( 1374 DstM.getContext(), 1375 SmallVector<Metadata *, 4>(DstOperands.begin(), DstOperands.end())); 1376 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New}; 1377 MDNode *Flag = MDTuple::getDistinct(DstM.getContext(), FlagOps); 1378 DstModFlags->setOperand(DstIndex, Flag); 1379 Flags[ID].first = Flag; 1380 return New; 1381 }; 1382 1383 // Emit a warning if the values differ and either source or destination 1384 // request Warning behavior. 1385 if ((DstBehaviorValue == Module::Warning || 1386 SrcBehaviorValue == Module::Warning) && 1387 SrcOp->getOperand(2) != DstOp->getOperand(2)) { 1388 std::string Str; 1389 raw_string_ostream(Str) 1390 << "linking module flags '" << ID->getString() 1391 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2) 1392 << "' from " << SrcM->getModuleIdentifier() << " with '" 1393 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier() 1394 << ')'; 1395 emitWarning(Str); 1396 } 1397 1398 // Choose the minimum if either source or destination request Min behavior. 1399 if (DstBehaviorValue == Module::Min || SrcBehaviorValue == Module::Min) { 1400 ConstantInt *DstValue = 1401 mdconst::extract<ConstantInt>(DstOp->getOperand(2)); 1402 ConstantInt *SrcValue = 1403 mdconst::extract<ConstantInt>(SrcOp->getOperand(2)); 1404 1405 // The resulting flag should have a Min behavior, and contain the minimum 1406 // value from between the source and destination values. 1407 Metadata *FlagOps[] = { 1408 (DstBehaviorValue != Module::Min ? SrcOp : DstOp)->getOperand(0), ID, 1409 (SrcValue->getZExtValue() < DstValue->getZExtValue() ? SrcOp : DstOp) 1410 ->getOperand(2)}; 1411 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1412 DstModFlags->setOperand(DstIndex, Flag); 1413 Flags[ID].first = Flag; 1414 continue; 1415 } 1416 1417 // Choose the maximum if either source or destination request Max behavior. 1418 if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) { 1419 ConstantInt *DstValue = 1420 mdconst::extract<ConstantInt>(DstOp->getOperand(2)); 1421 ConstantInt *SrcValue = 1422 mdconst::extract<ConstantInt>(SrcOp->getOperand(2)); 1423 1424 // The resulting flag should have a Max behavior, and contain the maximum 1425 // value from between the source and destination values. 1426 Metadata *FlagOps[] = { 1427 (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID, 1428 (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp) 1429 ->getOperand(2)}; 1430 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1431 DstModFlags->setOperand(DstIndex, Flag); 1432 Flags[ID].first = Flag; 1433 continue; 1434 } 1435 1436 // Perform the merge for standard behavior types. 1437 switch (SrcBehaviorValue) { 1438 case Module::Require: 1439 case Module::Override: 1440 llvm_unreachable("not possible"); 1441 case Module::Error: { 1442 // Emit an error if the values differ. 1443 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) 1444 return stringErr("linking module flags '" + ID->getString() + 1445 "': IDs have conflicting values in '" + 1446 SrcM->getModuleIdentifier() + "' and '" + 1447 DstM.getModuleIdentifier() + "'"); 1448 continue; 1449 } 1450 case Module::Warning: { 1451 break; 1452 } 1453 case Module::Max: { 1454 break; 1455 } 1456 case Module::Append: { 1457 MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2))); 1458 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1459 for (const auto &O : SrcValue->operands()) 1460 DstValue->push_back(O); 1461 break; 1462 } 1463 case Module::AppendUnique: { 1464 SmallSetVector<Metadata *, 16> Elts; 1465 MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2))); 1466 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1467 Elts.insert(DstValue->op_begin(), DstValue->op_end()); 1468 Elts.insert(SrcValue->op_begin(), SrcValue->op_end()); 1469 for (auto I = DstValue->getNumOperands(); I < Elts.size(); I++) 1470 DstValue->push_back(Elts[I]); 1471 break; 1472 } 1473 } 1474 1475 } 1476 1477 // For the Min behavior, set the value to 0 if either module does not have the 1478 // flag. 1479 for (auto Idx : Mins) { 1480 MDNode *Op = DstModFlags->getOperand(Idx); 1481 MDString *ID = cast<MDString>(Op->getOperand(1)); 1482 if (!SeenMin.count(ID)) { 1483 ConstantInt *V = mdconst::extract<ConstantInt>(Op->getOperand(2)); 1484 Metadata *FlagOps[] = { 1485 Op->getOperand(0), ID, 1486 ConstantAsMetadata::get(ConstantInt::get(V->getType(), 0))}; 1487 DstModFlags->setOperand(Idx, MDNode::get(DstM.getContext(), FlagOps)); 1488 } 1489 } 1490 1491 // Check all of the requirements. 1492 for (MDNode *Requirement : Requirements) { 1493 MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1494 Metadata *ReqValue = Requirement->getOperand(1); 1495 1496 MDNode *Op = Flags[Flag].first; 1497 if (!Op || Op->getOperand(2) != ReqValue) 1498 return stringErr("linking module flags '" + Flag->getString() + 1499 "': does not have the required value"); 1500 } 1501 return Error::success(); 1502 } 1503 1504 /// Return InlineAsm adjusted with target-specific directives if required. 1505 /// For ARM and Thumb, we have to add directives to select the appropriate ISA 1506 /// to support mixing module-level inline assembly from ARM and Thumb modules. 1507 static std::string adjustInlineAsm(const std::string &InlineAsm, 1508 const Triple &Triple) { 1509 if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb) 1510 return ".text\n.balign 2\n.thumb\n" + InlineAsm; 1511 if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb) 1512 return ".text\n.balign 4\n.arm\n" + InlineAsm; 1513 return InlineAsm; 1514 } 1515 1516 void IRLinker::updateAttributes(GlobalValue &GV) { 1517 /// Remove nocallback attribute while linking, because nocallback attribute 1518 /// indicates that the function is only allowed to jump back into caller's 1519 /// module only by a return or an exception. When modules are linked, this 1520 /// property cannot be guaranteed anymore. For example, the nocallback 1521 /// function may contain a call to another module. But if we merge its caller 1522 /// and callee module here, and not the module containing the nocallback 1523 /// function definition itself, the nocallback property will be violated 1524 /// (since the nocallback function will call back into the newly merged module 1525 /// containing both its caller and callee). This could happen if the module 1526 /// containing the nocallback function definition is native code, so it does 1527 /// not participate in the LTO link. Note if the nocallback function does 1528 /// participate in the LTO link, and thus ends up in the merged module 1529 /// containing its caller and callee, removing the attribute doesn't hurt as 1530 /// it has no effect on definitions in the same module. 1531 if (auto *F = dyn_cast<Function>(&GV)) { 1532 if (!F->isIntrinsic()) 1533 F->removeFnAttr(llvm::Attribute::NoCallback); 1534 1535 // Remove nocallback attribute when it is on a call-site. 1536 for (BasicBlock &BB : *F) 1537 for (Instruction &I : BB) 1538 if (CallBase *CI = dyn_cast<CallBase>(&I)) 1539 CI->removeFnAttr(Attribute::NoCallback); 1540 } 1541 } 1542 1543 Error IRLinker::run() { 1544 // Ensure metadata materialized before value mapping. 1545 if (SrcM->getMaterializer()) 1546 if (Error Err = SrcM->getMaterializer()->materializeMetadata()) 1547 return Err; 1548 1549 // Convert source module to match dest for the duration of the link. 1550 ScopedDbgInfoFormatSetter FormatSetter(*SrcM, DstM.IsNewDbgInfoFormat); 1551 1552 // Inherit the target data from the source module if the destination 1553 // module doesn't have one already. 1554 if (DstM.getDataLayout().isDefault()) 1555 DstM.setDataLayout(SrcM->getDataLayout()); 1556 1557 // Copy the target triple from the source to dest if the dest's is empty. 1558 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty()) 1559 DstM.setTargetTriple(SrcM->getTargetTriple()); 1560 1561 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple()); 1562 1563 // During CUDA compilation we have to link with the bitcode supplied with 1564 // CUDA. libdevice bitcode either has no data layout set (pre-CUDA-11), or has 1565 // the layout that is different from the one used by LLVM/clang (it does not 1566 // include i128). Issuing a warning is not very helpful as there's not much 1567 // the user can do about it. 1568 bool EnableDLWarning = true; 1569 bool EnableTripleWarning = true; 1570 if (SrcTriple.isNVPTX() && DstTriple.isNVPTX()) { 1571 std::string ModuleId = SrcM->getModuleIdentifier(); 1572 StringRef FileName = llvm::sys::path::filename(ModuleId); 1573 bool SrcIsLibDevice = 1574 FileName.starts_with("libdevice") && FileName.ends_with(".10.bc"); 1575 bool SrcHasLibDeviceDL = 1576 (SrcM->getDataLayoutStr().empty() || 1577 SrcM->getDataLayoutStr() == "e-i64:64-v16:16-v32:32-n16:32:64"); 1578 // libdevice bitcode uses nvptx64-nvidia-gpulibs or just 1579 // 'nvptx-unknown-unknown' triple (before CUDA-10.x) and is compatible with 1580 // all NVPTX variants. 1581 bool SrcHasLibDeviceTriple = (SrcTriple.getVendor() == Triple::NVIDIA && 1582 SrcTriple.getOSName() == "gpulibs") || 1583 (SrcTriple.getVendorName() == "unknown" && 1584 SrcTriple.getOSName() == "unknown"); 1585 EnableTripleWarning = !(SrcIsLibDevice && SrcHasLibDeviceTriple); 1586 EnableDLWarning = !(SrcIsLibDevice && SrcHasLibDeviceDL); 1587 } 1588 1589 if (EnableDLWarning && (SrcM->getDataLayout() != DstM.getDataLayout())) { 1590 emitWarning("Linking two modules of different data layouts: '" + 1591 SrcM->getModuleIdentifier() + "' is '" + 1592 SrcM->getDataLayoutStr() + "' whereas '" + 1593 DstM.getModuleIdentifier() + "' is '" + 1594 DstM.getDataLayoutStr() + "'\n"); 1595 } 1596 1597 if (EnableTripleWarning && !SrcM->getTargetTriple().empty() && 1598 !SrcTriple.isCompatibleWith(DstTriple)) 1599 emitWarning("Linking two modules of different target triples: '" + 1600 SrcM->getModuleIdentifier() + "' is '" + 1601 SrcM->getTargetTriple() + "' whereas '" + 1602 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() + 1603 "'\n"); 1604 1605 DstM.setTargetTriple(SrcTriple.merge(DstTriple)); 1606 1607 // Loop over all of the linked values to compute type mappings. 1608 computeTypeMapping(); 1609 1610 std::reverse(Worklist.begin(), Worklist.end()); 1611 while (!Worklist.empty()) { 1612 GlobalValue *GV = Worklist.back(); 1613 Worklist.pop_back(); 1614 1615 // Already mapped. 1616 if (ValueMap.find(GV) != ValueMap.end() || 1617 IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end()) 1618 continue; 1619 1620 assert(!GV->isDeclaration()); 1621 Mapper.mapValue(*GV); 1622 if (FoundError) 1623 return std::move(*FoundError); 1624 flushRAUWWorklist(); 1625 } 1626 1627 // Note that we are done linking global value bodies. This prevents 1628 // metadata linking from creating new references. 1629 DoneLinkingBodies = true; 1630 Mapper.addFlags(RF_NullMapMissingGlobalValues); 1631 1632 // Remap all of the named MDNodes in Src into the DstM module. We do this 1633 // after linking GlobalValues so that MDNodes that reference GlobalValues 1634 // are properly remapped. 1635 linkNamedMDNodes(); 1636 1637 // Clean up any global objects with potentially unmapped metadata. 1638 // Specifically declarations which did not become definitions. 1639 for (GlobalObject *NGO : UnmappedMetadata) { 1640 if (NGO->isDeclaration()) 1641 Mapper.remapGlobalObjectMetadata(*NGO); 1642 } 1643 1644 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) { 1645 // Append the module inline asm string. 1646 DstM.appendModuleInlineAsm(adjustInlineAsm(SrcM->getModuleInlineAsm(), 1647 SrcTriple)); 1648 } else if (IsPerformingImport) { 1649 // Import any symver directives for symbols in DstM. 1650 ModuleSymbolTable::CollectAsmSymvers(*SrcM, 1651 [&](StringRef Name, StringRef Alias) { 1652 if (DstM.getNamedValue(Name)) { 1653 SmallString<256> S(".symver "); 1654 S += Name; 1655 S += ", "; 1656 S += Alias; 1657 DstM.appendModuleInlineAsm(S); 1658 } 1659 }); 1660 } 1661 1662 // Reorder the globals just added to the destination module to match their 1663 // original order in the source module. 1664 for (GlobalVariable &GV : SrcM->globals()) { 1665 if (GV.hasAppendingLinkage()) 1666 continue; 1667 Value *NewValue = Mapper.mapValue(GV); 1668 if (NewValue) { 1669 auto *NewGV = dyn_cast<GlobalVariable>(NewValue->stripPointerCasts()); 1670 if (NewGV) { 1671 NewGV->removeFromParent(); 1672 DstM.insertGlobalVariable(NewGV); 1673 } 1674 } 1675 } 1676 1677 // Merge the module flags into the DstM module. 1678 return linkModuleFlagsMetadata(); 1679 } 1680 1681 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P) 1682 : ETypes(E), IsPacked(P) {} 1683 1684 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST) 1685 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {} 1686 1687 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const { 1688 return IsPacked == That.IsPacked && ETypes == That.ETypes; 1689 } 1690 1691 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const { 1692 return !this->operator==(That); 1693 } 1694 1695 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() { 1696 return DenseMapInfo<StructType *>::getEmptyKey(); 1697 } 1698 1699 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() { 1700 return DenseMapInfo<StructType *>::getTombstoneKey(); 1701 } 1702 1703 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) { 1704 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()), 1705 Key.IsPacked); 1706 } 1707 1708 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) { 1709 return getHashValue(KeyTy(ST)); 1710 } 1711 1712 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS, 1713 const StructType *RHS) { 1714 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1715 return false; 1716 return LHS == KeyTy(RHS); 1717 } 1718 1719 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS, 1720 const StructType *RHS) { 1721 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1722 return LHS == RHS; 1723 return KeyTy(LHS) == KeyTy(RHS); 1724 } 1725 1726 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) { 1727 assert(!Ty->isOpaque()); 1728 NonOpaqueStructTypes.insert(Ty); 1729 } 1730 1731 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) { 1732 assert(!Ty->isOpaque()); 1733 NonOpaqueStructTypes.insert(Ty); 1734 bool Removed = OpaqueStructTypes.erase(Ty); 1735 (void)Removed; 1736 assert(Removed); 1737 } 1738 1739 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) { 1740 assert(Ty->isOpaque()); 1741 OpaqueStructTypes.insert(Ty); 1742 } 1743 1744 StructType * 1745 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes, 1746 bool IsPacked) { 1747 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked); 1748 auto I = NonOpaqueStructTypes.find_as(Key); 1749 return I == NonOpaqueStructTypes.end() ? nullptr : *I; 1750 } 1751 1752 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) { 1753 if (Ty->isOpaque()) 1754 return OpaqueStructTypes.count(Ty); 1755 auto I = NonOpaqueStructTypes.find(Ty); 1756 return I == NonOpaqueStructTypes.end() ? false : *I == Ty; 1757 } 1758 1759 IRMover::IRMover(Module &M) : Composite(M) { 1760 TypeFinder StructTypes; 1761 StructTypes.run(M, /* OnlyNamed */ false); 1762 for (StructType *Ty : StructTypes) { 1763 if (Ty->isOpaque()) 1764 IdentifiedStructTypes.addOpaque(Ty); 1765 else 1766 IdentifiedStructTypes.addNonOpaque(Ty); 1767 } 1768 // Self-map metadatas in the destination module. This is needed when 1769 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the 1770 // destination module may be reached from the source module. 1771 for (const auto *MD : StructTypes.getVisitedMetadata()) { 1772 SharedMDs[MD].reset(const_cast<MDNode *>(MD)); 1773 } 1774 } 1775 1776 Error IRMover::move(std::unique_ptr<Module> Src, 1777 ArrayRef<GlobalValue *> ValuesToLink, 1778 LazyCallback AddLazyFor, bool IsPerformingImport) { 1779 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes, 1780 std::move(Src), ValuesToLink, std::move(AddLazyFor), 1781 IsPerformingImport); 1782 Error E = TheIRLinker.run(); 1783 Composite.dropTriviallyDeadConstantArrays(); 1784 return E; 1785 } 1786